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Cohomology and Extensions of
von Neumann Algebras, II

By

Colin. E. SUTHERLAND*15

Abstract

We develop a theory of extensions of von Neumann algebras by locally compact
groups of automorphisms. The emphasis is on the description (from an algebraic
point of view) of those extensions of a given von Neumann algebra by a given group
which determine a fixed homomorphism from the group into the outer automorphism
classes of the given algebra. Thus the study of such homomorphisms occupies a
substantial part of the paper; for a large class of examples we are able to determine
when such a homomorphism is split, and give a simple algebraic description of the
extensions. We then give necessary and sufficient conditions (of an analytic nature)
for an extension to be equivalent to a twisted crossed product extension, and give some
applications to the study of representations of certain topological groups, and to
approximately finite dimensional von Neumann algebras.

Introduction

This paper continues a study, begun in [21], of extensions of a von Neu-
mann algebra by a locally compact group (of automorphisms). While [27] con-
sidered a rather special kind of extension, namely the crossed product of a
von Neumann algebra by a group of automorphisms and a centre-valued,
unitary, 2 cocycle on the group (a topic also considered in [32]), this paper is
concerned with a much more general kind of extension. At the same time,
our extensions are intimately connected with properties which a homomorphism
from a given group into the outer automorphism classes of a given von Neumann
algebra might have; in particular, it is invaluable to know when such a homo-

morphism is split. This same problem arises from consideration of Connes

Communicated by H. Araki, December 6, 1977.
* Department of Mathematics, University of Oslo, Oslo.

Current address: Department of Mathematics, University of Oregon, Eugene, Oregon
97403, U.S.A.

1) Partially supported by the Norwegian Research Council.



136 COLIN. E. SUTHERLAND

invariant % for IIrfactors [8]; for these reasons, the study of such homomor-
phisms occupies a large portion of the paper.

Briefly, an extension {31, /, x} of a von Neumann algebra JM, by a lo-
cally compact group G consists of a von Neumann algebra Jl which is generated
by an isomorphic copy /(J?J£) of <3M9 and a Borel family { (̂g), g e G} of unitaries
normalizing 7(c5K) and forming a representation of G modulo I(JM). This
represents one way in which the terms M,N in an exact sequence l-»M->JV->
G-»l of locally compact groups may be replaced by von Neumann algebras
i9M9 32 respectively. Our work is thus closely related to that of [28], [23]; another
(different) generalization of the exact sequence above is given in [13]. It should
be noted that the analogy with group extensions is more than schematic; if p
is any (continuous unitary) representation of N above, the von Neumann
algebra p(N)" is indeed an extension of p(M)" by G.

One of the main aims of this paper is to generalize the extension theory of
(topological) groups as found for example in [22] and [21] to the von Neumann
algebra situation. This is for the most part routine (albeit sometimes tech-
nical) and accomplished in Section 3 and Section 4; there is however one notable
lack, in that we have been unable to find an intrinsic construction of the "Baer
product" of two extensions of <3H by G. It should also be noted that due to
the abundance of unitaries in a von Neumann algebra (the unitary group is in
particular divisible), the relevant (second) cohomology groups frequently
vanish, so that in many cases a given extension {37, /, n} is "strongly equi-
valent" to another {37, /, n^ where ^ is a representation of G (or, at worst, a
representation modulo the centre of 7(JK)).

Throughout the paper, all von Neumann algebras are to have separable pre-
duals, and all groups G to be locally compact and separable. The organization
is as follows; in Section 2, we give two (unrelated) technical results vial for later
investigation. If a: G->Aut(^30 is a Borel map (not necessarily a homomor-
phism) and w: GxG->JM a unitary a-2-cocycle, then w®l cobounds in *3tt®

J ©
<3lt(r)dn(r) is

r
the central decomposition of <3M, we give a description of the automorphisms
ag: geG in terms of "fields of fibre isomorphisms" between the components

algebras {<3tt(r)9 r^^1}; this description reduces to the "point realization"
of [19] when <3H is abelian, and to the direct integral decomposition when each
ag fixes the centre of <_5K pointwise.

In Section 3 we associate to each extension {3lJ,n} of Jtt by G a G-kernel
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i.e. a pair {c5K, 0} where 6 is a homomorphism of G into
Int(c5fO- Necessary and sufficient conditions are derived, in terms of a centre-
valued unitary 3-cocycle on G, (the "obstruction"), for a given (/-kernel to
arise from an extension, and an intrinsic description of the group operations
among 3-cocycles is given in terms of the corresponding kernels. In Section 4,
split kernels, i.e. kernels {3tt, 6} for which there is a Borel homomorphism
a: (j-*Aut(c30 lifting 0, are studied.

Criteria are developed for a kernel to be split in terms of the corresponding
obstruction. In particular, when JK is properly infinite, or of pure type l\
and G is finite, a kernel is split if and only if its obstruction is trivial. In case
JH is type I, it is automatic that all kernels are split and hence all obstructions
are trivial. Each extension {32, /, n} of a split kernel is shown to be "strong-
ly equivalent" to a "normalized" extension {57, /, ^} where ^ is a re-
presentation of G modulo the centre of I(JM), or, in case <3H is properly infinite,
or <3tt of pure type 7/j and G finite, where ^ is a representation of G. The alge-
braic structure of an extension of a split kernel is thus seen to be identical with
that of a twisted crossed product. In Section 5 we give conditions on a (regula-
rized) extension {32, /, n} of JM by G which ensure that it is a crossed product;
these are in terms of the existence of a single pair of Plancherel (or dual) weights,
one on JM and one on 57. In case G is countable and acts freely on JM these are
effectively the more familiar criteria (see e.g. [3], [12]) in terms of the existence of
an expectation from 57 to I(<3tt). If the group G is abelian we give an alternate
characterization, in the spirit of [18], in terms of the existence of an appropriate
"dual action" of the dual group of G on 57.

The final section presents applications; in particular we see that if a group
N is an extension of a connected group by an amenable group, then any re-
presentation of N generates an approximately finite dimensional von Neumann
algebra (see [7]). Also, in the case of properly infinite algebras Jft, any twisted
crossed product 57 of <3M, by G is in fact already an ordinary crossed product
(perhaps with respect to a different action of G); this result applies also to cer-
tain finite groups and J/j-algebras. Interest in twisted crossed products as
a means of producing new von Neumann algebras is thus essentially reduced to
the case of abelian algebras (see also [15] for a different approach to this pro-
blem); cohomological techniques seem insufficient to give any conclusive re-
sults in this case so that we do not attempt any classification of the von Neumann
algebras arising in this way.

The author would like to express his debt to A. Connes, without whom
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this work would never have been begun.

§ 1. Notations and Conventions

Throughout, all von Neumann algebras <3tt will be assumed to have se-

parable preduals <3tt*, and all Hilbert spaces are separable; when necessary, <3H

will be considered as a Borel space with Borel structure generated by the strong

^-topology. Aut(c5f£) will denote the group of ^-automorphisms of JK with

the topology of pointwise norm convergence against JM*°, this topology is

Polish, so that the associated Borel structure is standard ([4], [14]). Int(c5Jf)

denotes the normal subgroup of inner automorphisms, i.e. automorphisms

of the form Ad u, u unitary in J5K, where Ad u(x)=uxu*. e denotes the

quotient map e: Aut(JK)->Aut(c^O/Int(c^)-Out(JK). By ^(JK), we mean

the unitary group of <!M, and 2>(<3tt) denotes the centre of JK ; thus ^(Z^})

is the unitary group of the centre of JK. Whenever we consider the central

S0
<3tt(r)d/j.(r) we shall assume (as we may) that F is a stand-

ard Borel space and ju a Borel measure on F with L°°(r, ju) isomorphic with

We will use G to denote a locally compact, separable, toplogical group;

we use (almost) invariably a left invariant Haar measure dg on G, If M is a

Hilbert space and G is as above, L2(G; M) denotes the Hilbert space of (equiva-

lence classes of) measurable maps f : G-*M with I ||f(g)||2%<00
9 with inner

fproduct <f, 7?y= \ <<? (g\ 7}(g\ydg. When appropriate we identify L2(G;Ji)
JG

with L\G)®M. Similarly if «5K is a von Neumann algebra, L°°(G; Jtt) is the

von Neumann algebra of (equivalence classes of) norm bounded measurable
maps from G to JH; it is canonically isomorphic with L^(G)®^i.

We refer to [22] (see also [21]) for the cohomology of locally compact

groups. Briefly, if A is a Polish abelian group and g^G-*ag^Aut(A) are-

presentation of G with (g, d)->ag(d) continuous on GxA, we may consider

the group (with pointwise operations) of all Borel maps CD: Gx°**xG (n

copies) ->A with cy(gl5--,gM)=0 if any of gl9 -",gn is the identity e of G. Such

a map co is termed a Borel w-cochain, and we write

Define maps d: Cn(G; A)-*Cn+1(G; A) by
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(we write G multiplicatively and A additively). If do)=Q we say o> is an a-
72-cocycle and write o>eZ*(G; A); if o) is of the form dv for v^Cn~\Gm

9 A) we
say o) is an a-w-coboundary and write o)^B^(G;A). Since dod=Q we have
Bl(G\ A)^Z*(G-9 A)\ the w'* cohomology group Hn

a(G\A) of G with coeffi-
cients in A is the quotient Z*(G; A)/B%G; A). By convention, #£(G;X) =

: ag(d)=a for all geG}. Invariably, for us, A will be of the form
for some von Neumann algebra c5K; if J}f is a factor, we will thus

be considering the groups H#(G; T) where T denotes the circle group.

§ 2. Technical

2.1. Non-abelian Cohomology

We adopt the following convention; if J={j\, -°ajn} *s a finite set of
integers with 7i<j2<"98<7«? and if aj9j&J are elements of a (possibly non-
abelian) group, then II a,- denotes the element a/ ay. "-ay .

jej * ^ *

Definition 2.1.1. Let a: g&G-*ag^Aut(JM) be an arbitrary Borel map.
A (unitary) a-w-cocycle is then a Borel map w: G x G x - " X G (« copies) ->

satisfying

(a) wfo, 88%gJ = 1 if gj = e for some 7, l<j<n ,

(b)
/.odd

/,even
l<,/^«

for every n+1 elements gx, -"^g^+i of G.

Definition 2.1.2. An a-/t-cocycle w is an a-coboundary if there is a Borel

map v: GxGx-"XGL-»>cL7(c3fO (»— 1 copies of G) with w=dv where

(0V) fel3 — jgj = %.(v(g2j — ,gj) II V(gl9 — ,gygy+i, —

( II vCg!,— ,gygy+1,—
/.odd
l^/^»-l

Remark. The order of the terms in definitions 2.1.1 and 2.1.2 are of
course adapted to each other; the results we prove remain true with other
reasonable and mutually adapted definitions of cocycle and coboundary. Also,
in general, d as defined in 2.1.2 does not satisfy 92=l. However if g-*ag is
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a homomorphism and w, v of 2.1.1 and 2.1.2 take values in an abelian subalgebra
of 3ft invariant under the ag9 our definitions are the usual ones for (normalized)
cocycles and coboundaries.

We begin with a result which seems special, in full generality, to the two-
dimensional situation.

Proposition 2.1.3. Let g^G-*ag^A.ut(3kr) be an arbitrary Borelmap, and
w:Gx G-*cU(3ft) on a-2-cocycle. Consider ftg=ag®c on 3ft®$(L\G}). Then
(g, h)^Gx G-*w(g, K) ® 1 is a fi-coboundary.

Proof. We first note that u(g,h)=w(g,h)®l is clearly a ^-2-cocycle; by
assumption w satisfies ag(w(h,k))w(g,hk)=w(g,h)w(gh9k) for all g,h,k^G. We
must produce a Borel map g^G-^v(g)^c(](3ft®^(L\G))) with w(g,h)®l

We may suppose that 3ft acts on the Hilbert space M, and that
is realized on L\G;JQ. For ££±L2(G;M) set (v(h)t)(k)=w(h,k)

£(hk). Trivially h-*v(h) is Borel. Also

Thus (dv) (g, h)=w(g, A)® 1 as required. Q.E.D.

Proposition 2.1.3 has the disadvantage that it may well happen that 3ft®
1$(L\G)) is properly infinite while 3ft is finite; this situation may be remedied in
one of two ways (neither of which is entirely satisfactory).

Proposition 2.1.4. Let G be a discrete group with order =£

Aut(3H) an arbitrary map and o)i GxG->cU(3>(3ft)) an a-2-cocycle. Then

there is

i) a full //! factor £>, and a map ft: g<=G->pg<=K\&(3ft®&) with

ii) unitaries u(g), g&G, generating 3?, such that w(g,h)®l=pg(l®u(hj)
(l®u(g)u(gh)*).

Further, if a is a homomorphism, we may also choose ft to be a homomor-
phism.

Proof. We recall the following result from [25]; if Fis the free non-abelian
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group on generators xl9x29-"9xH9 w=2,3,-"0o? and {XjJ=l9"',n} a given
set of complex numbers with | ^y | =1 7=1,2, •••,«, then there is an automor-
phism d of the algebra generated by the left regular representation 1F of F
determined by d(lF(x$=lfiF(xj)9j=\929 •<• ,« .

Let <Z>6 denote the free non-abelian group on the symbols xg9 g&G— {e}.
We shall take S? to be the algebra generated by the left regular representation
I of <Z>G, and u(g)=*(xg).

First, consider the endomorphisms Sg9 ge(j, of ®G determined by 8g(xh)
=xghxj1. We easily see that S^^x^d^x^Xh^x^xJ^xJ^x^xJ^
Sgh(xk)9 so that each dg is in fact an automorphism, and g-*dg a representa-
tion of G as automorphisms of <Z>G.

ie
<3tt(r)dju(r) be the central decomposition of <3H9 and r~ *

o)y(g, K) a fixed representation of o>(g, h) e ^(^(JK)) as a Borel function on F with
values in the circle. In view of the fact that each automorphism of 0G lifts
to an automorphism of 3?, and by virtue of the result of [25] quoted above,
we may, for each r^F construct automorphisms d], of S characterized by

8l(u(h))=coi(g,h)u(gh)u(g)*. If we identify 3H®£> with J^(r)®SW/<r) we

S ®
t®8tdv(r) — it

is clear that for each g, the field of automorphisms r
is measurable (see [26]).

By construction dg(x®i)=x®l, x^^frl, and
u(gh)u(g)*. Set Pg=dgo(ag®c)9 so that pg and ag agree on Jli®\'9 evidently
we still have Pg(l®u(Kj)=<o(g,h)®u(gh)u(g)*9 i.e. co(g,h)®l=ftg(l®u(h))
(l®u(g)u(gh)*).

Finally, if g->ag is a homomorphism, then so is g-»the restriction of ftg
to JM®1. On the other hand, we always have

= ag(a>(h, fc))o)(g, hk)v(g, h)* ® u(ghk)u(g)*u(g}u(gh}*

= a>(gh,k)®u(ghk)u(gh)*

so that j3go/3h=j3gh on l®3>. Q.E.D.

Remarks. 1) In 2.1.4, if g-»eoa^eOut(J$f) is a homomorphism, so is
g-*eof ~ ~
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2) In the proof of 2.1.4, we may replace 0G by AG, the free abelian group
on the generators xg, g^G— {e}. The construction may be repeated ver-
batim, with 9? being replaced by the (abelian) algebra generated by the left
regular representation of AG,

Our final result seems to be valid only when we are dealing with represen-
tations of groups as automorphisms.

Proposition 2.1,5. Let g^G-*ag^Aut(JM) be a Borel homomorphism
and & the left regular representation of G on L2(G). Set j3g=ag®Ad A(g), on

3ft®L"(G). Then if w is any a-n-cocycle n>l, (gl9 —,&,)-» wfo, ---3gM)®le
<3tt®Lr(G) is a ]3-coboundary.

Proof. We may suppose JM acts on M9 and that JH®L°°(G) (which we
may identify with L°°(G; 3tt)} is realized on L2(G; M).

For glf -.g^eG, and £ (=L2(G; M\ set

Clearly v(gl9 -9gn^<U(L-(G\ .30) and (gl, -fg,.1)->vfe1, -,^-i) is a Borel
map ; also v(gl3 • • • , &,_i) = 1 if any of gl9 • • • , gw_x is the identity. For each g e (?,
we let W(g) be a unitary on M with AdFT(g)=a^; (such unitaries exist by virtue
of [14]). We now compute

2, -,

Using the cocycle equation 2.1.1. (b) with the n+l variables ^""1
3gi5 °-e,g« it

is now trivial to verify (3v)(gl9
 a",gn)=^(gi^ '">gn)® 1 as required. Q.E.D8

It should be noted that in the situation of 2.1.5, (gl9 •
ea

3g«)-*w(g1, '"9gn)®l

cobounds in <3tt®<B(L\G)) with respect to ftg=ag®Ad A(g); of course even if
w takes values in 5b(JM), the cochain v constructed above need not take values
in the centre of 3tt®<B(L\G)). The result of 2.1.5 has been used implicity
in the literature; we note in particular [3; 1.2.4]; the last result plays a role in
[9] (in the one dimensional context).

2.2. Automorphisms of Non-factors

Let <3Vl be a von Neumann algebra with central decomposition <3&~
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and let a^Aut(J$f), we are interested in ways of describing a

in terms of the component algebras {^M(r), r ̂ F}. Unless a fixes the centre
of c5K pointwise, a does not admit a direct integral decomposition; neverthe-
less, if c5K is abelian it is well known (see [19]) that a admits a "point realiza-
tion" on F (in this case c5K— L°°(r,#)) i.e. there is an invertible transformation

T on r with Tn~p. and (af)(r)=f(T'lr) a.e. for /eL°°(r,/i). We shall
establish here a simultaneous generalization of the point realization in the
abelian case, and of the direct integral decomposition in the case a(z)=z, z^

!

e
c_5K(rXXr)5

 an(l aeAut(c_5K). Wer
let r be a point realization of the restriction of a to Z(<3$) on r. When

!

©
x(r}dfj.(r\ we write jc

Proposition 2.2.1. With the above notations there is a T-invariant n-null set

set Nc^F, and normal isomorphisms %: ^5H(r)-^JH(Tr), r^F—N, with

(i) r-»x(r) e JH(r) is Borel if and only if r~*/MXr)) e J^Tr) w ̂ ore/,
(ii) ifx~(x(r)) then a(x)~~(y(r)) where y(r)=KT-iy(x(T~1r)') v—a.e.

Proof. Let <JL<^=<3tt be a <r-weak*-dense, norm separable C*-subalgebra;
we may suppose *&=JLft3b(<3tt) is cr-weak*-dense in 3>(<3M)9 and that c^? (and
SI) are a-invariant. We may further suppose that F is the spectrum of SI.

Let n denote the identity representation of Jl in the decomposable von

S ©
xydju(r);

we may assume, after deletion of a null set that the ^ are representations
and that {nv(<Jl)}" =*3tt(r). Note also that the following diagram commutes

where 0 is the Gelfand representation of SI on its spectrum. In view of the
fact that we may assume the automorphism a is implemented by some unitary
on the Hilbert space of <3H9 it follows from the proofs of existence and uniqueness
of decompositions of representations of C*-algebras (see [10], especially 8.2.4)
that for almost all r^F the representations ^ and n^a are unitarily equi-
valent. So for r^F—N, where N is in-null and T-invariant, there are unique
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isomorphisms %: <5tt(r)-*JM(Tr) with %(^(x)) =%?(«(#)), x^<JL. The claims
of the Proposition now follow, as {n«i(<-A)}"=<3tt(r\ r^r, and for x^Jl,
x~(*Jxy>. Q.E.D.

The following generalization is immediate.

Proposition 2.2.2. Let G be a countable group, and {ag,g^G} a set of
automorphisms ofJH such that g^G-*0 g=restriction of ag to Z(<3$) is a homo-

J©
<3tt(r)d/j.(r} be the central decomposition, and (g, r}&

GxF->gr^r a point realization of 6. Then, for r el1— JV, where N is ju~null
and G-invariant, there are normal isomorphisms K^^I ^H(r)-^JH(gr) with

(i) r->*(r)e<_5K(r) Borel if and only if r^(^)Mr))e^(gr) is Borel
for each g^G;

(ii) if x~(x(r))9 then a,(*)~(Xr)) where Xr)=*(^-%)(*(g~1r)) M—a.e.
If, in addition, g-*ag is a homomorphism, we have

(Hi) Kh,gv°K(g,v=K(hgV> g>h<^G, r^r— N.

We omit the obvious proof.

Remarks, (i) Proposition 2.2.2. probably remains valid if g-*ag is a
continuous representation of G in Aut(c3K). However, the author has not
been able to find a systematic method of deleting null sets to effect the proof.

(ii) In case G is countable, and g->ag is a representation, 2.2.2 (iii) is saying
that (g, r)^Gxr-*K(g^ is a representation of the groupoid GxF (see [15])
as "fibre isomorphisms".

In some cases, 2.2.2. allows a description of Aut(c5f0 by means of a (split)

J ©
<3tt(r)dtJ.(r) is the central decomposition, define

an equivalence relation Si^ on F by (r, r')e5^ if and only if JH(r) and
<3tt(r') are algebraically isomorphic. By [11], equivalence classes under Sl^
are Borel. Recall that <3ft is said to be centrally smooth ([11], [24]) if there is
a #-null Borel set N^F such that the quotient (T— N) \3ljn is countably
separated.

Definition 2.2.3. (i) Aut^(JK) is the (normal) subgroup of Aut(c5K)
consisting of those automorphisms a with a(z)=z, z^S$>(<3t£).

(ii) Aut^(r) is the group of equivalence classes of measurable automor-
phisms 9? of r with (pfJL^fj. and (r,<P~l(r))^3l>M for ^-almost all r? where
we identify ^ and <p2 if ̂ (r) =<P2(r) #-a.e. (The product is composition.)



EXTENSIONS OF VON NEUMANN ALGEBRAS. II 145

Proposition 2.2.4. Let 3tt be centrally smooth. Then there is a split exact

sequence l->Auts( JK)

Proof. We construct a multiplicative lifting of Autj^(r) into Aut(J$f).
We may assume (r, ja) is a probability space, and that (after deletion of

a null set) r\Si^i=^ is analytic; we let K: T— >J2 be the natural surjection
f®and n be the image of /JL under n. Thus, in the decomposition JJL=\ /*Mrf/I(cy)
j£

of p. with respect to n (see [11]) we may assume the #w are probability measures,
and AaC-T— ̂ "1(o))=0 for all cy. By the "partial integration" technique of

[24], we have Jtt=\@3H(a>)dv(a)) where JK(©)^^5K(rX/^r).
jo j r

By standard section theorems (see e.g. [2]), we may choose a universally
measurable map s: cy eJ2->ty(cy)e7r"1(cy)cr; thus for (almost all) o) e £, c5K(o>)
is isomorphic with c^(5{<y))®L°°(F, #w).

Let now 9 be an invertible measurable transformation on r with <PJUL<^/J.

and (r, Kr))^^^ for all r (we have deleted a null set from F to effect
this). Each such 95 gives rise to an automorphism a^ of c5K(s(cy))®L°°(F, #w)

via a:(*®/)=x®£S(/), *e^(o>)),/eL~(r,/O, where (Plfi(r}=f(<p-l(r)}.
Since 9 is measurable, the field of automorphisms cy-»o^eAut(cSK(<y)) is
measurable as a field of automorphisms over a>-»c_%(a>) (see [26]). We set

Se
a^d#(a>) on <3A. Clearly, a? depends only on the equivalence class of

<p in Aut^(r), and a*oa*=cP°*.
It remains to show that any automorphism aeAut(c_^f) is of the form

j3oa9 for some £eAutjg(c30, 9^Autjj/(r) (since clearly av^Aut^(JK) im-
plies 9=identity a.e.). But from the proof of 2.2.1, given aeAut(cSff) there
is a measurable map 9 on r (written T"1 in 2.2.1) and normal isomorphisms

/V. c5K(r)->-5K(9"1(r)) with (a(jc))(r)=«V(-y)W9(r)), #-a.e. for xe Jf{. Thus
and for

where ^(<y): Jtt(r)-»3H(<p(r)) is the identification of JK(r) with 3U,(<p(r)) used
above (in e.g. the isomorphism ^H(o))=JH(s(a)J)®L00(r9 ^w)). But /e^o^w
is an automorphism of 3tt(f)\ thus aoa^ is expressed as a direct integral of
automorphisms of c5Jf(r), so that aoa^^Aut^^H). Q.E.D.

S
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and the above exact sequence then reads

§ 3. Kernels

3.1. Kernels and Extensions

We begin with definitions; as usual, von Neumann algebras and groups
are supposed to be separable.

Definition 3.1.1. A G-kernel { 3tt, 0} consists of
(i) a von Neumann algebra <3H,

(ii) a homomorphism 6: geG— >Out(c_5ff) which admits a Borel lifting
to Aut(Jff) i.e. for which there is a Borel map a: G->Aut(c5JO with eoa=0.

We do not assume here the map a of 3.1.1 (ii) is a homomorphism; this sit-
uation is discussed in Section 4. The assumption that 6 admits a Borel lifting
seems necessary in view of the fact that Int(<_5K) may fail to be closed in
Aut(o5K); however, when Int(J$f) is closed (i.e. <3H is full, [4]) (ii) above is easily
seen to be equivalent to requiring 6 to be continuous (cf. [22]).

Definition 3.1.2. An extension {32, /, n} of a von Neumann algebra <3M

by a group G consists of
(i) a von Neumann algebra 32, and an isomorphism / of Jli into 37;
(ii) a Borel map n\ ge(?->7r(g)G*U(3Z) satisfying

(a)
(b)

(c) m=

Here, we are concerned with the relationships between (/-kernels and
extensions of JM by G, paralleling a similar relationship in the theory of group
extensions. There are two prime sources of examples of extensions.

Example 3.1.3. Let {^.G.a.o)} be a projective covariant system so
that a is a representation of G in Aut(^) and ox=Z*(G; ̂ (2(^30)). If JK
acts on the Hilbert space M> we may define operators on L2(G; M) by

where £<=L2(G; M). We set 32 =^c5K,G, a, w)= {/*(*), x^JH,
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In this case

so that {32,1*,̂ °} Is indeed an extension of <5H by G. This of course is the
twisted crossed product studied in [27] and [32].

Example 3.1 A Let l->M-»#-»>G-»l be any exact sequence of locally
compact separable topological groups (see [22]), and let p by any continuous
unitary representation (or even projective representation) of N on a separable
Hilbert space; let 3li=p(M)"9 3l=p(N)" and /: ^-»32 the inclusion map.
If ge G->ng^N is any Borel right inverse to the surjection N-*G, and x(g)
=p(ng), then {37, 1,n} is an extension of <3H by G.

There is one obvious relationship between extensions and kernels; if
{32,1, n} is an extension of <5tt by G, and ag=I~1oAd7u(g)oI^Aut(Jlf), then,

from 3.1.2 (b), g->0j=e(a,)eOut(«JO is a homomorphism. Clearly {3tt,6}
is then a G-kernel. In this situation, we say that the extension {32,/,7zr} realizes
or extends the kernel {^H, 6} , and that {JM9 6} is associated to the extension.
An extendable kernel is one which is realized by some extension.

As we shall see? not all kernels are extendable; our immediate goal is to
determine those which are.

Let {JH,0} be a given (/-kernel, and g-*ag^A.ut(JM) a Borel map with
eoa=Q. Since Ogo6h=0gh9 g,h^G we may choose for each g,h^

with ag°ah=Adv(g,h)oagh. Since Int(c30 is isomorphic with
and ^(^(JW)) is closed in <U(c50 (with respect to the strong-*

topology), we may by standard section theorems assume (g,h)^GxG-^>v(g,K)&
^U(c5JO is Borel. Comparing ago(ahoak) with (agoah)oak we see Adag(v(h, kj)
Xv(g,hk)=Adv(g,h)v(gh,k) for g,h,k<=G. There is thus a Borel function /:
GxGxG-^^UCSCcaO) determined by ag(v(h,k))v(g9hk)=f(gfhfk)v(gth)v(ghfk)
for all g,h,k^G. Since we may choose the maps a, v so that ae=:identity and
v(g,A)=l if g or A is the identity, we see f(g,h,k)=l if any of g,h or fc is the
identity. We note also that the restriction of the automorphisms ag to Z>(<3tt)
defines a representation of G in Aut(S(c3K)) which depends only on 6; we
denote this action by 0 also.

Lemma 3.1.5. Let {3tt,6} and f: G x G x G-*<U(S(c30) be as above.
Then
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(i) /€=Z}(G;
(ii) the cohomology class of f in Hg(G; ̂ (&(<3tt))) is independent of

the choices a, v made above, and depends only on {JM,6}.
(iii) any 3-cocycle cohomologous to f may be constructed by changing

the choices of a, v within the obvious limits.

Proof. This is identical with the proof given in [21, Chapter 4] for the
purely algebraic case, and we do not repeat it here. Q.E.D.

The unique element of H3
e(G; ^(^(M))) determined by {JH, 6} via

Lemma 3.1.5 will be denoted f{M<5}, In the notations of 2.1.1 and the discus-
sion preceding 3.1.5, the 3-cocycle / satisfies /= d v.

Theorem 3.1.6. Let { JH9 0} be a G-kernel. Then {<3tt, 6} is extendable if

and only ifftJW -identity in H3
e(G;

Proof, (i) Let {^/H, /, n} be an extension of JH by G realizing 6. We
identify JM with its image I(3tt) in 32. By definition g-*ag=Adn(g)^Aiit(i5tt)
is a Borel lifting of 0 into Aut( <3K). Since Ad n(g) o Ad n(h) =Ad(n(g)n(h)n(gh)*) o

), and (g,h)^n(g)n(ti)n(gh)*&^(<3M) is Borel, we may choose v(g,h)
But then

ag(v(hfk))v(g,hk)

= v(g> h)v(gh, k) for g, h, k e G .

Thus for this choice of a, v, f(g,h,k)=l, and/{^,^} is trivial.
(ii) Suppose /{^,^}=identity. By 3.1.5 (iii) we may choose Borel maps

a:seG-»a,eAut(c30, v: (g,A)eGxG-*vfe,/Oe<U(tafO satisfying eoa=0,
ag°ah=Ad v(g,h)oagh and v(g)h)v(gh)k)=ag(v(htk))v(g,hk) for all g,h,kGG.
Let £M, act on the Hilbert space M9 and define operators I(x), x^JM, and 7r(g),

WO (A) = «k-<x)£W, S^L\Gi M) ,
; M) .

We let 32 be the von Neumann algebra on L\G\M) generated by the operators
I(x), x^JM, and 7r(g), g^G. Clearly / is an isomorphism of JM into a sub-
algebra of 32, and we may compute
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Thus <g)/(*Mg)* =/(«,(*)) and <g)/( c5«)wfe)* =/( JJ0. Also

= (/(v(g,A))£(fc) for g ,AGEG.

So 7t(g)x(h)=I(v(g,h))n(gh)^I(JM)x(gK). {37, 7,w} is thus an extension of J$£
by G, which, by the first computation above, realizes the kernel {<3H96}. Q.E.D.

The extension constructed above constitutes a generalization of the twisted

crossed product studied in [27], [32]. As in [30], it is readily verified that the

von Neumann algebra 32 does not depend on realization of Jft on the Hilbert
space M. Although there are many extensions realizing a given kernel (in

general), we refer to any extension of <Stt by G constructed as in 3.1.6 (ii) above
as a regular extension of c5K by G.

In case the automorphisms ag of 3.1.6 (ii) are implemented by a Borel
family g-*ug of unitaries on the Hilbert space M of c5K, the generators /(#),

of the regular extension may be represented as follows on

Indeed, these are the transforms of the generators /(#), n(g) by the unitary

operator U on L\GiM) defined by (£/f)(g)=M*-1£(g). For the purposes
of the next result, it is more convenient to use these alternate generators.

Proposition 3.1.7. Let l—>M-*N—>G-*l be any exact sequence of locally

compact separble groups, and let JM9 Jl be the von Neumann algebras generated

by the left regular representations /1M, XN of M, N respectively. Then 3? is a reg-

ular extension ofJM by G.

Proof. Let g^G-^ng^N be a Borel right inverse to the surjection N->G;

we regard M as being a normal subgroup of G. As is well known (see e.g.

[20]), N may be identified (as a standard Borel group) with MxG endowed

with the multiplication (m,g)(mf ,g')=(mpg(m')m(g,g'),g g') where ftg(m)=

inj1 and m(g,h)=ngnhnJh^M; a right Haar measure on N is given by
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the product of right Haar measures on M and G.
Let o^eAut(M) be defined by ag(m)=nj-imng-i, and set v(g,h)

=nJ-m^-mh-ig-i^M; we also denote by v(g,h) the unitary AM(v(g, h)) e c_5ff .
Each automorphism o^ defines an automorphism, also denoted ag, of ̂ 5H,
which is implemented by the unitary ug9 (ugS)(m)==d(g)~l/2S(aJ1(m))9 g^G, me
M, <feL2(M), where 5(g) is the module of ag. Under the canonical identifica-
tions of L\GiL2(M)), L\MxG) and L2(N)9 it is a routine matter to verify that
the generators I'(AM(m))9 n'(g) for m^M, geG, of the regular extension of
c^f by G determined by the choice of a, v above, correspond to AN(m)9 m^G
and ^(wj-i), g&G, respectively. We leave the details to the reader. Q.E.D.

Much of the value of crossed products stems from the Duality Theorem
of [30], in case the group G is abelian. While it seems to be very difficult, and
perhaps impossible, to phrase a duality theory for twisted crossed products or
regular extensions by abelian groups, some aspects of the theory persist15.
For the balance of this section, the group G will be supposed to be abelian? with
dual group G.

Following [30], define for p<=G a unitary ju(p) on L\G\M) by (t*(p)£)(g)

Let {^Z,/, 71} be a regular extension of <3A by G, where <3M. acts on
M. Evidently we have

Thus p-*ap=Ad v(p) defines a continuous representation of G in Aut(52)5

called the dual action.

Proposition 3.1.8, The fixed point algebra of a regular extension {32,
/, x} of 3tt by an abeliang roap G under the dual action is precisely I(JM).

Proof. We may suppose that <3tt is in standard form on M, and that I(x),
, n(g), g^G are given on L\G; M) by

From [14], we may choose unitaries Wg,g^G on M such that AdWg=ag-i
on <5tt. Thus

1) An adequate duality theory, submitted to the Pacific Journal, has been developed by
Y. Nakagami and the author.
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= Ad v(g-\ h~l}Wgh, as G is abelian.

Thus WgWh=c(g,h)v(g-\h-l)W8\ where fe,A)-*c(g,A)e<U(t5«/) is Borel.
Define, for /zeG, a unitary p(h} on L\G;M) by

where SG is the modular function of G. We claim that {p(g),g^G} commutes
with 32. First, compute

(p(h)I(x)p(h)*t)(g)

= (/(*)£) (g), for

Secondly, we have for h,k&G,

and

On the other hand, using the relationship between W8, c(gf h), v(g, h) given
above, and the fact that dv=l, we see

v(g~\

= Kg"1, k) ( Wh)*c(h, k-lg)v(h~\ g-lk)c(h, k~lg)*

Furthermore

W'(W'h)*c(h,g)*

Thus p(h)7u(k)=n(k)p(K) for all /z,fceG as required, and {p(K); h<=G} ^Jl'.
It is clear that for y^Jtt', the operator j=J®l on L\G\M) is also in 32';

thus ^^(JK'®!)^^®^^2^)). On the other hand, as {fj.(p\p^G}
generates the von Neumann algebra 1®L°°(G) on L\G\M), any fixed point in

of {ap:p£EG} lies in $(M)®L°°(G). Thus, the fixed points
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in m lie in
It is thus sufficient to show 3Zn(c^®L"(G))=/(c30- Let x lie in the

indicated intersection, so that the action of x on £^L2(G',M) may be repre-
sented by (x£)(g)=x(g)£(g) for some bounded Borel map x: G-*<3H. On
the other hand, x commutes with p(h), AeG, and

(fi(h)xf)(g) =
while

Thus we require that for each h&G, Wg(Wgh)*x(gh)=x(g)Wg(Wgh)*, or ag-i°
a^-ig-i(x(gti))=x(g), for almost all g^G. Thus aj-i(x(g)) is almost every-
where independent of g; we write x0 for this fixed value. It is clear that x and
I(xQ) represent the same element of JM®L°°(G), so that x^I(^5H). The con-
verse inclusion, I(<5K) c 37 fl (<3tt®L~(G)) is automatic. Q.E.D.

Remark. It is virtually certain that the operators p(h), AeG, and y=
y®l9y^<3H9 defined in the proof of 3.1.8, generate the commutant of 37. The
author however has not checked this in full detail. In Section 5, we shall esta-
blish a kind of converse to 3.1.8.

3.2. Operations on Kernels

In 3.1.5 we have associated to each G-kernel {<3tt, 6} an element
; V(Z(<3tt))). Here we seek to answer two natural questions which

arise; which 3-cocycles arise in this manner; and what are the operations on
kernels corresponding to the natural group structure in H\l

Finding the "inverse" of a kernel is the simplest of these questions and
we adress this first.

Let <3tt be a von Neumann algebra, and c5ff the opposite algebra i.e. JM°
has the same ring and involutive structure as JH, but the product is i(x)i(y)
=i(yx) (where, for xe J% i(x) denotes the corresponding element of JM°). For
cKeAut(c5fO, set a°(i(x))=i(a(x))'9 it is readily checked that a-*a° is an isomor-
phism (and homeomorphism) of Aut(JM) with Aut(<3H°), and that (Adw)°
-Ad i(u)* for M e <U(c30. Thus if {Jli, 6} is a G-kernel, and a : (?-^Aut(c_5fO a
Borel map with 6001=6, then we may define a new G-kernel {JM°,6°} by 0°g=
s(a°g)i trivially, 6° depends only on 0. Note also that if agoak =Adv(g,h)oagk9

then aJoaj=Adv°(g,A)oaJAf where v°fcA)=i(v(g,A)*)e£y(c3O. FinaUy, if
^s(v(hfkMgM)==f(g,hfk)v(gfh)v(gh,k), then al(v\gMv°(g,hk)=i(f(g,h,K)*)
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X v°(g,h)v°(gh, k). However, the map i: Z(JM)-*Z(*3lt0) is an isomorphism
which intertwines the natural actions 0, 6° of G on 2>(JH)y S*(JM°) respectively.
Thus we have shown

Proposition 3.2.1. Let {JH9 6} be a G-kernel, and {JH°9 0°} the opposite
kernel as above. Then /{^0°}-/{ ,̂0} in H3

e(G;

The product structure among kernels is somewhat more complex,, and
seems to depend on the following idea. Essentially, we need to be able to
form the "tensor product of von Neumann algebras over their common centre".

Specifically, let J?/, <3tt be von Neumann algebras with centres 2, 2> and let

0 :2->2 be a fixed isomorphism. Let c5K= <3tt(r)d[i.(r) and jfr= JM(r)dju(r)
jr jr

be the central decompositions of c5K and c5K, where the index spaces for the
decompositions are identified by means of the isomorphism 0,

Definition 3.2.2. 3tt®®JM is the von Neumann algebra whose central

S© _
«5K(r)®c3f(rXMr)-

The dependence of JM® o><3tt on 0 is strong; if Z> is two-dimensional and

JU=JUi®^29 M=Ml@M2, then e5K®* M can be either of Jli&M&JH*

or c5K1®^2©^2®^u an(i these may well be non-isomorphic.
Let {3tt,0}, { JJf, 5} be G-kernels, and choose Borel maps a (resp. a):

(resp. Aut(JO), v (resp. v): OxG-^^JK) (resp. ^(Jf)) with

agoah = Ad v(g,h)oagh agoah = Ad v(g,K)oagh

ag(v(h, k))v(g, hk) = f(g, h, k)v(g, H)v(gh, k)

In order to consider the product / / we must assume there is an isomorphism

0: S5(c30->.Z(cJO with 6go0=®odg9 geG; we shall consider 2(c30 and

2>(*3tt) to be identified by means of (2). We choose once and for all point

realization (g,r)~»gr for the action of G on L°°(r5 ^)^ 2(JJ()— S£(JfO cor-
responding to <9 and 5. If G is discrete, we may, by 2.2.2, assume that there

are fields of isomorphisms K(gt^ (resp. K(g^)i <3tt(r)-*<5tt(gr} (resp. <3tt(r)-~*

JBfer)) with ^(g,Y)(^(r))-KW)fer) (resp. ^>7) (x(r))=(<xg(xj)(grj), where

S © _ p© _
c5K(rXMr)(resp.c5K=l c5K(r)^(r)) is the central decomposition andJ! J /

x~x(r) (resp. x— x(r)).

Proposition 3.2.3. With notation as above, let 3l=<5tt®Q<3tt, and define
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automorphisms fig, g&G on 31 by

Then®

(ii) i

Proof. The fact that the pg are indeed automorphisms of follows trivially
from the properties of the isomorphisms A^Y), ^/y). For (i), we compute, for

where

and similarly for v. Since ag^ah^a^=Ad v(g,K) we see V(gthtf — Ad vy(g,h)

Se
v«/(g,h)dju(r) is the central decomposition. A similar

r
statement holds for v^^^j so that Pgfthpj£=Adu(g,K)9 where u(g,h)^32 has

Sev?(£ * A) ® vv(g, h)djj.(r)>
Finally, since both f(g, h,k) and f(g,h,k) become diagonal operators in

the central decompositions of <3H and JM, we see

pg(u(h, k))u(g, hk) = f(g, h, k)f(g, h, k)u(g, h)u(gh, k)

for g,h,k&G, and (ii) is established. Q.E.D.

In order to see that all 3-cocycles arise as obstructions it seems to be nec-
essary to restrict attention to countable groups G. The construction below
is somewhat related to that of 2.1.4.

Proposition 3.2A Let G be a countable group with order =£2, 0 a homo-
morphism of G into Aut(<JT), where Jl is an abelian von Neumann algebra, and

; <U(o?))- Then there is a G-kernel {JM, 6} with f{<M,0J=f.

Proof. Let/e/ be a normalized 3-cocycle, so that

,K) =f(gh,k,l)f(g,h,kl)

We shall construct a full IIrf actor 5*, automorphisms ag,g^G of <3tt=
with ag=0g®t on JL®1, and unitaries v(g,h)Gc3H with ag°ak=Adv(g,h)oagh

and a/i<A,*))i<g,^)=yfef A,fc)v(gf A)v(gA,fc) for g,h,k(=G.
Choose once and for all a point realization (g,r)^Gxr-*gr^r of
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the given action 6 of G on JL. Let ®G denote the free group on the generators
{[g,/z], g=£e^h in G} (each [g,/t] is a single symbol, not a commutator), and let
£P denote the von Neumann algebra generated by the left regular representa-
tion /I of 0G. Since each of central unitaries /(#,/?,&) may be represented by
a Borel function r^r-*f£g>h,K) with \Mg,h,k)\ =1, we may for each
define automorphisms /9| of £P by

(see [23]).

We view Jl®3? as the direct integral of the constant field

S ©
Pldv(r\

and we have pg(a®l)=a®l, and Pg(l®*[h,k])=f(g,h,K)®*[h,k]. From
the arguments of [21; page 130] the maps [h,k]-*[g,h][gh,k][g,hk]~l from the
generators of @>G into 0G extend to automorphisms of ®G. By familiar ar-
guments, there are thus automorphisms 8g9 g^G of £P with 8g(A([h, k])) =
*([g,h][gh,k][g,hk]-1).

We may now define the desired automorphisms of <JL®9? by

ag = (c®dg)oi3go(dg®[). Clearly ag(a®l) = Og(a)®l

for a^Jl, while, writing v(A,fc) = l<gM([A,fc]), we have

ag(v(h,k}) = (f(g,h,k)®l)v(g,h)v(gh,k)v(g,hk)* .

Also a^oaA(a®l)=a^(a(S)l) for a^<JL; on the other hand an easy computa-
tion using the cocycle identity for / (c.f. [21]) shows that for g,h,k,i^G,
agoah(v(k>l))=v(g>h)agh(v(k>l)}v(g,h)* so that agoah=Adv(g,h)oagh as required.

Q.E.D.

Remarks, (i) In case G=Zp, the /7-element cyclic group, and JL=C,
Connes [5] has constructed automorphisms of the hyper-finite IIrfactor with
specified arbitrary obstruction. It is not clear to what extent this construction
may be generalized^ .

(ii) The above proposition remains true in the exceptional case G=Z2.

However it has somewhat limited interest as if Z2 acts freely on the abelian
von Neumann algebra JL, H3(G; <U(o?))={0}.

1) V. Jones, in a preprint entitled "Actions of finite abelian groups on the hyperfinite 1^
factor" has realized an arbitrary obstruction for a finite abelian group in the hyper-
finite Hi factor.
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§4. Split Kernels and Their Extensions

4.1. Splitting Criteria

Definition 4.1.1. A (/-kernel {JK, 0} is said to be split in case there is a
Borel homomorphism a: G->Aut(<3tt) with 6oa=6. Such a map a will be
termed a splitting map for 0 or {J% 6} .

It is clear that the 3-cocycle associated to a split G-kernel is trivial; we
shall establish a partial converse to this.

The type I case is easily disposed of by

Remark 4.12. If JU is of type I it is of the form 2®cJB®£Fw where JLn

is abelian, and EFn is the type IM-factor; thus it suffices to consider the case
<3tt=Jln®3!n. But then if a e Aut(J$0 and ft is the restriction of a to JLn® 1,
then Aduoa=fi for some u^.cU(JM). Thus if g->o^e Aut(c30 is a Borel map
with g-*Pg a homomorphism (^ is the restriction of ag to <Jln® 1), then A&ug°ag

=fig for some map g-*ug^
cU(i5H) which we easily see may be chosen to be

Borel. Thus eoa=6 is split.

Theorem 4.1.3. Let {JM, 0} be a G-kernel with trivial obstruction.
Then if either JM is properly infinite, or JM is a finite ll^algebra and G is

finite, {Jtt, 6} is split.

Proof. Let {JM, 0} have trivial obstruction. By virtue of 3.1.5 (iii) we
may choose Borel maps a: G-»Aut(c5K), u: GxG ^(JM) satisfying

a) eoa = 6 ,

b) agoah = Ad u(g, h)°agh ; g, h e G 9

c) ag(u(h,k))u(g,hk)=u(g,h)u(gh,k); g,h,k^G.

These maps will be fixed throughout the remainder of the proof. We consider
each case separately.

Case 1 : <3tt properly infinite.
Let Moo(C) denote the /«, factor. From the proof of Lemma 4.7 of [30],

we see we may choose an isomorphism a: <3tt-*<3tt®M <»(€), and unitaries wg,
ge(j in JMGQM^C) with Adwgoaoagoa~1=ag(& c (The only point in the proof
of Takesaki's Lemma 4.7 where it is necessary to assume g-*ag is a represen-
tation is in proving wgrg(wh)=wgh where rg=aoagoo~~1.') By construction,
g-*wg is Borel.
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By 2.1.3, there is a Borel map g^G->v(g)<=cU(<3tt®M00(CJ) with u(g,h)® I

® 0 (v(A))v(g)v(gA)* ; g,h e G. Now

= Adv(g)*K® 0 (v(A)*) (W(g, A)® l)o(agh® 0

= Adv(gA)*o(«,*®0.

Thus g-»Adv(g)*o(o^® *) is a (Borel) representation of G in
However

= oo(AAo"\v(g)*wg)oag)oa'1

so that g~>Ado~1(v(g)*wg)oag=ftg is a representation of G in Aut(JK)= Since
eofi=6oa=d, ft is a splitting map for 0.

2: <3M, a Ilj-algebra, and G finite of order «.
Let {eij'9i,j=l,"'9n} be a system of nxn matrix units in JH9 and Jl

=JUr\ {elV;/,7=l, 2, — ,/i}'. Thus c3K is isomorphic with Jl®Mn(C\ and
{ef-y} correspond to the canonical matrix units {/i/; /j=l, •••,»} in the full
nxn matrix algebra Mn(C). We regard ag, g^G as automorphisms on
32®MB(C). Note that for each f, the projections fifi and ag(fi^ have the

same centre-valued trace — , and hence are equivalent. We may thus find
n

unitaries wg9 g^G in Jl®Mn(C) with A.dwgoag(fij)=fij for all g, and ij=
1,2, -",77. Thus we may write Ad wgoag=ftg®c for some automorphisms ftg

of 32.
Note that (fle®e)o(ftk®e)=Adwgag(wh)u(g9h)wfho(ftgk®^ thus w^wj

X n(g, h)w% =u1(g, /z)® 1 for some unitaries w^g, /z) e 32. A direct computation
shows that J3g(u1(h,k))u1(g,hk)=u1(g>h)u1(ghfk) for all g,h,k<=G.

Using 2.1.3 again, we find a (Borel) family g-^v(g) of unitaries in 32®Mn(C)
with w1(g,/z)®l-(^^®OW/z))v(g)v(g/7)* for g,AeG. Thus w^(w;>(
=w^ag(v(A))w*v(g)v(g/z)>!! and so u(g,K)=ag(d(h))d(g)d(gK)* where rf(g)=
Now



158 COLIN. E. SUTHERLAND

so that g->Ad d(g)*oag is a splitting map for 6. Q.E.D.

Remark: The situation with Jff a IIralgebra (even the hyperfinite factor)
and G infinite seems to be unknown, except in trivial cases (e.g. G=Z). Of
particular interest is the case G=Z2 where the question becomes: if a and ft
commute modulo Int(c5K), are there unitaries u, v^<3tt with Aduoa and Advoft
commuting?

4.2. Comparison of Splitting Maps

Let {c5K,0} be a split G-kernel, and a, ft: G-»Aut(«5fO be two splitting
homomorphisms. Since eoa=eoft=6y there is a Borel map g^G-*ug^

cU(i3tt)

with ag=Adugoftg. Since both a and ft are homomorphisms, we see, com-
paring agoah with agh, that Adugftg(uh)=Adugh for all g,h^G. We set co(g,h)

=ugftg(uk)ufh', evidently (g, A)->o>(g, h) is Borel, and ©(g,/Oe<U(S(c5H)). (In
fact a>=dau in the notations of 2.1.2, da signifying the boundary with respect
to a.)

Proposition 4.2.1. Let {<3tt, 6} , a, ft and o> be as above. Then

i) & £EZ2
e(G; ^(SCJK))), and the class of a in H2

9(G; <U(S(J}0)) depends
only on a, ft. (We denote this class by <*)(&,&,)

ii) If r- G-*Aut(t5tt) is a third splitting map for {<3tt, 6}9 o)

iii) G>(rti|3) is trivial if and only if a and ft are exteriorly equivalent (see

[3; §2.2].

Proof, (i) Let &(g9h)=ugftg(uh)ufh as above. Then

= ugpg(uk)/3gh(uk)u*hk

= ugpg(uh)u^ughpgh(uk}u*hk

= a>(g, K)o)(gh, k), for all g, h, k e G .

If g-*ug is another Borel map with ag=Adugoftg, then, with bg=(Ug)*ug

9 we see
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so that the 2-cocycles derived from g-*ug and g-*ug are cohomologous as
required.

(ii) If ag=Adugoj3g and fig=Advg°rg, then ag=Ad ugvg°rg9 and

ugvgrg(uhvh)v*hu*h

= o)(g,h)v(g,h)

where G>(g,h)=ugpg(uju*k, ^(g,h)=vgrg(vh)vfh; g,h<=G.
(iii) is trivial and left to the reader. Q.E.D.

It follows from 4.2.1 (iii) that if Jtt is a factor and H2(G; T)=(0) (e.g.
G=JR-see [16]), then representations a, ft of G in Aut(^5K) are exteriorly equi-
valent if and only if eoa=eop (c.f. [3]). We now investigate which elements
of Hz are of the form o)^^,

Theorem 4,2.2. Let {<3H, 6} be a G-kernel, with splitting map a. Then

if either <3M is properly infinite, or <3tt is a IIralgebra and G is finite, every ele-

ment of H&(G; cU(S>(<t3^i))) is of the form o)(a^ for some splitting map ft.

Proof, Let Q)^Zl(G; ^U(S(^))) be arbitrary. In either case, it is suf-
ficient to show there is a Borel map g-*ug^

cU(JM) with o)(g, h)=ag(uh)ugufh9

for then, with ftg=Adufoag we see

pgofa = Ad u*ag(u$)oagk

= Adu*ho)(g,h)*°agh

= ?*•

Thus p is a splitting map for 69 and by construction o)=o)(a^. As in the

proof of 4.1.3, we argue the two situations separately.

Case 1 : <3tt properly infinite.
Let Moo(C) denote the loo-factor. From the proof of Lemma 4.7 of [31]

(see also proof of 4.1.3) we may choose an isomorphism o: <3tt-*<3tt®M «>(C)
and a Borel map g-*wg^

cU(<!M(&M00(Cy) with a^®£^Ad w^oaoa^oa"1 and
wgrg(

wk)=w
gh> where rg=aoagoG~~l. By construction, cj(a)=a®l for

From 2.1.3, there is a Borel map g-*v(g)^c(](<3tt®M «>(€)) with

o>(g,h)® 1 = K
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Thus

= c(g)rg(c(hy)c(gh)* where c(g) = v(g)*wg

Now

= o-\c(g)o*ag<>o-\c(h))c(gK)*)

= d(g)ag(d(h))d(gti)* where d(g)=o-\c(g}) .

So with ug=d(g)* we obtain

°>(g»h) = ag(uk)ugufh as required.

Case 2: JM a Il^-algebra, (7 has order «.
We adopt the notation of the proof of 4.2.3, Case 2. Thus there are

unitaries wg^JL®Mn(C) and automorphisms pg,g^G of Jl with Adwgoag

=Pg®t, where c5K is identified with Jl®Mn(C). There seems to be no easy
guarantee that g-*Pg is a representation; however, as computed in 4.1.3, the
obstruction associated to g-*e(Pg) is trivial. Thus, from the conclusion of
4.1.3, we may choose unitaries w^e^ with g->Adw^o^^ a representation
of (7. By changing wg above to (w'g®l)wg9 we may assume that g-+Pg is a
representation of G in Aut(JM).

Since cy(g, A)eS(JK), we may write o)(g,h)=v(g,h)® 1, with v(g,h)<=2>(3l)\
clearly (g,Ii)->v(g,K) is a /?-2-cocycle. Since both g-*ag and g-*flg are repre-
sentations, we see that w^a^(^)w|^ is central; we write w^a^(wA)wJi— ju(g,ti)® 1
with ^fy&V^Jl)}. It is readily checked that (g,fi)->ju(g,K) is also a
/9-2-cocycle. Thus from 2.1.3, there are unitaries b(g)^3l®Mn(C) with

Thus

Q>(g,h)wgag(wk)w*k = wgag(b(h))w*b(g)(gh)*

and

<»(g,fy = <*g(u(hj)u(g)u(gK)*, h,gtEG ,

where u(g)=wfb(g). Thus c» has the required form. Q.E.D.
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4.3. Regularization of Extensions

Let {<3tt,0} be a split (/-kernel, and a a fixed splitting map; let
be an extension of JH by G realizing 6. Define automorphisms
of 3H9 and unitaries v(g,h)^<3tt, g,h^G by

Clearly g-^pg and (g,h)-*v(g,ti) are Borel maps. Since eoa=eo/3=d, there
is a Borel map geG-^e^c^O with Ad ugo/3g=ag. Thus

Also, with Xi(g)=I(Ug)n(g) we see

Since agoah=agh, we see G>(g,ti)=ugj3g(uh)v(g,h)ufh is central in <_5K. Also, we
may compute

= I(a>(g,ti)Q)(gh,k)) for g,h,k<=G .

Thus caeZifGj^L/CSCcaO)). If we consider a and {37,7,4 as given data,
the only indeterminacy in constructing a> is in the choice of unitaries ug with
Adugoftg=ag. However if g-+u'g is another Borel map with AdM^o^=a^,

the 2-cocycle Q>'(g,h)=ugpg(ui)v(g,li)ugh is cohomologous to co; clearly also
any 2-cocycle cohomologous to a* arises in this way. Finally, it is trivial to
check that we may choose ^ to have the properties ^i(g)e/(c5fO?r(g), ^i(g)I(x)

X n\(g)*=I(ag(x)) and Xi(g)xi(ti)=ni(gti) for g,h^G, x^^H, if and only if the
2-cocycle co associated to {32, /, n} and a is (cohomologically) trivial. We
record this as

Proposition 4.3.1. Let {J?K, 6} be a split G-kernel and a a fixed splitting
map. Let {37, /, ?r} be an extension of Jtt be G realizing 6. Then there is a
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2-cocycle o>eZj(G; <U(.Z(c_5fO)) and an extension {31, 1, ^} of JH by G realiz-
ing 6 with

(i) Ad *!&)(/(*)) = /(«,(*)); g^G, xtEJH ,

(ii) *ife)*i(A) - /(*>(*, A)Kfe*) ; *, A e G ,
(iii) Wl(g)e/(c30^).

T/ze cohomology class of o> is uniquely determined by a and {32, 7, n} , awrf
is trivial if and only if ^ may be chosen to be a representation.

An extension {32, /, n} satisfying (i), (ii) and (iii) of 4.3.1 will be said to
have been regularized, or normalized. Although 4.3.1 is to be expected, it is
unsatisfactory in many respects. First, trivial examples show that the class
of co does not determine 32. If we denote the unique cohomology class in
H2

e(G;cU(S(^{)')} determined by 4.3.1 by o>(32, /, *, a\ it seems quite likely
that there are extensions {32, 1, n^ and {32, /, 7u2} of ^ by G realizing a
fixed homomorphism 0: (?->Out(c30, but ey(32, /, nl9 <z)^cy(32, /, 7u2, a). This

of course will not happen if I(<3K)'r\32^I(<3K), for then w2fe)e/C^Kfe)»
g^G. The above relative commutant condition is known to hold (e.g.) if <3& is
abelian, G is countable and acts freely, and 32 is the twisted crossed product.
(See [32], and [31] for an extensive discussion of this condition.) The problem
of whether or not o>(32, 719 nl9 a)=cy(32, 72, n2,

 a) in case <3tt is abelian, G is
countable and acts freely, and 32 is a twisted crossed product is directly related
to the uniqueness or otherwise of regular maximal abelian subalgebras of 32.

It is, however, easy to describe the dependence of o>(32, 73 n, a) on a.

Proposition 43o28 Let {*3tt, 0} be a split G-kernel, let a, ft be two splitting

maps, and let {32, 7, n} be an extension of JH by G realizing 6. Then o>(32, 7,
Tzr, /?)=o>(|3>Q5)<y(32, 7, 7c9 a), where co^^ is as in 4.2.1.

Proof. Choose Borel maps n#, npi (/— ̂ (32) satisfying the conclusions of
4.3.1 for a and ft respectively. Write xa(g)x<*(h)=I(o>«(g,h))na(gh) and

I(top(g,h))7i:p(gh) for g,h<=G. Since both n^g) and n^(g) are in

), there is a Borel map g-*ug^
cU(3tt) with ^t»(g)=f(ug)^(g)9

Thus ag=Adugoftg. Also

so that ^(g, A) = u*ag(uf)ugha)a(g, h) .

However the classes of ov cyp and (g,h)->u$ag(u£)ugh in H2
e(G;cU(Z>(<3H)J)
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are, respectively, o>(3l9I97u9a)9 o)(Jl9I97u9ft) and GJ^), as required. Q.E.D.

We now obtain

Theorem 4.3.3. Let {JM,6} be a G-kernel with trivial obstruction, {iHj.n}
an extension of JH by G realizing 6. Suppose further 3tt is either properly in-

finite, or <3tt is a Il^algebra, and G is finite ; then there is an extension {52,/3 TU^ of
<3H by G realizing 6 with

a) *ifeX(A) = *i(gh) ; g, A e G ?

b)

Proof. From 4.1.3, {c5K, 6} is split; we let a be an arbitrary splitting
map, and o>=a>(3Z, /, n, a). From 4.2.2, (o=a)((&^ for some splitting map ft

for {c5K, 6}. From 4.3.2 ©(37,7, TT, jff)=®(M)©=G>-1. o> is trivial. The
desired map ^ may now be found by virtue of 4.3.1. Q.E.D.

The above result should be regarded as a complement of [27; Theorem 5.1].
The extension theory of properly infinite von Neumann algebras, or of

Ilj-algebras by finite groups, is thus particularly simple from an algebraic point
of view, even though one is obliged to deal with (possibly) of a multiplicity
of liftings for a given kernel. Our results also have significance for injective
von Neumann algebras ([7]) and for the representation theory of certain locally
compact groups, as will be seen in Section 6.

§50 Isomorphism Criteria for

Here, we seek criteria on an extension {52, /, n} of <3tt by G in order
that it be equivalent (in a sense made precise below) to a twisted crossed pro-
duct extension.

§918 Algebraic Criteria

There are several notions of equivalence for extensions of JK by G which

are amenable to interpretation in our context.

Definition 5.1.1. Extensions {3?l5 Jl5 ^} and [322, J2, x2} of 3ft by G
are <3tt—G equivalent if there is a normal isomorphism K:

a)

b)
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If K may be chosen so that £(Ii(x))=I2(x), x^^ti we say the extensions are

strongly c_%-G-equivalent; if, in addition K(7r1(gy)=7i:2(g) we say {37i, /i, ^1}

and {3?2> /2, ̂ 2} afe isomorphic as extensions.

It should be noted that the modifications of extensions carried out in 4.3.1

and 4.3.3 have taken place within a single strong equivalence class.

Proposition 5.1.2. Let {31 J9 IJ9 n}}, j=l,2 be extensions of Jtt by G, and

write

Ad *,(*)(//*)) = J/«i(*)); j = 1,2,
and

Then, if {32i,/i,^} and {Jl2>l2>n2\ are 3tt-G-equivalent (resp. strongly
equivalent), there exists aeAut(<^f/) (resp. a=t) and a Borel map

^C JK) with

and

a2
g = Ad u

The converse holds if the extensions {3lj9Ij97Cj}, j=l,2 are regular in the

sense of 3.1.

Proof. Suppose the extensions are (strongly) equivalent, and choose an
isomorphism *: S^-*^ with *(/1(^0)=/2(c30, ^(^(g))e/2(^)?r2(g). Define

G and g-*ug by

and

Note that in the case of strong equivalence, we may choose a = t. The

indicated relations follow trivially by applying K to the equations

and

and using the definitions of v2(g9h), o and w^.

Conversely, suppose the extensions {^njylj,7rj}jj=l92 are regular and
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as> vj(8>ti)> G> ug satisfy the relations above. We may assume that 31 acts on
M, that 32y, 7=1,2 act on L2(G; M) and Ijy TL- are given by

for 7 =1,2 and S^.L\G\M). We may further assume that a is of the form
Ad U for some unitary U on M.

Define a unitary V on L2(G; M) by (V£)(g)=u*g-iU£(g\ We compute

= Ad u* -10 a o c-i

and

Q.E.D.

In particular, ^-^-equivalence of the extensions {^nj9Ij97Uj} 7=1,2

implies conjugacy of the corresponding homomorphisms (9y: G->Out(c5ff).
Also, if ge(/-»a^eAut(c_5K) is a fixed representation of G as automorphisms,

and ^^Aut(J^) commutes with {o^,g<EG}, then
, G, a, o>) and Sl(<3tt, G, a, ao>) (twisted crossed products) are c_5M-G-equi-

valent and so certainly isomorphic. So in general (if H2(G; T)=£ {0}) we may
have jR(i3H, G, a, a>) isomorphic with 5i(c_5K, G, a, v) but a> not cohomologous
with v.

5.2. Plfmcherel Pairs

Throughout, {JM, 0} will denote a fixed split G-kernel, and a a fixed
splitting map; since a is Borel and G and Aut(c5K) both Polish, a is in fact con-
tinuous (see [2]). According to 4.3.1, each extension of c_5K by G realizing 6

has a normalized form {7l,I9n} i.e.

Ad *&)(/(*)) - /(«,(*));
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for some a>eZ|((j; ^(^(J^O)). (For convenience we say {31, /, n} induces

a and co). Thus {31, 1, a} enjoys the same algebraic properties as the twisted

product extension {&(<${, G, a, co), I", *"} (example 3.1.3 and [27]). We

shall develop necessary and sufficient conditions for a normalized extension

inducing a and co to be isomorphic with a twisted crossed product extension.

In the following discussion, when we refer to a weight on a von Neumann

algebra, we mean a faithful, normal, semifinite weight; we omit the qualifications.

We refer to [29] for the theory of weights and left Hilbert algebras.

Let {71, /, x} be an arbitrary extension of <3ft by G; for x^JC(G;JM),

the space of norm-bounded Borel maps x: g^G-^x(g)^^5H with {g: x(g)=£Q}

precompact, define an operator x^Jl by x=\ n(g)I(x(g))dg (this exists as a
JG

weak integral).

Definition 5.2.1. In the above situation, a pair {9, 9} of weights is a

Plancherel pair for {<3M, 71, I, n} if

(i) 9 is a weight on <_5K, 9 a weight on 32,

(ii) S-={vec5Jf: y=x for some x<= JC(G; JH) and

9(y*y+yy*)<°°}
is dense, with respect to the $-norm, in the full left Hilbert algebra U deter-

mined by 9

(iii) for x e JC(G ; 3M) with x e S

- \
JG

Theorem 5.2.2. Ler {ĉ , ^}, a, 6e as a^ove, a«^ <»eZ|(G;

(i) {37, /, 2r} w Jtt-G-equivalent with {Sl(<3tt, G, a, o>),

z/ {c^K, 37, /, TT} admits a Plancherel pair of weights,

(ii) if {71, /, TT} zj normalized, induces a and CD, and admits a Plancherel

pair of weights, the extensions {37, /, TT} and {$l(<3tt, G, a, co), I*, A™} are iso-

morphic (as extensions).

Proof, (i) Let K : Jl-^>Sl(^i, G, a, co) be an isomorphism implementing

the JK-G-equivalence of {31, 1, n} and {SL(^,G,a,co}, /V"}. We may

thus suppose 3Z=3l(c% G, a, a>), 7(jc)=r(a(jc)), jce JK and *&)=*"&)/*(«,),
geG, for some aeAut(c5K) and Borel map g->ug^

€U(JM).

Let 9 be a weight on <_5Jf, and 9 the weight on 7l=Sl(^3H, G, a, co) dual

to -^=<poa-1 (see [27]). Noting that for x^JC(G; <3W) we have
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= i <g)I(x(g))dg
JG

so that

so that {9, 9} is a Plancherel pair for {^5H, 32,1, a]. (The other requirements

of the definition are easily verified using [27].)

Conversely, suppose that {JM, 32,1, n} admits a Plancherel pair of weights

{<p,y}, and let {32,1,^} be the normalized form of {32,1, x}, so that

{32,1, TrJ induces a and a). We claim that {<p, 9} is a Plancherel pair for

Note that if x(=JC(G; <3tt), and we write n(g)=nl(g)I(ug)9 then

*-i.<
-i,

Thus

p(x*x) = \ <p(x(g)*x(g))dg
JG

= \
J

and {<?,?>} satisfies 5.2.1 (iii) for {3ft, 31,1, n^. Using this, 5.2.1. (ii) is
trivially verified. To complete the proof then it is sufficient to prove 5.2.2 (ii).

(ii) Let {32,1, x} be a normalized extension of Jtt by G inducing a and
o), and let {9,9} be a Plancherel pair for {Jtt, 32,1, TT} . We suppose that

JM (resp. 32) acts on the Hilbert space M (resp. M) derived from 9 (resp. 9),

and we let A, (resp. A) denote the canonical map from the full left Hilbert al-

gebra E(resp. 11) derived from 9 (resp. 9) into M (resp. M). By hypothesis,
A(l8) is dense in M.

Note that for x(=JC(G; <3tt) with JceS, then x=0 implies 0-^(Jc*Jc)
= \ 9(x(g)*x(g})dg, so that ;t(g)=0 a.e. Thus there is a well defined linear

map U: A(%)->L\G;M) given by (U(A(x)))(g)=A(o>(g-\g)x(g)). Indeed, [7

is an isometrey as
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= \\U(A(xJ)\\2.

Clearly, t/has dense range inL2(G\M), so that U extends to a unitary of M onto
L\G;M)\ we denote this extension by U also.

Now for £,rj^M and x, jeS, we have

GJG

= \ ( «g)<h)I(a
JGJG

= ( ( <x(gh)I(a-}(co(g
JcJc

= \ \ ^(^(^^(g
JGJG

= { \ «A;)/(arl(c0(A;l,
JGJG

Thus xy=z, where z(g) = \ a^\o>(gh,h~l))ah(x(gh))y(h~l)dh. Hence we have
JG

= ^(g-^g) \ cJG

= \ ^(g^gla
JG

= ( A(m(h,h-^
JG

On the other hand, we may compute

= \
JG

= \
JG

= (
J

= \
JG
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Thus U([ x(g)I(x(g))dg)U* = ( A "(g)I*(x(gy)dg; an easy and well-known approx-
JG JG

imation argument now ensures that Un(g)U* = X°(g), g&G, and UI(x)U*
=I*(x\ x<=<3tt, and that {32, 7, n} and {St(JM,G,a,co), I*, X03} are isomorphic

as extensions. Q.E.D.

The strength of the concept of Plancherel pairs of weights lies in the re-

quirement 5.2.1 (iii). This should be interpreted as an orthogonality condition

(for the x(g)) over 7(«_30); it can also be interpreted as an analogue of a dimen-

sion condition frequently met with in the theory of (finite dimensional) central

simple algebras.

From 5.2.2 we obtain immediately the following

Corollary 5.2.3. Let {37, 7, n} be a normalized extension of {<3tt, 0}

inducing a and &>, and 3tt-G-equivalent with {Sl(JM, G, a, o>)3 7*, /I40} . Then

the extensions {32, 7, n} and {<R(JM, G, a, cy), 7*, A1*} are isomorphic.

We also obtain the following more familiar criterion for a normalized

extension to be a twisted crossed product (cf. [3],[12]).

Corollary 5.2.4. Let {32, 7, n} be an extension of <3tt, by G, with G dis-

crete, and with {32,7,rc} inducing a, CD. Suppose further that each automonphism

is properly outer. Then if there is a normal, faithful, expectation E:

), the extensions {JlJ,n} and {3l(JM9G9a9 &),!*, I*} are isomorphic.

Proof. We identify <5M with I(3tt)^3l. Since for g^e we have E(n(g))x

=E(7u(g)x)=E(ag(x)7u(g))=ag(x)E(7u(g))? and ag is properly outer, E(n(g))=Q,

Thus if <p is any faithful normal state on <3tt, and y=(poE9 we may compute

for x^JC(G; <3K)

thus {<?,$} Plancherel pair for {32, <3H9I,n} . Q.E.D.

The relevant feature of the above proof of course is that E(x(g))=Q for
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5.30 Dual Actions

According to 3.1.8, if G is an abelian group and {31, 7, n} any regular
extension of <?M by G, the dual group G acts as automorphisms on 71 in such a

way that «/<g))=<&/>Xg) and 7(c3Q = {xe37: a/x)=x for all
The following converse is patterned after the results of [18].

Proposition 5.3.1. Let 31 be a von Neumann algebra, G an abelian group,
and TU: g^G-^7c(g)^cO(3l) a Borel map. Suppose there exists a continuous

homomorphism p^G-*ap^Aut(3l) with a/^(g))=<g,/?>^(g) for alt p^G,
geG, and set <3M={x: ap(x)=x for all p^G}. Then {31, 7, n} is a regular
extension of 3tt of G, where I is the inclusion map I: JM-^31.

Proof. The fact that <3H and {x(g),g^G} generate 31 follows exactly as
in [18]; we omit the details. Also, with v(g, h)=n(g)7t(h)n(gh)* we see ap(v(g,hj)

g)h)=v(g>h) so v(g,K)GJM. Further, with x^^/H we

see ap(n(g)xn(g)*) =<g,pyn(g)x7c(g)*<^,py==7c(g)xn(g)* ; thus if ag(x)=n(g)xn(g)*p , , = g

for x^<3tt, then 3& is invariant under ag. We shall show that {32,7,^}
is (isomorphic to) the regular extension constructed from a and v as in 3.1.6.

Define a map <5: 37^L°°((j; 31) by (8(y))(p)=&p(y). Clearly d is an
isomorphism and S(y)=y®\ if and only if y^^/H; also 8(n(g))=7i:(g)®xg

where xg denotes multiplication by the character ^-»<g,/?> on L2((j).

We let 31 be represented faithfully on the Hilbert space M; thus L°°(G;3l)
is realized on L2(G; M). Let £F be the unitary ff: L\G;<$l)-*L2(G; M) defined

by

(We have chosen Haar measures on G and 6 so that the Plancherel formula
holds; £F is nothing but the Fourier transform.) Setting 8(y)=3?d(y)3?*

for y<=3l we obtain 3(x)=x®l if and only if x<=Jtt and 8(K(gy)
where /I is the regular representation of G on L\G).

Define a unitary 17 on L2(G; c#) by (U£)(g)=n(g-l)£(g). Now
X U*£)(g)=ag-i(x)?(g), xE^Jtt and
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Thus the isomorphism Ad UoS carries JM and 7r(g),geG to the generators of
the regular extension of JM by G determined by a and v. The proof is com-
plete. Q.E.D.

We note that if G is discrete, 5.3.1 may be proven more easily using 5.2.4;

the map E: Jl-><3tt, defined by E(y) = \ a p ( y ) d p is a conditional expectation
J G

with E(n(g))=Q for g^=e. The proof of 5.2.4 now applies.

§ 60 Applications

These fall in three (related) classes; we begin with twisted crossed prod-
ucts. Twisted crossed products have been seen to be useful since Connes
[6] constructed examples of factors not anti-isomorphic with themselves (see
[27] also for details), although they have been discussed in the literature much
earlier ([32]) ; they have been advertized as a method of constructing von Neu-
mann algebras which are not constructible using ordinary crossed products.
However, we have

Theorem 6.1. Let ^H be properly infinite and G arbitrary, or a Il^algebra
and G a finite group. Then any regular extension, and hence any twisted crossed

product, of JM by G, is already an ordinary crossed product.

Proof. Let {37,1, n} be a regular extension of JH by G; by 4.3.3 {32,7, n}

is strongly equivalent to an extension {37,7,^} where ^ is a representation of G

in <U(3Z). If we write Ad *te)(7(x))=7(a,(*)), n(g)n(h) =I(v(g, A)MgA), Ad ^(g)
X(I(x))=I(ftg(x)) and ^(g)=I(ug)7t(g) for g,htEG and x^ Jtt, then ugag(uh)
v(g, h)u*h = 1 and ftg =Adugoag, g, h <E G.

We let JH act on M and 37 on L2(G'SM); define a unitary U on L2(G;M)
Then

and
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where c denotes the trivial 2-cocycle. Thus 57 is isomorphic with S(,(JA,, G, ft).
Q.E.D.

The interpretation of this in terms of non-anti-isomorphism is that there
are von Neumann algebras Jfi anti-isomorphic with themselves, and repre-
sentations ge(j-»a^eAut(J$0 such that for no anti-automorphism G of JM
is aoagoo~1=ae for all g^G. Interest in twisted crossed products is thus
reduced to abelian algebras and possibly H (non-factor) von Neumann al-
gebras.

We now turn to extensions of injective von Neumann algebras.

Theorem 6.2, Let {57, /, n} be an extension of an injective von Neumann

algebra <5H by G. Then Jl is injective if either <3VL is a Il^algebra and G is finite,

or if c5K is properly infinite, and G contains a dense, countable, amenable sub-

group.

Proof. Follows from 4.3.3 and [7]. Q.E.D.

In particular, any extension of the hyperfinite factor by a finite group is
injective.

If M is any locally compact group, and p a continuous unitary repre-
sentation of M on separable Hilbert space, we say p is A.F.D. (approximately
finite dimensional) if p(M)" is an injective von Neumann algebra. If all
representations of M are A.F.D, we say M itself is A.F.D.

Theorem 6.3. Let 1->M ->N-*G-*l be an exact sequence of locally
compact separable groups, where G contains a dense, countable, amenable

subgroup-, let p be a representation of N. Then
(i) if p(M)" is properly infinite and injective, p is A.F.D.,

(ii) if p(M)" is the hyperfinite factor and G finite, p is A.F.D.,
(iii) if M is connected, N is A.F.D.

Proof, i) and ii) are trivial. Since any representation of a connected
group generates a properly infinite ([17]), injective ([7]) von Neumann algebra,
(iii) follows.

We note it is not clear whether or not, if p is a representation of M which
is A.F.D, the induced representation IndiJp of M is also injective.
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