Classification of $\mathbf{S O} \mathbf{O}$ (3)-Actions on Five Manifolds

By

Ajko Nakanishi

Introduction

P. Orlik and F. Raymond showed that some invariants classify smooth 3-manifolds with smooth S^{1}-action, up to equivariant diffeomorphism (preserving the orientation of the orbit space if it is orientable) [6]. And R. W. Richardson JR. studied $S O$ (3)-actions on S^{5} [7]. Also, K. A. Hudson classified smooth $S O(3)$-actions on connected, simply connected, closed 5-manifolds admitting at least one orbit of dimension three [2].

In this paper, we discuss the equivariant classification of smooth $S O(3)$-actions on closed, connected, oriented, smooth 5-manifolds such that the orbit space is an orientable surface. We call oriented $S O$ (3)manifolds M and N are equivalent if there is an equivariant homeomorphism between M and N which induces an orientation preserving homeomorphism of the orbit spaces M^{*} to N^{*}. Since there exist various types as the principal orbit, we classify $S O(3)$-manifolds about each type. It is well known that every subgroups of $S O(3)$ are conjugate to one of the following [4], [5].
$S O(2), O(2), Z_{n}$, dihedral group $D_{n}=\left\{x, y ; x^{2}=y^{n}=(x y)^{2}=1\right\}$, tetrahedral group $T=\left\{x, y ; x^{2}=(x y)^{3}=y^{3}=1\right\}$, octahedral group $O=\left\{x, y ; x^{2}=(x y)^{3}=y^{4}=1\right\}$, and icosahedral group $\mathrm{I}=\left\{x, y ; x^{2}=\right.$ $\left.(x y)^{3}=y^{5}=1\right\}$.
T, I and O are isomorphic to the alternating groups A_{4}, A_{5} and the symmetric group S_{4}, respectively. And, as the principal isotropy

* Department of Mathematics, Internotional Christian University, Mitaka, Tokyo 181, Japan.
group, we have these groups except $S O$ (2) and O (2).
I want to express my gratitude to Professors F. Uchida and T. Yoshida who gave me the right suggestions and read this paper carefully.

§ 0. Preliminaries

Let G be a compact Lie group and M a smooth G-manifold. For $x \in M$, we denote the orbit of x, and the isotropy group at x by $G(x)$ and G_{x}, respectively. If $H \subset G$, we write $(H)=\{K \subset G ; K$ is conjugate to H by an inner automorphism of $G\}$, and $M_{H}=\{x \in M$; $\left.G_{x}=H\right\}, M_{(H)}=\left\{x \in M ; G_{x} \in(H)\right\}$, and $F(H, M)=M^{H}=\{x \in M ; g x=$ x for $\left.{ }^{\forall} g \in H\right\}$.

The maximal orbit type (H) for orbits in M such that $M_{(H)}$ is open dense in M is called the principal orbit type, and H the principal isotropy group. For a principal orbit P and orbit Q, if $\operatorname{dim} P>$ $\operatorname{dim} Q, Q$ is called a singular orbit. If $\operatorname{dim} P=\operatorname{dim} Q$, but the isotropy group K corresponding to Q is not conjugate to H, Q is called an exceptional orbit. And for the orbit space $M^{*}=M / G$, let $p ; M \longrightarrow M^{*}$ be a natural projection.

The normal bundle at $x \in G(x)$ has fibre $V_{x}=T M_{x} /(T G(x))_{x}$. For each $g \in G_{x}$, the differential of g induces a linear map $V_{x} \longrightarrow V_{x}$ providing a representation $G_{x} \longrightarrow G L\left(V_{x}\right)$ called the slice representation. And the following Theorem is given [1].

Slice Theorem. Some G-invariant open neighbourhood of the zero section of $G \underset{G_{s}}{\times} V_{x}$ is equivariantly diffeomorphic to a G-invariant tubular neighbourhood of the orbit $G(x)$ in M by the map $[g, v] \longrightarrow g v$ so that the zero section G / G_{x} maps onto the orbit $G(x)$.

In smooth case, we can choose a suitably small closed disk S_{x} in V_{x} called a slice. And it is sufficient to discuss the representation $G_{x} \longrightarrow O(n) \quad\left(n=\operatorname{dim} S_{x}\right)$ because M has a G-invariant metric. The representation of each subgroup of $S O$ (3) is the following.

Slice representation

	G_{s}	S_{x}	representation	principal isotropy group
1	e	D^{2}	trivial	e
2	SO(3)	D^{5}	(a) $\rho+\theta \quad \theta$; trivial action on R^{2} ρ; standard $S O(3)$-action on R^{3} (b) weight two representation ([1] p. 43)	$\begin{array}{r} S O(2) \\ D_{2} \end{array}$
3	SO(2)	D^{3}	$\begin{gathered} S O(2) \\ \Psi \begin{array}{l} \Psi \\ \hline \end{array} \rightarrow \begin{array}{cc} O(3) \\ \Psi \end{array} \\ \left(\begin{array}{lll} \cos \theta, & -\sin \theta, & 0 \\ \sin \theta, & \cos \theta, & 0 \\ 0, & 0, & 1 \end{array}\right) \rightarrow\left(\begin{array}{ccc} \cos (n \theta), & -\sin (n \theta), & 0 \\ \sin (n \theta), & \cos (n \theta), & 0 \\ 0, & 0, & 1 \end{array}\right) \end{gathered}$	Z_{n}
4	O (2)	D^{3}	$\left.\begin{array}{l} O(2)=S O(2) \cup b S O(2) \quad b=\left(\begin{array}{rrr} 1, & 0, & 0 \\ 0, & -1, & 0 \\ 0, & 0, & -1 \end{array}\right) \\ \text { (a) } O(2)-\eta_{2} \rightarrow O(3) \\ \eta_{2} / S O(2) ; \text { trivial } \\ \eta_{2}(b)=\left(\begin{array}{rrr} 1, & 0, & 0 \\ 0, & 1, & 0 \\ 0, & 0, & -1 \end{array}\right) \text { or } \quad \eta_{2}(b)=\left(\begin{array}{rrr} -1, & 0, & 0 \\ 0, & -1, & 0 \\ 0, & 0, & 1 \end{array}\right) \\ \text { (b) } O(2)-\eta_{3} \rightarrow O(3) \\ \eta_{3} / S O(2)=\eta_{1} \\ \quad \eta_{3}\left(\begin{array}{rr} -1, & 0, \\ 0, & -1, \end{array}\right. \\ 0, \\ 0, \end{array}\right)=\left(\begin{array}{rrr} -1, & 0, & 0 \\ 0, & 1, & 0 \\ 0, & 0, & 1 \end{array}\right) .$	$S O(2)$ D_{n}
5	Z_{n}	D^{2}	$\begin{aligned} & Z_{n} \longrightarrow Z_{n} / Z_{m}=Z_{q}{ }_{\xi} S O(2)(m q=n) \\ & \xi(r \theta)=(r, \theta+\nu \xi) \text { for } \xi=2 \pi / q \\ & \quad(q, \nu)=1,0<\nu<q \\ & \quad(r, \theta) ; \text { polar coordinates of } D^{2} \end{aligned}$	Z_{m}
6	D_{n}	D^{2}	(a) $D_{n} \longrightarrow D_{n} / Z_{n} \cong Z_{2} \underset{\xi}{c} S O$ (2) (b) for $n=2 k, D_{2 k} \longrightarrow D_{2 k} / D_{k} \cong Z_{2}{ }_{\xi} S O$ (2)	$\begin{gathered} Z_{n} \\ D_{k} \end{gathered}$
7	A_{5}	D^{2}	trivial	A_{5}
8	A_{4}	D^{2}	$\begin{aligned} & A_{4} \longrightarrow A_{4} / V_{4}=Z_{3}{ }_{\xi} S O(2) \\ & V_{4}=\{(i, j)(k, l) ; i, j, k, l \text { are each other different }\} \end{aligned}$	D_{2}
9		D^{2}	$S_{4} \longrightarrow S_{4} / A_{4} \cong Z_{2} \underset{\xi}{\longrightarrow} S O(2)$	A_{4}

For a finite group G_{x}, we considered the representation $G_{x} \longrightarrow$ $S O(2)$ because $S O(3) \times \underset{G_{s}}{\times} S_{x}$ and $S O(3) / G_{x}$ are orientable.

Next, we outline some basic results we need for the proofs of theorems in this paper.

1. Gacts on a locally compact space M, and assume that all orbits of G are equivalent. Let $x \in M$, and let $N=\left\{y \in M ; G_{y}=G_{x}\right\}$. Then N is a locally trivial principal fibre bundle with the group $N\left(G_{x}\right) /$ $G_{x}\left(N\left(G_{x}\right)=\right.$ the normalizer of $\left.G_{x}\right) . M$ is an associated fibre bundle with G / G_{x} as fibre.
2. We shall often quote the following Tube Theorem [1] V. 4. 2).

Tube Theorem. Let G be a compact Lie group and let W be a G-space with orbit space $I \times B$, where B is connected, locally connected, paracompact, and of the homotopy type of a CW-complex. Suppose that the orbit type on $\{0\} \times B$ is type (G / K) and that on $(0,1] \times B$ is type (G / H). Then there exists an equivariant map $\pi ; G / H \longrightarrow G / K$ and, with $S=S(\pi)$, there exists a principal S-bundle $X \longrightarrow B$ (unique up to equivalence) and a G-equivariant homeomorphism $M_{\pi} \times X \cong W$ commuting with the canonical projection to $I \times B$. Moreover, the map $\varphi=\pi \times X ; G / H \times X \longrightarrow G / K \times X$ gives rise to a G-equivariant homeomorphism $f ; M_{\varphi}^{s} \longrightarrow M \times X \cong{ }_{s}^{s} W$ over $I \times B$.
$S(\pi)$ in this theorem is given as follows; any G-equivariant map $\pi ; G / H \longrightarrow G / K$ is of the form $\mathrm{R}_{a}^{K, H}$ by $\mathrm{R}_{a}^{K, H}(g H)=g a^{-1} K$ for $a \in G$ satisfying $a \mathrm{Ha}^{-1} \subset K$ ([1] I. 4. 2). Then we put $S(\pi)=\left(N(H) \cap a^{-1}\right.$ $N(K) a) / H$.

We shall use this theorem for $H \subset K$ with K / H diffeomorphic to S^{1}.

§ 1. Case of the Principal Orbit Type $S O$ (3)

Let M be a closed, connected, oriented, smooth 5-dim. manifold with smooth $S O$ (3)-action whose principal isotropy group consists of the identity element e. Such manifolds have at most three orbit types, i. e. the principal orbit, exceptional orbit $\left(S O(3) / Z_{\mu}\right)$, and singular orbit $(S O(3) / S O(2))$ with the slice representations 1,5 and 3 respectively. The orbit space M^{*} is a 2 -dim. surface, and $\left(M_{(s o(2))}\right)^{*}$ is the boundary of M^{*}, and $\left(M_{c}\right)^{*}$ consists of isolated points in M^{*}. Here, $M_{c}=\left\{x \in M ; G_{x}\right.$ is a cyclic group $\}$. From now on, we use M_{c} in this sense, and orient M^{*} as follows; Since $S O(3) / H$ is orientable for a finite group H, we orient naturally the tubular neighbourhood $S O(3) \times D_{H}^{2}=V$ and $V^{*}=D^{2} / H$, and orient M^{*} by $V^{*} \subset M^{*}$. Also, for $B=\{$ singular orbits $\} \subset M$, the boundary B^{*} is oriented so that it followed by an inward normal coincides with the orientation of M^{*}.

For each boundary component $B_{i}^{*}, p^{-1}\left(B_{i}^{*}\right) \longrightarrow B_{i}^{*}$ is an $S O(3) /$ $S O$ (2)-bundle with the structure group $N(S O(2)) / S O(2) \cong Z_{2}$. Let f (or m) be the number of boundary connected components so that $p^{-1}\left(B_{i}^{*}\right) \longrightarrow B_{i}^{*}$ is a trivial bundle (or non trivial). Then, $M_{s o(2)}$ has $2 f+m$ connected components, and B^{*} has $f+m$ connected components. Let a pair $\left(\mu_{i}, \nu_{i}\right)$ be the invariant uniquely determined for each exceptional orbit $S O(3) / Z_{\mu_{i}}$ ([5], [10]). The purpose of this section is to prove Theorem 1 (where g is the genus of M^{*}).

Theorem 1. Let M be a closed, connected, oriented, smooth 5-dim manifold with smooth $S O(3)$-action, and its principal isotropy group e. Then the following orbit invariants

$$
\left\{g,(f, m), b \in Z_{2} ;\left(\mu_{1}, \nu_{1}\right), \ldots,\left(\mu_{r}, \nu_{r}\right)\right\}
$$

such that (i) $b=0$ if $f+m \neq 0, \quad b \in Z_{2}$ if $f+m=0$
(ii) $\left(\mu_{i}, \nu_{i}\right)=1, \quad 0<\nu_{i}<\mu_{i}$
determine M up to an equivariant homeomorphism (which preserves the orientation of M^{*}).

From now on, we say that some invariants determine M if they determine M up to the above equivalence.

Lemma 1-1. If $M_{c} \cup M_{(s o(2))}=\phi$, then $\left\{g, b \in Z_{2}\right\}$ determine M.

Proof. A principal $S O(3)$-bundle $M \xrightarrow{p} M^{*}$ is classified by g and the obstruction class $b \in H^{2}\left(M^{*} ; \pi_{1}(S O(3))\right) \cong Z_{2}$. This lemma is immediately proved. q. e. d.

For $x \in M$ with $G_{x}=Z_{\mu_{i}}, G_{x}$-action on the slice $S_{x}=D^{2}$ is the slice representation 5, i. e.

$$
\xi(r, \theta)=\left(r, \theta+\nu_{i} \xi\right) \quad \xi=2 \pi / \mu_{i} \quad\left(\mu_{i}, \nu_{i}\right)=1,0<\nu_{i}<\mu_{i} .
$$

Let M have r exceptional orbits, then we have

Lemma 1-2. If M has no singular orbit, the following orbit invariants determine M

$$
\left\{g, b \in Z_{2} ;\left(\mu_{1} \nu_{1}\right), \ldots,\left(\mu_{r}, \nu_{r}\right)\right\}
$$

such that $\left(\mu_{i}, \nu_{i}\right)=1,0<\nu_{i}<\mu_{i}$.
Proof. A pair $\left(\mu_{i}, \nu_{i}\right)$ specifies a cross section on the boundary of the neighbourhood of the orbit $S O(3) / Z_{\mu_{i}}$ in the way of Raymond ([5], [6], [10]). We give the brief outline here. $V_{i}=S O(3) \underset{z_{\mu_{i}}}{\times} D^{2} \supset$ $S O(2) \underset{z_{\mu_{i}}}{\times D^{2}}=U_{i}$ is a solid torus with $S O(2)$-action equivalent to

$$
\theta(r, \gamma, \delta)=\left(r, \gamma+\nu_{i} \theta, \delta+\mu_{i} \theta\right)
$$

(the exceptional orbit $G(x)$ corresponds to $r=0$). (See Fig. 1-1.)

Fig. 1-1

If we give U_{i} the orientation naturally induced from V_{i}, then this orients the boundary of the slice m. Let l be an oriented curve on ∂U_{i} homologous to $S O(2) / Z_{\mu_{i}}$ in U_{i}, and so that the ordered pair (m, l) gives the orientation on ∂U_{i}. For a cross section q^{\prime} of the bundle $\partial U_{i} \longrightarrow\left(\partial U_{i}\right)^{*}$, we orient q^{\prime} so that the ordered pair (q^{\prime}, h) gives the same orientation as (m, l), where h is an oriented orbit $S O(2)$ on ∂U_{i}. Then we have

$$
m=\mu_{i} q^{\prime}+\beta h \quad(\beta>0), l=-\nu_{i} q^{\prime}-\rho h, \text { and } \beta \nu_{i} \equiv 1\left(\bmod \mu_{i}\right)
$$

and a suitable choice of q^{\prime} reduces β to $0<\beta<\mu_{i}$. The pair (μ_{i}, ν_{i}) determines a cross section q_{i} on ∂U_{i}, uniquely, (therefore on ∂V_{i}) such that $m=\mu_{i} q_{i}+\beta h, \beta \nu_{i} \equiv 1,0<\beta<\mu_{i}$. Thus the pairs (μ_{1}, ν_{1}), \ldots, $\left(\mu_{r}, \nu_{r}\right)$ specify the cross sections $q_{1}, q_{2}, \ldots, q_{r}$ on $\partial V_{1}, \ldots, \partial V_{r}$. And we have an obstruction class in $H^{2}\left(M^{*}-\operatorname{Int}\left(\bigcup_{i=1}^{r} V_{i}^{*}\right), \partial\left(\bigcup_{i=1}^{\tau} V_{i}^{*}\right)\right.$; $\left.\pi_{1}(S O(3))\right) \cong Z_{2}$, to extend the above cross sections over M^{*}-Int $\left(\bigcup_{i=1}^{r} V_{i}^{*}\right)$. Its class is identified with the mod 2 integer b. Thus Lemma 1-2 follows. q. e. d.

Next, we consider the case of $M_{(s o(2))} \neq \phi$.

Lemma 1-3. If $M_{c}=\phi, M_{(s o(2))} \neq \phi$, then $\{g,(f, m)\}$ determine M.
Proof. By the Collaring Theorem, $M^{*}=M_{1}^{*} \cup\left(\cup_{i=1}^{f+m} I \times B_{i}^{*}\right)$ with $\{0\} \times B_{i}^{*}$ identified with each boundary component B_{i}^{*}. Since the equivariant map $S O(3) \underset{(1)}{\longrightarrow} S O(3) / S O(2)$ is only a canonical projection π up to equivalence, M is constructed as $E(\rho) \cup\left(\bigcup_{i=1}^{f+m} M_{\pi} \times Q_{i}\right)$ by using the Tube Theorem. Here ρ is a principal $S O(3)$-bundle over M_{1}^{*}, and Q_{i} a principal $S=(N(e) \cap N(S O(2))) / e=O(2)$-bundle over B_{i}^{*}. And each attaching map of $E(\rho)$ to $M_{\pi} \times Q_{i}$ is an $S O$ (3) equivariant map in $\mathrm{Homeo}_{s o(3)}\left(S O(3) \times S^{1}\right) \quad\left(\mathrm{Homeo}_{G} M\right.$ for G-space M, denote the group of self equivalences of M over $M / G)$. Also, ψ_{i} \in Homeo $_{s o(3)}\left(S O(3) \times S^{1}\right)$ is induced by an injection of S^{1} to $S O(3) \times S^{1}$.
(1) Two equivariant maps $f, g ; S O(3) \rightarrow S O$ (3) $/ S O$ (2) are equivalent if there is an $S O$ (3) -equivariant map $\varphi ; S O(3) \rightarrow S O(3)$ such that $g \cdot \varphi=f$.

Thus $\mathrm{Homeo}_{s o(3)}\left(S O(3) \times S^{1}\right) \cong \pi_{1}(S O(3)) \cong Z_{2}$. Since $S O(3) \supset S O(2)$ represents a generator of $\pi_{1}(S O(3))$, and the bottom of $M_{\pi} \times Q_{i}$ is $(S O(3) / S O(2)) \underset{s}{ } Q_{i}, \quad \psi_{i}$ can be extended into $M_{\pi} \times Q_{i}$. Thus ψ_{i} may be considered as the canonical identification. And we can say M is determined by $\{g,(f, m)\}$ because ρ is a trivial bundle.
q. e. d.

Now we prove Theorem 1.

Proof of Theorem 1. It is sufficient to see the case of $\mathrm{M}_{c} \neq \phi$, $M_{(s o(2))} \neq \phi$. (The other case is given by Lemma 1-1, 1-2 or 1-3.) Let V_{i} be a suitable small tubular neighbourhood of an exceptional orbit $S O(3) / Z_{\mu_{i}}$. Then the cross sections $q_{1}, q_{2}, \ldots, q_{r}$ on $\partial V_{1}, \ldots$, ∂V_{r} determined by the pairs $\left(\mu_{1}, \nu_{1}\right), \ldots,\left(\mu_{r}, \nu_{r}\right)$, can be extended over $M_{2}^{*}=M^{*}-\operatorname{Int}\left(\bigcup_{i=1}^{\tau} V_{i}^{*}\right)-\bigcup_{j=1}^{f+m}[0,1) \times B_{j}^{*}$. We denote this extended cross section by s. Next, we must investigate how to attach $p^{-1}\left(\{1\} \times B_{j}^{*}\right)$ to $E(\rho)$ where ρ is a principal $S O(3)$-bundle over M_{2}^{*}. In Lemma $1-3$, we investigated it with respect to a zero cross section of $\rho /\left(\{1\} \times B_{j}^{*}\right)$. Thus, taking the above section $s /\{1\} \times B_{j}^{*}$ in place of the zero cross section, Theorem 1 follows from the proof of Lemma 1-3.
q. e. d.

§ 2. Case of the Principal Orbit Type

$$
S O(3) / A_{5}, \text { or } S O(3) / S_{4}
$$

Let M be an oriented 5-dim. $S O(3)$-manifold with the principal isotropy group A_{5} or S_{4}. (From now on, we suppose M is closed, connected, smooth and the action is smooth.) Such a manifold M has only principal orbits, and the orbit space M^{*} is a closed 2-dim. surface. Thus, we have the following theorem immediately because of $N\left(A_{5}\right)=A_{5}, N\left(S_{4}\right)=S_{4}$.

Theorem 2. Let M be a closed, connected, oriented, smooth 5-dim. manifold with smooth $S O(3)$-action, and its principal isotropy group A_{5} or S_{4}. Then M is determined only by the genus g of $M^{*} u p$ to
equivariant homeomorphism which preseves the orientation of M^{*}.

§ 3. Case of the Principal Orbit Type $S O(3) / A_{4}$

A 5-dim. $S O(3)$-manifold M with the principal isotropy group A_{4}, has at most two orbit types, i. e. the principal orbit and exceptional orbit $S O(3) / S_{4}$ with the slice representation 9 . And the orbit space M^{*} is a closed 2-dim. surface, and $\left(M_{\left(S_{4}\right)}\right)^{*}$ consists of isolated points in M^{*}.

Let T_{g} be an oriented closed 2 -dim. surface with the genus g, and M_{0} be a non trivial Z_{2}-bundle over T_{g}.

Lemma 3-1. Let $M_{\left(S_{4}\right)}=\phi$. Then M is equivariantly homeomorphic to $S O(3) / A_{4} \times S^{2}$ if $g=0$, and to $S O(3) / A_{4} \times T_{8}$ or $S O(3) / A_{s_{4} / A_{4}} \times M_{0}$ if $g \neq 0$.

Proof. A bundle $F\left(A_{4}, M\right) \longrightarrow M^{*}$ is classified by an element of $H^{1}\left(M^{*} ; N\left(A_{4}\right) / A_{4}\right)=H^{1}\left(M^{*} ; Z_{2}\right)$.

Case 1. Suppose $g=0$. Clearly, M is equivalent to $S O(3) / A_{4} \times S^{2}$.
Case 2. Suppose $g=1$. Let ξ, η be Z_{2}-principal bundles (over M^{*}) corresponding to $o(\xi), o(\eta) \in H^{1}\left(M^{*} ; Z_{2}\right)$. If there is an orientation preserving homeomorphism f of M^{*} such that $f^{*}(o(\eta))=o(\xi)$, then ξ is equivalent to η in the sense of our classification. And, we can easily construct the homeomorphisms φ_{2}, φ_{3} of M^{*} inducing automorphisms $\left(\varphi_{2}\right)_{*},\left(\varphi_{3}\right)_{*}$ of $H_{1}\left(M^{*}\right)$ (automorphisms of $\pi_{1}\left(M^{*}\right)$ are described in [4]).

$$
\left(\varphi_{2}\right)_{*}(a)=a b,\left(\varphi_{2}\right)_{*}(b)=b,\left(\varphi_{3}\right)_{*}(a)=b,\left(\varphi_{3}\right)_{*}(b)=a^{-1}
$$

where a, b represent the generators of $H_{1}\left(M^{*}\right) \cong Z \oplus Z$. Now, we will describe an element of $H^{1}\left(M^{*} ; Z_{2}\right)$ by a pair (m, n) which maps a and b into $\bmod 2$ integer m and n, respectively. Let M_{0} be a principal Z_{2}-bundle (over M^{*}) corresponding to (1, 0). Then, by operating $\varphi_{2}, \varphi_{3}, F\left(A_{4}, M\right)$ is equivalent to $S O(3) / A_{4} \times M^{*}$ or $S O(3) / A_{s_{4} / A_{4}} \times M_{0}$.

Case 3. Suppose $g=2$. First, we construct homeomorphisms Δ_{1}, Δ_{2} of M^{*} as Fig. 3-1.

Fig. 3-1

$$
\begin{aligned}
& T_{2}=T_{1} \# T_{1}=Y_{1} \cup Y_{2} \quad Y_{1}=T_{1}-\operatorname{Int} D^{2} \\
& \Delta_{2} / Y_{2}=\text { identity map }
\end{aligned}
$$

Then, $\varphi_{1}=\left(\Delta_{1}\right)^{3}, \varphi_{2}=\Delta_{2}, \varphi_{3}=\Delta_{1}^{-1} \Delta_{2} \Delta_{1} \Delta_{2} \Delta_{1}^{-1} \Delta_{2} \Delta_{1}, \varphi_{4}=\varphi_{3} \Delta_{1}$ induce the automorphisms $\left(\varphi_{i}\right)_{*}(i=1,2,3,4)$ of $H_{1}\left(T_{g}\right)$;

$$
\begin{array}{llll}
\left(\varphi_{1}\right)_{*} ; a_{1} \longrightarrow a_{2} & \mathrm{~b}_{1} \longrightarrow b_{2} & a_{2} \longrightarrow a_{1} & b_{2} \longrightarrow b_{1} \\
\left(\varphi_{2}\right)_{*} ; a_{1} \longrightarrow a_{1} b_{1} & b_{1} \longrightarrow b_{1} & a_{2} \longrightarrow a_{2} & b_{2} \longrightarrow b_{2} \\
\left(\varphi_{3}\right)_{*} ; a_{1} \longrightarrow b_{1} & b_{1} \longrightarrow a_{1}^{-1} & a_{2} \longrightarrow a_{2} & b_{2} \longrightarrow b_{2} \\
\left(\varphi_{4}\right) * ; a_{1} \longrightarrow a_{2}^{-1} a_{1}^{-1} b_{1} \longrightarrow b_{1}^{-1} & a_{2} \longrightarrow b_{1}^{-1} b_{2} & b_{2} \longrightarrow a_{2}
\end{array}
$$

By suitably operating $\varphi_{i}(i=1,2,3,4)$ on M^{*}, each non-trivial bundle
$F\left(A_{4}, M\right) \longrightarrow M^{*}$ is equivalent to $M_{0} \longrightarrow M_{0}^{*}$. Here $M_{0} \longrightarrow M_{0}^{*}$ corresponds to $(1,0,0,0) \in H^{1}\left(T_{g} ; Z_{2}\right)$. Thus M is equivalent to $S O(3) / A_{4} \times T_{g}$ or $S O(3) / A_{S_{4}} \times M_{4}$.

Case 4. Suppose $g \geqq 3 . \quad H^{1}\left(M^{*} ; Z_{2}\right) \cong Z_{2} \overbrace{\oplus}^{2_{g}} \ldots \oplus Z_{2}$. After applying Case 3 to the last four direct summands, we repeat it to four direct summands between $2 g-5$ th and $2 g-2$ th. Then an element of H^{1} $\left(M^{*} ; Z_{2}\right)$ is regarded as ($, \ldots, \ldots, \ldots, 1,0,0,0,0,0$) or (${ }_{*}, \ldots, \ldots, ., 0$, $0,0,0,0,0)$ up to equivalence. Repeating this process, we can say M is equivalent to $S O(3) / A_{4} \times M^{*}$, or $S O(3) / A_{s_{4} / A_{4}} \times M_{0}$ where $M_{0} \longrightarrow M_{0}^{*}$ corresponds to $(1,0, \ldots, 0)$.

This completes the proof of Lemma 3-1.

We define $\varepsilon=0$ if a principal Z_{2}-bundle over a closed surface is a trivial bundle, and $\varepsilon=1$ if it is not so.

Let $\left(M_{\left(s_{4}\right)}\right)^{*}=\left\{x_{1}^{*}, \ldots, x_{r}^{*}\right\} \quad\left(M_{\left(s_{4}\right)}\right.$ has r isolated orbits).

Theorem 3. Let M be a closed, connected, oriented, smooth 5-dim. manifold with smooth $S O(3)$-action, and its principal isotropy group A_{4}. Then, $\{g, \varepsilon \in\{0,1\}, r\}$ determines M up to equivariant homeomorphism (which preserves the orientation of M^{*}) provided (i) $\varepsilon=0$ if $g=0$, and (ii) r is even.

Proof. For a suitable neighbourhood D_{i}^{*} of x_{i}^{*} in $M^{*}, p^{-1}\left(D_{i}^{*}\right)$ is equivariantly diffeomorphic to $S O(3) \times D^{2}$. From S_{4}-action on D^{2}, an equivariant sewing between $F\left(A_{4}, p^{-1}\left(\partial D_{i}^{*}\right)\right)$ and $F\left(A_{4}, p^{-1}\left(\partial M_{1}^{*}\right)\right)$ is only the identity map (up to equivalence) where $M_{1}^{*}=M^{*}-\operatorname{Int}\left(\bigcup_{i=1}^{\sim} D_{i}^{*}\right)$. Also, M_{1}^{*} is regarded as $M_{2}^{*} \cup D(r) . \quad D(r)$ is given by removing open r disks $\operatorname{Int}\left(\bigcup_{i=1}^{r} D_{i}^{*}\right)$ from a 2-dim. disk, and M_{2}^{*} is an oriented surface with one boundary and the genus g. Then a Z_{2}-principal bundle over ∂M_{2}^{*} is a trivial bundle, and ∂M_{2}^{*} is homologous to $\bigcup_{i=1}^{*} \partial D_{i}^{*}$ in M_{1}^{*}. Thus r is even because $F\left(A_{4}, p^{-1}\left(\partial D_{i}^{*}\right)\right) \longrightarrow D_{i}^{*}$ is a non-trivial bundle. Therefore, if r is given, then the classification of M is reduced to that of principal Z_{2}-bundles over M_{1}^{*}. Moreover, it is reduced to Lemma

3-1 because $F\left(A_{4}, p^{-1}\left(\partial M_{1}^{*}\right)\right) \longrightarrow \partial M_{1}^{*}$ is a trivial bundle. Therefore, $\{g, \varepsilon, r\}$ determine M.
q. e. d.

§4. Case of the Principal Orbit Type ($\left.S O(3) / D_{n}\right)(n \geqq 3)$

Let M be a 5 -dim. $S O(3)$-manifold with the principal isotropy group $D_{n}(n \geqq 3)$. Then M has at most three orbit types, i. e. the principal orbit, exceptional orbit $\left(S O(3) / D_{2 n}\right)$, and singular orbit $(S O(3) / O(2))$ with the slice representations 6 -(b) and 4-(b). The orbit space M^{*} is a 2 -dim. surface, $\left(M_{(0(2))}\right)^{*}$ becomes the boundary of M^{*}, and $\left(M_{\left(D_{2 n}\right)}\right)^{*}$ consists of isolated points in M^{*}.
$F\left(D_{n}, p^{-1}\left(\{1\} \times B_{i}^{*}\right)\right) \longrightarrow\{1\} \times B_{i}^{*}$ is a principal $N\left(D_{n}\right) /\left(D_{n} \cong Z_{2}-\right.$ bundle when we denote the collar of each boundary component B_{i}^{*} by $I \times B_{i}^{*}$ with $\{0\} \times B_{i}^{*}$ identified with B_{i}^{*}. Let $f(m)$ be the number of boundary connected components such that $F\left(D_{n}, p^{-1}(\{1\} \times\right.$ $\left.\left.B_{i}^{*}\right)\right) \longrightarrow\{1\} \times B_{i}^{*}$ is a trivial Z_{2}-bundle (non-trivial Z_{2}-bundle). Then $f+m$ is the number of connected components of $M_{(00(2))}$. And let M have r exceptional orbits, and ε be the invariant to classify Z_{2}-bundle $F\left(D_{n}, M_{\left(D_{n}\right)}\right) \longrightarrow\left(M_{\left(D_{n}\right)}\right)^{*}$, defined in §3. Then we have the following Theorem 4, and the purpose of this section is to prove this theorem.

Theorem 4. Let M be a closed, connected, oriented, smooth 5-dim. manifold with smooth $S O(3)$-action, and its principal isotropy group $D_{n}(n \geqq 3)$. Then the following orbit invariants determine M up to equivariant homeomorphism (which preserves the orientation of M^{*})

$$
\{g, \varepsilon \in\{0,1\},(f, m), r\}
$$

such that (i) $\varepsilon=0$ if $g=0$, (ii) $m+r$ is even.

Lemma 4-1. If $M_{(0(2))} \neq \phi, M_{\left(D_{2 n}\right)}=\phi$, then $\{g, \varepsilon \in\{0,1\},(f, m)\}$ determine M up to equivalence. And m must be even.

Proof. By the Collaring Theorem, $M^{*}=M_{1}^{*} \cup\left(\bigcup_{i=1}^{f+m} I \times B_{i}^{*}\right)$ with $\{0\} \times B_{i}^{*}$ identified with each boundary component B_{i}^{*}. Then ρ; $p^{-1}\left(M_{1}^{*}\right) \longrightarrow M_{1}^{*}$ is an $S O(3) / D_{n}$-bundle. There is only one simultaneous
conjugacy class in $S O(3)$ of pairs (H, K) where $H \subset K$, with H conjugate to D_{n}, and K to $O(2)$. Thus, the $S O(3)$-equivariant map of $S O(3) / D_{n}$ to $S O(3) / O(2)$ is only a canonical projection π up to equivalence. (There is a one-one correspondence between the simultaneous conjugacy classes of (H, K) and equivalence classes of equivariant maps $G / H \longrightarrow G / K$ ([1], V. 4.3).)

Now we put $S=\left(N\left(D_{n}\right) \cap N(O(2))\right) / D_{n} \cong Z_{2}, N=N\left(D_{n}\right) / D_{n} \cong Z_{2}$. By the Tube Theorem, M can be constructed as

$$
E(\rho) \cup \bigcup_{\psi i}\left(\bigcup_{i=1}^{f+m} M_{\pi} \times Q_{S}\right)
$$

where Q_{i} is a principal S-bundle over B_{i}^{*}, and ρ is an $S O(3) / D_{n}$-bundle over M_{1}^{*}. If P_{i} is the associated principal N-bundle to $\rho /\{1\} \times B_{i}^{*}$, then there is a one-one correspondence between classes of S-equivariant maps of Q_{i} to P_{i}, and the classes of $S O(3)$-equivariant maps of $S O(3) / D_{n} \times Q_{i}$ to $S O(3) / D_{n} \times P_{i}$ ([1], V. 3. 2). Let Q_{i} be a trivial S-bundle, then the S-equivariant map is either identity map or f_{1} given by

$$
f_{1}(1, y)=(b, y) \text { for } y \in\{1\} \times B_{i}^{*}, Z_{2}=\{1, b\}
$$

Thus ψ_{i} is either identity map or \tilde{f}_{1} induced by f_{1}. But \tilde{f}_{1} can be extended into $M_{\pi} \times Q_{i}$ because the bottom of M_{π} is $S O((3) / O(2)$. Thus ψ_{i} may be considered as the identity map (up to equivalence). Similarly, the equivariant map may be considered as the identity map when Q_{i}, P_{i} are non-trivial bundles.

From the same argument as $\S 3$, it is seen that m must be even, and ρ is determined by ε. Then the lemma is proved. q. e. d.

Lemma 4-2. If $M_{(0(2))}=\phi, M_{\left(D_{2 n}\right)} \neq \phi$, then $\{g, \varepsilon \in\{0,1\}, r\}$ determine M up to equivalence. In particular, r is even.

Proof. For $x_{i} \in M_{D_{2 n}}$, by investigating $D_{2 n}$-action on the slice D_{i}^{2} at x_{i}, M is constructed as $E(\rho) \cup\left(\cup_{i d}^{r} S O(3) \times D_{D_{i}}^{2}\right)$ where ρ is an $S O(3) /$
 $\partial D_{i}^{2} / D_{2 n}=S^{1}$ is a non-trivial Z_{2}-bundle, r must be even. Thus, Lemma is proved,
q. e. d.

In the similar way to $\S 3$, it is shown that $r+m$ is even if $M_{s o(2)} \neq \phi$, $M_{\left(D_{2 n}\right)} \neq \phi$. Then, Theorem 4 is immediately given from Lemma 4-1 and 4-2.
§5. Case of the Principal Orbit Type ($\left.S O(3) / Z_{k}\right)(k \geqq 3)$

Let M be a 5 -dim. $S O(3)$-manifold with the principal isotropy group $Z_{k}(k \geqq 3)$. Then M^{\prime} has at most four orbit types, i. e. the principal orbit, exceptional orbits $\left(S O(3) / D_{k}\right)$, and $\left(S O(3) / Z_{k q}\right)$, and singular orbit $(S O(3) / S O(2))$ with the slice representations 6,5 and 3 respectively. The orbit space M^{*} is a 2 -dim. surface, $\left(M_{(s o(2))}\right)^{*}$ is the boundary of M^{*}, and $\left(M_{\left(D_{k}\right)}\right) * \cup\left(M_{c}\right)^{*}$ consists of isolated points in M^{*}.

For boundary components $\cup B_{i}^{*}$, let f be the number of boundary components so that $F\left(S O(2), p^{-1}\left(B_{i}^{*}\right)\right) \longrightarrow B_{i}^{*}$ is a trivial bundle, and m of non-trivial bundle (i. e. $M_{s o(2)}$ has $2 f+m$ connected components). And let d be the number of exceptional orbits $\left(S O(3) / D_{k}\right),\left(\mu_{i}, \nu_{i}\right)$ be the invariant defined for $S O(3) / Z_{\mu_{i} k}$ in the same way as $\S 1$. And let ε be the invariant defined in $\S 3$.

The purpose of this section is to prove the following theorem.

Theorem 5. Let M be a closed, connected, oriented, 5-dim. smooth manifold with smooth $S O(3)$-action, and its principal isotropy group $Z_{k}(k \geqq 3)$. Then the following orbit invariants determine $M u p$ to an equivariant homeomorphism (which preserves the orientation of M^{*})

$$
\left\{g, \varepsilon \in\{0,1\}, b \in Z,(f, m), d ;\left(\mu_{1}, \nu_{1}\right), \ldots,\left(\mu_{r}, \nu_{r}\right)\right\}
$$

such that (i) $\varepsilon=0$ if $g=0$, (ii) $b=0$ if $f+m \neq 0$,
(iii) $\left(\mu_{i}, \nu_{i}\right)=1,0<\nu_{i}<\mu_{i}$
(iv) $m+d$ is even.

An integer b in this theorem, corresponds to the secondary obstruction class for a principal $O(2) / Z_{k}$-bundle over M^{*}. We will make its details clear in the proof of Lemma 5-1.

Lemma 5-1. If $M_{\left(D_{k}\right)} \cup M_{c} \cup M_{(s o(2))}=\phi$, then $\{g, \varepsilon \in\{0,1\}, b \in Z\}$
determine M up to equivalence. In particular $\varepsilon=0$ if $g=0$.

Proof. $\xi ; F\left(Z_{k}, M\right) \longrightarrow M^{*}$ is a principal $O(2) / Z_{k}$-bundle, and $H^{1}\left(M^{*} ; \pi_{0}\left(O(2) / Z_{k}\right)\right) \cong \overbrace{Z_{2} \oplus, \ldots, \oplus Z_{2}}^{2 g}$. Thus we may assume ξ corresponds to $\varepsilon=0$ or $\varepsilon=1$. (See §3.) Clearly, if $\varepsilon=0$, then the classification of ξ depends only on g, and an obstruction class $b \in$ $H^{2}\left(M^{*} ; \pi_{1}\left(O(2) / Z_{k}\right)\right) \cong Z$. If $\varepsilon=1$, then M^{*} is considered as follows;

$$
\begin{aligned}
& M^{*}=T_{g}=M_{1}^{*} \cup M_{2}^{*}, M_{1}^{*}=T_{1}-\operatorname{Int} D^{2}, M_{2}^{*}=T_{g-1}-\operatorname{Int} D^{2} \\
& T_{g}=c_{1} d_{1} c_{1}^{-1} d_{1}^{-1} \ldots c_{g}^{-1} d_{g}^{-1}, T_{1}=c_{1} d_{1} c_{1}^{-1} d_{1}^{-1}
\end{aligned}
$$

$\varepsilon=1$ means ξ / c_{1} is a non-trivial and $\xi / c_{i}(i \neq 1), \xi / d_{j}$ are trivial $O(2) / Z_{k}$-bundles. Then we can construct a double covering \tilde{N} of $F\left(Z_{k}, p^{-1}\left(M_{1}^{*}\right)\right)$ such that $\tilde{N} \longrightarrow \tilde{N} /\left(O(2) / Z_{k}\right)=\tilde{N}^{*}$ is a trivial $O(2) / Z_{k}-$ bundle, and \tilde{N}^{*} is also a double covering of M_{1}^{*}. If we specify a cross section $\tilde{s} ; \tilde{N}^{*} \longrightarrow \tilde{N}$, then \tilde{s} uniquely determines a cross section s of $\xi / \partial M_{1}^{*}$. Thus, ξ is determined by the genus g of M^{*}, and the obstruction class to extend the specified cross section $s / \partial M_{1}^{*}$ over M_{2}^{*}, i. e. by $b \in H^{2}\left(M_{2}^{*}, \partial M_{2}^{*} ; \pi_{1}\left(O(2) / Z_{k}\right)\right) \cong Z$. Clearly $\varepsilon=0$ if $g=0$.

$$
\text { q. e. } d \text {. }
$$

Lemma 5-2. If $M_{\left(D_{k}\right)} \cup M_{c}=\phi$, then $\{g, \varepsilon \in\{0,1\},(f, m)\}$ determine M up to equivalence. In particular, (i) $\varepsilon=0$ if $g=0$, and (ii) m is even.

Proof. Let $B_{i}^{*}(i=1,2, \ldots, f+m)$ be a boundary component. Then, $M^{*}=M_{1}^{*} \cup\left(\bigcup_{i=1}^{f+m} I \times B_{i}^{*}\right)$ with $\{0\} \times B_{i}^{*}$ identified with B_{i}^{*}. We denote an $S O(3) / S O(2)$-bundle $p^{-1}\left(B_{i}^{*}\right) \longrightarrow B_{i}^{*}$ by σ_{i}, and an $S O(3) / Z_{k}$-bundle $p^{-1}\left(M_{1}^{*}\right) \longrightarrow M_{1}^{*}$ by $\rho . \quad \rho /\{1\} \times B_{i}^{*}$ is a trivial bundle iff σ_{i} is a trivial bundle. By the Tube Theorem, M can be constructed as $E(\rho) \bigcup_{i d}\left(\bigcup_{i}^{f+m} M_{\psi_{i}}\right)$ where ψ_{i} is an equivariant map of $p^{-1}\left(\{1\} \times B_{i}^{*}\right)$ to $p^{-1}\left(B_{i}^{*}\right)$. Also we have precisely one (up to equivalence) as ψ_{i}. (In fact, we may take a natural projection.) This implies $M_{i_{i}}$ depends only on (f, m). Thus M depends on ρ and (f, m). Now, we remove $f+m$ open disks from S^{2}, and denote it by X. Then $M_{1}^{*}=T_{g} \# X=M_{2}^{*} \cup M_{3}^{*}$ where
$M_{2}^{*}=T_{g}-\operatorname{Int} D^{2}, M_{3}^{*}=X-\operatorname{Int} D^{2}$, and ρ / M_{2}^{*} depends only on ε and g, ρ / M_{3}^{*} only on (f, m). Moreover, we may regard $\rho / \partial M_{2}^{*}$ is attached to $\rho / \partial M_{3}^{*}$ by the identity map. For, ∂X corresponds to $\bigcup_{i=1}^{f+m}\{1\} \times B_{i}^{*}$, and M is unchanged up to equivalence even if we exchange an equivariant attaching ψ_{i} of $M_{\phi_{i}}$ Hence, ρ depends only on ε and (f, m) and M is determined by ε, g and (f, m). Also, it is seen m is even in the same way as $\S 3$.
q. e. d.

Let $\left(M_{\left(D_{k}\right)}\right)^{*}=\left\{x_{1}^{*}, \ldots \ldots, x_{d}^{*}\right\} \subset M^{*}$, i. e. M has d exceptional orbits of type $S O(3) / D_{k}$.

Lemma 5-3. If $M_{c} \cup M_{(s o(2))}=\phi, M_{\left(D_{k}\right)} \neq \phi$, then $\{g, \varepsilon \in\{0,1\}, d$, $b \in Z\}$ determine $M u p$ to equivalence. Moreover (i) $\varepsilon=0$ if $g=0$, and (ii) d is even.

Proof. For a suitable neighbourhood D_{i}^{*} of x_{i}^{*}, and a principal $O(2) / Z_{k}$-bundle ρ over $M_{1}^{*}=M^{*}-\operatorname{Int}\left(\bigcup_{i=1}^{d} D_{i}^{*}\right), F\left(Z_{k}, M\right)$ is constructed as

$$
E(\rho) \cup\left(\bigcup_{i=1}^{d} F\left(Z_{k}, p^{-1}\left(D_{i}^{*}\right)\right) .\right.
$$

$E(\rho)$ is attached to $F\left(Z_{k}, p^{-1}\left(D_{i}^{*}\right)\right)$ by $\varphi_{i} \in \operatorname{Homeo}_{o(2) / Z_{k}}\left(O(2) / Z_{D_{k} / z_{k}} \times S^{1}\right)$. Since $F\left(Z_{k}, p^{-1}\left(\partial D_{i}^{*}\right)\right)$ is a non-trivial $O(2) / Z_{k}$-bundle, d is even by the same reason as $\S 3$.

Now, if we remove d open disks from S^{2}, and denote it by Y, then $M_{1}^{*}=T_{g} \# Y=M_{2}^{*} \cup M_{3}^{*}$ where $M_{2}^{*}=T_{g}-\operatorname{Int} D^{2}, M_{3}^{*}=Y-\operatorname{Int} D^{2}$. Let \tilde{M}_{3} be a double covering of $F\left(Z_{k}, p^{-1}\left(M_{3}^{*}\right)\right)$ such that $\tilde{M}_{3} \longrightarrow$ $\tilde{M}_{3} /\left(O(2) / Z_{k}\right)=\tilde{M}_{3}^{*}$ is a trivial $O(2) / Z_{k}$-bundle. Since φ_{i} is determined by an injection f_{i} of S^{1} to $O(2) / Z_{k_{D_{k}} / Z_{k}} \times S^{1}$, we can specify a cross section $\tilde{s} ; \tilde{M}_{3}^{*} \longrightarrow \tilde{M}_{3}$ by extending the lifting $\left\{\tilde{f}_{i}\right\}$ of $\left\{f_{i}\right\}$. Then \tilde{s} determines a cross section $s^{\prime} ; \partial M_{3}^{*} \cap M_{2}^{*} \longrightarrow F\left(Z_{k}, p^{-1}\left(\partial M_{3}^{*} \cap M_{2}^{*}\right)\right)$ uniquely (i. e. s^{\prime} depends only on $\left\{\varphi_{i}\right\}$). Taking a specified cross section s over ∂M_{2}^{*} defined in $\S 5-1$, then we can see that M is determined by ρ / M_{2}^{*}, d and how to attach $\rho / \partial M_{2}^{*}$ to $\rho / \partial M_{3}^{*}$ with respect to the specified cross sections s, s^{\prime}, i. e. by $b \in \operatorname{Homeo}_{o(2) / Z_{h}}\left(O(2) / Z_{k} \times S^{1}\right) \cong Z$. Since ρ / M_{2}^{*} is
classified by $\varepsilon=0$ or 1 , the lemma was proved.
q. e. d.

If M_{c} has r connected components, i. e. $\left(M_{c}\right)^{*}$ has r isolated points $\left\{x_{1}^{*}, \ldots, x_{r}^{*}\right\}$, then the following lemma is given in the similar way to $\S 1$.

Lemma 5-4. If $M_{\left(D_{k}\right)} \cup M_{(\text {so(2) })}=\phi$, then the following orbit invariants determine $M u p$ to equivalence;

$$
\left\{g, \varepsilon \in\{0,1\}, b \in Z ;\left(\mu_{1}, \nu_{1}\right), \ldots,\left(\mu_{r}, \nu_{r}\right)\right\}
$$

such that (i) $\varepsilon=0$ if $g=0$, (ii) $\left(\mu_{i}, \nu_{i}\right)=1,0<\nu_{i}<\mu_{i}$.

Now, we prove Theorem 5 from the above lemmas.

Proof of Theorem 5. It is sufficient to see the case of having at least two orbit types except the principal orbit type. First, suppose $M_{(s o(2))}=\phi$. And let $S_{(3)}^{2}$ be the space given by removing 3 open disks from $S^{2}, D_{i}^{2}(i=1,2)$ a 2-dim. disk, and T_{g}^{\prime} a 2 -dim. surface with the genus g and one boundary. Then we may regard M^{*} as

$$
S_{(3)}^{2} \cup T_{g}^{\prime} \cup D_{1}^{2} \cup D_{2}^{2}
$$

by canonically identifying the boundaries of $T_{g}^{\prime}, D_{i}^{2}$ with three boundary components of $S_{(3)}^{2}$, respectively. And we may suppose $\left(M_{\left(D_{k}\right)}\right){ }^{*} \subset D_{1}^{2}$, $\left(M_{c}\right)^{*} \subset D_{2}^{2}$. Then, $p^{-1}\left(D_{1}^{2}\right)$ depends only on d, and $p^{-1}\left(D_{2}^{2}\right)$ only on the invariants $\left\{\left(\mu_{1}, \nu_{1}\right), \ldots,\left(\mu_{r}, \nu_{r}\right)\right\}$, and $p^{-1}\left(T_{g}^{\prime}\right)$ on $\{g, \varepsilon\}$. Moréover, taking the cross sections on $\partial D_{1}^{2}, \partial D_{2}^{2}, \partial T_{g}^{\prime}$ defined in §5-3, $\S 1$ and $\S 5-1$, we can see M is determined by the above invariants and the obstruction class to extend this cross sections over $S_{(3)}^{2}$, i. e. by $b \in H^{2}\left(S_{(3)}^{2}, \partial S_{(3)}^{2} ; \pi_{1}\left(O(2) / Z_{k}\right)\right) \cong Z$. Also, if we suppose $M_{(s o(2))} \neq \phi$, it is seen b is zero by the argument of $\S 5-2$. Thus, M is determined by $\left\{g, \varepsilon, b,(f, m), d ;\left(\mu_{1}, \nu_{1}\right), \ldots,\left(\mu_{r}, \nu_{r}\right)\right\}$ such that $b=0$ if $f+m \neq 0$. Also we can easily seen that $m+d$ is even.

§6. Case of the Principal Orbit Type ($S O(3) / \mathcal{Z}_{2}$)

An oriented 5-dim. $S O$ (3)-manifold M with the principal isotropy
group Z_{2}, has at most five orbit types, i. e. the principal orbit, exceptional orbits $\left(S O(3) / D_{2}\right)$, ($S O(3) / Z_{2 q}$), and singular orbits ($S O(3) / S O(2)$), $(S O(3) / O(2))$ with slice representations 6 -(a), 5, 3 and 4-(b), respectively. If M has not a singular orbit type ($S O(3) /$ $O(2)$), then we can apply the argument of $\S 5$ to this case in its entirety. Thus, we shall discuss only the case of having orbit $(S O(3) / O(2))$.

It is easily seen that $\left(M_{(O(2))}\right)^{*} \cup\left(M_{(s o(2))}\right)^{*}$ is the boundary of 2-dim. surface M^{*}, and $\left(M_{c}\right)^{*} \cup\left(M_{\left(D_{2}\right)}\right)^{*}$ consists of isolated points in M^{*}. We put $\left(M_{(o(2))}\right) *=\cup B_{i}^{*}$ where B_{i}^{*} is a boundary component, and denote the collar of each boundary component B_{i}^{*} by $I \times B_{i}^{*}$ with $\{0\} \times B_{i}^{*}$ identified with B_{i}^{*}. Let k be the number of boundary components so that $F\left(Z_{2}, p^{-1}\left(\{1\} \times B_{i}^{*}\right)\right) \longrightarrow\{1\} \times B_{i}^{*}$ is a trivial bundle, and n of a nontrivial bundle. (Then $M_{(O(2))}$ has $k+n$ connected components.)

Lemma 6-1. If $M=M_{\left(z_{2}\right)} \cup M_{(o(2))}$, then $\{g, \varepsilon \in\{0,1\},(k, n), b \in Z\}$ degermine M up to equivalence. In particular, (i) $\varepsilon=0$ if $g=0$, and (ii) n is even.

Proof. First, we show there exists only canonical projection as equivariant map of $S O(3) / Z_{2}$ to $S O(3) / O(2)$, because we want to use the Tube Theorem. For $H \subset K \subset G$, it is known there is a natural one-one correspondence between the equivalence classes of equivariant maps $G / H \longrightarrow G / K$ and orbits of the action of $N(H) / H \times N(K) / K$ on $F(H, G / K)$ where $N(H) / H$ acts on the left and $N(K) / K$ acts on the right ([1], p. 245). Now we take subgroups of $S O(3)$ which consist of the following matrices.

$$
H=\left\{1,\left(\begin{array}{ccc}
1, & 0, & 0 \\
0, & -1, & 0 \\
0, & 0, & -1
\end{array}\right)\right\} \text { and } \quad K=\left\{\left(\begin{array}{c:c}
* & 0 \\
\hdashline 0 & \pm 1
\end{array}\right) \in S O(3)\right\}
$$

(K is conjugate to $0(2)$, and H to Z_{2}.)

Then $F(H, S O(3) / K) /(N(H) / H \times N(K) / K)=\left\{e K \cup A K \cup A^{2} K\right\}$ where

$$
A=\left(\begin{array}{lll}
0, & 1, & 0 \\
0, & 0, & 1 \\
1, & 0, & 0
\end{array}\right) \in S O(3), \quad A^{3}=1
$$

These orbits correspond to $S O$ (3)-equivariant maps,

$$
\varphi_{i} ; S O(3) / H \longrightarrow S O(3) / K \text { by } \varphi_{i}(g H)=g A^{i} K \quad(i=0,1,2) .
$$

But, by Bredon ([1] p. 200, Cor 6-3), N_{i} / H must be homeomorphic to S^{1} where N_{i} is the isotropy group $A^{i} K\left(A^{i}\right)^{-1}$ of $A^{i} K$. This implies that there exists only the canonical projection $\varphi_{0}(g H)=g K$. We depended on K. A. Hudson [3] for this argument.

We rewrite π for φ_{0}. Let Q_{i} be a principal S-bundle over B_{i}^{*} for $S=(N(H) \cap N(K)) / H \cong Z_{2}$, and let ρ be an $S O(3) / H$-bundle over $M_{1}^{*}=M^{*}-\left(\bigcup_{i=1}^{k+n}[0,1) \times B_{i}^{*}\right)$. Then, by the Tube Theorem, M is equivalent to

$$
E(\rho) \bigcup_{\varphi_{i}}\left(\bigcup_{i=1}^{k+n} M_{\pi} \times Q_{i}\right) .
$$

Also, ψ_{i} is an equivariant homeomorphism of $\rho /\{1\} \times B_{i}^{*}$ to the top of $M_{\pi} \times Q_{i}$, i. e. $S O(3) / K \times{ }_{s} Q_{i}$. Since Q_{i} is a trivial bundle iff P_{i} is so,

$$
\psi_{i} \in \operatorname{Homeo}_{S O(3) / H}\left(S O(3) / H \times S^{1}\right)=\operatorname{Homeo}_{N(H) / H}\left(N(H) / H \times S^{1}\right)
$$

or $\psi_{i} \in \operatorname{Homeo}_{N(H) / H}\left(N(H) / H \times \underset{s}{ } S^{1}\right)$.
In §4-1, such a ϕ_{i} was uniquely determined (up to equivalence), but in this case we have various types. In fact,

$$
\psi_{i}^{j}(e H, x)=\left(g_{j}(x) H, x\right)=\left(j g_{1}(x), x\right) \text { for } j \in Z
$$

is an equivariant homeomorphism in $\operatorname{Homeo}_{s o(3) / H}\left(S O(3) / H \times S^{1}\right)$ where $g_{1}(x)$ generates $\pi_{1}(N(H) / H) \cong Z$. And

$$
\left(E(\rho) \bigcup_{\psi_{i}}^{k-1+n}\left(\bigcup_{i=1}^{n} M_{\pi} \times Q_{s}\right)\right) \bigcup_{\psi_{k}^{s}}^{\cup}\left(M_{\pi} \times Q_{s}\right)
$$

is not equivalent to
if $t \neq s$. Thus an obstruction element $b \in Z$ is determined by how to attach $\rho /\{1\} \times B_{i}^{*}$ to $S O(3) / H \times{ }_{s} Q_{i}$, in the same way as $\S 5-3$.

Strictly speaking, if we put

$$
M_{1}^{*}=M_{2}^{*} \cup Y, \quad M_{2}^{*}=T_{g}-\operatorname{Int} D^{2}, \quad Y=D^{2}-\operatorname{Int}\left(\bigcup_{i=1}^{f+m} D_{i}^{2}\right),
$$

then, $b \in Z$ is determined by how to attach $\rho / \partial M_{2}^{*}$ to $\rho / \partial Y \cap M_{2}^{*}$ with respect to two specifying cross sections, i. e. the cross section on $\partial Y \cap M_{2}^{*}$ induced from the above attaching maps $\left\{\psi_{i}\right\}$, and the cross section on ∂M_{2}^{*} determined in the similar way to §5-1. Here ρ / M_{2}^{*} depends only on $\{g, \varepsilon\}$. Then Lemma is proved.
q. e. d.

Let invariants $\left\{g, \varepsilon, b,(f, m), d ;\left(\mu_{1}, \nu_{1}\right), \ldots .,\left(\mu_{r}, \nu_{r}\right)\right\}$ be the same as in Theorem 5. Since it is easily checked that $m+n+d$ is even, Lemma 6-1 and Theorem 5 gives the following theorem.

Theorem 6. Let M be a closed, connected, oriented, smooth 5-dim. manifold with smooth $S O(3)$-action, and its principal isotropy group Z_{2}. Then the following orbit invariants determine M up to an equivariant homeomorphism (which preserves the orientation of the orbit space M^{*})

$$
\left\{g, \varepsilon \in\{0,1\}, b \in Z,(f, m),(k, n), d ;\left(\mu_{1}, \nu_{1}\right), \ldots,\left(\mu_{r}, \nu_{r}\right)\right\}
$$

such that
(i) $\varepsilon=0$ if $g=0$,
(ii) $m+n+d$ is even,
(iii) $b=0$ if $f+m \neq 0$,
(iv) $\left(\mu_{i}, \nu_{i}\right)=1,0<\nu_{i}<\mu_{i}$.
§ 7. Case of the Principal Orbit Type $\left(S O(3) / D_{2}\right)$

In this section, we treat $S O(3)$-manifold M whose principal orbit type is $\left(S O(3) / D_{2}\right)$. Such a manifold has at most five orbit types, i. e. principal orbit, exceptional orbits $\left(S O(3) / D_{4}\right),\left(S O(3) / A_{4}\right)$, singular orbit $(S O(3) / O(2))$ and fixed point $S O(3) / S O(3)$, with the slice representations 6-(b), 8, 4-(b) and 2-(b) respectively. Then $\left(M_{\left(D_{4}\right)}\right) \cup\left(M_{\left(A_{4}\right)}\right)^{*}$ consists of isolated points in a 2 -dim. surface M^{*}, and $\left(M_{(o(2))}\right)^{*} \cup\left(M_{s o(3)}\right)^{*}$ is the boundary of M^{*}, and the fixed points set $\left(M_{s o(3)}\right)^{*}$ consists of isolated points in ∂M^{*}. (We shall detail the case of having fixed points in the latter half of this section.)

First, we consider the case M has only principal orbit. Then
$F\left(D_{2}, M\right) \longrightarrow M^{*}$ is a principal $N\left(D_{2}\right) / D_{2} \cong D_{3}$-bundle. According to the Classification Theorem ([9], 13. 9), the usual bundle equivalence classes of D_{3}-principal bundles over M^{*} are in one-one correspondence with the equivalence classes (under inner automorphisms of D_{3}) of homomorphisms of $\pi_{1}\left(M^{*}\right)$ into D_{3}. Let D_{3}-bundles ξ and η correspond to homomorphisms f and g, respectively. If there is an orientation preserving homeomorphism φ of M^{*} such that $\varphi^{*} \circ f=g$, then ξ is equivalent to η in our classification (even if ξ is not equivalent to η as the usual bundle equivalence). So, we shall say f and g with such a homeomorphism are equivalent, too.

Now we put

$$
\pi_{1}\left(M^{*}\right)=\left\{\alpha_{1}, \beta_{1}, \ldots, \alpha_{g}, \beta_{g} ;\left[\alpha_{1}, \beta_{1}\right] \ldots\left[\alpha_{g}, \beta_{g}\right]=1\right\}
$$

by the canonical generators. (Here g is the genus of M^{*}, and $\left[\alpha_{i}, \beta_{i}\right]$ is the commutator of α_{i} and β_{i}.) Then there is a relation;

$$
f\left(\left[\alpha_{1}, \beta_{1}\right]\left[\alpha_{2}, \beta_{2}\right] \ldots\left[\alpha_{g}, \beta_{\varepsilon}\right]\right)=1 \quad \text { for } f \in \operatorname{Hom}\left(\pi_{1}\left(M^{*}\right) ; D_{3}\right)
$$

First, we investigate the equivalence classes of $\operatorname{Hom}\left(\pi_{1}\left(M^{*}\right) ; Z_{p}\right)$ for a prime number p. For a generator x of Z_{p} we use a symbol $\left({ }^{*},{ }^{*}, \ldots,{ }^{*}, x^{s}, x^{t},{ }^{*}, \ldots,{ }^{*}\right)$ in place of f with $f\left(\alpha_{i}\right)=x^{s}, f\left(\beta_{i}\right)=x^{t}$. Then, it is easily seen that there are the following relations for φ_{i} ($i=1,2,3,4$) constructed in $\S 3$.

From these relations (i), (ii), it is seen that the equivalence classes of Hom ($\pi_{1}\left(M^{*}\right) ; Z_{p}$) are exactly two classes, i. e. ($1,1, \ldots, 1,1$) and $(1,1, \ldots, 1,1, x, 1)=f_{1}$.

Let $\pi ; D_{3} \longrightarrow D_{3} / Z_{3} \cong Z_{2}=\{1, x\}$ be a natural projection where

$$
D_{3}=\left\{x, y ; x^{2}=y^{3}=(x y)^{2}=1\right\} \supset Z_{3}=\left\{1, y, y^{2}\right\} .
$$

Since $\varphi_{i}^{*} \cdot \pi_{*}=\pi_{*} \cdot \varphi_{i}^{*} \quad(i=1,2,3,4)$ for π_{*}; Hom ($\left.\pi_{1}\left(M^{*}\right) ; D_{3}\right) \longrightarrow$ $\operatorname{Hom}\left(\pi_{1}\left(M^{*}\right) ; D_{3} / Z_{3}\right)$, the equivalence classes of $\operatorname{Hom}\left(\pi_{1}\left(M^{*}\right) ; D_{3}\right)$ are given by computing the classes of $\pi_{*}^{-1}(1)$ and $\pi_{*}^{-1}\left(f_{1}\right)$. By the above argument,

$$
\pi_{*}^{-1}(1)=\operatorname{Hom}\left(\pi_{1}\left(M^{*}\right) ; Z_{3}\right) \subset \operatorname{Hom}\left(\pi_{1}\left(M^{*}\right) ; D_{3}\right)
$$

has only two classes, i. e.

$$
(1,1, \ldots, 1,1) \cdots(1) \text { and }(1,1, \ldots, 1,1,1, y) \cdots(2)
$$

Also, every elements of $\pi_{*}^{-1}\left(f_{1}\right)$ take the form of

$$
\begin{gathered}
\left(y^{i_{1}}, y^{j_{1}}, \ldots, y^{i_{s-1}}, y^{j_{g}-1}, x y^{i_{s}}, y^{j_{s}}\right) \cdots \\
\left(0 \leqq i_{k}, j_{k} \leqq 2\right)
\end{gathered}
$$

Applying the above argument $(p=3)$ to the first $2(g-1)$ components of (3), the classes of $\pi_{*}^{-1}\left(f_{1}\right)$ are in either

$$
\left(1,1, \ldots, 1,1, x y^{i_{g}}, y^{j_{g}}\right) \text { or }\left(1,1, \ldots, 1, y, x y^{i_{g}}, y^{j_{z}}\right) .
$$

Moreover, considering that $f\left(\left[\alpha_{1}, \beta_{1}\right] \ldots\left[\alpha_{g}, \beta_{g}\right]\right)=1$ and D_{3} is not abelian, we can say that $\pi_{*}^{-1}\left(f_{1}\right)$ has only classes in the following forms.

$$
\begin{aligned}
& (1,1, \ldots, 1,1, x, 1) \cdots(4) \quad(1,1, \ldots, 1,1, x y, 1) \cdots(5) \\
& \left(1,1, \ldots, 1,1, x y^{2}, 1\right) \cdots(6) \quad(1,1, \ldots, 1,1,1, y, x, 1) \cdots(7) \\
& (1,1, \ldots, 1,1,1, y, x y, 1) \cdots(8) \quad\left(1,1, \ldots, 1,1,1, y, y x^{2}, 1\right) \cdots(9) .
\end{aligned}
$$

But (4), (5) and (6) are in the same class under some inner automorphisms. Similarly, (7), (8) and (9) are in one class.

So, we define the number ε to determine M as follows; $\varepsilon=0,1,2$ or 3, if $F\left(D_{2}, M\right) \longrightarrow M^{*}$ corresponds to homomorphism (1), (2), (4) or (7) respectively.

Consequently we have

Lemma 7-1. Let M have only principal orbits. Then $\{g, \varepsilon \in$ $\{0,1,2,3\}\}$ determine M up to equivalence. If $g=1$, then $\varepsilon \in\{0,1,2\}$ and if $g=0$, then $\varepsilon=0$.

Now, suppose $M_{\left(D_{4}\right)} \neq \phi, M_{\left(A_{4}\right)} \cup M_{(O(2))} \cup M_{\text {so(3) }}=\phi$, and put $\left(M_{\left(D_{4}\right)}\right)^{*}=$ $\left\{x_{1}^{*}, \ldots, x_{r}^{*}\right\}$. By the Slice Theorem, for a suitable neighbourhood D_{i}^{*} of $x_{i}^{*}, F\left(D_{2}, p^{-1}\left(D_{i}^{*}\right)\right)$ is equivalent to $\mathrm{O} / D_{D_{2}} \times D_{D_{4} D_{2}}^{2}$. Then it is not difficult to see that equivariant attaching maps between $F\left(D_{2}, p^{-1}\right.$ $\left.\left(\partial\left(M^{*}-\operatorname{Int} D_{i}^{*}\right)\right)\right)$ and $F\left(D_{2}, p^{-1}\left(\partial D_{i}^{*}\right)\right)$ can be extended over $F\left(D_{2}, p^{-1}\left(D_{i}^{*}\right)\right)$. Thus M is equivalent to

$$
P^{-1}\left(M_{1}^{*}\right) \bigcup_{i d}\left(\bigcup_{i=1}^{r} S O(3) / D_{2}^{D_{D_{4} / D_{2}}} \times^{2}\right)
$$

where $M_{1}^{*}=M^{*}-\operatorname{Int} \bigcup_{i=1}^{r} D_{i}^{*}$. Here, O is isomorphic to S_{4} and D_{2} to $V_{4} \subset A_{4}$. (V_{4} is defined in p. 3.) Thus $O / D_{2} \cong S_{4} / V_{4} \cong S_{3}$. Moreover, $D_{3}=\left\{x, y ; x^{2}=(x y)^{2}=y^{3}=1\right\}$ is isomorphic to S_{3} by corresponding x to (12) and y to (123) (where (12) and (123) are cycles in S_{3}). We remark, under this isomorphism, D_{4} / D_{2} is identified with $Z_{2}=\{1$, (13) $\}$. Then we can see that the principal $O / D_{2} \cong D_{3}$-bundle $F\left(D_{2}, p^{-1}\left(\partial D_{i}^{*}\right)\right)=O / D_{2} \underset{D_{4} / D_{2}}{\times} S^{1} \longrightarrow S^{1}=\partial D_{i}^{*}$ corresponds to (13), i. e. $x y \in \operatorname{Hom}\left(\pi_{1}\left(S^{1}\right) ; D_{3}\right)$. Thus r must be even.

Next, suppose $M_{\left(A_{4}\right)} \neq \phi, M_{\left(D_{4}\right)} \cup M_{(O(2))} \cup M_{s o(3)}=\phi$, and put $\left(M_{\left(A_{4}\right)}\right)^{*}$ $=\left\{y_{1}^{*}, \ldots, y_{m}^{*}\right\}$. Then, $F\left(D_{2}, p^{-1}\left(D_{i}^{*}\right)\right)$ is equivalent to $O / D_{2} \underset{A_{4} / D_{2}}{\times} D^{2}$ for a suitable neighbourhood D_{i}^{*} of y_{i}^{*}. And we have two types as $F\left(D_{2}, p^{-1}\left(\partial D_{i}^{*}\right)\right)$, which arise from two different $A_{4} / D_{2} \cong Z_{3}$-actions on the slice D^{2} at y_{i}, (1) and (2).
(1) $\xi_{1}(r, \theta)=(r, \theta+(2 / 3) \pi)$,
(2) $\quad \xi_{2}(r, \theta)=(r, \theta+(4 / 3) \pi)$
where (r, θ) is the polar coordinate of D^{2}. By the same reason as the case of $M_{\left(D_{4}\right)} \neq \phi$, it is seen M is equivalent to

$$
p^{-1}\left(M_{1}^{*}\right) \cup\left(\bigcup_{i d}\left(\bigcup_{i=1}^{d_{1}+d_{2}} p^{-1}\left(D_{i}^{*}\right)\right)\right.
$$

Here d_{1} is the number of points in $\left(M_{\left(A_{4}\right)}\right)$ * so that the D_{3}-bundle $F\left(D_{2}, P^{-1}\left(\partial D_{i}^{*}\right)\right) \longrightarrow \partial D_{i}^{*}$ corresponds to type (1), and d_{2} to type (2). And the bundle of type (1) corresponds to $y \in \operatorname{Hom}\left(\pi_{1}\left(S^{1}\right) ; D_{3}\right)$, and the bundle of type (2) to y^{2}. $\left(A_{4} / V_{4} \subsetneq S_{4} / V_{4} \cong S_{3}\right.$ and $A_{4} / V_{4}=\{1$, (123), (132)\} where (123) corresponds to y.)

Suppose $M_{(O(2))} \neq \phi, \quad M_{\left(A_{4}\right)} \cup M_{\left(D_{4}\right)} \cup M_{s o(3)}=\phi$. We denote each
connected component of $\left(M_{(o(2))}\right)^{*}$ by $B_{i}^{*}(i=1, \ldots, f)$, which is a boundary component of M^{*}. Applying the argument in §6-1 to this case, the orbit of the action of $N\left(D_{2}\right) / D_{2} \times N(O(2)) / O(2)=O / D_{2}$ on $F\left(D_{2}, S O(3) / O(2)\right)$ is exactly one. So, there exists only the canonical projection π as the equivariant map of $S O(3) / D_{2}$ to $S O(3) / O$ (2). Therefore M is equivalent to $p^{-1}\left(M_{1}^{*}\right) \cup\left(\bigcup_{i}\left(\bigcup_{i=1}^{f} M_{\pi} \times Q_{i}\right)\right.$ where $S=$ $\left(N(O(2)) \cap N\left(D_{2}\right)\right) / D_{2}=D_{4} / D_{2}$, and Q_{i} is a principal S-bundle over B_{i}^{*}, and $M_{1}^{*}=M^{*}-\bigcup_{i=1}^{f}\left([0,1) \times B_{i}^{*}\right)$. And by investigating $S O(3)-$ equivariant attaching maps $\left\{\psi_{i}\right\}$ of $p^{-1}\left(\partial M_{1}^{*}\right)$ to $\bigcup_{i=1} S O(3) / D_{2} \times Q_{i}$, we can see M is equivalent to

$$
p^{-1}\left(M_{1}^{*}\right) \bigcup_{i d}\left(\bigcup_{i=1}^{f} M_{\pi} \times Q_{i}\right)
$$

(because the attaching map ψ_{i} can be extended over $M_{\pi} \times Q_{i}$). Here, D_{3}-bundle $F\left(D_{2}, p^{-1}\left(\{1\} \times B_{i}^{*}\right)\right) \longrightarrow\{1\} \times B_{i}^{*}=S^{1}$ corresponds to $x y \in \operatorname{Hom}\left(\pi_{1}\left(S^{1}\right) ; D_{3}\right)$ if Q_{i} is a non-trivial $S \cong Z_{2}$-bundle.

Finally, we shall consider the case of $M_{s o(3)} \neq \phi, \quad M_{\left(A_{4}\right)} \cup M_{\left(D_{4}\right)}=\phi$. The results we mention here are the extension of the work of K. A. Hudson [2] (where she treats the case of the orbit space being simply connected), and we make use of her idea.

Let $x \in M$ with $G_{x}=S O(3)$. Then $S O(3)$-action on the slice D^{5} at x is given by the weight two representation (Bredon [1], p. 43). $O(2)$ has three different conjugate groups N_{0}, N_{1}, N_{2} where $N_{0}=O(2)$, $N_{1}=A^{-1} N_{0} A, N_{2}=A^{-1} N_{1} A$, for A in $\S 6-1$. Using this notation, $D^{5} / S O(3)$ can be illustrated below (Fig. 7-1), and $B_{i}(i=1,2)$ is in the boundary of M^{*}. Thus the neighbourhood in M^{*} of a boundary component having two orbit types, $(S O(3) / O(2))$ and fixed points can be illustrated as Fig. 7-2. According to Richardson ([8], 5-2), $p^{-1}\left(S_{i}\right)$ is homeomorphic to $S^{4}=\partial D^{5}$. And it is clear that there is no boundary component with exactly one fixed point (by reason of $j_{i} \neq j_{i+1}$).

Now, we put

$$
A=S_{1} \cup \ldots \cup S_{n} \cup L_{1} \cup L_{2} \cup \ldots \cup L_{n}
$$

$$
N^{*}=M^{*}-\left(A \cup \bigcup_{i=1}^{n} D_{i}^{*}\right) \quad \text { (see Fig. 7-2). }
$$

Fig. 7-1

$$
\begin{array}{lll}
G_{x}=N_{1} & \text { if } & x^{*} \in B_{1} \\
G_{x}=N_{j} & \text { if } & x^{*} \in B_{2} \\
G_{x}=S O(3) & \text { if } & x^{*} \in B_{1} \cap B_{2} \\
G_{x}=D_{2} & \text { if } & x^{*} \in X-\left(B_{1} \cup B_{2}\right)
\end{array} \quad(i, j \in\{0,1,2\} \text { and } i \neq j)
$$

Fig. 7-2

$j_{i} \in\{0,1,2\} \quad j_{i} \neq j_{i+1}, j_{1} \neq j_{n}$

Then, principal D_{3}-bundle $F\left(D_{2}, p^{-1}(B)\right) \longrightarrow B=A \cap N^{*}$ is a trivial D_{3}-bundle or a bundle corresponding to $x y \in \operatorname{Hom}\left(\pi_{1}\left(S^{1}\right) ; D_{3}\right)$. For, this bundle is equivalent to $I \times D_{3} / \sim$, with $\{0\} \times D_{3}$ identified with $\{1\} \times D_{3}$ by a D_{3}-equivariant map ψ which induces an equivariant map of $M_{\pi_{j_{n}}}\left(\pi_{j_{n}} ; S O(3) / D_{2} \longrightarrow S O(3) / N_{j_{n}}\right.$ projection). Since we can assume $N_{j_{n}}=N_{0}, \psi$ must be

$$
\psi\left(g D_{2}\right)=g a D_{2}, \quad a \in\left(N\left(D_{2}\right) \cap O(2)\right) / D_{2}=D_{4} / D_{2}=\{1, x y\}
$$

In both cases, the equivariant attaching map of $p^{-1}(B)$ over B is only identity map (up to equivalence).

We denote the above B by $B_{i}(i=1, \ldots, f)$ for each component. Here B_{j} means $\{1\} \times B_{j}^{*}$ in $\S 6$ when there is no fixed point on this boundary component. And we define $\delta(i)=0$ if $p^{-1}\left(B_{i}\right) \longrightarrow B_{i}$ is a trivial bundle, and $\delta(i)=1$ if it corresponds to $x y \in \operatorname{Hom}\left(\pi_{1}\left(B_{i}\right) ; D_{3}\right)$. (B_{i} is a component of $\{1\} \times \partial M^{*}$ for the collar $I \times \partial M^{*}$ of $M^{*}=$ $\{0\} \times \partial M^{*}$.)

For the open neighbourhoods $\bigcup_{i=1}^{r} \operatorname{Int} D_{i}^{*}, \bigcup_{j=1}^{d_{1}+d_{2}} \operatorname{Int} D_{j}^{*}, \bigcup_{\substack{k=1 \\ f}}^{f}[0,1) \times B_{k}^{*}$ in M^{*} of $\left(M_{\left(D_{4}\right)}\right)^{*},\left(M_{\left(A_{4}\right)}\right)^{*}$ and $\left(M_{S O(3)}\right)^{*} \cup\left(M_{(O(2))}\right)^{*}=\bigcup_{k=1}^{f} B_{k}^{*}$, let $\left(M^{\prime}\right)^{*}$ be a subspace which is given by removing these open neighbourhoods from M^{*}. Then we put $\varepsilon=4,5,6$ or 7 if $\varphi\left(\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \ldots, \alpha_{g}, \beta_{g}\right)$ $=(1,1, \ldots, 1, x, y),(1,1, \ldots, 1,1, y, x, y),\left(1,1, \ldots, 1, x, y^{2}\right)$ or $\left(1,1, \ldots, 1, y, x, y^{2}\right)$ for $\varphi \in \operatorname{Hom}\left(\pi_{1}\left(\left(M^{\prime}\right)^{*}\right) ; D_{3}\right)$. Given $r,\left(d_{1}, d_{2}\right)$, $\delta(1)+\ldots+\delta(f)$, we can see each equivalence class of homomorphisms of $\pi_{1}\left(\left(M^{\prime}\right)^{*}\right)$ to D_{3}, is represented by one of the above four types. That is, $\left\{r,\left(d_{1}, d_{2}\right), \delta(1)+\ldots+\delta(f), \varepsilon\right\}$ determine $M_{\left(D_{2}\right)}$ up to equivalence. Moreover, $\delta(1)+\ldots+\delta(f)+r$ must be even because of

$$
\frac{(x y) \ldots(x y)}{r+\delta(1)+\ldots+\delta(f)} \cdot y^{d_{1}+2 d_{2}}=\varphi\left(\left[\alpha_{1}, \beta_{1}\right] \ldots\left[\alpha_{g}, \beta_{g}\right]\right)=y^{k} \quad(k=0,1,2)
$$

Let B_{i}^{*} be a boundary component with n fixed points $\left\{p_{1}, \ldots, p_{n}\right\}$ $(n \neq 1)$ which are arranged in this order. And let $C_{k(i)}$ be the closed are on B_{i}^{*} joining p_{k} and p_{k+1}. (if $k=n$, then $\mathrm{p}_{n+1}=1$) As Fig. 7-2, $C_{k(i)}$ is the orbit space of $S O(3) / N_{j_{k(i)}} \times I / \sim$ given by collapsing $S O(3) / N_{j_{k}(i)}=(\{0\} \cup\{1\})$ to $S O(3) / S O(3) \times(\{0\} \cup\{1\})$.

Here, $N_{j_{k(i)}}$ is conjugate to $O(2)$, and $j_{k(i)}$ values in $\{0,1,2\}$. Then, by corresponding each $C_{k(i)}$ to $j_{k(i)}$, B_{i}^{*} gives an ordered n-tuple $\left(j_{1(i)}, \ldots, j_{k(i)}\right)$ such that $j_{k(i)} \neq j_{k+1(i)}, j_{1(i)} \neq j_{n(i)}$ (because $S O(3)$ acts on the slice at each fixed point by the weight two representation).

Then we obtain the following theorem.

Theorem 7. Let M be a closed, connected, oriented, smooth 5-dim. manifold with smooth $S O(3)$-action, and its principal isotropy group D_{2}, then the following orbit invariants determine $M u p$ to equivariant homeomorphism (which preserves the orientation of M^{*})

$$
\left\{g, \varepsilon, r,\left(d_{1}, d_{2}\right),\left(\delta(i) ;\left(j_{1(i)}, \ldots, j_{n(i)}\right)\right), \quad i=1, \ldots, f\right\}
$$

such that

> (i) $\varepsilon \in\{0,1,2,3,4,5,6,7\}$,
> (i i) $\delta(i) \in\{0,1\}$
(iii) $j_{k(i)} \in\{0,1,2\}, n \neq 1$,
(iv) $\delta(1)+\delta(2)+\ldots+\delta(f)+r$ is even,
(v) $\varepsilon=0 \quad$ if $g=0, d_{1}+2 d_{2} \equiv 0(\bmod 3)$
$\varepsilon \in\{0,1,2\} \quad$ if $g=1, d_{1}+2 d_{2} \equiv 0 \quad(\bmod 3)$
$\varepsilon \in\{0,1,2,3\} \quad$ if $g \geqq 2, d_{1}+2 d_{2} \equiv 0 \quad(\bmod 3)$
$\varepsilon=4 \quad$ if $g=1, d_{1}+2 d_{2} \equiv 1 \quad(\bmod 3)$
$\varepsilon \in\{4,5\} \quad$ if $g \geqq 2, d_{1}+2 d_{2} \equiv 1 \quad(\bmod 3)$
$\varepsilon=6 \quad$ if $g=1, d_{1}+2 d_{2} \equiv 2(\bmod 3)$
$\varepsilon \in\{6,7\} \quad$ if $g \geqq 2, d_{1}+2 d_{2} \equiv 2(\bmod 3)$
($g=0, d_{1}+2 d_{2} \equiv 1$, or $g=0, d_{1}+2 d_{2} \equiv 2$ do not appear).

Proof. First, if $d_{1}+2 d_{2} \equiv 0(\bmod 3)$. Then the classification of $p^{-1}\left(\left(M^{\prime}\right)^{*}\right) \longrightarrow\left(M^{\prime}\right)^{*}$ is reduced to Lemma 7-1, i. e. $\varepsilon \in\{0,1,2\}$ and g determine $p^{-1}\left(\left(M^{\prime}\right)^{*}\right)$.

Next, if $d_{1}+2 d_{2} \equiv 1(\bmod 3)$, then we have to compute the equivalence classes of $\operatorname{Hom}\left(\pi_{1}\left(M^{\prime}\right)^{*}\right) ; D_{3}$) which satisfy the condition

$$
\varphi\left(\left[\alpha_{1}, \beta_{1}\right]\left[\alpha_{2}, \beta_{2}\right] \ldots\left[\alpha_{g}, \beta_{g}\right]\right)=y
$$

The similar argument to Lemma 7-1, concludes that the equivalence classes are $(1,1, \ldots, 1,1, x, y)$ and $(1,1, \ldots, 1,1, y, x, y)$.

Similarly, if $d_{1}+2 d_{2} \equiv 2(\bmod 3)$, then

$$
\varphi\left(\left[\alpha_{1}, \beta_{1}\right]\left[\alpha_{2}, \beta_{2}\right] \ldots\left[\alpha_{g}, \beta_{g}\right]\right)=y^{2}
$$

and the classes are only $\left(1,1, \ldots, 1, x, y^{2}\right)$ and ($1,1, \ldots, 1, y, x, y^{2}$).
Thus ε satisfying the condition (v) determines $p^{-1}\left(\left(M^{\prime}\right)^{*}\right)$ up to equivalence. Since $M_{\left(D_{2}\right)}$ determine M if $r,\left(d_{1}, d_{2}\right),\left(\delta(i) ;\left(j_{1(i)}, \ldots\right.\right.$, $\left.j_{n(i)}\right)$ are given, these invariants and g, ε classify M up to equivalence. q. e. d.

References

[1] Bredon, G. E., Introduction to Compact Transformation Groups, Academic Press, 1972.
[2] Hudson, K. A., Classification of $S O$ (3)-actions on five manifolds, (to appear).
[3] Jänich, K., Differenzierbare G-mannigfaltigkeiten, Lecture Notes in Math., 59, Springer--Verlag, 1968.
[4] Karrass, A., Magunus, W., and Solitar, D., Combinatorial Group Theory, Interscience Publishers.
[5] Orlik, P., Seifert manifolds, Lecture Notes in Math., 291, Springer-Verlag.
[6] Orlik, P., and Raymond, F., Action of $S O$ (2) on 3-manifolds, Proc.Conf. Transformation Groups, New Orleans, 1967, 297-318, Springer-Verlag.
[7] Richardson. JR. R. W., Action of the rotation group on the 5-Sphere, Ann. of Math., 74 (1961).
[8] , Groups acting on the 4-Sphere, Illinois J. Math., 5 (1961), 474-485.
[9] Steenrod, N.E., The topology of fibre bundles, Princeton University Press, 1951.
[10] Raymond, F., A classification of the actions of the circle on 3-manifolds, Trans. Amer. Math. Soc., 131 (1968), 51-78.

