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On the Diameter of Compact Homogeneous
Riemannian Manifolds
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Kunio SUGAHARA*

Introduction

Let M be a compact Riemannian manifold. The diameter d(M) of M is

defined to be the maximum of d(p, q) p, q e M, where d( , ) denotes the distance

function on M induced by the Riemannian metric.

The main purpose of this paper is to find a positive constant d such that

the diameter d(M)^d when the sectional curvature K^l.

In this paper we consider the case that the manifold M is homogeneous.

In [3] the author proved that d = n/2 if the manifold has a big isotropy subgroup.

It has been left to study the case that the isotropy subgroup is finite. Hence we

shall mainly study invariant metrics on a Lie group and prove that the number

rf>0.23 if the sectional curvature K=£Q (Theorem 5.1).

§ 1. Fixed Points of Isometries

Let M be a compact C°° manifold with a Riemannian metric g. Let dg( , )

denote the distance function on M induced by g. Let /(M, g) denote the

group of isometries of (M, g). Let p be a point of M. We denote by Ip(M, g)

the isotropy subgroup of J(M, g), i.e., Ip(M, g) = {ae!(M, g)\ ap = p}. Let

A be a connected subgroup of Ip(M, g). Put F(A) = {xeM; Ax = x}. Then

it is easy to see that F(A) is a disjoint union of closed totally geodesic sub-

manifolds of M. For a curve c: [0, 1]->M, we denote by length^ (c) the length
of c with respect to the metric g.

Lemma l.L Let A be a connected subgroup of Ip(M9 g) with
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Then F(A)^M. Let 7: [0, 1]->M be a geodesic starting from a point of F(A)

in the normal direction to F(A). Assume that the sectional curvature Kg^k

(/c>0) and length,(y)^n!2jk. Then dg(F(A), y(l)) = length,(7), i.e., the

injectivity radius of F(A) is not less than n/2-^/k.

Proof. In case that k= 1 and A is the identity component of Ip(M, g\ this

is Proposition 4.2 in [3], The proof in it is still valid for the case that A is a

connected subgroup of /P(M, g) without any change. Hence we obtain

length^ (7) = -jj- length kg (7)

= dg(F(A),y(l)),

since Kkg = Kg/k ^ 1 and length^ (7) = ̂ /Flength^ (7) ̂  n/2. Q. E. D.

§ 2. The Length of a Killing Vector Field

Let (M, g} be a compact Riemannian manifold as in Section 1.

Theorem 2.1. Let £ be a non-trivial Killing vector field on the Rieman-

nian manifold (M, g). Put a = maxg(£, £)xy and ^ = {xeM; g(£, £)x = u}.
jcsM

Assume that the sectional curvature Kg^l and j8 = maxdf
g(x, ^")<7i/2. Then

xeM
for any point p of M we obtain

(i)
(ii)

where \\ \\ denotes g( , )1/2.

In order to prove the theorem, we provide the following propositions.

Proposition 2.2. Let f be a positive differentiable function defined in the

interval (sl5 s2) such that -7i/2<s1<0<s2<7r/2, max/=/(0) and f"(s)^ -/(s).

Then f(s)^f(Q) cos s.

Proof. Let e be a positive number. Put /£(s) = (/(0) + e) coss/(/(5) + e).

Then we obtain

' ) cos s
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Since /;(0) = 0 and/J(0)<0, /£ is maximal at 0. If f'e(s0) = Q for some s0> then

it follows that

Hence every critical point of fe in the interval (sl5 s2) is maximal, which implies

that fe has no critical points in (sl9 s2) except at 0. Therefore we obtain /e(s)

:g/£(0) = l, i.e., (/(O) + e) cos s ̂  f(s) 4- e. By s passing to 0, the assertion is im-

plied. Q.E.D.

Proposition 2.3. Let f:R-*R be a positive differentiable function

such that f"(s) ^ — /(s) ̂  — a, where a is a positive number. Then /'(s)

Proof. Since /"(s)^ —a, we have for any f >s

It implies

Putting f — s = ^/2(a— /(s))/a, we obtain

/(s)y. Q.E.D.

Proof of Theorem 2.1. Let 7: R-+M be a geodesic with (|y|| = l. Since

C is a Killing vector field, it satisfies

(2.1) iyy ff(^, 0T(,) = ff(^, FA(0- ffW*. 0«. *)*> '

where 7 denotes the velocity vector of y and R is the curvature tensor of the

Riemannian connection of g.

(i) Put /(s)=||£TW|| and F = {s;/(s) = 0}. We define £y(s) = £,w//(s) for
. Then from (2.1) we obtain

(y, E)E, y).

Since the sectional curvature K9^l, we obtain

(2.2) /"(s)^-/(s) for
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There is a point q in J5" such that dg(p, q) = dg(p, J5"). Let 7: [0, s0]-»M

be a minimal geodesic from q to p, i.e., Jg(g, p) = sQ<n/2. First we show that

/(s)^0 (s e [0, s0]). Suppose that F D [0, s0] ^ 0. Put inf F n [0, s0] = sl.

Then Sj>0 and s1eF. From (2.2) and Proposition 2.2, we obtain /(s)

;> /(O) cos s (s e [0, sj). Hence it follows that

/(S!)^/(0) COS Si ̂ /(O) COS S0>0,

which contradicts s^eF. Therefore we obtain F n [0, s0] = 0. Hence (i)

follows from Proposition 2.2.

(ii) Let y(0) = p. Put /(s) = || £y(s/V2 ) || 2. Then from (i) we obtain

On the other hand, from (2.1) and Kg^l, we obtain

/"(s)^-/(s).

Hence it follows from Proposition 2.3 that

g 2

We note that

Since we can choose the direction of y at y(Q) = p arbitrarily, our assertion is

clear. Q. E. D.

§ 3. The Sectional Curvature of Invariant Metrics on a Lie Group

Let G be a compact connected Lie group with a left-invariant Riemannian

metric g. We denote by g the tangent space to G at the identity e. Let X be a

tangent vector to G at e. We denote by XL the left-invariant vector field on G

such that the value X^ of XL at e is X . We also define a right-invariant vector

field XR similarly. We denote by gL the Lie algebra of left-invariant vector

fields on G.

A bi-linear form U(g): gL x $L-»gL is defined by

2g(U(g)(XL, YL\ ZL)=g(XL, [Z^, Y^) + g(YL, IZL, XLJ)

(X, Y, Z e g). We note that the Riemannian connection F of g has an
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expression

FxLYL=U(g)(XL, yL) + 4^L> y*] (X, Yeg)

and the curvature tensor R(g) of V satisfies

g(R(g)(X, Y)Y, X)=\\U(g)(XL, YL)e\\
2-g(U(g)(XL, XL)e, U(g)(YL,

-f IIC*L, yLLH2-Y
-Y*([yM^*L]]

Lemma 3.1. U(g) (XL, YL)e = - ^(grad g(X*9 y*))e (X, Ye g) .

Proof. For a vector Z e g, we obtain

g(V(g)(XL, YL)e? Z) = ±{g(rXI.Y
L

9 ZL)e + g(7YLXL
9 ZL)e}

= - Z f l f ( y * , X * ) . Q.E.D.

Let a be an element of G. We denote by Ra the right translation by a.

Let di; be a bi-in variant volume element on G with \ dv=l. We define a bi-
JG

invariant Riemannian metric g on G by

g = \ R*gdv.
JaeG

Let H be a finite subgroup of G such that g is invariant by the right action
of H. Then there is a Riemannian metric on G/H such that the projection (G, g)

-^G/H is a Riemannian covering. We denote the metric also by g. We also

define a Riemannian manifold (G/H, g) in like manner. The diameter of

(G/H, g) (resp. (G/ff, #)) is denoted by d,(G/ff) (resp. d§(G/H)). Kg denotes
the sectional curvature of (G, g).

Lemma 3.20 Assume that Kg^l and dg(G/H)<n/2. Then for any X

(eg,
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Proof. By definition we obtain

aeG

Since XR is a Killing vector field on (G, g) and g(XR, XR) is constant on each

right orbit aH of H, it follows from Theorem 2.1 that

g(X, X) cos2 dg(G/H) = g(XR, XR)e cos2

, X*)

)« (VaeG)

gmax 0(X*, X*)x cos2 dg(G/H)
xeG

Hence the assertion is clear. Q. E. D.

Since both metrics g and g on G are left-invariant, from Lemma 3.2 we

obtain

Lemma 3.3, // Kg £ 1 an d dg(G/H) < n/2, then

cos dg(GIH) £ ^ (cos

Lemma 3.4. Let a be an element of G. Let Z, 7(eg) be linearly

Independent vectors such that g(X, X) = g(Y, Y) = l. Assume that Kg^l and

dg(G/H)<n/2. Then

(i) (R*g)(V(R*g)(XL, XL)e , U(R*g)(XL, XL)e)^

^(cos dg(G/H))-2 sin dg(G/H),

(ii) (R*g) (R(R*ag) (X, 7)7, X) £ (cos d^G/H))'4 -

Proof. Since we have

there is a point p in G such that g(XR, XR)p=l. Since ZK is a Killing vector

field on (G, g) such that g(XR, XR) is constant on each right orbit xH of H

(x e G), it follows from Theorem 2.1 that

Similarly we obtain
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max g(YR, Y*),g(cos dg(GIH)Y2 .
xeG

(i) Since (G/H, g) and (G/aHa'1, R*g} are isometric, KR*g^l and
dR*ag(GlaHa-i) = dg(GIH)<n/2. Since XR is a Killing vector field also on

(G, R*g) such that (R*g)(XR, XR) is constant on each right orbit of

it follows from Lemma 3.1 and Theorem 2.1 that

(R*g)(V(R*g)(Xt;

R, X*)xsmdg(G/H)

2^(cos dg(G/H)r2 sin dg(G/H).

(ii) Since g and R*g are isometric, we obtain

(Y VA- (R*g)(R(R*g)(X,Y)Y,X)
, Y)-(R*ag)(X,

Hence

(R*g)(R(R*g)(X, Y)Y, X)^(R*ag)(X, X)(R*g)(Y, Y)
= g(X*,XR)ag(YR,Y*)a

. Q.E.D.

Theorem 3.5. Assume that the sectional curvature Kg^\ and the diame-

ter dg(GIH)<K/2. Then the sectional curvature Ks of g satisfies

Ks ^ (cos dg(G/H)r4(i + sin2

Proof. Since g is bi-invariant, [/(#) = 0 (cf. Lemma 3.1). We take vectors

X , Y ( € Q ) such that g(X, X) = g(Y, Y) = l and g(X, F) = 0. Then from
Lemma 3.4 we obtain

K (Y Y)- 9(R(9)(X,Y)Y,X)
Xt
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—~(#*#)([7L
9 [7L, rL]]e, X%)

= ( \(R*g)(R(R*g)(X, Y)Y, X)
JaeG (

-(R*ag}(U(R*ag)(XL, YL)e, U(R*g)(XL
9 YL)e)

+ (R*g)(U(R*g}(XL, XL)e, U(R*g)(YL,

^ (cos <^(G/£0)-4 + sin2 dg(G/H)(cos dg(GIH))~4. Q.E.D.

§ 4. Hi-invariant Metrics and Finite Subgroups of a Lie Group

Let G be a compact connected Lie group as in Section 3. Let exp denote the

usual exponential mapping from g to G, i.e., for a tangent vector XEQ y(i) =

exp tX (teR) is a one-parameter subgroup of G such that y(G) = X. The usual

bracket operation is defined by

[X, 7] =-^(Ad(exp *Z)7)|,=0

X, 7eg. Let g be a bi-invariant Riemannian metric on G with sectional

curvature X^fc(fc>0). We note the mapping exp: g-*G coincides with the

usual exponential mapping of the Riemannian manifold (G, g) because the

metric g is bi-invariant. For non-zero vectors X and Y of g we denote by

* OX", 7) the angle which X and Y make. || || denotes g( , )1/2.

Lemma 4.1. Let X and Ybe non-zero vectors of Q. We have

Proof. Since the metric g is bi-invariant and —j--Ad (exp tY)X \t=0

= [7, X], we see ||Ad (exp tY)X\\ = \\X \\ and

Hence it follows that

dt
\L " *

_ ii [y. ATI ii o E - D _

Lemma 4.2. Let X and Y be non-zero vectors of g such that exp tX

(O^t^l ) and exp f7(0^^1) are minimal geodesies. Suppose that \\X\\

= d0(e9 exp*)<7r/vT and ||[X, 7]||/||Z|[ <7t/3.
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ds(e, exp X) > d§(exp X, exp 7 exp X exp 7"1) .

Remark. The similar estimate is found in [1].

Proof. From Lemma 4.1, we obtain 2£(Ad(exp Y)X, X)<nl3. Jt implies

\\X\\>\\X-M(QxpY)X\\. Let us define a curve 7: [0, l]->g by y(f) = tX

+ (1 — 0 Ad (exp Y)X. We have the sectional curvature K§^Q since the metric

g is bi-invariant. From Rauch's comparison theorem we easily see that

= length (y)
^length (exp o-y)

X, exp Yexp X exp y-1) . Q. E. D.

Lemma 4.3. Let c(^e) 6e aw element of the center of G. If G zs sew/-

simple, then ds(e, c)^.n/^/k .

Proof. Let y: [0, 1]-»G be a minimal geodesic from e to c. Then y is

expressed as y(f) = expf.Y for some Xeg. Since G is semi-simple, the orbit

Ad(G)X (eg) of ^T by the adjoint action of G is at least of one dimension.

Since exp Ad (G)A' = c, c is conjugate to e along y. Hence the assertion follows

from the Morse-Shoenberg theorem. Q. E. D.

Let x be a point of G. C(x) denotes the cut locus of x with respect to the

metric g.

Lemma 4.4. If G is semi-simple, then d$(e, C(eJ) ^ n/2^fk .

Proof. Since the metric g is bi-invariant, the isotropy subgroup Ie(G, g)

at e contains the inner automorphisms Ad (G) of G. Since the fixed points

F(Ad (G)) is the center of G and since che center consists of finite points, the

assertion follows from Lemma 1.1. Q.E. D.

Let H be a finite subgroup of G. Let h be an element of H\{e} which is the

closest to e. Put Z(h) = {x e G ; xh = hx] .

Lemma 4.5. If G is semi-simple and d^e, l i ) < n / 2 ^ / k J then Z(/i)§iG and

.xeG

Proof. From Lemma 4.4, we see that the minimal geodesic from e to h is

unique. We denote the geodesic by exp tX (O^r^l), where Zeg. Since for

any x E Z(h) the inner automorphism by x fixes the endpoints of the geodesic and
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since the minimal geodesic connecting e and h is unique, we obtain x(exp tX)x~l

= exp tX (O^^l), which implies that

Z(h) = {x E G ; (exp f*)x(exp tX)~ 1 = x (teR)}

Since G is semi-simple, the assertion follows from Lemma l.l. Q.E. D.

Lemma 4.6. Suppose that H£j=Z(h). Then for any aeH\Z(h) d^(e, a)

Proof. Let y, d : [0, 1 ] -> G be minimal geodesies from e to h and a respec-

tively. Then there are X and Y in g such that y(t) = e\ptX and S(t) = QxptY.

If lit*, Y]\\l\\X\\<nl3, Lemma 4.2 implies that

dfa h)>d,(h, aha~i) = d§(e, aha^h~^,

which contradicts the choice of h. Hence we obtain \\[X, 7]|[/||ZH ̂ 7u/3

On the other hand, we have

, - \\x\\2\\y\\2 -

Hence it follows that

_ _ _
= \\xnr\\2 = 3 6 i i m 2 '

which implies

Q.E.D.

Theorem 4.7. Assume that the group G is not abelian. Then the follow-

ing (i), (ii) and (iii) hold.

(i)

(ii) If G is simply connected, then d§(G) ^ r=- .
^Jk

(iii) max dfa H} = djtGIH) ^ ̂ ^ .
xeG i^y/C

Proof. Let Z be the identity component of the center of G. We put G'

= G/Z. Then G' is semi-simple and if G is simply connected, so is G'. The

metric g on G induces a Riemannian metric g' on G' so that the projection
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n : G->G' is a Riemannian submersion. Let 3 denote the tangent space to Z

at e. We take orthonormal vectors X and Y in g such that J^, Y ±3. Then

from O'Neil's theorem for Riemannian submersion we obtain

-||[*, Y]3 | l2 ,

where \_X, 7]g denotes the orthogonal projection of [_X, 7] to 3. Since [X, Y~]

J_3, we obtain K^^k. On the other hand it is clear that, for any point x and y

of G, ds(x9 y)^dg'(n(x), n(y)). Hence we have only to prove the theorem with

the assumption that G is semi-simple. So we suppose G is semi-simple.

(i) From Lemma 4.4, we obtain

(ii) Corollary 5.12 in [2] states that the cut locus and first conjugate locus

coincide. The assertion follows easily from the Morse-Shoenberg theorem.

(iii) If H = {e}9 the inequality folio ws from (i). Hence we assume that Hig

{e}. Let h be an element of H\{e} which is the closest to e. Let m be the middle

point of a minimal geodesic from e to h. Then it is easy to see that dg(m, H)

= ds(m,e)=\d~g(e,h). If ds(e, h) ̂  n/2 N/F5 then max d£x, H) ^ ds(m, H)
— xeG

^n/4^/k . Hence we may assume that ds(e, h)<n/2^/k . If HaZ(h), the ine-

quality follows from Lemma 4.5. Therefore we suppose that H^Z(h). Let a

be an element of H\Z(h) which is the closest to e. Let m' be the middle point of

a minimal geodesic from e to a. Then we have ds(m'9 H) = ds(m', e). (In fact,

suppose that there is an element b e H with ds(m', b)<d§(m
r, e). Then it follows

from d§(e, b)^ds(e, m') + d§(m', b)<ds(e, a) that freZ(ft). Hence we obtain

ab~leH\Z(h) and d£e, ab~l) = ds(b, a)^d$(b, m') + d§(m', a)<ds(e, a\ which

means that a is not the closest to e of H\Z(h).) Therefore the inequality follows

from Lemma 4.6. Q. E. D.

§ 5. Diameter Estimate

Theorem 5.1. Let (M, g) be a compact homogeneous Riemannian mani-

fold with the sectional curvature Kg^l and Kg^=Q. Then the diameter dg(M)

of (M, g) is not less than a positive constant d (>0.23).

Proof. Let p be a point of M. If dim/p(M, 0)^1, then from Lemma

1.1 we obtain
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^max dg(x, F(I°p(M, g})) ,
xeM ~

where J°(M, g) denotes the identity component of Ip(M, g) (see also [3]).
Hence we assume that dim /P(M, #) = 0. We denote by G the identity com-

ponent of J(M, g) and put H = G n Ip(M9 g). Since the projection G-+G/H = M

is a covering, g induces a left-invariant Riemannian metric on G such that the
projection is a Riemannian covering. We denote the metric also by g. It is

invariant by the inner automorphism by H . We define a Riemannian metric

g as in Section 3. Suppose that dg(G/H)<n!2. Then from Theorem 3.5 we
obtain

Kg ^ (cos ^(G/H))-4(1 + sin2 d,(G//0) •

Since Kg^Q, it is easily seen that G is not abelian. Hence it follows from Lem-

ma 3.3 and Theorem 4.7 that

> 12V(cos dg(GIH))-4(l + sin2 dg(G/H)) ~

We put

Then n/2>d> 0.23 and dg(M) ^d. Q. E. D.

Theorem 5.2. Let (M, g) be a simply connected compact homogeneous

Riemannian manifold with sectional curvature Kg^l and Kg=£Q. Then the

diameter dg(M) of(M, g) is not less than a positive constant d0 (>0.81).

Proof. As in the proof of Theorem 5.1, we may assume that dim /P(M, g)

= 0. We define G and H as in the proof of Theorem 5.1. Since M is simply

connected, H=[e} and G = M. Hence it follows from Lemma 3.3 and (i) of
Theorem 4.7 that we can replace (5.1) by

/(cos rff

We put

d0 = inf{t^0; n£t(cos 0"3(l+sin2

Then n/2 >d0> 0.81 and dg(M) = dg(G) ^ d0. Q. E. D.

Theorem 5.3. Let G be a compact connected Lie group with a left-
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invariant metric g. Assume that the sectional curvature Kg^l and G is not

abelian. Then the diameter dg(G) of(G, g) is not less than a positive constant

dl (>0.66).

Proof. We define a metric g as in Section 3. We may assume that

dg(G)<n/2. From Theorem 3.5, we obtain

K~g ^ (cos dg(G})~\\ + sin2 dg(G)).

Hence it follows from Lemma 3.3 and Theorem 4.7 that

(5>3) 27(cos dg(G))-*(l + sin2 dg(G)) ~ ̂ ~(G)

We put

e

c / 1 =in f< r>0 ; ^-^r(cos 0~30 + sin2

(. 2

Then

~>^/1>0.66 and d^G^d^ Q.E.D.
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