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Classification of SO (3) -Actions
on Five Manifolds

By

Aiko NAKANISHI

Introduction

P. Orlik and F. Raymond showed that some invariants classify

smooth 3-manifolds with smooth ^-action, up to equivariant diffeomo-
rphism (preserving the orientation of the orbit space if it is orientable)

[6]. And R. W. Richardson JR. studied SO (3) -actions on S5 [7].
Also, K. A. Hudson classified smooth SO (3) -actions on connected,
simply connected, closed 5-manifolds admitting at least one orbit of

dimension three [2].
In this paper, we discuss the equivariant classification of smooth

SO (3) -actions on closed, connected, oriented, smooth 5-manifolds such

that the orbit space is an orientable surface. We call oriented 50(3)-
manifolds M and N are equivalent if there is an equivariant homeo-
morphism between M and N which induces an orientation preserving

homeomorphism of the orbit spaces M* to N*. Since there exist
various types as the principal orbit, we classify SO (3) -manifolds about
each type. It is well known that every subgroups of SO (3) are
conjugate to one of the following [4], [5].

50(2), 0(2), Zn, dihedral group Dn= {x, y ; x2=y»= (xyY = \],

tetrahedral group T={x,, y ; x2= (xyY = y*= 1}, octahedral group

O=[x, y\ x2= (xyY=y4 = 1}, and icosahedral group 1= [x, y ; x2 —

T, / and O are isomorphic to the alternating groups A4, A5 and

the symmetric group S4, respectively. And, as the principal isotropy
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group, we have these groups except SO (2) and O(2).

I want to express my gratitude to Professors F. Uchida and T.

Yoshida who gave me the right suggestions and read this paper

carefully.

§ 0. Preliminaries

Let G be a compact Lie group and M a smooth G-manifold. For

x£^M, we denote the orbit of x, and the isotropy group at x by

G(x) and Gx) respectively. If HdG, we write (H) = [KdG ; K is

conjugate to H by an inner automorphism of G}, and MH= {x^M;

GX=H], AfCH)={a;eM;G,e(fl)}, and F(H, M) =MH = [xeM;gx =

x for V££E#}.

The maximal orbit type (H) for orbits in M such that Af(H) is

open dense in M is called the principal orbit type, and H the prin-

cipal isotropy group. For a principal orbit P and orbit Q, if dim P>

dim Q, Q is called a singular orbit. If dim P = dim Q, but the

isotropy group K corresponding to Q is not conjugate to H, Q is

called an exceptional orbit. And for the orbit space M*=M/G, let

p; M >M* be a natural projection.

The normal bundle at x^G(x) has fibre Vx = TMx/(TG(x))x. For

each g^Gx, the differential of g induces a linear map Vx >VX

providing a representation Gx >GL(VX} called the slice representa-

tion. And the following Theorem is given [1].

Slice Theorem. Some G-invariant open neighbourhood of the zero

section of GxVx is equivariantly diffeomorphic to a G-invariant tubular
GX

neighbourhood of the orbit G(x) in M by the map [g-, v\ >gv so that

the zero section G/GX maps onto the orbit G(x).

In smooth case, we can choose a suitably small closed disk Sx in

Vx called a slice. And it is sufficient to discuss the representation

Gx >0(n) (n = dim *SJ because M has a G-invariant metric. The

representation of each subgroup of SO(3) is the following.
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For a finite group Gx, we considered the representation Gz >

SO(2) because SO(3) xSx and SO(3)/G* are orientable.

Next, we outline some basic results we need for the proofs of

theorems in this paper.

1. G acts on a locally compact space M, and assume that all orbits

of G are equivalent. Let x^M, and let N= {y^M ; Gy = Gx}. Then

N is a locally trivial principal fibre bundle with the group N(GX)/

GX(N(GX) = the normalizer of Gz). M is an associated fibre bundle

with G/GX as fibre.

2. We shall often quote the following Tube Theorem [1] V. 4.

2).

Tube Theorem. Let G be a compact Lie group and let W be a

G-space with orbit space IxB, where B is connected, locally connected,

paracompact, and of the homotopy type of a C^N-complex. Suppose

that the orbit type on {0} xB is type (G/K) and that on (0? 1] xB is

type (G/H). Then there exists an equivariant map x ; G/H >G/K

and, with 8=8(71:), there exists a principal S-bundle X >B (unique

up to equivalence} and a G-equivariant homeomorphism Mn X X~ W
s

commuting with the canonical projection to IxB. Moreover, the map

<p=7txX ',G/HxX >G/KxX gives rise to a G-equivariant homeo-
s s s

morphism f ; Mv >Mx X= W over IxB.
s

S(TT) in this theorem is given as follows; any G-equivariant map

TT; G/H >G/K is of the form Rf* by Rf*(gfl) =ga~lK for a^G

satisfying aHa^dK ([1] I. 4. 2). Then we put S(TT) = (N(H) n^1

N(K)a)/H.

We shall use this theorem for HdK with K/H diffeomorphic to

S1.
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§1. Case of the Principal Orbit Type SO (3)

Let M be a closed, connected, oriented, smooth 5-dim. manifold

with smooth SO (3) -action whose principal isotropy group consists of

the identity element e. Such manifolds have at most three orbit

types, i. e. the principal orbit, exceptional orbit (£0(3);^), and

singular orbit (50(3)7-50(2)) with the slice representations 1,5 and

3 respectively. The orbit space M* is a 2-dim. surface, and (M(so(2)))*

is the boundary of M*, and (Mc)* consists of isolated points in M*.

Here, Mc={x^.M ;GX is a cyclic group}. From now on, we use Mc

in this sense, and orient M* as follows; Since SO(3)/H is orientable

for a finite group H, we orient naturally the tubular neighbourhood

SO (3) xD2 = V and V*=D2/H, and orient M* by V*cM*. Also, for
JEf

B= {singular orbits} CM, the boundary B* is oriented so that it follow-

ed by an inward normal coincides with the orientation of M*.

For each boundary component B*9 p~l(B*} -- >B* is an SO(3)/

SO (2) -bundle with the structure group 7V(SO(2))/SO(2)=Z2. Let

/ (or m) be the number of boundary connected components so that

p~l(B?) - >Bf is a trivial bundle (or non trivial). Then, M50(2) has

2f+m connected components, and B* has f+m connected components.

Let a pair (ft, vf.) be the invariant uniquely determined for each

exceptional orbit SO(3)/Z^ ([5], [10]). The purpose of this section

is to prove Theorem 1 (where g is the genus of M*).

Theorem 1. Let M be a closed, connected, oriented, smooth 5-dim

manifold with smooth SO (3) -action, and its principal isotropy group

e. Then the following orbit invariants

such that (i) b=0 if f+m^Q, b^Z2 if f+m =0

(ii) (ft, » f )= l ,

determine M up to an equivariant homeomorphism (which preserves

the orientation of M*).
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From now on, we say that some invariants determine M if they

determine M up to the above equivalence.

Lemma 1-1. // MC(JM(50(2)) =0, then {g, b<=Z2] determine M.

Proof. A principal SO (3) -bundle M— ̂ ->M* is classified by g and

the obstruction class b<=H2(M* ; ^1(5O(3)))=Za. This lemma is

immediately proved. q. e. d.

For x^M with Gx=Zp, Gx-action on the slice SX=D2 is the slice

representation 5, i. e.

£(r, 0) - (r, 0 + vtf £

Let M have r exceptional orbits, then we have

Lemma 1-2- If M has no singular orbit, the following orbit invari-

ants determine M

{g, &EEZ 2 ; (ft !>, ) , . . . , (ft, vr)}

(ft, y,-)^!, 0<v,-<ft.

Proof. A pair (ft, y,.) specifies a cross section on the boundary

of the neighbourhood of the orbit SO(3)/Ztt in the way of Raymond

([5], [6], [10]). We give the brief outline here. F,.=SO(3)

SO (2) XD2 = U{ is a solid torus with SO (2) -action equivalent to
**«

(the exceptional orbit G(x) corresponds to r = 0). (See Fig. 1-1.)

Fig- 1-1
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If we give Uf the orientation naturally induced from Vis then this

orients the boundary of the slice m. Let / be an oriented curve on
dUt homologous to SO(T)/Z^ in Uf, and so that the ordered pair (m, I)

gives the orientation on dU{. For a cross section q of the bundle

dUi » (31/,.)*, we orient q so that the ordered pair (q, h) gives the

same orientation as (ra, /), where h is an oriented orbit SO (2) on

9t/f. Then we have

m=juiq'+i3h (/3>0), l=—viq' — ph9 and ^{='.

and a suitable choice of q' reduces fi to Q<^^<^fjtf. The pair (//,-, vf)

determines a cross section g; on 9Ui9 uniquely, (therefore on 9Vt-)
such that m=/jtiqi+fih, PV{ = 1, 0</3</^. Thus the pairs (^13 i ^ ) , . . . ,

(//r, yr) specify the cross sections q19 q2,. . ., gr on 9F13.. ., dVr,

And we have an obstruction class in H2(M*-Int(U T7), 9(U T7) 5

^(50(3))) =^23 to extend the above cross sections over M*-Int
r

(U Vf). Its class is identified with the mod 2 integer b. Thus
1=1

Lemma 1-2 follows. q0 e. d.

Next, we consider the case of M(so(,

Lemma 1-3. If Mc=(f>5 M(50(2))^0, then {g, (/, m)} determine M.

Proof. By the Collaring Theorem, M* = M* U OJI X Bf) with

{0} xBf identified with each boundary component Bf. Since the

equivariant map SO(3) >SO(3)/SO(2) is only a canonical projec-
(1) f + m

tion TT up to equivalence, M is constructed as E(p) U (U MK X Qf.) by
j = l 5

using the Tube Theorem. Here p is a principal SO (3)-bundle over

Mf, and Q,. a principal S- (AT(e) fW(SO(2)))/e= O(2)-bundle over

B*. And each attaching map of E(p) to Mff X Q£ is an SO (3)
s

equivariant map in Homeo50(3)(SO(3) X S1) (HomeoGM for G-space

M, denote the group of self equivalences of M over M/G). Also, <p{

eHomeo50(3)(SO(3) xS1) is induced by an injection of S1 to SO(3) xS1.

( 1 ) Two equivariant maps /, g; SO(fy-*SO(3')/SO(2') are equivalent if there is an 6*0(3)
-equivariant map (p; 50(3)—>S0(3) such that g*<p=f-
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Thus Homeo50(3)(SO(3) xS1) ^(50(3)) ~Z2. Since 5O(3)D5O(2)

represents a generator of 7^(50(3)), and the bottom of Mff X Qf is

(50(3)750(2)) xQiy (fit can be extended into MsxQ{. Thus 0,
5 5

may be considered as the canonical identification. And we can say
M is determined by [g, (/, m}} because p is a trivial bundle.

q. e. d.

Now we prove Theorem 1.

Proof of Theorem 1. It is sufficient to see the case of Mc^^5

^(50(2))^^- (The other case is given by Lemma 1-1, 1-2 or 1-3.)
Let V{ be a suitable small tubular neighbourhood of an exceptional
orbit 50(3) /Z,,. Then the cross sections ql9 q2) . . . , qr on dV19 . . . 9
dVr determined by the pairs (//13 i^) , . . . , (/*,., vr), can be extended

over M2*=M*-Int(U V?) -(J[_Q, 1) xB*. We denote this extended
1=1 .7=1

cross section by 5. Next, we must investigate how to attach

p ~ l ( [ l ] x B f ) to E(p) where /o is a principal SO (3) -bundle over M*.
In Lemma 1-3, we investigated it with respect to a zero cross section

of /?/({!} XJB*). Thus, taking the above section s/{l} xBf in place

of the zero cross section. Theorem 1 follows from the proof of Lemma

1-3. q. e. d.

§ 2. Case of the Principal Orbit Type
#0(3) /A*, or SO(B)/S,

Let M be an oriented 5-dim. SO (3) -manifold with the principal
isotropy group A5 or 54. (From now on, we suppose M is closed,
connected, smooth and the action is smooth.) Such a manifold M

has only principal orbits, and the orbit space M* is a closed 2-dim.
surface. Thus, we have the following theorem immediately because
of N(AJ =A5, N(SJ =St.

Theorem 2. Let M be a closed, connected, oriented, smooth 5-dim.

manifold with smooth SO (3) -action, and its principal isotropy group
A5 or /S4. Then M is determined only by the genus g of M* up to
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equivariant homeomorphism which preseves the orientation of M*.

§3. Case of the Principal Orbit Type 5O(3)/A4

A 5-dim. SO( 3) -manifold M with the principal isotropy group A4,

has at most two orbit types, i. e. the principal orbit and exceptional

orbit ASO(3)/54 with the slice representation 9. And the orbit space

M* is a closed 2-dim. surface, and (M(54))* consists of isolated points

in M*.

Let Tg be an oriented closed 2-dim. surface with the genus g, and

M0 be a non trivial Z2-bundle over Tg.

Lemma 3-1. Let M(54)=^. Then M is equivariantly homeomorphic

to SO(3)/A4xS2 if g = Q, and to SO(3)/A4xTg or SO(3)/A,xMQ if

Proof. A bundle F(A49 M) >M* is classified by an element of

H1 (M* ; AT(A4) /A4) =ff (M* ; Z2).

Case 1. Suppose g = 0. Clearly, M is equivalent to SO(3)/A4xS2.

Case 2. Suppose g = l. Let f, 57 be Z2-principal bundles (over M*)

corresponding to o(f) , 0(77) e.HXM* ; Z2). If there is an orientation

preserving homeomorphism / of M* such that f*(o(rf)} =o(f), then f

is equivalent to r] in the sense of our classification. And, we can

easily construct the homeomorphisms #>2, <pz of M* inducing automor-

phisms (^2)*3 (#»)* of Hi(M*) (automorphisms of ^(M*) are

described in [4]).

(^2) * (a) =ab, (</>2) * (6) =6, (^s) „ (a) =6, (y>3) „ (6) ^a'1

where a, i represent the generators of H1(M*)=Z@Z. Now, we will

describe an element of Hl(M* ; Z2) by a pair (m, n) which maps a

and b into mod 2 integer m and ??, respectively. Let M0 be a principal

Z2-bundle (over M*) corresponding to (1, 0). Then, by operating

<p2) p3) F(Ai, M) is equivalent to SO(3)/A4xM* or5O(3)/A4 x M0.
S4 /A4

Ca5^ 5. Suppose £" = 2. First, we construct homeomorphisms J19 J2

of M* as Fig. 3-1.
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Fig. 3-1

P.X

fll

o

7x072 T2=T1^T1=Y1UY2

2 = identity map

Then, ^ = (A)S, ^=4, ^s=A"1^2A4^r1^»P4 =
induce the automorphisms (^ f .)»(z = l, 23 33 4) of

By suitably operating (p.(i = l, 2, 3, 4) on M% each non-trivial bundle
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F(A4, M) - >M* is equivalent to M0 - >M*. Here M0 - >M*

corresponds to (1, 0, 0, 0) ̂ Hl(Tg ; Z2). Thus M is equivalent to

5O(3)/-A4xT, or SO (3) /A4 x M0.

. Suppose g^3. Hl(M* ; Z2) = Z2©, . . . ©Z2. After applying

Case 3 to the last four direct summands, we repeat it to four direct

summands between 2g— 5 th and 2g—2 th. Then an element of H1

(M*; Z2) is regarded as ( * , . , . . . , „, 1,0,0,0,0,0) or ( . , , , . . . , .,0,

0, 0, 0, 0, 0) up to equivalence. Repeating this process, we can say

M is equivalent to SO(3)/A4 xM*, or SO(3)/A4 xM0 where M0 - »M*
54^4

corresponds to (1, 0, . . . , 0).

This completes the proof of Lemma 3-1. q. e. d.

We define s=0 if a principal Z2-bundle over a closed surface is a

trivial bundle, and e = l if it is not so.

Let (Af(54))* = {*?,. . . ,#*} (M^ has r isolated orbits).

Theorem 3. Let M be a closed, connected, oriented, smooth 5-dim.

manifold with smooth £0(3) -action, and its principal isotropy group

A4. Then, [g, s& {0, 1}, r] determines M up to equivariant homeo-

morphism (which preserves the orientation of M*) provided (i) e = Q

if g = 0, and (ii) r is even.

Proof. For a suitable neighbourhood Df of xf in M*, p~1(Df) is

equivariantly diffeomorphic to SO (3) xZ)2. From ^-action on .D2, an
54

equivariant sewing between F(A,, p-^dD*)) and F(A4, p~l(dM*)) is
r

only the identity map (up to equivalence) where M* =M* — Int(U A*)-
i = l

Also, M* is regarded as M2*UD(r). D(r) is given by removing open
r

r disks Int(U A*) from a 2-dim. disk, and M* is an oriented surface
»=i

with one boundary and the genus g. Then a Z2-principal bundle

over dM* is a trivial bundle, and dM* is homologous to U dDf in Mf.
»=i

Thus r is even because F(A4, p~l(8D*)) - >Df is a non-trivial bundle.

Therefore, if r is given, then the classification of M is reduced to that

of principal Z2-bundles over M*. Moreover, it is reduced to Lemma
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3-1 because F(A49 p~l(dM*}} >9M* is a trivial bundle. Therefore,

[g> £> r] determine M. q. e. d.

§4. Case of the Principal Orbit Type (SO(3)/Dn) (w^>3)

Let M be a 5-dim. SO (3) -manifold with the principal isotropy

group Z)n(n^>3). Then M has at most three orbit types, i. e. the

principal orbit, exceptional orbit (SO(3)/An)? and singular orbit

(£0(3)70(2)) with the slice representations 6-(b) and 4-(b). The

orbit space M* is a 2-dim. surface, (M(0(2)))* becomes the boundary

of M*, and (M(D ))* consists of isolated points in M*.

F(Dn,p-l({\] xB*)) >{l}xB* is a principal N(Dn) /(Dn^Z2-
bundle when we denote the collar of each boundary component

B* by JxB* with {0} xB? identified with Bf. Let / (m) be the

number of boundary connected components such that F(Dn, p ~ l ( { l ] X

B*)) >{1} xB* is a trivial Z2-bundle (non-trivial Z2-bundle). Then

f+m is the number of connected components of M(0(2)). And let M

have r exceptional orbits, and e be the invariant to classify Z2-bundle

F(Dn, MO,,,) >(M(Dfl))*, defined in §3. Then we have the following

Theorem 4, and the purpose of this section is to prove this theorem.

Theorem 4. Let M be a closed, connected, oriented, smooth 5-dim.

manifold with smooth SO(3)-action, and its principal isotropy group

A,(^ = 3). Then the following orbit invariants determine M up to

equivariant homeomorphism (which preserves the orientation of M*)

fcee{0, !},(/, m), r}

such that (i) s = 0 if g = Q, (ii) m + r is even.

Lemma 4-1. // Af(0(JO)=£0, M(D^=^>, then {g, s<E {0, 1}, (/, m)}

determine M up to equivalence. And m must be even.

Proof. By the CoUaring Theorem, M*=Mf U ( I J / x B f ) with
1=1

{0} xBf identified with each boundary component Bf. Then p ;

p~l(M*) >M* is an 5O(3)/jDB-bundle. There is only one simultaneous
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conjugacy class in SO (3) of pairs (H9 K) where H<^K, with H con-

jugate to Dn) and K to O(2). Thus, the SO (3) -equivariant map

of SO (3) /A, to SO(3)/O(2) is only a canonical projection x up to

equivalence. (There is a one-one correspondence between the

simultaneous conjugacy classes of (H, K) and equivalence classes of

equivariant maps G/H - >G/K ([1], V. 4. 3).)

Now we putS=(N(Dn)nN(0(W/Dn=Z2,N=N(DJ/Dn^Z2. By

the Tube Theorem, M can be constructed as

where Q,- is a principal S-bundle over Bf9 and p is an SO(3)/jDn-bundle

over M*. If Pf. is the associated principal 2V-bundle to j0/{l} x£f,

then there is a one-one correspondence between classes of S-equivariant

maps of Qi to Pi9 and the classes of SO (3) -equivariant maps of

SO(3)/DBxQ(- to SO(3)/DnxPf ([1], V. 3. 2). Let Q, be a trivial
5 N

S-bundle, then the S-equivariant map is either identity map or /i

given by

for

Thus ^,- is either identity map or ft induced by /IB But / can be

extended into Mff X Q, because the bottom of Mff is SO((3)/O(2).
s

Thus ^,- may be considered as the identity map (up to equivalence).

Similarly, the equivariant map may be considered as the identity map

when Q,-, Pi are non-trivial bundles.

From the same argument as §3, it is seen that m must be even,

and p is determined by e. Then the lemma is proved. q. e. d.

Lemma 4-2. // M(0(2))=0, M(D2n)^, then {g, ee {0, 1}, r] deter-

mine M up to equivalence. In particular ', r is even.

Proof. For xf^MDan9 by investigating Z)2»-action On the slice D] at

^., M is constructed as E(p) U (USO(3) xDJ) where ^ is an SO(3)/
r « ' = 1 ^2n

Arbundle over M*-Int (UDJ/A.)- Since F(A,, SO (3) X 3D?) - >
D2H

3D2
i/D2n=Sl is a non-trivial Z2 -bundle, r must be even. Thus, Lemma

is proved, q. e. d.
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In the similar way to §3, it is shown that r+m is even if

M(D )=£0. Then, Theorem 4 is immediately given from Lemma 4-1

and 4-2.

§5. Case of the Principal Orbit Type (SO(3)/Zfc) (*^S)

Let M be a 5-dim. SO (3) -manifold with the principal isotropy

group Z*(&^3). Then Mf has at most four orbit types, i. e. the

principal orbit, exceptional orbits (5O(3)/Z>t), and (SO(3)/Zkq), and

singular orbit (*SO(3)/*SO(2)) with the slice representations 6? 5 and

3 respectively. The orbit space M* is a 2-dim. surface, (M(50(2)))*

is the boundary of M*, and (M (D))*U (Me)* consists of isolated points

in M*.

For boundary components U Bf, let / be the number of boundary

components so that F(SO(2), p~l(B?}} - >Bf is a trivial bundle, and

m of non-trivial bundle (i. e. M50(2) has 2f+m connected components).

And let d be the number of exceptional orbits (*SO(3)/A)5 (fa, y»)

be the invariant defined for SO(3)/Zpmk in the same way as §1. And

let £ be the invariant defined in §3.

The purpose of this section is to prove the following theorem.

Theorem 5- Let M be a closed, connected, oriented, 5-dim. smooth

manifold with smooth SO (3) -action, and its principal isotropy group

Zk(k^3). Then the following orbit invariants determine M up to an

equivariant homeomorphism (which preserves the orientation of M*)

{g, £GE{0,1}, &EEZ, (/», d ',({!,, ^), . . .

such that (i) £ = 0 if g = Q, (ii) b=0 i

(iii) (//,-, V f ) = l , 0<v,-<^t- (iv) m + rf 25 even.

An integer ^ in this theorem, corresponds to the secondary obstruc-

tion class for a principal O(2)/-2^-bundle over M*. We will make its

details clear in the proof of Lemma 5-1.

Lemma 5-1. // M(D } U M C U M(so(2)) =$, then {g, £<E {0, 1},
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determine M up to equivalence. In particular £ = 0 if g = Q°

Proof. f ; F ( Z w M ) - >M* is a principal O(2)/Z4-bundle, and
_ 2g __

ff(M* ; 7r0(0(2) /Z4)) =Z2©, .7. ,©Z2. Thus we may assume f
corresponds to £ = 0 or e = l. (See §3.) Clearly, if £ — 0, then the
classification of f depends only on g, and an obstruction class &e

;7r1(O(2)/Z,))^Z. If £-1, then M* is considered as follows;

M*=T f=M*UAf?, Mf^-IntD2, JM?=T f_1-IntD2

e = l means ^/cl is a non-trivial and ?/c,- (z* =£ 1 ) , <?/£?,• are trivial
O (2) /Z^ -bundles. Then we can construct a double covering AT of
F(Zk, p-l(M?}) such that JV - >#/(O(2)/Z4) =JV* is a trivial 0(2)/Zr

bundle, and N* is also a double covering of M*. If we specify a
cross section 5; JV* - >N, then 5 uniquely determines a cross section
5 of f/dMf. Thus, f is determined by the genus g of M*5 and the
obstruction class to extend the specified cross section s/dM* over M2*5

i. e. by £e£P(M*, 3M* ; ̂ (0(2)^))=^ Clearly £-0 if g = Q.
q. e. d.

Lemma 5-2. I /M ( D ) UM e = 0, */ien fe £G {0, 1}, (/, m)} deter-

mine M up to equivalence. In particular, (i) £ = 0 if g = Q, and
(ii) m is even.

Proof. Let Bf (i = l, 2, ... ,f+m) be a boundary component. Then,

M*=M1*U (LIIxB*) with {0} xB* identified with B*. We denote an

5O(3)/5O(2f)-bundle P"l(Bf) - >B* by ai9 and an 5fO(3)/Z,-bundle
p~l(Mf} - >Mf by p. p/{l] xBf is a trivial bundle iff at is a trivial

/+»
bundle. By the Tube Theorem, M can be constructed as E(p) U (U M, )

id »• '
where ^,- is an equivariant map of /^({l} X-B*) to p~l(Bf). Also we
have precisely one (up to equivalence) as ^-. (In fact, we may take
a natural projection.) This implies M^ depends only on (/, m).

Thus M depends on ^ and (/, m). Now, we remove f+m open disks
from S2, and denote it by X. Then M? =Tg # X = M* UM3* where
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M*=Tg-IntD2, M*=X-IntD2, and p/Mf depends only on e and g,

p/M* only on (/, m). Moreover, we may regard p/dM* is attached
/+»

to p/dM? by the identity map. For, dX corresponds to U {1} xBf,
/=i

and M is unchanged up to equivalence even if we exchange an

equivariant attaching <f)i of M^ . Hence, p depends only on e and

(/, m} and M is determined by e, g and (/, m). Also, it is seen m

is even in the same way as §3. q. e. d.

Let (M(D )) * = {̂ 1*3 ..... , .£*} CM*, i. e. M has d exceptional orbits

of type SO(3)/Dk.

Lemma 5-3. // MCUM(50(2))=0, M(D^<j>, then {g, £<E {0, 1}, d,

determine M up to equivalence. Moreover (i) s = 0 f/ # = 0,

(ii) d is even.

Proof. For a suitable neighbourhood A* of xf, and a principal

O(2)/Zrbundle p over M*=M*-Int (U A*), *XZM M) is constructed
=

as

is attached to F(Zk9 p~lW) by ^,eHomeo0(2)/z (O(2)/Z*x 51).
* D*/z*

Since F(ZA, p~l(dD?)) is a non-trivial O (2) /Zt -bundle, <i is even by

the same reason as §3.

Now, if we remove d open disks from 52, and denote it by Y,

then Af? = r ,#F=Af?UM? where M* = Tff - Int D2, M3* = F-Int D2.

Let M3 be a double covering of F(Zt, p ~ l ( M f } } such that M3 - >

M3/(O(2)/Z,) =M3* is a trivial 0(2)/Z,-bundle. Since & is determined

by an injection fs of 51 to O(2)/Z4 X 51, we can specify a cross section
°*/z*

5; M3* - >M3 by extending the lifting {/•} of {/•}• Then 5 determines

a cross section /; 9M3* nAf* - >F (Zh, p'1 (dMf nM2*)) uniquely (i. e. /

depends only on {^,-}). Taking a specified cross section s over 9M*

defined in §5-1, then we can see that M is determined by p/M?9 d

and how to attach p/dM* to p/dM* with respect to the specified cross

sections s, s', i. e. by &eHomeo0(2)/z (O(2)/ZkxSl)=Z. Since p/Mf is
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classified by e=0 or 1, the lemma was proved. q. e. d.

If Mc has r connected components, i. e. (Me)* has r isolated

points { x f 9 . . . 9 x * } 9 then the following lemma is given in the similar

way to §1.

Lemma 5-4. // M(D }\J M(50(2)) =<f>, then the following orbit invari-

ants determine M up to equivalence ;

fe, £EE{0, 1}, fcGEZ; (ft, I / O , . - - , (^ »r)}

swc& £/*a£ (i) s=0 if g = Q, (ii) (ft, > > i ) = l , 0<>,<ft.

Now, we prove Theorem 5 from the above lemmas.

Proof of Theorem 5. It is sufficient to see the case of having at

least two orbit types except the principal orbit type. First, suppose

M(so(2»=<f>. And let S\$ be the space given by removing 3 open

disks from S2, Z)J(z = l, 2) a 2-dim. disk, and T'g a 2-dim. surface with

the genus g and one boundary. Then we may regard M* as

by canonically identifying the boundaries of T'g9 D] with three boundary

components of S\^9 respectively. And we may suppose (M (D))*cDj,

(MC)*CD2. Then, P~l(Dl) depends only on d9 and p~l(Dl) only

on the invariants {(ft, vO, . . . , (ft, *O}, and p~l(T'g) on {g, e} .

More'over, taking the cross sections on dD2
1} dD2

2, dT'g defined in §5-3,

§1 and §5-1, we can see M is determined by the above invariants

and the obstruction class to extend this cross sections over 5Z
(3), i. e.

by fceffGS^, 9S2
(3); ?r1(0(2)/Z,))^Z. Also, if we suppose Mwm*$,

it is seen b is zero by the argument of §5-2. Thus, M is determined

by {g, £, 6, (/, m), rf; (ft, yO, . . . ,^ , ^r)} such that b = 0 if

Also we can easily seen that m + <i is even.

§6. Case of the Principal Orbit Type (SO(3)/Z2)

An oriented 5-dim. 50(3) -manifold M with the principal isotropy
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group Z2, has at most five orbit types, i. e. the principal orbit,

exceptional orbits (SO (3) / A) , (SO (3) /Z2q) , and singular orbits

(SO (3) /SO (2)), (SO(3)/O(2)) with slice representations 6- (a), 5, 3

and 4-(b), respectively. If M has not a singular orbit type (50 (3) /

O(2)), then we can apply the argument of §5 to this case in its entirety.

Thus, we shall discuss only the case of having orbit (SO(3)/O(2)).

It is easily seen that (M(0(2)))* (J (M(so(2)))* is the boundary of 2-dim.

surface M*, and (Me) * U (M(D }) * consists of isolated points in M*.

We put (M(0(2)))* = U-Bf where Bf is a boundary component, and

denote the collar of each boundary component Bf by IxBf with

{0} xBf identified with Bf. Let k be the number of boundary

components so that F(Z2,p~1({l} xJ3,*)) - >{!} xBf is a trivial bundle,

and n of a nontrivial bundle. (Then M(0(2)) has & + n connected

components.)

Lemma 6-1. If M=M(Zj UM(0(2)), £/ien fe, ee (0, 1}, (k, w),

degermine M up to equivalence. In particular ', (i) e = 0 if g = Q, and

(ii) n z's even.

Proof. First, we show there exists only canonical projection as

equivariant map of SO(3)/Z2 to SO(3)/O(2), because we want to use

the Tube Theorem. For H"cJ^cG, it is known there is a natural

one-one correspondence between the equivalence classes of equivariant

maps G/H - >G/K and orbits of the action of N(H)/HxN(K)/K

on F(H, G/K) where N(H)/H acts on the left and N(K)/K acts on

the right ([1], p. 245). Now we take subgroups of /SO (3) which

consist of the following matrices.

H= and K= \ SO (3)

(K is conjugate to 0(2), and H to Z2.)

Then F(H,SO(3)/K)/(N(H)/HxN(K)/K) = {eKuAKuA2K} where
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/ 0, 1, 0

A = ( 0, 0, 1

\ 1, 0, 0

These orbits correspond to *S'0(3)-equivariant maps,

9i ;SO(3)/H - >SO(3}/K by <Pi(gH)=gA*K (i = 0, 1, 2).

But, by Bredon ([1] p. 200, Cor 6-3), NJH must be homeomorphic

to S1 where N, is the isotropy group AiK(Ai)~l of A'K. This implies
that there exists only the canonical projection <pQ(gH} =gK. We
depended on K. A. Hudson [3] for this argument.

We rewrite TT for <p0. Let Q, be a principal 5-bundle over Bf
for S= (N(H) nN(K))/H=Z2, and let p be an SO (3) ///-bundle over

Mf=M*— (u"[0, I )x5f ) . Then, by the Tube Theorem, M is equi-
: = 1

valent to

Also, (pi is an equivariant homeomorphism of /o/{l} xBf to the top of
M^xQ,-, i. e. SO(3)/KxQf. Since Q,- is a trivial bundle iff P, is soa

s s

or

In §4-1, such a 0,- was uniquely determined (up to equivalence), but

in this case we have various types. In fact,

&(eH, x) = (gj(x)H, x} = (jg^x), x) for j^Z

is an equivariant homeomorphism in Homeo50(3)/H (50(3)7/1 X51) where

&(*) generates ^(N(H)/H)=Z. And

(E(p) u u M . x Q,)) U (M,x

is not equivalent to

(E(p) U (u x Q,) ) U (M, x Q4)
"

if f^5. Thus an obstruction element bEiZ is determined by how to

attach p / { \ ] xB* to 50(3) /HxQ, , in the same way as §5-3.
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Strictly speaking, if we put

M* = M* U Y, M* = Tg—Int D2, Y=D2—lnt

then, b&Z is determined by how to attach p/dM* to p/dYftM? with

respect to two specifying cross sections, i. e. the cross section on

SFflM* induced from the above attaching maps {^J, and the cross

section on BMf determined in the similar way to §5-1. Here p/M*

depends only on [g, e} . Then Lemma is proved. q. e. d.

Let invariants [g, e, b, (f, m), d ; (/^, iO, ..... , (#., ^r)l be the

same as in Theorem 5. Since it is easily checked that m + n + d is

even, Lemma 6-1 and Theorem 5 gives the following theorem.

Theorem 6. Let M be a closed, connected, oriented, smooth 5-dim.

manifold with smooth SO '(3) -action, and its principal isotropy group Z2.

Then the following orbit invariants determine M up to an equivariant

homeomorphism (which preserves the orientation of the orbit space M*)

{g, £<E {0, 1}, b<=Z, (f, m}, (k, n), d ; (^, v,), . . . , (^, ^r)}

such that

( i ) s = 0 z/ g = 0, (i i) m + n + d is even,

(iii) £ = 0 iff+m^Q, (iv) (//,, H-) =1, OO,<^.

§7. Case of the Principal Orbit Type (ST0(3)/Z>2)

In this section, we treat 50(3) -manifold M whose principal orbit

type is (SO (3) /A)- Such a manifold has at most five orbit types, i. e.

principal orbit, exceptional orbits (SO(3)/DJ, (/SO(3)/A4), singular

orbit (5O(3)/O(2)) and fixed point SO (3) /SO (3), with the slice

representations 6- (b) , 8, 4- (b) and 2 - (b ) respectively. Then

(M ( Z ? ))*U (MU ))* consists of isolated points in a 2-dim. surface M*,

and (M(0(2)))*U (MJO(3))* is the boundary of M*, and the fixed points

set (Mj0(3))* consists of isolated points in dM*. (We shall detail the

case of having fixed points in the latter half of this section.)

First, we consider the case M has only principal orbit. Then
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F(D2, M) - >M* is a principal N(D2)/D2= A-bundle. According to

the Classification Theorem ([9], 13. 9), the usual bundle equivalence

classes of Arprincipal bundles over M* are in one-one correspondence

with the equivalence classes (under inner automorphisms of D3) of

homomorphisms of ^(M*) into D3. Let Z)3-bundles f and f] correspond

to homomorphisms / and g, respectively. If there is an orientation

preserving homeomorphism u> of M* such that <p*° f=g, then f is

equivalent to f] in our classification (even if f is not equivalent to f]

as the usual bundle equivalence). So, we shall say / and g with

such a homeomorphism are equivalent, too.

Now we put

- [als fa..., <*g, & ; [al3 A] . . . . [a,, 0J - 1}

by the canonical generators. (Here g is the genus of M*, and [aiy

is the commutator of a. and fa) Then there is a relation;

, &] . . . [af, &]) - 1 for /eHom(7T1(M*) ; A)

First, we investigate the equivalence classes of Horn (^(M*) ; Zp)

for a prime number p. For a generator # of Zp we use a symbol

(', % . . . , % ̂ J, xf, % . . . , * ) in place of / with /(a,.) =*', /(ft) -^.

Then, it is easily seen that there are the following relations for 99,.

(x = l, 2, 3, 4) constructed in §3.

a r} » ^(^rt~l T^ ^YT* r\) J*) 7^ >\x ,&) ^\X 5 x)

(x, 1)

(ii) (*, 1, x, 1) > >(x, 1, a:'1, 1)

(1, 1, x, D-^-Kl, 1, 1, a:).

From these relations (i), (ii), it is seen that the equivalence classes of

Horn (^(M*) ; Zp) are exactly two classes, i.e. (1, 1,..., 1, 1) and

(i, i , . . . , i, i, x, i) =/;.
Let n ', A >Z)3/Z3SZ2= {1, x} be a natural projection where
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A= {*, y \ *2=y* = (xyY = l] DZ,= {1, y, /}.

Since tf-n* =*:*•?* (i = l, 2, 3, 4) for TT,; Horn (^(M*) ; A) - >
Horn (^(M*) ; D3/Z3), the equivalence classes of Horn (^(M*) ; A)
are given by computing the classes of ^(1) and rc^C/i). By the
above argument,

^(1) -Horn (^(M*) ; Z3) cHom (^(M*) ; A)

has only two classes, i. e.

(1, 1,. . . , 1, 1)...(1) and (1, 1,..., 1, 1, 1, y)-(2).

Also, every elements of Tr^O/i) take the form of

(y\ A - - - , y1"1, y*'S *A /*)- (3)

Applying the above argument (/> = 3) to the first 2 fe— 1) components
of (3), the classes of ^C/i) are in either

(1,1, . . . , 1, 1, xy; y'O or (1, 1,... , 1, y, xy<9 y'<).

Moreover, considering that /([«i, ft] . . . [o ,̂ ̂ ]) =1 and A is not
abelian, we can say that ^•;1(/1) has only classes in the following forms-

(1, 1,..., 1, 1, x, l)-(4) (1, 1,..., 1, 1, *y, l)-(5)

(1,1 , . . . , 1, 1, xy\ l).-(6) (1,1, . . . , 1, 1, 1, y, *, l)-(7)

(1,1, . . . , 1, 1,1, ***!)- (8) (1,1,. . . , 1,1,1,^,^,1)- (9).

But (4), (5) and (6) are in the same class under some inner auto-
morphisms. Similarly, (7), (8) and (9) are in one class,

So, we define the number e to determine M as follows; £ = 0, 1, 2
or 3, if F(D2, M) - >M* corresponds to homomorphism (1), (2),

(4) or (7) respectively.
Consequently we have

Lemma 7-1. Let M have only principal orbits. Then [g, s£=

(0, 1, 2, 3}} determine M up to equivalence. If g=l, then ee {0, 1, 2}

and if g = Q, then e=0.
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Now, suppose M^) =£0, M^ U M(0(2)) U MJO(S) = 0, and put (M(D }) * =

{x* 3 ... , .£*} . By the Slice Theorem, for a suitable neighbourhood

A* of xf, F(D2, p ~ l ( D f } ) is equivalent to O/D2 x D2. Then it is not
VD2

difficult to see that equivariant attaching maps between F(D2, p~l

(9(M*-Int A*))) and F(D2, p ~ l ( d D f ) ) can be extended over

F(D2, £-1(A*)). Thus M is equivalent to

p-1(M*)U(bsO(3)/D2 x D2)
id i = l D^D2

r

where M*=M* — Int UA*« Here, O is isomorphic to S4 and D2 to

74cA4. (F4 is defined in p. 3.) Thus O/D2^SJV, = S3. Moreover,

A — {%> y > x2= (xy)2=y*=l] is isomorphic to S3 by corresponding x

to (12) and y to (123) (where (12) and (123) are cycles in

53). We remark, under this isomorphism, A/A is identified with

Z2= {I, (13)}. Then we can see that the principal O/A = A-bundle

F(A3 p-l(dD?}}=O/D2 x Sl - >S1 = dD* corresponds to (13), i. e.
VD2

xy^Hom (TTj (S1) ; A) • Thus r must be even.

Next, suppose MUj=£$9 M(D^\jM(om\jMso^ = ̂ 9 and put (M^) *

= { y f , . . . , y Z } . Then, F(D2, p~l(D*^ is equivalent to 0/D2 x D2

A*/DZ

for a suitable neighbourhood A* of yf. And we have two types as

F(D29 p ~ l ( d D f ) ) , which arise from two different AJD2~Z3~actions on

the slice D2 at y,, (1) and (2).

(D fi(r, 0) = (r, ^+(2/3)7r), (2) f2(r, (?) = (r, 0+(4/3)*r)

where (r, ^) is the polar coordinate of D2. By the same reason as

the case of Af ( D )=£0, it is seen M is equivalent to

Here ^ is the number of points in (MU))* so that the A-bundle

F(D2, p~l(dD?)) - >dD? corresponds to type (1), and dz to type (2).

And the bundle of type (1) corresponds to y^ Hom(7r1(5'1) ; A )? and

the bundle of type (2) to /. (At/V^SJV^S3 and AJV,= (1, (123),

(132)} where (123) corresponds to y.)

Suppose M(0(2)) ̂  ^5 M(A ) U M(D } U Mso(3) = 0. We denote each
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connected component of (Af(0(2)))* by B* (/=!, . .., /), which is a

boundary component of M*. Applying the argument in §6-1 to this

case, the orbit of the action of N(D2)/D2 x AT(O(2))/O(2) =O/D2 on

F(D2, 50(3)70(2)) is exactly one. So, there exists only the canonical

projection TT as the equivariant map of SO(3)/D2 to 50(3)70 (2).

Therefore M is equivalent to p~l(M?) (J ( U M f f X Q,-) where S=
#,. *=i ^

(W(O(2))n#(A))/A=A/A, and Q£ is a principal S-bundle over

B,*, and M*=M*-IK[0, 1) xB*). And by investigating SO(3)-
•=i /

equivariant attaching maps {^J of p~1(8Mf) to U*SO(3)/AxQ,, we
i = l 5

can see M is equivalent to

(because the attaching map <p{ can be extended over M^xQ,-)-

Here, A-bundle F(D2, ̂ ({l} xB,*)) - >{!} xB*=51 corresponds to

0:3; e Horn (^ (A?1) ; A) if Q»- is a non-trivial 5=Z2-bundle.

Finally, we shall consider the case of M50(3)^^, M u 5 U M(D } = ^.

The results we mention here are the extension of the work of K. A.

Hudson [2] (where she treats the case of the orbit space being simply

connected), and we make use of her idea.

Let x<=M with GX=SO(3). Then SO (3) -action on the slice D5 at

x is given by the weight two representation (Bredon [1], p. 43).

O(2) has three different conjugate groups N0, N19 N2 where NQ = O(2),

N^A-WoA, N2=A~1N1A, for A in §6-1. Using this notation, D5/SO(3)

can be illustrated below (Fig. 7-1), and B{ (i=l, 2) is in the

boundary of M*. Thus the neighbourhood in M* of a boundary

component having two orbit types, (5O(3)/O(2)) and fixed points

can be illustrated as Fig. 7-2. According to Richardson ([8], 5-2),

p~1(Si) is homeomorphic to S4 = dD5. And it is clear that there is no

boundary component with exactly one fixed point (by reason of

Now, we put

A = Sl\J ... u5.UiiUL,U ... ULn

N*=M*-(A(J U A?) (see Fig. 7-2).



SO (3)-ACTIONS ON FIVE MANIFOLDS 709

Fig. 7-1

GX = N, if
Gs = Nj if X*<=B2 (i,je {0,1,2} and i*j)
Gf=SOC$) if
G,-/)2 if

Fig. 7-2

jt e {0,1,2} j, ̂ j,-+i, ji ^j.
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Then, principal A-bundle F(D2) p ~ l ( B ) ) - >B=Af}N* is a trivial
A-bundle or a bundle corresponding to #3; e Horn (7^(5*) ;A)« For,
this bundle is equivalent to 7x A/~> with {0} xD3 identified with
{1} xA by a D3-equivariant map <fi which induces an equivariant
map of M,m(7cs ; 50 (3) /A - >5O(3)/JV, projection). Since we can

3 11 n

assume Nj = NQ, <p must be

0feA) =*»A, «e (tf (A) n 0(2))/A= A/A= {1, *M

In both cases, the equivariant attaching map of P~l(B) over 5 is only
identity map (up to equivalence).

We denote the above B by B{ (z = l, ..., /) for each component.
Here By means {1} xB* in § 6 when there is no fixed point on this
boundary component. And we define 5(z) =0 if p~l(B{) - >Bt is a
trivial bundle, and d ( z ) = l if it corresponds to #;ye Horn (7^(5,.) ; A)-
(5, is a component of {1} xdM* for the collar I xdM* of M* =
{0} X3M*B)

«l+«2 /

For the open neighbourhoods Dint A*, U IntDf, U [0, 1) X B*
8 = 1 J = l k = l

in M* of (Mo,,)*, (MM))* and (MMW)* U (Mco(2)))*= U-Bf, let (M')*
4 4 * = l

be a subspace which is given by removing these open neighbourhoods
from M*. Then we put e = 4, 5, 6 or 7 if ??(«!, ft, a23 ft, . . . , «g3 ft)
= (1, 1, . o . , 1, x, y), (1, 1, . . . , 1, 1, y, x, y), (1, 1, . . . , 1, x, y2) or

(1, !,...,!, y, x, /) for ^eHomC^CC^^jA)- Given r, (<f13 J2),
5(1) + ... +d(/), we can see each equivalence class of homomorphisms
of ^((M')*) to A? is represented by one of the above four types.
That is, {r, (dly d2)5 <5(1) + . . . +5(/), ^} determine M(D 5 up to

equivalence. Moreover, 5(1) + . . . +5(/) +r must be even because of

(xy) aj . (xy\. y'1+M2 = p([«i, ft] -.. K, ]8J) =y (4 = 0, 1, 2).

^+d(l^~T. +d(f)

Let 5f be a boundary component with w fixed points {p± , . . . ,^n}
which are arranged in this order. And let CKO be the

closed are on B? joining p^ and pk+l. (if k = n, then pn+1 = l) As
Fig. 7-2, C4(0 is the orbit space of 5O(3)/^(o xl/^ given by

collapsing 50(3)/JVyj|(|)=({0} U {!}) to 5O(3)/5O(3) X ({0} U {!}).
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Here, Ns is conjugate to O(2), and jk^ values in {0, 1, 2}. Then,

by corresponding each CKO to jk(i^ Bf gives an ordered w-tuple

O/'KO > - • - ? 7*co) sucn tnat Jkw=£Jk+i(f» Jxn^Jnw (because SO (3) acts on
the slice at each fixed point by the weight two representation).

Then we obtain the following theorem.

Theorem 7. Let M be a closed, connected, oriented, smooth 5-dim.

manifold with smooth SO (3) -action, and its principal isotropy group

D2, then the following orbit invariants determine M up to equivariant

homeomorphism (which preserves the orientation of M*)

[g, e, r, (dl9 dz}, (d(i) ; 0'1(0, . . . , y,w)), i = 1, . . . , /}

such that

(i) £6E{0, 1, 2, 3, 4, 5, 6, 7},

(ii) «(0e={0, 1},

(iii) y4(0e{0, 1, 2}, «*=!,
(iv) 5(1) +5(2) +. . . +d(f) +r is even,

(v) £ = 0 if g = 09 ^ + 2^=0 (mod 3)

£e{0, 1, 2} if g=l, d1 + 2dz=0 (mod 3)

£EE{0, 1, 2, 3} if g-^2, d, + 2d2=Q (mod 3)
e=4 if g=l, d, + 2d2=l (mod 3)

SEE {4, 5} if g^2, d, + 2d2=l (mod 3)

e=6 if g = l, d1 + 2d2=2 (mod 3)

£^{6, 7} // g^2, d1 + 2dz=2 (mod 3)

2 = l, or g = Q, d1 + 2d2=2 do not appear}.

Proof. First, if dl + 2dz=0 (mod 3). Then the classification of

p-1((M/D - >(Af)* is reduced to Lemma 7-1, i.e. £GE {0, 1, 2} and

g determine p~l((M')*).

Next, if dl + 2dz=l (mod 3), then we have to compute the equiva-

lence classes of Hom(7r1(M/)*) ; A) which satisfy the condition

p(I>i, &1K, A]... K, j8J)=y-

The similar argument to Lemma 7-1, concludes that the equivalence

classes are (1, 1, . . . , 1, 1, x9 y) and (1, 1, ..., 1, 1, y, x, y).
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Similarly, if d, + 2d2=2 (mod 3), then

?>([«!, &][«» A] K
and the classes are only (1, 1, ..., 1, #, /) and (1, 1, ..., 1, y, x9 y

2).

Thus s satisfying the condition (v) determines^"1 ((AT)*) up to

equivalence. Since M(jD} determine M if r, (J15 d2)> OKO; Q"1(0,...,

7»co) are given, these invariants and #, e classify M up to equivalence.

q. e. d.
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