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A Mathematical Model of Spherical Nucleus
In the Undercooling State of Metal

By

Tatsuo NOGI*

§ I. Introduction and Formulation**

It is well known that when a pure liquid is cooled beyond its melt-

ing point TE, the solid phase may form; alternatively if nucleation is

suppressed, the liquid may continue to cool (that is, to undercool or

supercool) .

The free energy change on forming solid from liquid at the equilibrium

transformation temperature TE is equal to zero:

where JG, AH and AS are molar changes in free energy, enthalpy and

entropy, respectively. At any temperature T different from TE, AG is

not equal to zero:

AG^AH-TAS^Q.

Neglecting the small temperature-dependence of AH and AS and combining

the above two equations we have

Ar AHAT,G = ___

where AT is the undercooling ( = TB — T), whose value is negative for

solidification.

An important influence on the melting point of a pure material is

given by the surface curvature. The surface curvature can be considered

to introduce excess pressure only in the solid phase. The excess pressure
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is given as follows:

/Ip = 2fffC

where 6 is the surface free energy per unit area and K is the mean

surface curvature. If the solid cannot be compressed, Ap = AG holds.

Thus

or

K AH AT L(TE-TI)

where L is the latent heat and T7 is the surface temperature.

A crystal smaller than a critical size is called "embryo", which grows

to nucleus with the critical size. We are concerned about growth of the

nucleus. For simplicity we consider a spherical nucleus, whose size is

determined just by its radius. The critical radius is given by the formula

2ffTs

where TA is the initial liquid temperature of undercool state.

From the above discussion we can describe a system of equations

which determines the radius Y(f) and the temperature distribution T(r, t)

as follows:

(oo<y(o,e>o),
dt

2ffTE Y(f)

y(o)=-
L(TE-TA)'

lT(r,0)=r,(r) (0<r<r(0)),

where TI—T(Y(t), t), and k is thermal conductivity, p density, c specific

heat of the solid metal, and L latent heat, which are assumed to be

constant. Putting
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TE Lp L

2ffTE and T0(r)=/(r),

the above equations take the following normalized form:

' (P-l) ^ = Au (0<r<y(0,*>0),
dt

\"~^) u \^ > . - / » - / , / N* y(0
(P)4

(P-3) y(*) = -o^

(P-4) y(0)=i ,

UP-5) «(r,0)=/(r)

Here we shall refer to the series of A. Friedman's works being

entitled "Free boundary problems for parabolic equations", Part I [2],

Part II [3] and Part III [4]. In Part I he considered the problem of

melting of solids. In Part II he considered the development of one liquid

drop surrounded by totally supersaturated vapour of its own substance.

Denoting by u (r, t) the normalized vapour density at each point (r, t)

and by y(t) the normalized radius of the drop, we get the following

equations of u (r, f) and y (f):

u Cv(0<r<°o,C>0),
at

«(y (0,0=1

.*(0=o4"(.v
Or

y(0) =//>(),

In Part III he considered the behaviour of one gas bubble in liquid

in which some part of the same gas is dissolved. Denoting by u (r, t)

the normalized density of the dissolved gas in the liquid and by y (f) the

normalized radius of the bubble, we get the following equations of u(r, t)
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and y (t) :

du
~w~ u

(l4- m

\ y(*>

«(r,0) =
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dr

Note that the case of m = Q and n = Q reduces to that of part II by

putting l — u = v. He could prove unique existence of the solution only

for small a.

Our problem is analogous to Friedman's problems, especially to that

of Part III. Thus it may be considered as that of Part IV. Indeed we

can prove unique existence of the solution by his method. Here we will

state the outline. By putting

r = x, ru (r, t) = w (x, t) and rf(r) = $ (x),

our system (P) takes the form

' div d uu
^dt=^xi

(0,0=0

(0 = - o ( y (0, 0 +a~-

(x, 0) = 95 (j:) (0 < x

By introducing the Green's functions of the heat equation
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and making use of the standard technique, we get the nonlinear integral

equation of Volterra type for v(i) ^ux (y(f) — 0, /) equivalent to the last

system:

b Jo

-2
P,

Jo

y

If the system (P") for t>(£) and y(£) is solved, then zu(x,t) is given

bv the formula

'(:c,0= P0 (*,*;£,
Jo

m r
b Jo '

The system (P7/) can be solved by Picard's iteration procedure for small

t and small a. By using the monotonicity of y(f) (that itself is to be

made sure of) the solution can be continued for all t.

In the above method, however, we must impose a severe restriction

on smallness of a. Therefore we will take another way in the follow-

ing, which is analogous to that Cannon, Hill and Primicerio took for the

simplest Stefan's problem ([5], [6] and [7]).

We consider the problem (P) in the classical sense. Its classical

solution is defined as follows:

Definition, A pair of functions (y, 11) is called a solution of the

system (P) in 0<£<IT? if the following conditions are satisfied-.



164 TATSUO NOGI

ii) «(r,0, (r,O

iii) (y,u) satisfies (P-l) ~ (P-5) .*

In § 2 we will give some lemmas necessary for later purposes, and

in § 3 uniqueness and existence theorems. In § 5 we will propose a

difference scheme for solving our problem numerically and give another

proof of the existence theorem as a by-product. In § 6 we will give an

iteration procedure for solving our difference scheme and prove its con-

vergence, and in § 7 show some numerical examples by our computation.

§ 28 Some Lemmas

We will give some a priori properties of the solution of the problem

(P) . First we assume that f(r) is smooth except for at most finite

number of finite jumps at whose points f (r — 0) and/^r-j-O) exist, and

that

(2.1) /

f (r-0) +f (r + 0) <0

Lemma 1. If y (t)>Q for an interval 0<t<t0, then

— (r, 0<0 for 0<r<y (0, 0<t<tQ .
dr

Proof. Put x — = £. - satisfies the system of equations

r
^- = 0 (0<r<y(0,0<«<*0),
dt

At each discontinuous point r0 of /(r), we demand only that

0< lim u(r, 0 < lim w(r,
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l*(o,o=o
Suppose that there exists an interior point (f, f) (0<Cr<3; (f), £>0) such

that

max 2r (r, £) = # (f, ?) = M>0, 2; (r,

Then at (r, ?) , £r = 0, £rr<0 and 2-£>0 hold, but this implies that Az
2

— — g-s — s-^O at (r, £) , which is a contradiction. Therefore it should

hold that z(r,0 = .|?L(r, *)<0 for 0<r<y(0, 0<*<*0. Q.E.D.

Lemma 2. Under the same assumption of f(r) as above, y(t)

is strictly monotone increasing for t>0. And hence

— (r,0<0 for 0<r<y(0, ^>0 .
dr

Proof. Assume that y (0 <0 in an interval 0<^l<it0. We consider

a function U defined by

which satisfies the system of equations

y(t
, 0 = 0 ,

(C/(r,0)=/(r)

By the well-known maximum principle (or by a similar way to that in

the proof of Lemma 1), we have £7>0 (0<r<y (0), and hence -— (y (0 , t)

= -^-(y(0,0<0. This means y(0>0 (0<O<£0)
 bY (P-3) , which

is, however, a contradiction to our assumption y (f) <^0. Thus we should

have y (£)>Q for some interval Q<^t<tQ.

Next we assume that there exists an interval ^0<^<^i (A)>0) f°r

which y (t) <^0 and for 0<C^<^05 y (?) ̂ 0. From Lemma 1 we have



J6G TATSUO NOGI

, ,
\ b

Hence we again arrive at LT>0 (0<Cr<Oy(£), tQ<t<t^) which contradicts

the assumption y (£) <0 (tQ<^t<t^) . Thus we should have y (t)>Q for

all £>0.

Now we will show the strict monotonicity of y (t) . If the contrary

were to happen, there would be tr and t" such that y(t)=y(tf) (t'<it

<*") and hence y (*) =0 (t'<t<t"*). On the other hand we get C7>0

from (2. 1) by the maximum principle and hence -^— Gv (t) , t) =-~ — (y(f) » f)

(tf<it<it") by Friedman's lemma [8], which is a contradiction to

y(f) = 0 (tf<t<t").

The last statement of Lemma 2 follows directly from Lemma 1. Thus

the proof is completed.

Lemma 3. Let (y^u^ (z = l, 2) be the solutions of (P) corre-

sponding to two pairs of data (&*,/*) (z = l, 2) satisfying (2.1), re-

spectively. If b^bz and /i</2 (0<><&2) (where fa is assumed to be

extended and to be equal to zero for b^r^b^) , then

Proof. If the statement is not true, there is a £0 (>0) such that

yi(O =yi(O, yi(*o)>y»(*o) and ^(O^tCO (0<^<^0). In

we have by Lemma 2

and hence by the maximum principle

u* (r, t} -u, (r, t) >0 (Q<r<y, (t) ,

Since u2 (3^ (£Q) , ^0) — Ui (yi (tQ) , t0) = 0, it follows by Friedman's lemma that

.e.

which is a contradiction. Thus we have completed the proof.

Now we will give a fundamental formula useful for later purposes.
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By multiplying (P-l) by r2 and integrating the result over the region

(0<r<y(r),0<r<*) we have

r»(o p& rt
u(r,f)r*dr- u(r,Q*)r*dr- u(y (r), r)/(r)y (r)rfr

Jo Jo Jo

which can be written by using the conditions (P-2) ~ (P-5) as

f "''a (r, 0 r^r - f /(r) r*dr - f ' (-^ - -^-) y2 (r) y (r) ̂ r
Jo Jo Jo \ & y (r)/

= -- fV(r)*(r)rfr .
a Jo

From this and by integration we get the formula

(2.2)
OL

f& fy
- /(r)r2Jr-

Jo Jo

Now we will use this formula in order to prove the following lemma

containing the case of b1 = b2 excluded in Lemma 3.

Lemma 3X. If b1<bz and /i</2? then

) (0:0).

Proof. In view of Lemma 3 we have only to prove it for the

case of bl = bz. Then we take an arbitrary positive constant 8, and con-

sider three pairs of data (£2>/i)> (bz^fz) and (bz-rd->fz) (where f2 is taken

to be zero for b2<^r<b2 + S) and the corresponding solutions (yly u^) 9

(^2? MZ) and (y2
8

9 uz) . We have from Lemma 3

(2. 3) yi<y*,

By applying the fundamental formula (2. 2) to the two solutions (y/9 uz)

and (yz, u2) respectively, we get

1 / 1 _ m
3\a b2-{
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— 1 I 1 __ m \ (h 4- ^3 4- m

3 \a bv-i-d' " 2

P&2"i ^ f*y2S(0

Jo 2 ^r Jo

and

lfi.-^iU3H-^LV
2

3\a A,/ 2

1/1 5 —
3 \a b 2

f&2 fya(0
-I- Mr)r*dr- Ut(r,£)r*dr.

Jo Jo

By subtracting the latter equation from the former we have

(2.4) ±.±-
O

m _
3\a bz

3
\ 7 7 i ^ / x o 1 -\ b2 b2 + 0 ̂  2

Jo ' Jy8(i)

It is known from the maximum principle that

ul (r, 0 >0 (0<r<j;2 (f), t>0)

and

u£ (r, ^) — «2 (r, £) >0 (0<r<v2 (^), t>fy .

By applying these inequalities in (2. 4) we get

1/1 w \ -w
(2<5) l(i"f)(y/)3+Y(y/)2

+ —
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Here we note that the function

is monotone increasing for all y>0 if b^>am, and also for 0<3;<C
am—b

if b<^am, and that by the continuity and the monotonicity (Lemma 2)

of y200 and 3'i(0

if
77 i ~

and

if

hold for sufficiently small f and 5. Hence, from (2. 3) , (2. 5) we get

1/1 m\ 3 . m *^ 1/1 w\ 3 . m 2 , .O^^N__- U//+ yr< __- — ;y/ + — 3V + O(o)
3 \CK 62/ 2 3 \a J2/ 2

for sufficiently small t and S. The last term O (8) tends to zero as

0— >0 since y2
? (^) is uniformly bounded for small t and o. Since 5 is

arbitrary, it follows from the last inequality that

for sufficiently small /. Again by the above note we get

(2.6) Vi(0<3'2(/0 for sufficiently small b.

If /i=/2 and b1 = b2, we have also yi(t)>y2(t), and hence \\ (t)

= yz(t) for sufficiently small t because both yi(t) and yz (t) are bounded

for all £^>0 that is to be shown in Lemma 4. Continuing the same

reasoning for each small time interval successively, we get 3;i (0 =yz(f)

for all £>0.

Next we suppose that /j^/2, /j</2 and b1 = b2. If the equality yi(t)
= 3;2 (^) holds for an interval 0<l£<^0, the strong maximum principle

yields

for

Hence, from the condition that //: (YJ (/) , /) —u2 (\\ (t) , ^) =0 we get by
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Friedman's lemma

.e.,
dr or

But this is a contradiction to our assumption. Therefore we get y1 (t) <

yz (£) from (2. 6) , and also t^ (r, t) <^uz (r, t) for some sufficiently small

interval 0<£<£0
 an^ 0<r<JVi(£). By using Lemma 3 (its modified one

for the latter time t>t^) we have again

yi(*)<ytW for all O>0.

Thus we have proved Lemma 3'.

Lemma 4. Suppose that there exists a solution (y, u) of the prob-

lem (P) for all t^>0. Then y(f) is bounded and

\\my(t) = y(oo)

exists, where y(oo) is determined from the equation (2.7) below.

Proof. Let us consider the solution zv(r,t) of the problem

dw

w (r, 0) =

0

It is clear that u(r, t) — — — } (>Q) is bounded from above by

w (r, £). However we see that for sufficiently large t

r*w(r, 0 =r V(r, «; f, 0)

where g is the Green's function defined in § 1. Hence we see that

lim r^^v (r, f) = 0 uniformly and further
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lim r2\u(r, f) — (— — -—H = 0 uniformly.
*-*«> I \ & r / J

We take a positive constant e less than b2/3ct. Then there is a TQ such

that

I 2 / j.\ 2 / ^ ^ 1 .x^ « r . x\ /TIi r" u \T'5 ^j — T^ ( —— — — I "^C^o lor t^> JL Q ,
\ b r i

Hence

for 1>T0.
3& 2

By applying the last inequality in (2. 2) we get

3a 3\a b' 2

Since ^— — By^>7-~ — eb^>0 (from Lemma 2 and our assumption of e) it
3a 3a

follows that y(t) is bounded for all £>T0, and hence for all £>0

because y(t) is continuous for t>Q. In addition y(t) is monotone in-

creasing from Lemma 2. Thus there exists a limit

lim y (t) =y (oo),

By taking t—->oo in (2. 2) we get

(2.7) —— 3/(oo)3 — ^?3 + —&2 j

Thus we have proved Lemma 4.

Next we assume, in addition to (2. 1), that

(2. 8) /(i) - 0 .

Then there is a positive constant N such that

(2.9) 0</(r)<W!-l) (0<r
\ r & /

Lemma 5. Under the assumptions (2.1), (2.8) (and also (2.9)),

(2.10) 0<^^-=-Mr(3;(0,0^-^— (*>0).
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Proof. Introduce a 'barrier' function

depending on a parameter t0. It satisfies the basic equation (P-l) and

the following inequalities:

m m ^ m m

Then it follows from the maximum principle that

coto(r, f) -u(r, t)>0 (0<r<

and hence that

for any sufficiently small p. This yields

dr

Since tQ is arbitrary, we find also that the right inequality of (2. 10) is

true. The left one is so by Lemma 2. Thus the proof of Lemma 5 is

completed.

§ 3. Uniqueness and Existence of the Solution

The uniqueness theorem follows directly from Lemma 3'. Indeed

we suppose that there are two solutions (yi9Ui) (z' = l, 2). Then y1^y2

follows from Lemma 3' and hence u^u^ follows from the well known

theory of the problem with the prescribed boundary.

Theorem 1. The system (P) has not more than one solution

under the condition (2. 1).
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Next we will show existence of the solution by constructing it. For

that we consider an auxiliary problem, which we call (AP), with the

prescribed boundary r = y

(0<r<y,(0,
at

(AP)

'-(r9 *0) =/0(r) (P<r<:yo (*„))•

For each $, 0<^6<^b, we construct an approximate solution (y6, u6

of the problem (P) by retarding the argument

in the Stefan's condition (P-3). In the first interval 0<£<C$ we set

y° (t) =b and define u° (r, f) to be the unique solution of (AP) with

tQ = 0, in which yQ (f) and fo (r) have been replaced by y9 (t) and f(r),

respectively. It is easy to verify that, due to our choice of y° (t) and

/(r) (satisfying (2.1), (2. 8) ((2. 9 ) ) ) , ^GM) exists and is continu-

ous for Q<t<Q. Moreover, by the similar way to the proof of Lemma

5, we have

(3.1) o<-f£(a,o<£,

Now we proceed by induction. Assume that (y°, ?/°) has been constructed

for 0<^<>z$, that y° (/) is continuously differentiate for 0<t<nd, that

dua/(dr) (y6 (t), f) exists and is continuous, that

and that

(3.2) yQ(t)=b-a r^!(y(r-fl),r-0)rfr for
Jo 9r

In the next step nd<t<i (n -fl) 6 we define y° (t) b}^ (3.2) and solve

(AP) with t0 = ?id, yQ(t) =y°(t),f0(r) =u°(r9nd) for u° (r, ^) up one more

step into the region 0<r<^v(£), riQ<it< (;? + !) 0. By the inductive
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hypothesis on -^—, y° (t) is a continuously differ en tiable function satisfying

(3-3) ' Na

du°Hence -^— (y8 (£), t) exists and is continuous, and from the same argu-

ment as that in the proof of Lemma 5, we have

Thus the approximate solution (y6 ', u°) can be constructed throughout

the interval 0<!£<IT, and y9 (f) satisfies (3.3) for the same interval

(in which yQ (t — 6) is taken to be equal to b for 0<^<0) .

Hence the functions {y9 (t) } form an equicontinuous uniformly bounded

family in Q<l<T. We choose a sequence of 0's tending to zero. By

Ascoli-Arzela's theorem there is a subsequence, denoted by y9 (t) , that

converges uniformly to a monotone Lipschitz continuous function y (t) .

Let u(r,t) be the unique solution of (AP) for the choice of £0 — 0>

f o ( r ) =f(r) and yQ(t) =y(t). Given any £>0 we have, for

all 0's of the subsequence that are sufficiently small,

For convenience we extend the functions u° and u by setting them equal

to -=- — — — - for each t outside their natural domains of definition. Then
* y(t)

in any region 0<r<max (3^ (f) , y (t) ) , 0<^<T, the difference UQ — U is

bounded, using the maximum principle and Lemma 5, by

Thus the corresponding subsequence HQ converges uniformly to u.

The pair of functions (y, 11) defined as above, of course, satisfies the

conditions (P-l) , (P-2) , (P-4) and (P-5) . It remains to assure (P-3).

We note that (P-3) is equivalent to the fundamental formula (2. 2) under

the condition of Lipshitz continuity of y (t) . For (y°, u°) we have by the

same way as in § 2
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*' '(3. 4) f V (r) 2 ( - —ye (r + 0) ) dr - f *' ' V (r, 0 r*dr
Jo \ a / Jo

y (r)/

The first and the last integrals of the left-hand side may be written as

and

Hence, by taking the limit in (3. 4) as the subsequence 0 tends to zero,

it follows from the uniform convergence of y° to y and ud to ?£ that

(y, 11) satisfies (2. 2) . Therefore (y, 11) is actually a solution to the prob-

lem (P) and y(£) is continuously differentiate for 0<^^<T. Thus we

have proved the existence of the solution under the assumptions (2. 1)

and (2. 8) .

We can, furthermore, show that only the assumption (2. 1) is suffi-

cient for the existence. Indeed we have

Theorem 2. Suppose that f(r) is smootli except for finitely

many points of jump discontinuity where both f'(r-Q) and /'(r + 0)

exist, and satisfies (2. 1) . Then there exists a solution (y, u) of the

problem (P) .

Proof. Define

for each 5(0<(5<&) Since f is bounded in 0<><:&, there exists an



176 TATSUO NOGI

N(S) for each d such that

r

It follows from the above discussion that there exists a unique solution

(y*, if) of the problem in which / is replaced by fs for each d. We see,

from Lemma 3', that ySl<iydz holds for d^d^ Choose a sequence of dn

(77 = 1, 2, 3, • • • ) tending to zero. Then the corresponding y*n (;z = l, 2, 3,

• • • ) is a monotone increasing sequence bounded from above by, for ex-

ample, the free boundary y of the solution of (P) in which b is replaced

by £-fl and f is extended as zero for b<^r<b-\-\. Hence ySn (t) con-

verges to a limit y(f) at each time t as n—>oo. We shall show that

y (t) is a continuous function in 0<^<^oo. Since y01 (£) is strictly mono-

tone increasing in t (via Lemma 2), ySl (6) —b is strictly positive for any

d>0, and hence ydn ((T) — b^>yl ((7) — &>0. By applying Lemma 5 to the

solution (y°\ z/n) in the restricted region {b<^r<^ySn ( t } , £><?}, we find

that there is a positive constant fCff (playing the role of N in Lemma 5)

depending on any fixed bounds of / and y1 ((T) — b such that

for all ;/. Hence all of ySn (t) are Lipshitz continuous with the uniform

Lipshitz constant yf in t>fi9 and therefore the limit function y(t)

also is Lipshitz continuous with the same constant for any t>6. Next,

in order to show the continuity of y(t) at t = Q, we consider the follow-

ing auxiliary problem for finding (p, v):

(3.5)

where .M = max max f(r) , -]. It shall be shown in §4 \hat there is
\0^r^5 D
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a unique solution of (3.5) and ()(/) is a monotone increasing function

for all /^>0. And we find, by the same argument as in the proofs of

Lemma 3 and 3', that ySn(t)<p(t) holds for all />0. Hence we get

y ( t ) < L f i ( t ) for all />0. Because both v*1 (0 and p(t) are continuous

for f>0, /* (0) = p(0) =b and y8i (£) <y (0 <p(t) , v (t) also is continuous

at t = 0. Denote by u the unique solution of the ordinary problem (P-l),

(P-2), (P-5) with the prescribed boundary y(t). From the maximum

principle we find also that i£n (r, £) converges uniformly to u(r,t) as

7;—>oo. Hence it is easily seen that (y, u} also satisfies the fundamental

formula (2.2), therefore v(0 is continuously differentiable for f^>0, and

that (v, 11) is nothing but a solution of (P).

§ 4«. Comment on the Unique Solvability of the Problem (3, 5)

We consider the following problem

(4.1)

--
t» + o

It has a unique solution (ps,vs~). First we will show it. By repeating

almost the same argument as that in the proof of Lemma 1, 2, we get

(4.2)

and, by using the function

as a 'barrier' to v8 * we get
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M(4. 3) 0<-M w = -^L (p8 (f) 91) < ^^ <
a dr 9 P*(0 (P*(0 ~~^)

through the analogous argument to that for the proof of Lemma 5. Since

-~— (b, t) <CQ (by the maximum principle) we have

(4.4) <¥-(,

as in the proof of Lemma 2. Hence we get an inequality corresponding

to that in Lemma 3

(4. 5) p5' (f) <pd* (t) (d1<St, t>0) .

It also will be found that

(4.6) ( f ' ( t ) = ( f ' ( f ) (<?, = &, ;>0).

In fact we consider Green's formula

dr d

where &=-. ~ — — , and the integration is done along the closed boundary
b r

of the region {b<^r<^ps (t) , 0<r<O}. It is described explicitly as

(4-7) -

</(r)

+
By subtracting the last formula with 5 = ^ from that with

we have

2 a
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W«, (,-, *) _ p«. (,-, 0) r'rfr

f 2(0 / 1 I \ P£ / 1 1
(i-l)^-(r,0^r + w (^i_-_

JP'KO U r/ Jo \p'»(r) pJl(

Since t/2 (r, /) -T/' (r, *) >0 for 0<r<^> (t) , T/* (r, 0 >0 and p8* (f) >

^ l(0, we get

3b\a b + ti 2 (a \b

Because the function

1/1 W \ 3 1(1 / WJ , 77Z 9p — — < — — — + - Up^ — mo
2 la \b

is monotone increasing for p^>b if p — Z? is small, we find that

if* (t) <pSi (f) +O(82-8i) for small t .

Hence and from (4. 5) , by tending 8Z to 81 infinitely, we obtain (4. 6)

for small t, and hence also for all t.

At this stage, by using the a priori estimates (4. 2) ~ (4. 5) , we can

construct a solution (p5, T/) in the same way as in § 3. And this solution,

by (4. 6) , turns out to be unique.

Next we will show that there are two positive constants 8^ and S2

such that

(4. 8) b + <W* <(f (0 O + o

Put

rfV-

Then ze/ satisfies the following equations:
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dt dr2

ws(b,t)=b\M+ d

(00),

We consider, in addition to w8, the function

(4.9) w ( r , o=— f3-^L-f-^-(^-y(0-*)2n,

where y(0 is an infinitely differentiable function for £^>0. It is clear

that w satisfies the following equations:

/ d-w d2w ~

We take y(^) =y0 (t) =$^t. Then, denoting the corresponding function

(4. 9) by WP (r, t), we have

and

a

[ / (%M\ 1 1/2

log(l + - ) , we get
\ ^ ' j

(4. 10) w^ (A, *) <4M «w5 (4, t) ) .

Now we are ready to show the first inequality of (4. 8) Suppose

that it is false, then there would be a sufficiently small tt such that

(4.11)
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Then we have from (4. 10) and (4. 11) , by the maximum principle,

for 0<r<£ + &V7, 0<*Oj. Hence, because of ws (ps (*,) , ts} = zv0l (b +

PiVid 5 ta) = 0, we gel by Friedman's lemma

This means that

P (ts)

From (4.11) we have p8 (tg) <y (ts) , and therefore

But this inequality contradicts to the fact that y (t8) — _ for suffi-

ciently small t8. Thus we have proved that the first inequality of (4. 8)

holds for a small time interval

Next we have from (4. 3)

and hence

l_

or

Thus we have proved also the second inequality of (4. 8) .

It must be noted here for the later purpose that

(4.12) -
p V t

follows from (4. 3) and (4. 8) .

Now we consider a sequence { (pd, vs) } of solutions as d— >0. Taking
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(5<1 and putting (j8 (t) = t(ps (t) — b) , we have from (48)

(4. 13) 0<(js(t)

and also from (4. 8) and (4. 12)

(4. 14) 0<<TS00 =PS(£) 8

pi

Hence {(f° (£) } are equicontinuous and uniformly bounded in [0, s] .

Therefore there is a subsequence which, denoted by {(Jn(t)} (?z-»oo),

converges uniformly to a Lipschitz continuous function (5 (t) . We put

pn(f) =t~lGn(t) and p(f) = t~lG(£) . Then we get b + &dt<ip(t)<J> +

Mt (0<^<£) from (4.8) and pn^(t) <pn(f) (^>0) from (4.5).

We consider the solution (pn(t) , vn(r, t)) of (4.1) and the solution

v(r,t) of the auxiliary problem

(00)

with the prescribed boundary p(£) . From (4.3) and (4.8) we have

Pl

We know that for any ^>0 there is an nQ such that 1^(^(0 , t) —

v (p(t) , *) |<^ for TZ>^O, 0<^<£. Hence we get from (4. 16) vn(p(t) , 2?)

— >v(p(t),t) (n^oo) uniformly for any time interval tQ<it<i£ being

away from zero. By the maximum principle it follows that

vn(r,t)->v(r,t) (TZ->OO)

uniformly for Q<r<p(t), t$<t<£. Consequently, since tQ is arbitrary,

we get

*>,. (r, 0 -^^(^ 0 for

The resulting pair of functions (p, v) turns out to be the desired
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solution of (3. 5) in 0<£<£. In fact, by taking n-*oo (<?->0) along

the extracted sequence in the formula (4. 7) , we have

=„ (•'
JoJ« P(r)

which is equivalent to the fourth condition of (3. 5).

Next we get by (4.3) and (4.8) (in reality, those with 8 = 0)

I yy^ ^Yl \ ]\/f

0<v(r, e) — — — <—~=(p(e) —r)
\b p(e)/ & V s v

which corresponds to (2. 9) in § 2 that allows for the solution to exist

also in [e, T1]. The proof is done as in §2.

Thus we have shown that there is a solution (p, v) of (3. 5) for any

(0, T). The uniqueness also can be shown in the same way as that in

Theorem 2. Therefore we have

Theorem 3. There exists one and only one solution (p, v) of the

problem (3. 5), and p (t) satisfies the inequality

-where & and (32 are positive constants.

§ 5« Difference Scheme

In the preceding sections we showed existence of solution of the

problem (P) . Here we will propose another method for solving the

problem, that is, a finite difference method which is useful also for prac-

tical computation. We introduce a family of rectangular lattices on the

(r, t) -plane with a uniform space mesh of width h and time steps kn

(ft = l, 2, • • • ) . We denote the discrete coordinates by

and
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We choose h so that (bJr-^-h}/h = JQ is an integer, while we find kn's\ £ )
in the process of solving so that a free boundary (which is itself un-

known, a priori) may cross each vertical line r = rj just on the cor-

responding discrete time t = tn. We denote the free boundary points by

(yn* O > where

yn = rJn= Un~—}h , Jn = J0-i-7z (n = l, 2, 3, • • - ) .

With reference to given positive numbers h and kn we denote u (r/, tn)

by «5 occasionally and introduce the devided differences

Our difference analogue to the problem (P) is the followings:

(5.1)

— = — az;n-f/9-^L (;z>0; /? is a positive constant),
kn VA

where

The third equation of (5. 1) corresponds to the situation of -^— (0, ^)

= 0 for the solution of the original problem (P), which is to be auto-

mat'cally satisfied because of spherical symmetry. The fourth equation of

(5. 1) is corresponding to (P-3) and contains an artificially added term

, which assures the convergence of our difference scheme as well
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as the convergence of an iteration procedure for solving the algebraic

equations (5. 1) for unknown {u1}} and kn. The quantities to be determined

in our scheme are {kn} (;? = !, 2, • • • ) and {21*} (j = 1,2, • • • , J77; ;* = !, 2, • • • ) »

while those in the original problem (P) are v( / ) U>0) and n(i\i)

(0<r<;y(0,0>0).

In order to determine kn from the fourth equation of (5. 1) we take

the positive root:

An iteration procedure for finding {u*} and kn from (5. 1) and (5. 2)

is to be described in § 6. In this section we consider the convergence

of the scheme (5. 1) as /z—>0.

First of all, we prepare a maximum principle Suppose that {Uj}

satisfies

(5.3)

Then we have

Lemma 6. L/]l>0 /zoW^ for 0</< Jn ^wrf ;?>0. If, further,

//z^ 5fr/V£ inequality holds: Uj

Proof. B}^ putting rJUj=V^j we can reduce (5. 3) to the following:

(5. 4)

If there were a point (r,-D, /,,o) 0'0>0) such that

F;>O for oo'<J,,, 05:77 <w,,-i;

for j^./o
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then it should follow that

and

This is, however, a contradiction to the first equation of (5. 4) . Hence

we get y;>0 and also £7;>0 for !</<Jn, ^>0, and UQ
n (>U^ >0.

Next we suppose that f(r)>Q and f(r) ^0. If there were a point

(*/i» O C/i>l) such that 1/^ = 0, then (Fj^^O hold from the first

equation of (5.4), and hence V)i±1 = 0 from the fact of Vj>Q proven

just above. Repeating this argument yields Vj = Q for all l<j<IJi.

However, at a point r/2 such that /J-2>0, we have (VyB)t<0 and (V)2)rf

= 0. But this contradicts to the first equation of (5. 4) . Hence we get

for l<j<Ji. By continuing the argument successively we have

and also t7;>0 for l<j<Jn, ;z>0, and hence also UQ
n>0.

Q.E.D.

The next lemma is essential for the proof of the convergence of our

difference scheme. It assures that {kn} («>0) tend to zero uniformly

Lemma 7e There are positive constants ct(i = 1,2)

(5.5) ^^«)f<^3/8

(5.6)

Proof. First of all we consider the case that all {t;n} are non-

positive. Then (5.5) is trivial and &n<I/i3/4/V/3 follows from (5.2).

Thus (5. 6) holds with a constant c2^>1/^/^.

Next we consider the case that some of {vn} (» = !, 2, • • * ) may be

positive. Put

Then {z™} satisfy the following equations:
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And {2;̂ } (1<J< Jn, 1<><AO take their positive maximum just on the

boundary (j:jn, £n) (1<^<AT) . Otherwise the positive maximum would

occur at an internal point (r^, £no) (I<j0^«/no — 1) . Clearly jQ^=1. since

2:jw = 0. The difference equation to be satisfied at (rJo, lng) can be described

explicitly as

(5- 7)

From the assumption, we have

1+A.W. _2»o
h^hr/tr ^ Jj

—-—+—1—)«;•< -—* •
^2 Ary, r,.r,. J '— 3A2 '^

For Jo = 2, we have z^°0_L = 0, and for j'02>3,

1 1 1 - ^ 1

In both cases, we get

1 1 1

From these inequalities we find that the left hand side of (5. 7) becomes

negative, while the right hand side is non-negative from our assumption.

This is a contradiction. Therefore {z™}, if some of them become positive,

should take their maximum at a point (rJo, tno) on the free boundary.

Put
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We find that { U j } satisfy

(5. 8) 1 ynyn-i

Since 2:J;o= («5° i) r>(«5° i)f and -— — — - — >0 for sufficiently small
^ ^d"1

h, we have

Since UZ0-i<0 and C75;-1_1 = 0, we get (t/^o_i) t<0. Hence

we get from (5. 8)

because yno and yno_i>^. Therefore by Uj°n =Uj°n~Q
1_i = 03 we have

Thus we find

or, by (5.2),

h „
7 Vn0 I H—
h A/ /V 7'<n0 V U, 6

A3/8

Hence we have t>Wo5±—T=r~~^ Since ?z0 is arbitrary, we get finally

vn<—=-- for any ;z
aw fib2

and, from (5. 2),

kn<cjt". Q.E.D.

Lemma 8. TT7£ /^/^ ^/^£? 5^z;;z^ constant N as in (2. 9). T7ze

lovuing inequalities hold:
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(5. 9) -

(5.10) A
&*

and

(5.11) (

Proof. For comparison, we take a 'barrier' function

It can be easily seen that

A Ro (ry, O } - R0 (7^, O > F = 0

- — -

Therefore it follows from Lemma 6 that

and hence

which yields

Since ;/0 is arbitrary, we get (5. 9) . From (5. 9) and (5. 2) we get also

(5. 10) : for small /?,
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kn 2

The function

satisfies the inequality

since Ujn —17" „ Ii = 0. Hence

/..n N / r rn x , W / 1 1

n x Ar . x

) ( + w )-
Thus we have proved Lemma 8.

Next we assume that, in addition to (2. 1) and (2. 8) , f (r) and

4f(r) exist and there are positive constants 7\^(z = l, 2) such that

(5. 12) ,'/' (r) |<A/! and |J/(r) |<M2 for

Lemma 9e Under the above assumption the solution {u*} have

the estimates

and |(^),|<M2 for 0<><Jn, ;?>0 .

Proof. We first note that f(r) satisfies (2. 9) with the constant

N=bzM1 (if it is necessary, we take MI sufficiently large).

The function

satisfies the following equations:
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By the same argument as in the proof of Lemma 6 we get W7^>0, that

is, \(u^f\<M1.

Next the function

(where we take M2 larger than jrij^ + 1 ) (Af-f- m) ) satisfies the follow-

ing equations:

Zn _ -
1 —

By applying Lemma 6 we get Z">0, that is, | (i/j)i\<M2, Thus we have

proved Lemma 9.

Now we will go to the proof of convergence of our difference scheme

under the assumptions (2. 1) , (2. 8) and (5. 12) . First we have to notice

that {kn} tend to zero uniformly as h— >0 by Lemma 7. We define the

piecewise linear and continuous function yn(t) as follows:

~y^ (0 + ̂ ± ^ n (0 for *.<

Then, by (5. 10) of Lemma 8, yh (t) is Lipschitz continuous with the

uniform Lipschitz constant A^ and uniformly bounded for any closed in-

terval 0<C£<;T. Hence, b}^ the Ascoli-Arzela's theorem, there is a sub-

sequence of {yh(t)} (which we denote again by { y i L ( t ) } ) such that yh (t)

converges uniformly to a Lipschitz continuous function y(t) as h tends

to zero through the selected sequence.

It follows from Lemma 9 that {|(z/5)rrl} are uniformly bounded for

£<Vy<3;«, 0</rt<T where S is any small positive constant. It also can

be seen that {urfr}, {urrt} and {UIT} are uniformly bounded for £<^r/<^

y(t) — £, £<X<^- Indeed, if we put (J — 1/2) hu™ = vv™, we get the equa-

tion to be satisfied by Wj
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and therefore we find that {iv*} are uniformly bounded for

0<X<T. Then any divided differences of higher order of {w1}} with

respect to both t and r are, as well known, uniformly bounded for any

fixed closed region with a finite distance from the boundary of the region

{0<7-<;y(», 0<><T} (see Petrowsky's text book [10]). Hence any

divided differences of {u"} are also uniformly bounded in such closed

region. From this one can see that there is a subsequence {unj} (where

we use the same notation for the subsequence as the original one) which

converges to an infinitely differ entiable function u ( r , £ ) in {0<r<y(2) ,

0<O<T}. (In reality we must take the sequence of the extended func-

tions from that of the grid functions {u1}} over the whole region {0<V<

v (t) , 0<^t<^T} by a definite method, but we omit the discussion here

and later.) The divided differences {(u1}) rf} , {(«")«} an<^ { (w?) r}
,. i • • 92u du , du . ,converge to the corresponding derivatives —9. -^— and -=— respectively.

dr~ at ar
The convergences are uniform in any closed region in {0<V<O; (t) ,

Tending h to zero through the extracted subsequence, we obtain from

the first equation of (5. 1)

dt

Since («J) -t are uniformly bounded in the whole region {0<O~<CvM »

<T} by Lemma 9, limit functions -— and Jw also are bounded there.

One can see from this that lim u (r, t) = u (r, + 0) exists and is equal to
t~>° ^

/(r) . Similarly we find that ^ — is also bounded in the whole region.
dr

and hence that l imw(r, ^) — ̂ ^( + 0, ^) and lim u(r, t) = u ( y ( t ) —0, t)

exist and the latter is equal to -7- — — ̂ r-. This means that u(r, t) is

continuous in the closed region 0<r<3' (^) , 0<^<T. Finally, since

{(«5)rf} are uniformly bounded in {s<r<j; (^) , 0<^<T} (for any
n . u

-^—^ is bounded in the same region. Hence lim -^ — (r,t)=v(t) exists,
or r-+y(t)-o Or
where the convergence is uniform in 0<^^<T", and v(t) is continuous in

The fourth equation of (5. 1) yields
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p=i

Tending h to zero and supposing that 2 kp tend to t, we find by Lemma
P=I

7 that the last term of the above relation tends to zero, and that

y(f)-=b — a \ v(t)dr
Jo

holds as the limit. Hence y ( t ) is differentiate and

y (t) =-av (t) .

Thus we have shown that the pair of the limit functions (y, u) satisfies

all the conditions of the system (P) , and therefore it is a solution of

(P) . We can see from the uniqueness theorem (Theorem 1) that all the

sequence {y^ u^} converge to the solution (y, u) . The proof of conver-

gence is completed. Thus we have

Theorem 4, Under the assumption of (2. 1) , (2. 8) and (5. 12) ,

the solution (yn, u"j) of our dijference scheme (5. 1) converges to the

solution (y, u) of the original problem (P) as h— >0.

Remark 1. The above proof of convergence is another proof of the

existence theorem of the solution of (P) at the same time. While the

imposed assumption is stronger than that of Theorem 2, the extra ones

could be removed by some approximating technique. (To remove (2. 8)

was already performed in § 3.)

Remark 2. In. our scheme (5. 1) we introduced the artificial term

ffkn/Jh. We have shown that the convergence is obtained whenever /?

is set any positive value. In pratical computation, however, the space

mesh h is set as a finitely small constant, and hence /9 must be taken

so small that the artificial term may not exceed the principal terms.

Otherwise the accuracy of solution would go down. On the other hand,

as we shall see in the following section, $ must be taken so large in-

dependently of /? that the iteration procedure of finding {u"} and kn from

the algebraic equations (5. 1) on each time step n may converge. Hence
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we may determine the value of /? as follows: once h is fixed, by perform-

ing test computations with several $-values in decreasing order, we choose

the least one among them that may admit the convergence of iteration

and by using it we perform the full computation. We will give one

more brief comment for practical computation. While the convergence

was proved above in the case of /? fixed, one may use variable /?'s for

practical computation and especially may put some /3's^O as far as the

iterations converge.

§ 6. Iteration Method for Solving our Difference Scheme

In order to get kn and {u™} from the nonlinear algebraic equation

(5.1) at each time step t = tn, we will use the following iteration

method:

' kn} = &ra_i (kQ = an arbitrary positive constant),

(S) f J. \ f (S) / -* \ I (S) / JL \ \

r

(6.1)

m m
-r- —
b yn

-

(5 = 0,1,2,. .-)

where v<£> = uj?> (rj%9 tj .

Theorem 5. Tor any sufficiently large positive constant /? the

above iteration procedures converge uniformly with respect to n as

s—>oo and the limits k^ and H(CO) (r/, tn) are the solution of (5.1).

Proof. Put

(6.2) rjuw(rj,tn)=ww(rj,tj.

Then we get easily the following system to be satisfied by w(s) and k%\
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£(<>) _ ^K_J

kX>
(6. 3)

m m
b yn

We introduce oiie-step-Green's functions related to the half-plane problems

of the pure implicit difference analogue zur? — Wf — 0 of the heat equation

(6. 4) g (rh f,; *„) = JL £ (l + 4AB sin2 -|)

[
/• \

exp I — / (r; — f z) —> — exp <
I h)

1 f *

X [exp | - i (rj - $,) ̂ -1 + exp j - i (r, -r f, -1) -f 1
L l A J I 7z)

where An = -p- and gl=ll — — \h as well as rj=(j — ̂ y}h. One can

easily see that the equation

(6. 5) (7f?( ry» £i> O ~ z. ' — 0
^re

and the boundary condition

(6. 6) g (r,-, ft; tn) + g (;> f 0; ^) - 0

and the conjugate relations

(6.7) gr=-G,

are satisfied.

By using the Green's function g and the property (6. 6) we can

give the following representation of ze/s) (rJ9 tn)
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where t^ = tn^1 + k^. (Refer to [9].) Hence, by (6.7) we get

or

f (yB, y»;

., yn;

Gf (y., £,; *{?)«;(£,, «._

Hence we have by the same way as in § 3 of [9]

|«4S> (y., O -wM (y,, O ! <^5!L|w^-« (ym> *.) _w?-^ (y., ^ |,

where the constant on the right hand side does not depend on any of 5, n

and h. It follows from the last relations that {zc4s) (yn, £n) } converge

to a limit iVf(ynyt^) as 5-^00 for a sufficiently large constant 0. Then

{i4s)} and {&£°} also converge to some limits vn and kn respectively, and

{w{s} (rj, 4S)) } converge to a limit function w(rj9tn). (See (6.7).)

Clearly u(rjy tn)==.(l/rj)w(rj, tn) (0</<Jn) and &n satisfy (5.1) at each

^n. Thus we have proved that our iteration procedure converges for some

constant /?.

§ 7. Numerical Example

We will show some numerical examples. We fix the pattern of the

initial function (the initial temperature distribution) as

where we take & = 0.995 and consider the four cases (i) 7 = 1.0, (ii)

7 = 2.0, (iii) r = 5.0 and (iv) r = 10.0. In any case we take 77? = 1.0,
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a = 1.0 and h = Q.Ol. For the iteration procedure we use the criterion

of convergence

£(*)__ A
1<0.001,

and we take /9 = 0.001 for the case (i) , and /i = 0.01 for the case (ii) ,

and /S = 0.1 for the cases (iii) and (iv) . The iteration procedure with

$ = 0.01 for the case (iii) resulted in divergence at n — 13 in our computation.

Q.S

0.5 f .O 1.5 2-0

Fig. 1. Change of free boundaries for four cases

o o 5 1 0 r

Fig. 2. Change of temperature distribution with time for the case (i)



198 TATSUO NOGI

2.0

l-S

1.0

0-5

V

o 0.5 r.o i.§ r

Fig. 3. Temperature distribution at t= t*>* = 0.4964 for the case (iii)

The Fig-1 shows the free boundaries for the four cases. The Fig-2

shows the change of temperature distribution with time (ri) for the case

(i). The Fig-3 also shows the temperature distribution at t = l50 = 0.4963

for the case (iii).
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