On the Diameter of Compact Homogeneous Riemannian Manifolds

By
Kunio Sugahara*

Introduction

Let M be a compact Riemannian manifold. The diameter $d(M)$ of M is defined to be the maximum of $d(p, q) p, q \in M$, where $d($,$) denotes the distance$ function on M induced by the Riemannian metric.

The main purpose of this paper is to find a positive constant d such that the diameter $d(M) \geqq d$ when the sectional curvature $K \leqq 1$.

In this paper we consider the case that the manifold M is homogeneous. In [3] the author proved that $d=\pi / 2$ if the manifold has a big isotropy subgroup. It has been left to study the case that the isotropy subgroup is finite. Hence we shall mainly study invariant metrics on a Lie group and prove that the number $d>0.23$ if the sectional curvature $K \not \equiv 0$ (Theorem 5.1).

§1. Fixed Points of Isometries

Let M be a compact C^{∞} manifold with a Riemannian metric g. Let $d_{g}($, denote the distance function on M induced by g. Let $I(M, g)$ denote the group of isometries of (M, g). Let p be a point of M. We denote by $I_{p}(M, g)$ the isotropy subgroup of $I(M, g)$, i.e., $I_{p}(M, g)=\{a \in I(M, g) ; a p=p\}$. Let A be a connected subgroup of $I_{p}(M, g)$. Put $F(A)=\{x \in M ; A x=x\}$. Then it is easy to see that $F(A)$ is a disjoint union of closed totally geodesic submanifolds of M. For a curve $c:[0,1] \rightarrow M$, we denote by length ${ }_{g}(c)$ the length of c with respect to the metric g.

Lemma 1.1. Let A be a connected subgroup of $I_{p}(M, g)$ with $\operatorname{dim} A \geqq 1$.

[^0]* Research Institute for Mathematical Sciences, Kyoto University.

Present address: Department of Mathematics, Osaka Kyoiku University, Osaka 543, Japan.

Then $F(A) \varsubsetneqq M$. Let $\gamma:[0,1] \rightarrow M$ be a geodesic starting from a point of $F(A)$ in the normal direction to $F(A)$. Assume that the sectional curvature $K_{g} \leqq k$ $(k>0)$ and length $(\gamma) \leqq \pi / 2 \sqrt{k}$. Then $d_{g}(F(A), \gamma(1))=$ length $_{g}(\gamma)$, i.e., the injectivity radius of $F(A)$ is not less than $\pi / 2 \sqrt{k}$.

Proof. In case that $k=1$ and A is the identity component of $I_{p}(M, g)$, this is Proposition 4.2 in [3]. The proof in it is still valid for the case that A is a connected subgroup of $I_{p}(M, g)$ without any change. Hence we obtain

$$
\begin{aligned}
\text { length }_{g}(\gamma) & =\frac{1}{\sqrt{k}} \text { length }_{k g}(\gamma) \\
& =\frac{1}{\sqrt{k}} d_{k g}(F(A), \gamma(1)) \\
& =d_{g}(F(A), \gamma(1)),
\end{aligned}
$$

since $K_{k g}=K_{g} / k \leqq 1$ and length ${ }_{k g}(\gamma)=\sqrt{k}$ length $_{g}(\gamma) \leqq \pi / 2$. Q.E.D.

§2. The Length of a Killing Vector Field

Let (M, g) be a compact Riemannian manifold as in Section 1 .
Theorem 2.1. Let ξ be a non-trivial Killing vector field on the Riemannian manifold (M, g). Put $\alpha=\max _{x \in M} g(\xi, \xi)_{x}$, and $\mathscr{F}=\left\{x \in M ; g(\xi, \xi)_{x}=\alpha\right\}$. Assume that the sectional curvature $K_{g} \leqq 1$ and $\beta=\max _{x \in M} d_{g}(x, \mathscr{F})<\pi / 2$. Then for any point p of M we obtain
(i) $g(\xi, \xi)_{p} \geqq \alpha \cos ^{2} \beta$,
(ii) $\left\|(\operatorname{grad} g(\xi, \xi))_{p}\right\| \leqq 2 \alpha \sin \beta$, where \| \| denotes $g(,)^{1 / 2}$.

In order to prove the theorem, we provide the following propositions.
Proposition 2.2. Let f be a positive differentiable function defined in the interval $\left(s_{1}, s_{2}\right)$ such that $-\pi / 2<s_{1}<0<s_{2}<\pi / 2, \max f=f(0)$ and $f^{\prime \prime}(s) \geqq-f(s)$. Then $f(s) \geqq f(0) \cos s$.

Proof. Let ε be a positive number. Put $f_{\varepsilon}(s)=(f(0)+\varepsilon) \cos s /(f(s)+\varepsilon)$. Then we obtain

$$
\begin{aligned}
& f_{\varepsilon}^{\prime}(s)=\frac{-(f(0)+\varepsilon)(f(s)+\varepsilon) \sin s-(f(0)+\varepsilon) f^{\prime}(s) \cos s}{(f(s)+\varepsilon)^{2}} \\
& f_{\varepsilon}^{\prime \prime}(s)=-\frac{(f(0)+\varepsilon)\left(f(s)+\varepsilon+f^{\prime \prime}(s)\right) \cos s}{(f(s)+\varepsilon)^{2}}-\frac{2 f_{\varepsilon}^{\prime}(s) f^{\prime}(s)}{f(s)+\varepsilon}
\end{aligned}
$$

Since $f_{\varepsilon}^{\prime}(0)=0$ and $f_{\varepsilon}^{\prime \prime}(0)<0, f_{\varepsilon}$ is maximal at 0 . If $f_{\varepsilon}^{\prime}\left(s_{0}\right)=0$ for some s_{0}, then it follows that

$$
f_{\varepsilon}^{\prime \prime}\left(s_{0}\right)=-\frac{(f(0)+\varepsilon)\left(f\left(s_{0}\right)+\varepsilon+f^{\prime \prime}\left(s_{0}\right)\right) \cos s_{0}}{\left(f\left(s_{0}\right)+\varepsilon\right)^{2}}<0
$$

Hence every critical point of f_{ε} in the interval $\left(s_{1}, s_{2}\right)$ is maximal, which implies that f_{ε} has no critical points in $\left(s_{1}, s_{2}\right)$ except at 0 . Therefore we obtain $f_{\varepsilon}(s)$ $\leqq f_{\varepsilon}(0)=1$, i.e., $(f(0)+\varepsilon) \cos s \leqq f(s)+\varepsilon$. By ε passing to 0 , the assertion is implied.
Q.E.D.

Proposition 2.3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a positive differentiable function such that $f^{\prime \prime}(s) \geqq-f(s) \geqq-\alpha$, where α is a positive number. Then $f^{\prime}(s)$ $\leqq \sqrt{2 \alpha(\alpha-f(s))}$.

Proof. Since $f^{\prime \prime}(s) \geqq-\alpha$, we have for any $t>s$

$$
\begin{aligned}
-\frac{1}{2}(t-s)^{2} \alpha & \leqq \int_{s}^{t}\left(\int_{s}^{\tau} f^{\prime \prime}(\sigma) d \sigma\right) d \tau \\
& =f(t)-f(s)-(t-s) f^{\prime}(s) .
\end{aligned}
$$

It implies

$$
f^{\prime}(s) \leqq \frac{1}{2}(t-s) \alpha+\frac{\alpha-f(s)}{t-s} .
$$

Putting $t-s=\sqrt{2(\alpha-f(s)) / \alpha}$, we obtain

$$
f^{\prime}(s) \leqq \sqrt{2 \alpha(\alpha-f(s))}
$$

Q. E.D.

Proof of Theorem 2.1. Let $\gamma: \mathbb{R} \rightarrow M$ be a geodesic with $\|\dot{\gamma}\|=1$. Since ξ is a Killing vector field, it satisfies

$$
\begin{equation*}
\frac{1}{2} \dot{\gamma} \dot{\gamma} g(\xi, \xi)_{\gamma(t)}=g\left(\nabla_{\dot{\gamma}} \xi, \nabla_{\dot{\gamma}} \xi\right)_{\gamma(t)}-g(R(\dot{\gamma}, \xi) \xi, \dot{\gamma})_{\gamma(t)} \tag{2.1}
\end{equation*}
$$

where $\dot{\gamma}$ denotes the velocity vector of γ and R is the curvature tensor of the Riemannian connection of g.
(i) Put $f(s)=\left\|\xi_{\gamma(s)}\right\|$ and $F=\{s ; f(s)=0\}$. We define $E_{\gamma(s)}=\xi_{\gamma(s)} / f(s)$ for $s \notin F$. Then from (2.1) we obtain

$$
f(s) f^{\prime \prime}(s)=(f(s))^{2} g\left(\nabla_{\dot{\gamma}} E, \nabla_{\dot{\gamma}} E\right)-(f(s))^{2} g(R(\dot{\gamma}, E) E, \dot{\gamma}) .
$$

Since the sectional curvature $K_{g} \leqq 1$, we obtain

$$
\begin{equation*}
f^{\prime \prime}(s) \geqq-f(s) \quad \text { for } \quad s \notin F \tag{2.2}
\end{equation*}
$$

There is a point q in \mathscr{F} such that $d_{g}(p, q)=d_{g}(p, \mathscr{F})$. Let $\gamma:\left[0, s_{0}\right] \rightarrow M$ be a minimal geodesic from q to p, i.e., $d_{g}(q, p)=s_{0}<\pi / 2$. First we show that $f(s) \neq 0\left(s \in\left[0, s_{0}\right]\right)$. Suppose that $F \cap\left[0, s_{0}\right] \neq \varnothing$. Put $\inf F \cap\left[0, s_{0}\right]=s_{1}$. Then $s_{1}>0$ and $s_{1} \in F$. From (2.2) and Proposition 2.2, we obtain $f(s)$ $\geqq f(0) \cos s\left(s \in\left[0, s_{1}\right]\right)$. Hence it follows that

$$
f\left(s_{1}\right) \geqq f(0) \cos s_{1} \geqq f(0) \cos s_{0}>0,
$$

which contradicts $s_{1} \in F$. Therefore we obtain $F \cap\left[0, s_{0}\right]=\varnothing$. Hence (i) follows from Proposition 2.2.
(ii) Let $\gamma(0)=p$. Put $f(s)=\left\|\xi_{\gamma(s / \sqrt{2})}\right\|^{2}$. Then from (i) we obtain

$$
f(s) \geqq \alpha \cos ^{2} \beta>0
$$

On the other hand, from (2.1) and $K_{g} \leqq 1$, we obtain

$$
f^{\prime \prime}(s) \geqq-f(s) .
$$

Hence it follows from Proposition 2.3 that

$$
\begin{aligned}
\dot{\gamma} g(\xi, \xi)_{\gamma(0)} & =\sqrt{2} f^{\prime}(s) \\
& \leqq 2 \sqrt{\alpha(\alpha-f(s))} \\
& \leqq 2 \alpha \sin \beta .
\end{aligned}
$$

We note that

$$
g\left(\dot{\gamma},(\operatorname{grad} g(\xi, \xi))_{p}\right)=\dot{\gamma} g(\xi, \xi)_{p} .
$$

Since we can choose the direction of γ at $\gamma(0)=p$ arbitrarily, our assertion is clear.
Q.E.D.

§3. The Sectional Curvature of Invariant Metrics on a Lie Group

Let G be a compact connected Lie group with a left-invariant Riemannian metric g. We denote by \mathfrak{g} the tangent space to G at the identity e. Let X be a tangent vector to G at e. We denote by X^{L} the left-invariant vector field on G such that the value X_{e}^{L} of X^{L} at e is X. We also define a right-invariant vector field X^{R} similarly. We denote by \mathfrak{g}^{L} the Lie algebra of left-invariant vector fields on G.

A bi-linear form $U(g): \mathfrak{g}^{L} \times \mathfrak{g}^{L} \rightarrow \mathfrak{g}^{L}$ is defined by

$$
2 g\left(U(g)\left(X^{L}, Y^{L}\right), Z^{L}\right)=g\left(X^{L},\left[Z^{L}, Y^{L}\right]\right)+g\left(Y^{L},\left[Z^{L}, X^{L}\right]\right)
$$

$(X, Y, Z \in \mathfrak{g})$. We note that the Riemannian connection ∇ of g has an
expression

$$
\nabla_{X^{L}} Y^{L}=U(g)\left(X^{L}, Y^{L}\right)+\frac{1}{2}\left[X^{L}, Y^{L}\right] \quad(X, Y \in \mathfrak{g})
$$

and the curvature tensor $R(g)$ of ∇ satisfies

$$
\begin{aligned}
g(R(g)(X, Y) Y, X)= & \left\|U(g)\left(X^{L}, Y^{L}\right)_{e}\right\|^{2}-g\left(U(g)\left(X^{L}, X^{L}\right)_{e}, U(g)\left(Y^{L}, Y^{L}\right)_{e}\right) \\
& -\frac{3}{4}\left\|\left[X^{L}, Y^{L}\right]_{e}\right\|^{2}-\frac{1}{2} g\left(\left[X^{L},\left[X^{L}, Y^{L}\right]\right]_{e}, Y_{e}^{L}\right) \\
& -\frac{1}{2} g\left(\left[Y^{L},\left[Y^{L}, X^{L}\right]\right]_{e}, X_{e}^{L}\right) .
\end{aligned}
$$

Lemma 3.1. $U(g)\left(X^{L}, Y^{L}\right)_{e}=-\frac{1}{2}\left(\operatorname{grad} g\left(X^{R}, Y^{R}\right)\right)_{e} \quad(X, Y \in \mathfrak{g})$.
Proof. For a vector $Z \in \mathfrak{g}$, we obtain

$$
\begin{aligned}
g\left(U(g)\left(X^{L}, Y^{L}\right)_{e}, Z\right) & =\frac{1}{2}\left\{g\left(\nabla_{X^{L}} Y^{L}, Z^{L}\right)_{e}+g\left(\nabla_{Y^{L}} X^{L}, Z^{L}\right)_{e}\right\} \\
& =-\frac{1}{2}\left\{g\left(Y^{L}, \nabla_{X^{L}} Z^{L}\right)_{e}+g\left(X^{L}, \nabla_{Y^{L}} Z^{L}\right)_{e}\right\} \\
& =-\frac{1}{2}\left\{g\left(Y^{R}, \nabla_{X^{R}} Z^{L}\right)_{e}+g\left(X^{R}, \nabla_{Y^{R}} Z^{L}\right)_{e}\right\} \\
& =-\frac{1}{2}\left\{g\left(Y^{R}, \nabla_{Z^{L}} X^{R}\right)_{e}+g\left(X^{R}, \nabla_{Z^{L}} Y^{R}\right)_{e}\right\} \\
& =-\frac{1}{2} Z g\left(Y^{R}, X^{R}\right)
\end{aligned}
$$

Q.E.D.

Let a be an element of G. We denote by R_{a} the right translation by a. Let $d v$ be a bi-invariant volume element on G with $\int_{G} d v=1$. We define a biinvariant Riemannian metric \tilde{g} on G by

$$
\tilde{g}=\int_{a \in G} R_{a}^{*} g d v
$$

Let H be a finite subgroup of G such that g is invariant by the right action of H. Then there is a Riemannian metric on G / H such that the projection (G, g) $\rightarrow G / H$ is a Riemannian covering. We denote the metric also by g. We also define a Riemannian manifold $(G / H, \tilde{g})$ in like manner. The diameter of $(G / H, g)$ (resp. $(G / H, \tilde{g}))$ is denoted by $d_{g}(G / H)$ (resp. $\left.d_{\tilde{g}}(G / H)\right) . \quad K_{g}$ denotes the sectional curvature of (G, g).

Lemma 3.2. Assume that $K_{g} \leqq 1$ and $d_{g}(G / H)<\pi / 2$. Then for any X $(\in \mathfrak{g}, \neq 0)$

$$
\cos ^{2} d_{g}(G / H) \leqq \frac{\tilde{g}(X, X)}{g(X, X)} \leqq\left(\cos d_{g}(G / H)\right)^{-2}
$$

Proof. By definition we obtain

$$
\tilde{g}(X, X)=\int_{a \in G} g\left(X^{R}, X^{R}\right)_{a} d v .
$$

Since X^{R} is a Killing vector field on (G, g) and $g\left(X^{R}, X^{R}\right)$ is constant on each right orbit $a H$ of H, it follows from Theorem 2.1 that

$$
\begin{aligned}
g(X, X) \cos ^{2} d_{g}(G / H) & =g\left(X^{R}, X^{R}\right)_{e} \cos ^{2} d_{g}(G / H) \\
& \leqq \max _{x \in G} g\left(X^{R}, X^{R}\right)_{x} \cos ^{2} d_{g}(G / H) \\
& \leqq g\left(X^{R}, X^{R}\right)_{a} \quad(\forall a \in G) \\
& \leqq \max _{x \in G} g\left(X^{R}, X^{R}\right)_{x} \\
& \leqq g\left(X^{R}, X^{R}\right)_{e}\left(\cos d_{g}(G / H)\right)^{-2} \\
& =g(X, X)\left(\cos d_{g}(G / H)\right)^{-2}
\end{aligned}
$$

Hence the assertion is clear.
Q.E.D.

Since both metrics g and \tilde{g} on G are left-invariant, from Lemma 3.2 we obtain

Lemma 3.3. If $K_{g} \leqq 1$ and $d_{g}(G / H)<\pi / 2$, then

$$
\cos d_{g}(G / H) \leqq \frac{d_{\tilde{\tilde{\tilde{j}}}}(G / H)}{d_{g}(G / H)} \leqq\left(\cos d_{g}(G / H)\right)^{-1}
$$

Lemma 3.4. Let a be an element of G. Let $X, Y(\in \mathfrak{g})$ be linearly independent vectors such that $\tilde{g}(X, X)=\tilde{g}(Y, Y)=1$. Assume that $K_{g} \leqq 1$ and $d_{g}(G / H)<\pi / 2$. Then

$$
\begin{align*}
& \left(R_{a}^{*} g\right)\left(U\left(R_{a}^{*} g\right)\left(X^{L}, X^{L}\right)_{e}, U\left(R_{a}^{*} g\right)\left(X^{L}, X^{L}\right)_{e}\right)^{1 / 2} \tag{i}\\
& \quad \leqq\left(\cos d_{g}(G / H)\right)^{-2} \sin d_{g}(G / H),
\end{align*}
$$

$$
\begin{equation*}
\left(R_{a}^{*} g\right)\left(R\left(R_{a}^{*} g\right)(X, Y) Y, X\right) \leqq\left(\cos d_{g}(G / H)\right)^{-4} \tag{ii}
\end{equation*}
$$

Proof. Since we have

$$
\tilde{\mathfrak{g}}(X, X)=\int_{x \in G} g\left(X^{R}, X^{R}\right)_{x} d v=1
$$

there is a point p in G such that $g\left(X^{R}, X^{R}\right)_{p}=1$. Since X^{R} is a Killing vector field on (G, g) such that $g\left(X^{R}, X^{R}\right)$ is constant on each right orbit $x H$ of H $(x \in G)$, it follows from Theorem 2.1 that

$$
\max _{x \in G} g\left(X^{R}, X^{R}\right)_{x} \leqq g\left(X^{R}, X^{R}\right)_{p}\left(\cos d_{g}(G / H)\right)^{-2}=\left(\cos d_{g}(G / H)\right)^{-2}
$$

Similarly we obtain

$$
\max _{x \in G} g\left(Y^{R}, Y^{R}\right)_{x} \leqq\left(\cos d_{g}(G / H)\right)^{-2}
$$

(i) Since $(G / H, g)$ and $\left(G / a H a^{-1}, R_{a}^{*} g\right)$ are isometric, $K_{R_{a}^{*} g} \leqq 1$ and $d_{R_{a}^{*} g}\left(G / a H a^{-1}\right)=d_{g}(G / H)<\pi / 2$. Since X^{R} is a Killing vector field also on $\left(G, R_{a}^{*} g\right)$ such that $\left(R_{a}^{*} g\right)\left(X^{R}, X^{R}\right)$ is constant on each right orbit of $a H a^{-1}$; it follows from Lemma 3.1 and Theorem 2.1 that

$$
\begin{aligned}
& \left(R_{a}^{*} g\right)\left(U\left(R_{a}^{*} g\right)\left(X^{L}, X^{L}\right)_{e}, U\left(R_{a}^{*} g\right)\left(X^{L}, X^{L}\right)_{e}\right)^{1 / 2} \\
& \quad=\frac{1}{2}\left(R_{a}^{*} g\right)\left(\left(\operatorname{grad}_{R_{a}^{*} g}\left(R_{a}^{*} g\right)\left(X^{R}, X^{R}\right)\right)_{e},\left(\operatorname{grad}_{R_{a}^{*} g}\left(R_{a}^{*} g\right)\left(X^{R}, X^{R}\right)\right)_{e}\right)^{1 / 2} \\
& \quad \leqq \max _{x \in G}\left(R_{a}^{*} g\right)\left(X^{R}, X^{R}\right)_{x} \sin d_{g}(G / H) \\
& \quad=\max _{x \in G} g\left(X^{R}, X^{R}\right)_{x} \sin d_{g}(G / H) \\
& \quad \leqq\left(\cos d_{g}(G / H)\right)^{-2} \sin d_{g}(G / H)
\end{aligned}
$$

(ii) Since g and $R_{a}^{*} g$ are isometric, we obtain

$$
1 \geqq K_{R_{a}^{*} g}(X, Y)=\frac{\left(R_{a}^{*} g\right)\left(R\left(R_{a}^{*} g\right)(X, Y) Y, X\right)}{\left(R_{a}^{*} g\right)(X, X)\left(R_{a}^{*} g\right)(Y, Y)-\left(R_{a}^{*} g\right)(X, Y)^{2}}
$$

Hence

$$
\begin{aligned}
\left(R_{a}^{*} g\right)\left(R\left(R_{a}^{*} g\right)(X, Y) Y, X\right) & \leqq\left(R_{a}^{*} g\right)(X, X)\left(R_{a}^{*} g\right)(Y, Y) \\
& =g\left(X^{R}, X^{R}\right)_{a} g\left(Y^{R}, Y^{R}\right)_{a} \\
& \leqq\left(\cos d_{g}(G / H)\right)^{-4}
\end{aligned}
$$

Q.E.D.

Theorem 3.5. Assume that the sectional curvature $K_{g} \leqq 1$ and the diameter $d_{g}(G / H)<\pi / 2$. Then the sectional curvature $K_{\tilde{g}}$ of \tilde{g} satisfies

$$
K_{\tilde{g}} \leqq\left(\cos d_{g}(G / H)\right)^{-4}\left(1+\sin ^{2} d_{g}(G / H)\right)
$$

Proof. Since \tilde{g} is bi-invariant, $U(\tilde{g}) \equiv 0$ (cf. Lemma 3.1). We take vectors $X, Y(\in \mathfrak{g})$ such that $\tilde{g}(X, X)=\tilde{g}(Y, Y)=1$ and $\tilde{g}(X, Y)=0$. Then from Lemma 3.4 we obtain

$$
\begin{aligned}
K_{\tilde{g}}(X, Y)= & \frac{\tilde{g}(R(\tilde{g})(X, Y) Y, X)}{\tilde{g}(X, X) \tilde{g}(Y, Y)-\tilde{g}(X, Y)^{2}} \\
= & -\frac{3}{4} \tilde{g}\left(\left[X^{L}, Y^{L}\right]_{e},\left[X^{L}, Y^{L}\right]_{e}\right) \\
& -\frac{1}{2} \tilde{g}\left(\left[X^{L},\left[X^{L}, Y^{L}\right]\right]_{e}, Y_{e}^{L}\right)-\frac{1}{2} \tilde{g}\left(\left[Y^{L},\left[Y^{L}, X^{L}\right]\right]_{e}, X_{e}^{L}\right) \\
= & \int_{a \in G}\left\{-\frac{3}{4}\left(R_{a}^{*} g\right)\left(\left[X^{L}, Y^{L}\right]_{e},\left[X^{L}, Y^{L}\right]_{e}\right)\right. \\
& -\frac{1}{2}\left(R_{a}^{*} g\right)\left(\left[X^{L},\left[X^{L}, Y^{L}\right]\right]_{e}, Y_{e}^{L}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\frac{1}{2}\left(R_{a}^{*} g\right)\left(\left[Y^{L},\left[Y^{L}, X^{L}\right]\right]_{e}, X_{e}^{L}\right)\right\} d v \\
= & \int_{a \in G}\left\{\left(R_{a}^{*} g\right)\left(R\left(R_{a}^{*} g\right)(X, Y) Y, X\right)\right. \\
& -\left(R_{a}^{*} g\right)\left(U\left(R_{a}^{*} g\right)\left(X^{L}, Y^{L}\right)_{e}, U\left(R_{a}^{*} g\right)\left(X^{L}, Y^{L}\right)_{e}\right) \\
& \left.+\left(R_{a}^{*} g\right)\left(U\left(R_{a}^{*} g\right)\left(X^{L}, X^{L}\right)_{e}, U\left(R_{a}^{*} g\right)\left(Y^{L}, Y^{L}\right)_{e}\right)\right\} d v \\
\leqq & \left(\cos d_{g}(G / H)\right)^{-4}+\sin ^{2} d_{g}(G / H)\left(\cos d_{g}(G / H)\right)^{-4} . \quad \text { Q.E.D. }
\end{aligned}
$$

§ 4. Bi-invariant Metrics and Finite Subgroups of a Lie Group

Let G be a compact connected Lie group as in Section 3. Let exp denote the usual exponential mapping from \mathfrak{g} to G, i.e., for a tangent vector $X \in \mathfrak{g} \gamma(t)=$ $\exp t X(t \in \boldsymbol{R})$ is a one-parameter subgroup of G such that $\dot{\gamma}(0)=X$. The usual bracket operation is defined by

$$
[X, Y]=\left.\frac{d}{d t}(\operatorname{Ad}(\exp t X) Y)\right|_{t=0}
$$

$X, Y \in \mathfrak{g}$. Let \tilde{g} be a bi-invariant Riemannian metric on G with sectional curvature $K_{\tilde{g}} \leqq k(k>0)$. We note the mapping exp: $\mathfrak{g} \rightarrow G$ coincides with the usual exponential mapping of the Riemannian manifold (G, \tilde{g}) because the metric \tilde{g} is bi-invariant. For non-zero vectors X and Y of \mathfrak{g} we denote by $\Varangle(X, Y)$ the angle which X and Y make. \|\| denotes $\tilde{g}(,)^{1 / 2}$.

Lemma 4.1. Let X and Y be non-zero vectors of g . We have

$$
\Varangle(\operatorname{Ad}(\exp Y) X, X) \leqq \frac{\|[Y, X]\|}{\|X\|} .
$$

Proof. Since the metric \tilde{g} is bi-invariant and $\left.\frac{d}{d t} \operatorname{Ad}(\exp t Y) X\right|_{t=0}$ $=[Y, X]$, we see $\|\operatorname{Ad}(\exp t Y) X\|=\|X\|$ and $\left\|\frac{d}{d t} \operatorname{Ad}(\exp t Y) X\right\|=\|[Y, X]\|$. Hence it follows that

$$
\begin{aligned}
\Varangle(\operatorname{Ad}(\exp Y) X, X) & \leqq \frac{1}{\|X\|} \int_{0}^{1}\left\|\frac{d}{d t} \operatorname{Ad}(\exp t Y) X\right\| d t \\
& =\frac{\|[Y, X]\|}{\|X\|} .
\end{aligned}
$$

Lemma 4.2. Let X and Y be non-zero vectors of g such that $\exp t X$ $(0 \leqq t \leqq 1)$ and $\exp t Y(0 \leqq t \leqq 1)$ are minimal geodesics. Suppose that $\|X\|$ $=d_{\tilde{g}}(e, \exp X)<\pi / \sqrt{k}$ and $\|[X, Y]\| /\|X\|<\pi / 3$. Then

$$
d_{\tilde{g}}(e, \exp X)>d_{\tilde{g}}\left(\exp X, \exp Y \exp X \exp Y^{-1}\right) .
$$

Remark. The similar estimate is found in [1].
Proof. From Lemma 4.1, we obtain $\Varangle(\operatorname{Ad}(\exp Y) X, X)<\pi / 3$. It implies $\|X\|>\|X-\operatorname{Ad}(\exp Y) X\|$. Let us define a curve $\gamma:[0,1] \rightarrow \mathfrak{g}$ by $\gamma(t)=t X$ $+(1-t) \operatorname{Ad}(\exp Y) X$. We have the sectional curvature $K_{\tilde{g}} \geqq 0$ since the metric \tilde{g} is bi-invariant. From Rauch's comparison theorem we easily see that

$$
\begin{aligned}
d_{\tilde{g}}(e, \exp X) & =\|X\| \\
& \geqq\|X-\operatorname{Ad}(\exp Y) X\| \\
& =\text { length }(\gamma) \\
& \geqq \text { length }(\exp \circ \gamma) \\
& \geqq d_{\tilde{g}}\left(\exp X, \exp Y \exp X \exp Y^{-1}\right) . \quad \text { Q.E.D. }
\end{aligned}
$$

Lemma 4.3. Let $c(\neq e)$ be an element of the center of G. If G is semisimple, then $d_{\tilde{g}}(e, c) \geqq \pi / \sqrt{k}$.

Proof. Let $\gamma:[0,1] \rightarrow G$ be a minimal geodesic from e to c. Then γ is expressed as $\gamma(t)=\exp t Y$ for some $X \in \mathfrak{g}$. Since G is semi-simple, the orbit $\operatorname{Ad}(G) X(\subset \mathfrak{g})$ of X by the adjoint action of G is at least of one dimension. Since $\exp \operatorname{Ad}(G) X=c, c$ is conjugate to e along γ. Hence the assertion follows from the Morse-Shoenberg theorem.
Q.E.D.

Let x be a point of G. $C(x)$ denotes the cut locus of x with respect to the metric \tilde{g}.

Lemma 4.4. If G is semi-simple, then $d_{\tilde{g}}(e, C(e)) \geqq \pi / 2 \sqrt{k}$.
Proof. Since the metric \tilde{g} is bi-invariant, the isotropy subgroup $I_{e}(G, \tilde{g})$ at e contains the inner automorphisms $\operatorname{Ad}(G)$ of G. Since the fixed points $F(\operatorname{Ad}(G))$ is the center of G and since che center consists of finite points, the assertion follows from Lemma 1.1.
Q.E.D.

Let H be a finite subgroup of G. Let h be an element of $H \backslash\{e\}$ which is the closest to e. Put $Z(h)=\{x \in G ; x h=h x\}$.

Lemma 4.5. If G is semi-simple and $d_{\dot{9}}(e, h)<\pi / 2,1 \bar{k}$, then $Z(h) \varsubsetneqq G$ and $\max _{x \in G} d_{\tilde{q}}(x, Z(h)) \geqq \pi / 2 \sqrt{k}$.

Proof. From Lemma 4.4, we see that the minimal geodesic from e to h is unique. We denote the geodesic by $\exp t X(0 \leqq t \leqq 1)$, where $X \in \mathfrak{g}$. Since for any $x \in Z(h)$ the inner automorphism by x fixes the endpoints of the geodesic and
since the minimal geodesic connecting e and h is unique, we obtain $x(\exp t X) x^{-1}$ $=\exp t X(0 \leqq t \leqq 1)$, which implies that

$$
\begin{aligned}
Z(h) & =\left\{x \in G ;(\exp t X) x(\exp t X)^{-1}=x \quad(t \in \boldsymbol{R})\right\} \\
& =F\left(\left\{L_{\exp t X}\left(R_{\exp t X}\right)^{-1} ; t \in \boldsymbol{R}\right\}\right)
\end{aligned}
$$

Since G is semi-simple, the assertion follows from Lemma 1.1.
Q. E. D.

Lemma 4.6. Suppose that $H \equiv Z(h)$. Then for any $a \in H \backslash Z(h) d_{\hat{g}}(e, a)$ $\geqq \pi / 6 \sqrt{k}$.

Proof. Let $\gamma, \delta:[0,1] \rightarrow G$ be minimal geodesics from e to h and a respectively. Then there are X and Y in \mathfrak{g} such that $\gamma(t)=\exp t X$ and $\delta(t)=\exp t Y$. If $\|[X, Y]\| /\|X\|<\pi / 3$, Lemma 4.2 implies that

$$
d_{\tilde{g}}(e, h)>d_{\tilde{g}}\left(h, a h a^{-1}\right)=d_{\tilde{g}}\left(e, a h a^{-1} h^{-1}\right),
$$

which contradicts the choice of h. Hence we obtain $\|[X, Y]\| /\|X\| \geqq \pi / 3$ On the other hand, we have

$$
k \geqq K_{\tilde{g}}(X, Y)=\frac{\frac{1}{4}\|[X, Y]\|^{2}}{\|X\|^{2}\|Y\|^{2}-\tilde{g}(X, Y)^{2}} .
$$

Hence it follows that

$$
k \geqq \frac{\frac{1}{4}\|[X, Y]\|^{2}}{\|X\|^{2}\|Y\|^{2}} \geqq \frac{\pi^{2}}{36\|Y\|^{2}}
$$

which implies

$$
d_{\tilde{g}}(e, a)=\|Y\| \geqq \frac{\pi}{6 \sqrt{k}} .
$$

Theorem 4.7. Assume that the group G is not abelian. Then the following (i), (ii) and (iii) hold.
(i) $d_{\hat{g}}(G) \geqq \frac{\pi}{2 \sqrt{k}}$.
(ii) If G is simply connected, then $d_{\tilde{g}}(G) \geqq \frac{\pi}{\sqrt{k}}$.
(iii) $\max _{x \in G} d_{\tilde{g}}(x, H)=d_{\tilde{g}}(G / H) \geqq \frac{\pi}{12 \sqrt{k}}$.

Proof. Let Z be the identity component of the center of G. We put G^{\prime} $=G / Z$. Then G^{\prime} is semi-simple and if G is simply connected, so is G^{\prime}. The metric \tilde{g} on G induces a Riemannian metric \tilde{g}^{\prime} on G^{\prime} so that the projection
$\pi: G \rightarrow G^{\prime}$ is a Riemannian submersion. Let 3 denote the tangent space to Z at e. We take orthonormal vectors X and Y in g such that $X, Y \perp_{3}$. Then from O'Neil's theorem for Riemannian submersion we obtain

$$
K_{\tilde{g}}\left(\pi_{*} X, \pi_{*} Y\right)=K_{\tilde{g}}(X, Y)+\frac{3}{4}\left\|[X, Y]_{3}\right\|^{2},
$$

where $[X, Y]_{3}$ denotes the orthogonal projection of $[X, Y]$ to 3 . Since $[X, Y]$ \perp_{3}, we obtain $K_{\tilde{g}^{\prime}} \leqq k$. On the other hand it is clear that, for any point x and y of $G, d_{\tilde{g}}(x, y) \geqq d_{\tilde{g}^{\prime}}(\pi(x), \pi(y))$. Hence we have only to prove the theorem with the assumption that G is semi-simple. So we suppose G is semi-simple.
(i) From Lemma 4.4, we obtain

$$
d_{\tilde{g}}(G) \geqq d_{\tilde{g}}(e, C(e)) \geqq \frac{\pi}{2 \sqrt{k}} .
$$

(ii) Corollary 5.12 in [2] states that the cut locus and first conjugate locus coincide. The assertion follows easily from the Morse-Shoenberg theorem.
(iii) If $H=\{e\}$, the inequality follows from (i). Hence we assume that $H \supsetneqq$ $\{e\}$. Let h be an element of $H \backslash\{e\}$ which is the closest to e. Let m be the middle point of a minimal geodesic from e to h. Then it is easy to see that $d_{\dot{g}}(m, H)$ $=d_{\tilde{g}}(m, e)=\frac{1}{2} d_{\tilde{g}}(e, h)$. If $d_{\tilde{g}}(e, h) \geqq \pi / 2 \sqrt{k}$, then $\max _{x \in G} d_{\tilde{g}}(x, H) \geqq d_{\tilde{g}}(m, H)$ $\geqq \pi / 4 \sqrt{k}$. Hence we may assume that $d_{\tilde{g}}(e, h)<\pi / 2 \sqrt{k}$. If $H \subset Z(h)$, the inequality follows from Lemma 4.5. Therefore we suppose that $H \equiv Z(h)$. Let a be an element of $H \backslash Z(h)$ which is the closest to e. Let m^{\prime} be the middle point of a minimal geodesic from e to a. Then we have $d_{\tilde{g}}\left(m^{\prime}, H\right)=d_{\tilde{g}}\left(m^{\prime}, e\right)$. (In fact, suppose that there is an element $b \in H$ with $d_{\tilde{g}}\left(m^{\prime}, b\right)<d_{\bar{g}}\left(m^{\prime}, e\right)$. Then it follows from $d_{\tilde{g}}(e, b) \leqq d_{\tilde{g}}\left(e, m^{\prime}\right)+d_{\hat{g}}\left(m^{\prime}, b\right)<d_{\tilde{g}}(e, a)$ that $b \in Z(h)$. Hence we obtain $a b^{-1} \in H \backslash Z(h)$ and $d_{\tilde{g}}\left(e, a b^{-1}\right)=d_{\tilde{g}}(b, a) \leqq d_{\tilde{g}}\left(b, m^{\prime}\right)+d_{\tilde{g}}\left(m^{\prime}, a\right)<d_{\tilde{g}}(e, a)$, which means that a is not the closest to e of $H \backslash Z(h)$.) Therefore the inequality follows from Lemma 4.6.
Q.E.D.

§5. Diameter Estimate

Theorem 5.1. Let (M, g) be a compact homogeneous Riemannian manifold with the sectional curvature $K_{g} \leqq 1$ and $K_{g} \neq 0$. Then the diameter $d_{g}(M)$ of (M, g) is not less than a positive constant $d(>0.23)$.

Proof. Let p be a point of M. If $\operatorname{dim} I_{p}(M, g) \geqq 1$, then from Lemma 1.1 we obtain

$$
d_{g}(M) \geqq \max _{x \in M} d_{g}\left(x, F\left(I_{p}^{\circ}(M, g)\right)\right) \geqq \frac{\pi}{2},
$$

where $I_{p}^{\circ}(M, g)$ denotes the identity component of $I_{p}(M, g)$ (see also [3]).
Hence we assume that $\operatorname{dim} I_{p}(M, g)=0$. We denote by G the identity component of $I(M, g)$ and put $H=G \cap I_{p}(M, g)$. Since the projection $G \rightarrow G / H=M$ is a covering, g induces a left-invariant Riemannian metric on G such that the projection is a Riemannian covering. We denote the metric also by g. It is invariant by the inner automorphism by H. We define a Riemannian metric \tilde{g} as in Section 3. Suppose that $d_{g}(G / H)<\pi / 2$. Then from Theorem 3.5 we obtain

$$
K_{\tilde{g}} \leqq\left(\cos d_{g}(G / H)\right)^{-4}\left(1+\sin ^{2} d_{g}(G / H)\right) .
$$

Since $K_{g} \not \equiv 0$, it is easily seen that G is not abelian. Hence it follows from Lemma 3.3 and Theorem 4.7 that

$$
\begin{align*}
\frac{\pi}{12 \sqrt{\left(\cos d_{g}(G / H)\right)^{-4}\left(1+\sin ^{2} d_{g}(G / H)\right)}} & \leqq d_{\tilde{g}}(G / H) \tag{5.1}\\
& \leqq d_{g}(G / H)\left(\cos d_{g}(G / H)\right)^{-1}
\end{align*}
$$

We put

$$
d=\inf \left\{t \geqq 0 ; \frac{\pi}{12} \leqq t(\cos t)^{-3}\left(1+\sin ^{2} t\right)^{1 / 2}\right\} .
$$

Then $\pi / 2>d>0.23$ and $d_{g}(M) \geqq d$.
Q.E.D.

Theorem 5.2. Let (M, g) be a simply connected compact homogeneous Riemannian manifold with sectional curvature $K_{g} \leqq 1$ and $K_{g} \neq 0$. Then the diameter $d_{g}(M)$ of (M, g) is not less than a positive constant $d_{0}(>0.81)$.

Proof. As in the proof of Theorem 5.1, we may assume that $\operatorname{dim} I_{p}(M, g)$ $=0$. We define G and H as in the proof of Theorem 5.1. Since M is simply connected, $H=\{e\}$ and $G=M$. Hence it follows from Lemma 3.3 and (i) of Theorem 4.7 that we can replace (5.1) by

$$
\begin{equation*}
\frac{\pi}{\sqrt{\left(\cos d_{g}(G)\right)^{-4}\left(1+\sin ^{2} d_{g}(G)\right)}} \leqq d_{g}(G)\left(\cos d_{g}(G)\right)^{-1} \tag{5.2}
\end{equation*}
$$

We put

$$
d_{0}=\inf \left\{t \geqq 0 ; \pi \leqq t(\cos t)^{-3}\left(1+\sin ^{2} t\right)^{1 / 2}\right\} .
$$

Then $\pi / 2>d_{0}>0.81$ and $d_{g}(M)=d_{g}(G) \geqq d_{0}$.
Q.E.D.

Theorem 5.3. Let G be a compact connected Lie group with a left-
invariant metric g. Assume that the sectional curvature $K_{g} \leqq 1$ and G is not abelian. Then the diameter $d_{g}(G)$ of (G, g) is not less than a positive constant $d_{1}(>0.66)$.

Proof. We define a metric \tilde{y} as in Section 3. We may assume that $d_{g}(G)<\pi / 2$. From Theorem 3.5, we obtain

$$
K_{\tilde{g}} \leqq\left(\cos d_{g}(G)\right)^{-4}\left(1+\sin ^{2} d_{g}(G)\right) .
$$

Hence it follows from Lemma 3.3 and Theorem 4.7 that

$$
\begin{align*}
\frac{\pi}{2 \sqrt{\left(\cos d_{g}(G)\right)^{-4}\left(1+\sin ^{2} d_{g}(G)\right)}} & \leqq d_{\tilde{g}}(G) \tag{5.3}\\
& \leqq d_{g}(G)\left(\cos d_{g}(G)\right)^{-1} .
\end{align*}
$$

We put

$$
d_{1}=\inf \left\{t>0 ; \frac{\pi}{2} \leqq t(\cos t)^{-3}\left(1+\sin ^{2} t\right)^{1 / 2}\right\}
$$

Then

$$
\frac{\pi}{2}>d_{1}>0.66 \quad \text { and } \quad d_{g}(G) \geqq d_{1} . \quad \text { Q.E.D. }
$$

References

[1] Boothby, W. M. and Wang, H.-C., On the finite subgroups of connected Lie groups, Comm. Math. Helv., 39 (1964), 281-294.
[2] Cheeger, J. and Ebin, D. G., Comparison Theorems in Riemannian Geometry, NorthHolland, Amsterdam, 1975.
[3] Sugahara, K., On the diameter of certain Riemannian manifolds, Publ. RIMS, Kyoto Univ., 11 (1976), 835-847.

[^0]: Received March 1, 1979.

