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Complex Analytic Construction of the Kuranishi
Family on a Normal Strongly Pseudo

Convex Manifold
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Takao AKAHORI*

Introduction

Let (V, x) be an analytic subset of a domain in a complex

euclidean space with an isolated singular point x. Then, we obtain a

real submanifold M by cutting the analytic set by a sphere of suffi-

ciently small radius centered at x. As is well known V defines a

subbundle of fibre dimension n — l, to be denoted by °T", of the

complex tangent bundle CTM of M, where n is the dimension of V.

It is the set of all elements in CTM which are of type (0, 1) In

CTV\M. If V is normal and stein, V is completely determined by

(M, °T") (H. Rossi [6]). So M. Kuranishi considered a deformation

theory of isolated singularities (V, x) by means of a deformation

theory of pseudo-complex structures (M, °T") (M. Kuranishi [4]).

But his result is not definitive enough in the following sense : Since 5b

is not elliptic, he had to use the Nash-Moser inverse mapping theorem,

which does not preserve the analyticity. So he constructed only a C°°

versal family, without putting a complex structure on the family. We

have to take a new approach to remedy this point.

In the previous paper (T. Akahori [1]), the author reformulated

an abstract almost pseudo-complex structure sufficiently close to the

given one by a tangent bundle valued form <p of a certain type and

rewrote the integrablity condition as a system of 56-equations. The

results are formulated in the following two propositions:

Communicated by S. Nakano, January 25, 1978.
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Proposition 1. 6e 1. An almost partially complex structure Tff at a

finite distance from QT" corresponds to <p in F(M, T"(X)(0T")*) one to

one. The following formula determines the correspondence.

*T"={X'i X'=X+<p(X), X^T"}

Proposition 1. 60 28
 VT" is integrable if and only if the following

relation holds :

P(rt=3$V+R,(rt + Ra(ri.

Here numbers given to propositions refer to those given in later

sections.

M. Kuranishi gives the condition equivalent to the above. He

looked for the solutions of corresponding differential equations in

r(M, T'CxX^T")*), where he made an essential use of the Nash-

Moser inverse mapping theorem. In this paper we try to look for

the solutions of P(p) = 0 in the subspace F(M, °T"(g)(0T")*) of

r (M9 T"(x)(0T")*) in case where M is a compact normal strongly

pseudo-convex manifold. In § 1, we shall also have the following

proposition :

Proposition L 7, 1. For all elements <p in T(M5 °:T"(g)(0T")*), the

relation P(^?) = 0 holds if and only if the following relations hold.

and

where L is an operator from F(M? ^''(g^T'')*) to T(M3

linear over the ring of the C°°-functions and Dl is a first order linear

differential operator from F '(M5 »T"®(*T"r^ to F (M, °jT-F(g)A(0Tr)*).

This proposition has nothing to do with normality9 Normality

appears when we study the first order differential operator A- As

was defined by N. Tanaka a compact strongly pseudo-convex manifold
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M is said to be a compact normal strongly pseudo-convex manifold if

and only if M has a global real vector field f such that [f, F(M, °T")] C

r(M, °T") and ^#e(0T';©T';) for every point P of M. On a

compact normal strongly pseudo-convex manifold M there exists a

differential complex of the following form :

0->F(M, 0T")-^F(M, °r-r®(0Tr)*)—r(M,0TI'(8>A(0Tr)*).

Using the above fact, we shall solve the differential equation

and

in F(M. 0T"($<)(0T")*). The following propositions assure that we

can construct a versal family likewise in the case of compact complex

manifold.

Proposition 3. 13. Assuming that (M, ?) is a compact normal

strongly pseudo-convex manifold and dimR M=2n—l>7, the following

relation holds.

uniformly for all <p in r (M, °T//0(°T//)*)3 where m is a non-negative

integer. (The author got the idea of this estimate through the

communication with M. Kuranishi.)

Proposition 4. 1. Denote by F^ (M, °T"(X) (TO *) (resp. F^ (M, F(g)

A (°T") *) ) the Hilbert space obtained by completing F (M, °T"(X) (°T") *)
2

(resp. F(M, F®/\(QT")*)) with respect to the norm || \\^ introduced

in §3. SettingZD^ {9: 9= (H+DD*N)9, <p in

LZD is closed in r"

Then we have the main Theorem in this paper.

Main Theorem 5,2. Under the assumptions that H^ = Q, dimRM

= 2n—l>7 and (M9 f) is a compact normal strongly pseudo-convex
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manifold, there exists a deformation (p(f), complex analytically para-
metrized by a neighborhood of the origin in the euclidean space jf

such that :
1) There exists an element p(0, a F(M, *T"®(°T"}*} valued

function of t of C2-class such that the following relation holds :

and

2) The linear term of (p (t19 t29 . . . , tq) is 2 &^5 where {$,} ̂ ^q is
z=i

a system of basis of Jf and dim 3?=^q.

In § 6? we prove that this family is the versal family of isolated
singularities in the sense of M. Kuranishi.

The assumption of normality of M is not too restrictive, because

Tanaka has proved that the isolated singularity (F, x) defined by a
quasihomogeneous polynomial in a euclidean space has a compact
normal strongly pseudo-convex manifold Msuch that M= 3V, embedded

in a slightly larger open manifold V.

It is noted that H. Gravert and A. Douady constructed a versal
family of isolated singularities in another way. We hope that this
method gives a new insight into the problems of deformation of sin-
gularities (not necessarily isolated).

§ 1. The Boundary of a Complex Analytic Space

and Its Deformation

(1.1) In this section we shall study the boundary of a complex
analytic space and recall its deformation theory developed in [1].

Let Y7 be a complex analytic space of complex dimension n. Let Y be a
relatively compact open subset of Y with strongly pseudo-convex

smooth boundary bY. This means that in a neighbourhood of bY9 we
can find a complex coordinate system (z1} z29 . . . , #„) and a real
valued C°° function r with the following properties : r<0 in Y, r>0
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outside of Y, dr=£Q on bY and {r,.5 } is a positive definite hermitian

matrix on bY. Then Y defines a subbundle of fiber dimension n — 1,

say °T", of the complex tangent bundle CTbY of &F, where n is the

dimension of Y. We call the subbundle obtained as above a partially
complex structure. It is the set of all elements in CTbY which are

of type (0,1) in Y\ i.e., using the notation °T", an element of °T"'

is of the form

where x in bY and we require that

on bY.

(1.2) J- J- Kohn has shown that the methods of harmonic integrals

work on such boundaries and describes the 5&-equations. Thus we

can bring the techniques of harmonic integrals into the study of

isolated singularities. To do this we study the abstract strongly

pseudo-convex manifold owing to Tanaka.

Let M be a differentiable manifold. By a partially complex

structure on M, we mean a pair (M, °T") of M and a subbundle

°T" of CTM, where °T" satisfies the following conditions A. 1) and

A. 2) :

A.I)

A. 2) for any X, Y in F(M, °T"), [X, Y] is in F(M, °r).

M with °T" is also called a partially complex manifold. Let M be a

partially complex manifold. Then there exists the following exact

sequence of vector bundles.

Differentiably, this sequence splits and the splitting commutes with the

operation of complex conjugation. So there exists, differentiable vector

bundle isomorphism

(JL : °r/00T//0eTM/0T'/0°T/'->CTM.
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We shall fix this splitting CTM=°T"@'T"@F, where F= [i(CTM/

°T"00T"'). For each x in M, we define F-valued hermitian form

L. by

LX(X, Y) = iPT[X, Y]F

for X, Y in F(M, °T")3 where by [X, Y]F we denote the projection

of [X, Y] to F according to the above splitting CTM=0T"0°T"0F.

The hermitian form Lx is usually called the Levi form at x. We say

that (M, °T//) is a strongly pseudo-convex manifold (abbreviation : an

SB p. c. manifold) if dim F= I and if the Levi form Lx is definite at

each X) i.e., the conditions x in °T" and [X, X]F = 0 imply X=Q.

If there exists a complex analytic space F and its boundary bY such

that bY is strongly pseudo-convex, then the Levi form Lx is definite

at each x. Conversely if the Levi form Lx is definite at each x and

Y bY is compact. bY is strongly pseudo-convex in Y. It is a theorem

of H. Rossi that if Y is normal and stein, Y is determined by the

pair (bY, °T"). (H. Rossi [6].)

(1.3) In this paper, we shall study the deformation of partially

complex structures on a normal s. p. c. manifold and construct the

Kuranishi family on it. To do this, we shall recall the definition of

a normal s. p. c. manifold.

Definition 1.3.1. An s.p.c. manifold (M, °T"') is called a normal

s.p.c. manifold if and only if there exists a global real vector field

g on M such that

[£, T(M, °T")]cF(M, °T"), ̂ Re(°T;0°T;) for any p of M.

Example. A typical example of a normal s. p. c. manifold is a

Brieskorn variety. Let f(zl9 z29 . „ . , £n) be a weighted homogeneous

polynomial of type (a13 a2, . . . , <zn), where a19 a2, . . . , an are positive

rational numbers (Milnor [5]). By definition the polynomial/ satisfies

the equality

r f c/«i c / « \ r f - s \
f(e Iz19 ..., e X) = * /(*« • - - > *„)

for every complex number c. Clearly we have /(O) = 0. We assume
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that the origin o is an isolated singular point of /. It is easy to see

that the origin is the only isolated singular point of /. We put
Y=f~1(Q), and for every positive number e we denote by Me the

intersection of the complex hypersurface /^(O) with the sphere

/S2""1^). Then M is an s. p. c. real hypersurface of Y. We shall show

that this s. p. c. manifold M is normal. Define a one parameter

group of holomorphic transformations of C", ?„ by

/ \ / / /\ f tj—l/a.rt (z) = (zl} ..., zn), Z;=e X--

Clearly r( leaves invariant Y, S2n~l(e) and hence M. Let f be a

vector field on M induced by the one parameter group. Then ? is

a real vector field and satisfies the relation

0T")]cF(M,

i. e., ? is the real part of a holomorphic vector field and <

°T^) for every point p on M.

(1.4) Let (M, f) be a normal s. p. c. manifold. Then there

exists the following bundle isomorphism.

We shall fix the splitting CTM="T"@*T"©F newly, where F=/j(Cf).

Using this splitting, we define a first order differential operator

°T")-»r(M3

by

for all M in T(M3 °T") and X in T(M, °T"). This map is well

defined since the relation. [/X, tt]0;r, = /[-X, w]0?// holds for all C°°

functions /, X in F(M, °71-r) and M in r(M,°T"). Here by [X3 w]0f//5

we denote the projection of [X, w] to °TX/ according to the above

new splitting CTM=°T"@°T"®F. Then we have

B. 1)

B. 2) [X, Y^u=X(Yu)-Y(Xu),
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where u in T(M, 'T"), /in T(M, C), X, Y in T(M, °T") and we

put XM = £M(X) = [X, M]v/.

In fact, from the relation [X, /M]= (X/)w + /[X, M], we have

So the relation B, 1) is proven. From the Jacobi identity [[X, Y], w] =

[X, [Y, *]]-[y, [X, M]], we have the relation [[X, y], u\t =

[X, [Y3 w]]0^— [y* E^J "]]<>,,• According to the new splitting, we

have the relation

[X, «]=[X, «]V+[X, u^+CX, «],

and

[y, M]=[y, M]OT//+[F, M]^,+ [Y; «],.

So we have

IT,

(From the relations [£, T(M, DT*)]cr(M, °T") and [r(M, °T"),

r(M, °T")]cr(M, °T").) The relation B. 2) is proven.

(1. 5) From the relation B. 1) and B. 2), we can define an

operator Dt for each p>\ from T(M, °f"(g)A(T")*) to T(M,
#+i _ #
A(°T")*) as foUows. For any <p in F (M, °T"(X)A(0T")*), we set

ZK-i) l+1x l .p(xu . . . ) X,..., x>+1)

l, xj,..., x,,..., x y > . . . , x,+1)

where X,. are in T(M5 ̂ T") and we put Xu = Du(X) = [X, M]O^.

Then we have the following differential complex.

p
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Especially we have

, Y]).

(1.6) Now we shall recall results obtained in [1]. Let (M, °T")
be an abstract s. p. c. manifolds. Then we have

Proposition 1. 6. 1. Setting T' = °T"®F, an almost partially complex

structure 9Tff at a finite distance from QT" corresponds to <p in

F(M, T'(X)(0T")*) bijectively. The following formula determines a

bijective correspondence.

•T'={X+<p(X) : XE?T}.

Proposition 1.6.2. *T" is integrable if and only if satisfies the

following relation.

where

and

For the proof, see Proposition 1. 1 and Proposition 2. 1 in [1].

(1. 7) We shall solve this first order non-linear differential equa-
tion />(i0)=0. But it is difficult to solve this in T(M, T^CT")*)
since 5T/ is not elliptic. We shall look for the solution of p(<p)=Q on
a restricted space.

Proposition 1. 7. 3. P(p) - 0 holds for all <p in F(M, °T"(X) ("T') *)

if and only if Dl<p+R2(<p) = § and L = 0, where we put Lcp(X, Y) =

Proo/. The relation P(p)=0 holds if and only if

and (P(^))jp=0, where by (P(^>))oT, we denote the projection from

T(M5 T^ACr)*) to rCM/T^ACr)*) according to the splitting
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CTM=0T"®°7"'®F and by (P((p))f we denote the projection from

F(M, T'(g)A(T")*) to r(M, F(g)A(°T")*) according to the splitting
CTM=°T"@''T"@F. We shall compute the relations (P(p))0f, = 0 and

= 0 for 95 in

, Y]r,+ [X, p(y)]r'-p([X, Y])

, Y]OT//

) + *,(9>)(X, Y)
Y]r,+ [X, p(r)]T,-^([X, Y])),

, Y).

So Proposition 1. 7. 3 is proven. Q,. E. D.

§2. The Complex (F(M,F®/\(*T"}*\d^}

(2. 1) In this section we shall define a differential complex

(F(M, F(g)A(0T")*), d^). By F(M, ^®A(°T')*) we denote the
following

We define a first order differential operator 3F from P(M, F) to

T(M, ^(X)(°T")*) as follows: For any element u P(M, F) we set

for X in F(M, "T"), where by [X, M]F we denote the projection of
[X, M] to F according to the splitting CTM=aT"@°T"@F introduced
in §1.

(2.2) Then we get the following relations C.I) and C. 2).

C.I)

C. 2) \_X, Y}u=X(Yu)-Y(Xu),

where u is in P(M, F), f is a C°° function on M, X, Y are in
F(M, "T") and we put Xu = dFu(X) = [X, «],.
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Proof. In fact from the relation [X, fu\ = Xf*u+f\X, u~\, we

have

[X, Ju]r=Xfu+f\:X, u]F.

So we get the relation C. 1). From the Jacobi identity, we have

[[X, Y\, «],= [X, IT, «]],-[y, [X, «]],.

(M. f ) being a normal s. p. c. manifold, we have the relation

IT, «] = IT, «],+ [T, ^]or//?

for all Y in T(M, °T") and u in F(M, F). (In fact for each u in

P(M, F) there exists a C°° function M' on M such that

u=u'£.

Therefore we have the relation

because the relation [r(M, T"), ?]cr(M, °T") holds.) So we

have the following relation :

for all X, 7 in T(M, "7").

So we have the relation C. 2).

(2. 3) From C. 1) and C. 2), we can define a first order differential

operator 3« from F(M, F(g)A(0T")*) to F(M, F®/\(*T")*) as

follows: for any <l> in T(M, F(X)A(T")*),

1 , . . . , X,,..., X,+1)

,, x,], X M . . . , £,...,
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where Xf's are in F '(M, °T") and we put

Then we have the following differential complex

(2. 4) We shall study the ^'-cohomology group. We set a linear

map r, from T(M, A(°T*)*) to T(M, F(g)A(°T")*) as foUows : For

each <f> in T(M, ACT")*), we set

Then the following diagram commutes :

p 3irt *+i
, ACT")*) -^ T(M, ACT")*)

(In fact for any <p in T(M, ACT")*), we have

U X,,..., Xy , . . . , Xf+1)fL

-, xj,..., x,,..., x,,..., x>+1)
,t (xu x2, . . . , xjt . . . , x,+I) £

, ^-], • • • , x,, . . . , X,, . . . , x>+1)

Xu X,,..., X,+1),

for any X,. in F(M, °T"). For the details see T. Akahori [2].)

(2. 5) Under this situation, we have the following Proposition

2. 5. 1.

Proposition 2. 5. 1. The map rt induces the following isomorphism :
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Ker

Proof. From the fact that tt is an isomorphism from F(M, A

("T)*) to F(M, F(x)A(°T")*) and from the relation fy>-Tt = Tt+l-dp,

we have our Proposition. Q. E. D.

(2. 6) Now we shall introduce a first order derivation L, on

T(M, ^(g)A(°T")*). For each u = u'®£ in F(M, F®/\(°T")**) with

«' in T(M, ACT")*), we set

u X2, . . . , X,)

= (fM'(X1, X,,..., X,)

+ L(-i)V([f, x,], x15..., x,,...,
>

We consider wx as an element of F (M, A(CTM)*) according to the

splitting CTM=°T"®QT"®F. Then the above definition of L, is

rewritten as

Therefore L? is nothing but the Lie derivation in differential geometry.

Then N. Tanaka proved that there exists a hermitian metric g on M

such that

in [3]. So we have the relation

for all w, M7 in T(M3 F^AC'T')*), where by < , > we denote the
inner product defined by the above metric g.

(2.7) We shall define an L2-norm on F(M, -F(X)A(°T") *) by the

above inner product. Then v — 1 Ls is a self adjoint operator by

Proposition 3. 1 in [3]. Moreover we have the following Proposition.

Proposition 2. 7. 1. I/
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then we have

where 5$(p} denotes the L2-adjoint operator of d(/^ and p denotes a non-

negative integer.

Proof. Since L^ is a Lie derivation, we have

T , 300 _ 3C/0 . Jl^^'OF —OF • J^,£.

Therefore it suffices to prove that

In fact we have

for all p in T(M3 F(x)A(°r')*) and ^ in T(M3 F^AC^)*). This

proves the proposition. Q. E. D.

(2.8) We speak of the harmonic theory on T(M3

by J. J. Kohn. In particular there exist the Neumann operator NF

and the harmonic operator HF with the relation I=HF+OFNF. From

Proposition 2. 7. 1 it follows that Lf preserves the space of harmonic

forms, and the following Corollary 2. 8. 1 holds.

Corollary 2. 8. 1. The following relation holds.

§3. A Priori Estimates for Dp

We shall prove some a priori estimate in order to construct the

versal family. The proofs of the estimates are very complicated

exercises in integration by parts. To write down equations rather

shortly, we shall state some notations.

For any e>0 there exists K>0 such that for all positive numbers

a and 6, ab<sa2+Kb2. We shall write this relation as
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ab<(s.c.}a2+(l.c.)b2,

where (/. c.) stands for "large constant" and (s. c.) stands for "small

constant" with the understanding that (s. c.) may be chosen as small

as it is necessary if we take (/. c.) sufficiently large. If A and B are

real-valued functions on a set S9 we use the notation A<B to mean

that for some c>0, A(a)<cB(a) for all a in 5. If A and B also

depend on other parameters, we shall say A<~B uniformly for a in S

to indicate that the constant c is independent of a, although not of

the other parameters. Further, we write A~~B to mean that A<B

and B<A.

As usual let C~(R2n~1} denote the space of C°° functions with

compact supports on a euclidean space R2n~l. For each non-negative

integer m, we define the Sobolev norms || ||(W7) on (^(l?2""1) by

ii/lllo- 2 \2 .\37dx1 f(x)\2dx,
\l\&njR2n-1

where by / we denote a multi index (z'15 z'23 . . . , z,), I<ii<i2<. . .<
it<2n—l and by dl/dxl /we denote

ai/3x{3xl...3xi /,
' ll *2 *l J)

where by {xt} i^-^n-i we denote a real coordinate system of R2"'1.
Let [Uk, hk}k€=K be an atlas of M such that K is a finite set and

such that each Uk is homeomorphic to R2n~l. (We are assuming that

M is compact s. p. c.) Let [pk] be a partition of unity subordinate

to the atlas. For each k, take a moving frame (e\, ek
25 . . . , ^..j) of

QT"\Uk and a moving frame (e\, e*9 . . . , ek
n_J of "T1*!^ such that

[e?, ^>=^'=I^3.-.^ i, ^=1, 2 , . . . , w - l . By Jq we denote the set of
all ordered sets (z"15 z'23 . . . , iq) of integers with 1 <z'i</2< . . . <^iq<n— 1.

For any 9^F(M, ^(gJAC0^)*), ZeJ' and / ( !</<w-l) , define C°°

functions y* z on C/t by

where /= (z\, z"25 . . . , z"g). Using these functions, we define the Sobolev

m-norm || ||U) in T(M, ^(gJAC'T')*) by
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Moreover we define norms || ||'w and || ||^j on F(M, °T(X)A(0T")*)

by

I. j, I. k

+tzt

and

», y, i, -f. *

+ S llft«{3(tf.,)°Ar'l!!,-.;././.*
+ 2 llftW^i)°*rT<

i. ./,/.!.*

(From now on, we omit ph and /^r1 for brevity.)

J. J. Kohn [3] has shown that the methods of harmonic integrals

work on an abstract s. p. c. manifold. In this section we assume that

(M9 f) is a normal s. p. c. manifold of dimRM=2n— 1>7. Then we

have the following Proposition 3. 1 by Kohn's arguments.

Proposition 3.1. The following estimate

holds uniformly for all ^eT(M, °T//(X)A(07"/) *), where Df is an

adjoint operator of D{ with the above Sobolev Q-norm, i=-\ or 2 and

we put D* = D*.

Proof. We only deal with the case i=l. The case i=2 can be

shown analogously. For <p in /^(M, °T//(x)(0T//)*)5 we have the relations

(3. 1) (A?) («{, «}) = [«J, P(«})]

where sk
iijtlimin denote C°° functions on [7 ,̂ and

(3. 2) (£*¥>)'= S (- 2 «}?>{..+ 2 «....<.)«{,
/ «" «, «

where £{,„.„ denote C°° functions on Uk by a simple computation using

integration by parts. From (3. 1) and (3. 2) combined with the rela-
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tion ab< (s. c.)a2+ (I. c.)&2, we have the following.

(3.3) HAVII

i

We shall recall Kohn's argument. The right hand side of (3. 3)

becomes

(3. 4) Z {

While from the relation [e], £*]F=V— 1 5,>yf,

(3. 5) <*{#.„ ^{,,>=<«>;,/, «>{.,>+ (?
holds integrating by parts, where i^j. From (3.3), (3.4) and (3.5),

we have

(3.6) (o)

I I t+i

Furthermore from the relation [_e], e^F= V— 1 5,.yf,

(3. 7) (ejtf.,, «{<,> = <e>l,, ^

and

(3. 8) <*>?. ,? «>}. ,> - <g}p* y,

From (3.6), (3.7) and (3.8), we have our Propositon. (For the

details see Proposition 5. 1 in J. J. Kohn [3].)

In this section we shall give more detailed estimates to construct

the versal family.

Proposition 3. 2. The following estimate

holds uniformly for all (/> in F(M, ^(gJAC0^)*), where m is a non-

negative integer and i=l or 2.
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Proof. It suffices to prove the inequality for forms $ supported

in a patch Uk. Let {^J i^,-^2«-i be a real coordinate system of Uk.

We define a differential operator PL on F0(Uk,
 0T''$<)A(07™)*) to

itself as follows: For <p in ro(E74, °rr(g)A(0rr)*), we put

(PL#)*J=3/3^ #.„

where I denotes a multi index (i1} i2,..., / /) . Further we put
i

s= \I\ = S ** of course

/.I.I

We only deal with the case i= 1. The case i=2 can be shown
analogously. From Proposition 3. 1, we have the estimate :

uniformly for all ^ in rQ(Uk,
QT"®(*T")*}. From the relation D*PL =

PLD0*+[D0*, PJ, we have that

(3.10) ||PLZ)*^||(0) + (I- c.) ||^|li)^||A*Pi,^||2(o)5 1 ^ 1 — s>

uniformly for all <p in rQ(Uk,
 0T"(x)(0T") *) by using the Schwarz

inequality. Similarly we have that

uniformly for all <p in FQ(Uk) °T"(x)(0T")*). From (3.9), (3. 10) and
(3. 11), we have

uniformly for all d> in F0(Uk9 *T"®(»T}*}. Therefore we have that

(3.13) ||A¥IIU + !iA0H2u)+ (/. OII#llaw>uSJI^!l3),

uniformly for all <p in FQ(Ut9
 QT"®(°T")*). And from the relations

e^PL = PL^e\+\ek
i9 PL] and e*.PL = PL.e*+[e;, PJ, we have

(3.14) 2 !|P^C)+(/.c.)

uniformly for all <p in FQ(Uk, °T"(X)(0T")*). From (3. 13) and (3. 14),

we have our Proposition. Q. E. D.

From Proposition 3. 2, we shall prove the key estimates.
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Proposition 3. 3. For any non-negative integer m, the following

estimate

holds uniformly for all <p in F(M, ^''(gK'T'')*), where D denotes

In order to prove this proposition, we shall prove some lemmas.

Lemma 3. 4, For any non-negative integer m, the following estimate

holds uniformly for all $ in P (M,

For the proof see Theorem 2.4 in [2]. In [2] the estimate of

the above type is proved for scalar valued forms. The proof for

°T"-valued forms is similar.

Lemma 3. 5. Under the above situation, the following estimate holds

uniformly for all $ in FQ(Uk,
 QT"®(0T"D :

Proof. From the definition, we have

From the relation PLD = OPL+ [_PL, D] and that [PL, D] is a differ-

ential operator of order |L| + 1, we have

\L\=m l.j

\L\ = m l.j

by using Schwarz inequality and the relation ab< (s. c.)a*+ (/. c.)b2.

Therefore we have Lemma 3. 5. Q. E. D.

Using Lemma 3.4 and Lemma 3.5, we shall prove Proposition

3. 3. It suffices to prove the inequality for forms ^ supported in a
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patch Uk. By Lemma 3. 4 and Lemma 3. 5, if the following inequality

(3. 15) holds, our Proposition 3. 3 is proven.

uniformly for <f>s=rQ(Uk, 'IP® (TO*).

In fact setting <p = PL<p in this inequality, we have the following

inequality with </><=ro(Uk,
 QT"®(°T")*)

(3. 16)

And so

(3.17)

On the other hand, the following relation (3. 18) holds for all <p in

(3.18) s S
\L\<,m l.r

~ 2 S
|L|£m l.r

In fact from the relation ek
i'e^PL = PLek

ie
k
j+lek

ie
k
j, PL~] and Schwarz

inequality, (3. 18) follows. Similarly we have

(3. 19) £ S !l(^P^)tlico)+ (/. ̂

(3.20)

and

(3.21)
l<m l.r

|t|i» l.r

for all 0 in r,(C7M °T"®(0T')*). From (3. 18), (3. 19), (3. 20) and

(3. 21), we have

(3.22) S IMa+C'-cOIMIUD

From these relations and Lemmas 3. 4 and 3. 5, we have Proposition
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3.3.
We shall prove the estimate (3. 15). From Proposition 3, 1 applied

to A and taking into account the relation D2Dl = 0 as follows from
the normality of (M, °T"), we have the relation:

(3. 23) 11 A^l I'c2o)<! I A* A^l I2co) +1I A^i I2(0),

for all v^r(M, °T"(x)(°T")*).
We put

(p (#*) = 2 (pi i&\)
i

Then

From this and (3.23), we have

(3.24) sts i !«•;(«:

by Schwarz lemma and using the relation ab<(s, c.}a2-\- (I. c.)b2. On
the other hand, since

we have

(3. 25) = -

We shall compute ||DD*^||2(0) by this formula.

Lemma 3. 6.

. ,
m i / /<n

Proof. From (3. 25) we have Lemma 3. 6 by using integration by
parts. Q. E. D.

And by a simple calculation we have :

Lemma 3. 7.
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We shall prove the following estimate.

Lemma 3. 8. The terms

2Re s <«;«!<„ *?«:<•
i, Z>n

-2Re S <«Wpi.,, «?«}<„
f . / > n

e estimated by (s. OIMI(o>+ (^ c-

Proof. We only prove the estimate

2Re s <*{*>;;.„ ^J<.>
i , / > n

<2Re 2 <«>i<.

uniformly for all <p<=r,(Ut,

We count Re^JeJ^,, e*e*^* „> by integration by parts.

(3.26) Re<«{e{< „«{«;<.>

-<Re[«f, e}]^i.» «!<->+ <

The term Re<[eJ, e^]ek,<pk
m „ e*^.fl) can be estimated as follows:

= -Re<[e}, «{]<» «K<-

So we may neglect this term.

Therefore from (3. 26) we have

(3. 27)

+ (S.C.)IMIS
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Furthermore the term

can be estimated as follows :

»U «}«:<. > + Re<[«J,

»*,,;, «»;;.„>+ (5. c.

. c.

The term Re<e*e*^,,, ejejpj,..) is estimated as follows.

< - Re^^-Jpi.,, e>i..>+ (5. c.) ||p||5+ (/. c.

(5. c.

\e\, g{]

>+ (*. c.) IWIS+ (/. c.) \\<p\\*w.

So we have Lemma 3. 8. Q. E. D.

From Lemma 3. 6, Lemma 3. 7 and Lemma 3. 8 we have the

estimate (3.15). Therefore we have Proposition 3.3.

From Proposition 3. 3 we have the following key estimate.

Proposition 3. 9. Under the situation in Proposition 3. 3, the follow-

ing estimate holds uniformly [i<=r(M,

where N denotes the Neumann operator for G and m denotes a non-
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negative integer.

Proof. The following estimate is proved in Proposition 3. 3.

for all <p in F(M, °7"(g) (°T*)*). Setting <p = Nn'm this estimate, we

have

where # denotes the harmonic operator for n. While

and

holds uniformly for p in F(M, °T''(x)(0:r)*). So Proposition 3.9 is

proven.

We shall take the Hermitian metric along the fibres of T'=°T"@F,
i

and make the space of C°°-sections of T^AC^)* pre-Hilbert spaces.

We take the Sobolev n-norm on there. We shall also introduce the

adjoint operator 5*, of 3T,? making use of this metric, and consider

the sub-elliptic differential operator Dr/ = 3?/(0-^) + 5?rl)-3?/('"1). By

a similar argument we have the following Propositions.

Proposition 3. 10. The estimate

holds uniformly for all p in T(M5 7v(g)(07T-r)*) and for all m non-

negative integer.

Proposition 3. 11. The estimate

holds uniformly for all p in T(M5 T®(?T)*) and for all m non-

negative integer, where NT* denotes the Neumann operator for DT'.
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Proposition 3. 12. The following estimate

holds uniformly for all <p in T(M, °f"(g)(0:r)*).

Proof. In fact from the relation

*,(?») (X, Y) =

and

we have

. .
l.m.p, q
P',1'

S BJ...>..i>,.f,(e>;.t)(e>J,.,0+ S
l.m.p.q l.p.q
p',q' P'.q'

where AJ f m i # i g i # / i 4 / Bk
ltmti>iqtp,iq, and CJ;^ ,,,/,,/ denote C°° functions on J7A.

Therefore if m>n, Proposition 3.12 is proven. (dimRM=2n— 1)

Proposition 3. 13. Assuming that (M, f) « a compact normal

s.p.c. manifold and dimRM=2n—l>7, the following estimate holds

uniformly for all <p in T(M3 °T(

Proof. In Proposition 3. 9, we have

uniformly for p in T(M, °T"®(°T")*). Setting fji=D*R2((p) in this

estimate, we have

From Proposition 3. 12 and this estimate, we have Proposition 3. 13.

Q. E. D.
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§ 4. The Space ZD. and the Closedness of LZDl

In this section we shall study the linear operator L introduced in § 1.

We denote by /^(M, °f"(x)(0r')*) (resp. /^(M, F(g)ACn*))
the Hilbert space obtained by completing the pre-Hilbert space

consisting of "I"® fT") "-valued C" functions (resp. ^(X)A(0T")*
valued C°° functions) by the norm || \\"M introduced in §3. We put

ZDl= [9 : 9= (H+DD*N)<p,

Then we have the following proposition.

Proposition 4.1. The set LZ^ is closed in /7wl)(M, F(g)A (°?")*).

To prove this proposition, we make some preparations.

Lemma 4. 2. The following diagram commutes.

F

L. I3'
°T" —> F&CT")*

07"(8)(0T')*

where we set L0 as follows : ^br eacA ^ in °T", we put

where X in QT". And we set L2 as follows : for each <f> in

we put

where by (8^)<p(Xu X2, X3)), we denote the projection of 5^)(p(X1, X2, Xs~)

to F according to the splitting C®TM="T"®°T"®F introduced in

§1-
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Proof. Of course the above maps LM L2 are well defined. Espe-

cially L0 is a C°° bundle-isomorphism since (M, °T") is an s. p. c. Now

we shall prove our lemma. For each 0^F(M, °7"), we have the

relation :

(4.1) (3«.L00)(X, Y)

, Y],-L00([X,

where X, yeT(M, T"). On the other hand

(4.2) LD0(X, Y) = [X, Z)0(Y)],+ [00CX), Y],

where X, Y^T(M, °T"). From (4.1) and (4.2), we have the rela-

tion :

(5«.L.-L..D)0(X, 7)

= -[X, [7, <?],],- [[X, <?]„ Y],+ [[X, Y], (?],

, Y],
, y], <?]

for any X, Y^T(M, °T"). Therefore we have

3«.L0=L.Z).

Similarly we have

3».L=L,.A.

Therefore we have our lemma. Q. E. D.

Next we shall prove that ZDi is closed in F'^(M, °f"(g)(0T")*).

The linear operator D*DN is a continuous operator from jT*B) (M,
°T"'(X)(0T") *) to itself. (In fact the following relation assures this.

for all y in r"M(M, °T"(g)(0T")*).) Therefore

closed in r'w(M, °T"(g)(0T")*).
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Similarly we have the following :

The set Z,« = {<p : <p = (Hf + «> * jv,) 9}<p(= r'M (M, F® A (° T ) *} is

closed in r?m)(M, F(g)A(°^)*).
Now we shall prove Proposition 4. 1. It suffices to prove the

following relation :

(4. 3) LDD*NF"M (M, °T '® ("7") *) = 3«3« * Nr F'w (M, ^(g) A ("T") *) ,

since Hr"M(M, 07"'(X)(°T")*) is a finite dimensional vector space and
LZ0i is spanned by LHr"M(M,°T"®(°TT) and LDD*Nr'i,(M, rT®

(°T")*). In fact the set 8y5P*NFrM(M, F®/\CT")*) is closed in

r^(Af, F®/\(°T")*) (because of the relation:

3«3« *JV,r'w (M, F(g) A Cn *) = 2i« n Ker H,.)

Now we shall prove (4.3). For any p in rj.)(Af,°T"(8)(0T')*), we

have that

And so

Hence

LDD*Ny e rj'm) (M, F® A (°T") *) .

On the other hand, it follows from Lemma 4. 2 that

Hence

LDD*NF'^(M, 0T®(°T')*)^d?dp*NFr"w(M, °f"(x)(0T")*).

Conversely for any <f> in ra
M(M, F®/\(°T")*), we have that

= L • Z>D*2VZ) (L,-^ * 9̂!') = L . DD*N(D -L'1

Thus, if we have the relation

(4.4) \\D-Lrf?* Nf<p\\l,
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uniformly for all <p in /^(M, F(g)A(°T")*), our Proposition 4.1 is

proven.

So it remains to prove (4.4). Let {Uk}k^K be a system of finite

coordinate covering of M and {el}i=li2 ..... „_! be a moving frame of

°T" on Uh. For each <p in r^(M, F®/\(°T")*) we define C°°

functions (JV^i0*^)* on C74 by the following formula:

Let ro(Uk, ^(xK0T")*) be the space consisting of F(x)(°r) "-valued
C°° functions supported in Uk. For each <p in F0(Uk9 F®(°T")*), we

set

where #>* is defined by 9??=^(e*). Similarly we set

(*»(*{) =*Itf.

The differential operators e*> e^ can be extended to the differential

operators on F"M(M, jF(x)(0T")*) as follows:

Let pk be a C°° function supported in Uk such that

where {FJ^ex is a refinement of {t/A}iex such that VkcUk. Then

we define ^ as follows: for each p in T(M,

Similarly we define ek
a as follows: for each <p in T(M? F(x)(°T'')*),

(«?>)W)=^(ft^).

Now to get (4. 4) , it suffices to prove the following :

(4.5)

uniformly for all </> in F'W(M, F®/\(?T)*). With the above nota-

tions (4. 5) can be written as follows.

(4.6) \\e^

(4.7) K

(4.8) ||
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and

(4. 9) ll^l^^^ll

for all a, ft r=\, 2, . . . , w-1, &GEK and 0 in T^ (Af,

Here we shall prove only (4.6), the others being proven similarly.
2

We fix k once and for all and suppress the suffix k of <pEiF (M,

(°T)*) till the end of the proof and ek
a = ea.

First from Proposition 3. 2 we have,

for all (p^F(M5 F(X)(°T")*). Then putting

where <p<^F(M, ^(g)A(T")*)3 this gives rise to the inequality

(4.10) ||WrWVIlM

< C {| |3i«e,erN,3w VI !'w + 1 13;« A^Si" VI 1 1» + i l« A « VI I

for all 0 e r (M, F<g) A (° T") * ) . While

(4. 1 1) &pe,f!,NW<I>=e

\_ef, S^1'] has the estimate ;

")*). Hence

\\[ef, 3?']erA^« Vllw <C|KJV^ Vll'w

On the other hand, as for the first term of (4. 11), we have

Then we get similarly

I \e,\®\ eJNj? VI I w < C] |N,3«
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and the first term becomes

efrNidpdp*^,

and hence can be estimated as follows.

er5pNF3y VI I <-> = I 1 V,^ W *^i I w

<C'| W |'(,B).

Next we show that the second term of (4. 10) can be estimated

as follows:

We note that

(4. 12) %epTN&(l> = e$erN&<I>+ [3*, e^erNFd*F<I>.

The principal term of the differential operator [5*, e^\ has the follow-

ing form :

Z0& +!>$*,+£ A,
; j

where aj, e] and c,- are C°° functions supported in Uk and L^ is the

Lie derivation defined in § 2.

So we have

1 1 [3;, ef]eTNJM\\M < C\ \e,NF5*d>]\'M + C'\ \L,er

We estimate the latter term using the following relation :

(4. 13) L;erNFd*<p= erL,NF3^+ [L,, eJNJW

Since (M, f ) is a normal s. p. c., we have that the principal part of

[Lf, er] is 2aj-6jj where a'j are C°° functions supported in Ut. Then
>

from Proposition 2. 7. 1 and Corollary 2. 8. 1, we have

< I |eri,A^3« V! i w + 1 1 C^w cr

< | !er^FLf5« VI I w + C| |«> VI I

While from the estimate
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we have

So it follows that

And the second term of (4. 12) can be estimated by the same method

as above.

Then we get the relation :

Therefore Proposition 4. 1 is proven. Q. E. D.

Remark. For all pe/^CM, F®/\(°T")*) with 3®p=0 and

HF<p = Q, we have that

(p £E LZD .

Proof. From the assumptions 5^<p=Q and HF<p=Q, we have the

relation :

by Hodge decomposition. Moreover since <p^F^(M} F(x)/\(0T")*)

we have that

from the proof of Proposition 4. 1.

Proposition 4.2. There exists a closed subspace C2 of ZD such that

L\c is an isomorphism from C2 to LC2 = LZD, where L\c denotes the

restriction of L to C2.

Proof. We set C1 = KerLn2 D l and we shall define a closed sub-

space :

C,= [x: x<=ZDi, (x, y )=0 for all
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where ( , ) means the inner product defined by the ]| , ||(m) norm.

Then we have the orthogonal decomposition of the Hilbert space :

'"D — ^Ivi/ 2

and L\CZ is an isomorphism. Q. E. D.

By A: LZD^C2 we denote the inverse of L\c^ This map A

plays an essential role in our construction of versal family of isolated

singularity.

§ 5. Construction of the Versal Family

In §3, we formed the adjoint operator 5$* of 5$ and set up the

Laplacian

n=a$r»-3*,«-» + a*P-d$.

As is usual in the theory of harmonic forms for the sub-elliptic differ-

ential operator D, we have the harmonic space Hty in r(M,

T'^^T")*). We shall introduce a first order differential operator &

from T(M, T'(x)(0T")*) to F(M, °T"(x)(0T")*) as foUows : For each

$ in r(M, T'(x)(0T")*)5 we put

where 6, is in F(M, °T") such that

[X, 0,],= «6(X),,

for any X in F (M, °T"). With the above situation, we have the

following Proposition.

Proposition 5. 1. The map 3? \H($, being restricted to Hty is

injective.

Proof. We assume that J£(p=Q and (p<^H(f,. From the definition

of J^5 we rewrite these relations as follows

and
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So we have that

Therefore we have our Proposition. Q. E. D.

We use the notation tf for &(H($). The Main Theorem in this

paper is the following.

Theorem 5.2, Under the assumption H(fi=Q, dimRM=2n—l>l

and that (M, f) is a normal s.p.c, manifold, there exists a deforma-

tion (My 5°(0T//) which is parametriqed complex analitically by a

neighborhood U of the origin in the euclidean space ffl such that the

following relations A, 0), A. 1) and A. 2) hold.

A. 0)

A. 1) For every tE^U, pCOe/^CM, ^''(g^T'')*) satisfies

A. 2) The linear term of <p(t1} t2, . .., tq) is equal to JHiqtq,1=1
where {^} i^^q is a basis of ffl, where q=dim 3C and (t19 t2, . .., tq)

are local coordinate of U.

Here m is a sufficiently large integer, in particular m>n+2.

Proof. We shall prove this theorem by using Kodaira-Spencer's

methods [8] and the a priori estimates in §3. Let <p(t) be a

T(M, °T"(x)(0T")*) valued holomorphic function and

be the power series expansion of <p(f) with ^(0)=0. For simplicity,

we abbreviate

9>(0 = Zpn(0,

where ^(0 is a homogeneous polynomial of degree ^ in (t19..., tq).
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Let

For any T(M, °:T"(g)(0T")*) valued holomorphic functions

in (£1? . . . , £,), we indicate by <p(t)=<f>(t) that the power series
V-

expansion of cp(t)—(/>(t) in (tly . . . , £g) contains no terms of degree

less than fjt.

Clearly A. 0) and A. 1) is equivalent to the system of congruence :

(5.1.1), Ap

and

(5.1.2),

where <p« (t) ZE T^ (M, °T"®(°T")*) ( jM= 1, 2, . . . ) • Since Jia(p) is a

second order polynomial with respect to <p, we have

(5.2)
i*+i

Hence we may rewrite (5. 1)^ as follows.

(5.3.1),

and

(5.3.2),

Since

and

where

^(Oer^CM, 0T"(x)CT")*),

these are equivalent to the following :

(5.4.1), A^(

and



824 TAKAO AKAHORI

(5.4.2), 1^(0=0

with ft(Oen.,(M, °T"(x)Cr)*) (0=1, 2, ...).
Now we shall construct y>,(0 by induction of //. We set ^0=0

9

and prove that pi(0 = LA& satisfies (5.4.1), and (5.4.2),, where
A=I

{&} is a basis of J^.

In fact from the defininition of 3ff : for each ^ejf, 3$p = 0 and
, 0T"®(°T")*). So we have that for each pejf, Ap=0 and

Suppose that ^-1(0 satisfying (5.4.1), and (5.4.2), are already

determined. We want to define a homogeneous polynomial $0,(0 of
degree /* in (£13 ..... , tq). For this first we shall study the following

differential equation :

(5.5)

Under our assumptions H($=Q and dimRM=2n— 1>75 we shall
show that the partial differential equation (5. 5) has a solution. We
shall recall a result obtained in [1].

Lemma 5.3. For any element <p in T(M3 T/0(°T//)*)3

For the proof see Theorem 3. 10 in [1], This lemma holds for any

2 times continuously differentiate (p. Therefore we may assume that
for each V^F'W(M9

 QT"®(QT")*}

3^(90=0

From the assumption P(y?''"1(^))=0, we have
p

(5.6) 3?HP(^-1(0))=9r^-1(0(P(^"l(0))=0
/• + !

(Lemma 5. 3).

We put (p (f) as follows :

Then from the assumption jFJ^/^0 and (5.6), 0(0 satisfies (5.5).
Hence J2?0(0 also satisfies (5.5). Namely
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(5. 7) 3?)^(0+P(^~1(0)=0.
/« + !

Noting that J2^(0 is a °:T*(g) ("TO*) -valued global form, we rewrite

this relation according to the splitting T' = °T"@F as follows.

(5.8.1)

(5.8.2)

From these, we have

(5. 9. 1) ATA*A^(0 +ND*P(<p'-1W = 0,
0 + 1

(5.9.2)

which in turn imply

(5. 11)

where H denotes the harmonic operator for

From (5.11), it follows that the //-th homogeneous term of

LND*P((p^l(t}) is in LZ^, where ZDi is the sub-space of r"M(M,

°T"®(°T")*) introduced in §4. In fact from (5.11), we have the

relation :

Therefore it follows that

and

=0.
0+1

from Lemma 4. 2. On the other hand the following estimates hold.

\\LND*

(by continuity of L)

<C2\\D?P(9*-l(t»\\M (by Proposition 3.9)

<C3\\<f>"-l(f)\\"^ (by Proposition 3.12)

for sufficiently small t. Since LH££<j>(f) is a C°° form, we have the
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above from the remark of Proposition 4. 1.

Now we define a homogeneous polynomial ^(0 of degree fjt as

follows :

(5.12) v>f(t) = -NDfP(^'1(t))+A(LNDfP(^'l(t^)9
/« + !

where A denotes the linear operator introduced at the end of § 4.

Then ^(0 satisfies the following equation.

(5. 13) Ap,(0 = -

From the relation dT,P ((p11'1 (i)) =§, we have
P+I

(5. 14) AW-'(0

= 0.
/. + !

From (5. 13) and (5. 14), it follows that

(5.15) Ap

while from (5. 12), we have

(5.16) L9f(^ =

Note that <pf(f) is in r^(M, °TMf® CT")*). Hence this completes

our inductive construction of ^(0«

Now we shall prove that the power series

converges in || ||(m)-norm for small t

Consider a power series

whose coefficients/^....^ are in F(M, "T^fT'') *) and a power

series



ANALYTIC CONSTRUCTION OF THE KURANISHI FAMILY 827

with non-negative coefficients. By writing /(0<C<2(0 we indicate

that

\\fhl....hq\\'M<ahr...hq

for all (h,. . . hq). For each T(M5 °r®(°TT) -valued holomorphic

function

we set

Then we have

and

by Sobolev lemma.

Let

We remark that

ACOX^/O'-^CO, y=2, 3, 4,. . . .

For our purpose it suffices to derive the estimates

(5.17),

by induction on /^ provided that the constants b, c are chosen prop-

erly. For fjt= 15 this is obvious if b is sufficiently large. Assume

therefore that (5. 17)^-1 are established for a /*>!. We have from

(5. 12) that

= - ND* (A?"-1 (0 + ̂ 2 (V-1 (0))
C + l

+ A (LND* (A^-1 (0 + £, C^-1 (0 ))) •



828 TAKAO AKAHORI

Then

(5. 18) IH^(OI!l

As ^(0 is a homogeneous polynomial of degree ft, we have from

(5. 18)

(5.19) ni

where the constant c2 is independent of /*. Hence if we take c

sufficiently large, we have

(5.20) l l l

and so the power series

converges in || ||(m) norm. Especialy <p(p) is in c2-class by Sobolev

because of m>n+2. Q. E. D.

§ 6. Yersality

In this section we shall prove that the deformation constructed in

§ 5 is a versal family in the sense of M. Kuranishi. Let Y be a

complex analytic space of complex dimension n and Y be a relative

compact open subset of Y with strongly pseudo-convex smooth boun-

dary M. And let (M, °T//) be the partially complex structure induced

by Y. We shall study the complex structure of a neighborhood of

M.

Definition 6. 1. Let N be a neighborhood of M. Let S be a com-

plex manifold with the origin 0 and {Ns\s^S} be a set of complex

manifolds depending on s^S. We say that {N,\s^S} forms a complex

analytic family of deformations of N if there is a complex manifold

Jf and a holomorphic map w onto S such that
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(1) ar1(0)=N'3Ar, and

(2) the rank of the Jacobian ® is equal to the complex dimension

of S at each point of N.

We note that ®~l(s} is a complex submanifold of Jf.

Proposition 6.2. Let {JVJseS} be a complex analytic family of N.

Then, if we replace S by a smaller neighborhood of 0 if necessary,

there is an injective map F : NxS-> satisfy ing the following

(1) F(y, 0) = iW on N,

(2) for each s} F\Nxs is a diffeomorphism from Nxs to F(Nxs)

which is contained in ®~l(s),

(3) for each p^N, F\pxS is a complex analytic map frompxS

to Jf.

Proof. Let { -̂} J(=A be a finite covering of Jf such that on each

tfl'i there is a complex analyitc coordinate (z}9 . . . , z", s) such that

and these charts are holomorphically related so that

Zaj = f^.k(zk) 5)

on WjClVk and

u ^noT'co^M
j£A

To prove this Proposition 6. 2 it suffices to show that there exists

a system of C°° functions {zaj(s)}jGA on % 3 depending holomorphically

on s such that

on (^^n**) x5'5 where [W j] i&L is a finite covering of N such that

*yC*'ynN, 5'CS and TT^WjnM.

We may assume that dim S= 1. We shall construct a system of

C°° funtions {2"(s)}ye>! formally by induction on the order of the

parameter s.

We set
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Then the first step in the inductive proof is completed.

Assume that there exist C°° functions {2:^(5)} as a polynomial of

degree fi such that

(6.1), *j''(0 = /;.,(*{(*), 5).
mod ^ + 1

We shall define C°° functions za
jl(t+1(s) as a homogeneous polynomial

of degree fi+ 1 as follows :

where zjuf+l (s) = (*J,,+1 (s)) ̂ <n3 *,., (s) = ( .̂, (s) ) ̂ .^ *?., (5) - «?•' (5)

fi-j(z^-(s)y 5)3 (dfj.f/dzi) denotes the matrix (3/".j/9^J-)i^«.^^nj {i°J«

denotes a partion of unity for the open covering {^'Jf-e^ and

From the assumption (6. 1),, we have

(6.2), *,.,(*) = 0.
mod sf+1

From the relations:

and

So we have

(6. 3) „ a',, (5) = z^ (5) - /?. , (zj (5) , 5)

Therefore

mod */«+2

From the definition of 2:"lA1+1(5), we have
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Therefore we have

This finishes the construction of the formal power series

such that

*?co= /«•./*,(*),*)
as formal power series.

We shall prove that power series z?(s) converges for |s |<5 for

some small <5>0. We dominate z"(s) with a convergent series. We
00

fix some notation. Let </>(zi9 s) = J] (pm(z^)sm be a power series where
m = 0

CXJ

0 m (« . . )=(0»(^) s - - -» ^(^-))3 2;,.^^,. Let a(5) = 2a,w5% aw>0 be a
w = 0

series with real, positive coefficients. We write <p(z{, s)<^a(s) if |^(^,-) |

<am for all 2;f.e^f- and all a=l,...9 n. The norm of <f>m is the

Holder ^-norm. We shall recall the power series

It suffices to prove

That is to say

(6.4), *!''(*) -

for fi= 1, 2, 3, . . . .

Let us prove (6. 4) , : We want to show that

From ^j.e^^n N, this is satisfied for b large enough.

By induction, assume (6.4), and let us prove (6. 4),+1. Remember
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and

*„„+! 0) = 2 (d
mod *P+2 i

Remember the definitions of ^- and %]. Then f i . j ( z j 9 s ) is defined

on WtnWj and fi.J(zi + y9 s) is holomorphic for (zj9 ^)e^. So
there exists a jST>0 such that

where f{.j(Zj+y, s) = S /ft "} (*^) ys". We want to estimate the homo-
m.n^O

geneous term of 9/)f-/3^f-]0,.<7,..y of order

;

because of the induction assumption (6. 4)^. If we choose c so large,
then

Therefore we see that the power series z*(s) converges for
for some small <5*>0. We may assume that the functions z"(s) are
m-times continuously differentiate if we put k>m. From now on
we fix these functions 2"(s), |5 |

Lemma 6.3. Let {Nt\s^S\ be a complex analytic family of N.

Then there exists (o(s)^r\m)(N9 T'N®(T"N}*} depending analytically
on s such that

(6.5) (X /+oi(0(X /))^(0=0

on WJ9 for any X'^T'N.

Proof. Let [z°] ^a<n be a complex coordinate system. Using this
coordinate we define C°° functions (QJ ($))£.„ as follows.

Using these funtions we rewrite (6. 5) as follows.
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(6. 6) 9

We note that the relations

hold. Therefore the matrix (dz^s^/dztyi^.^n has an inverse if s is

sufficiently small. Since (o>(s)J.r is a solution of the linear equation

(6.6)3 it depends analytically on s. So we have our lemma.

Q. E. D.

After this we shall use this notation (N, "^T") instead of a com-

plex analytic family {Ns|seE*S} of N. We shall call (N, ^T") a

deformation of N.

Let T be a complex manifold with the origin 0.

Definition 60 4. Let {(M, ^T") \t^T} be a set of partially complex

structures depending on tEiT. We call a set of partially complex

structures {(M, *(t)T") \t<=T] a family if <p(£) satisfies the following:

<p(f) depends analytically on t as a map T to the Banach-manifold

)*) 3 and

Under these notations, we shall define a versal family of partially

complex structures {(M, p(0T") \t^T}.

Definition 6. 5. We say that a family of partially complex structures

{(M, ^T") \t^T] is versal if the family satisfies the following condi-

tion.

For any neighborhood N of M and any complex analytic family

{Ns\s^S} of deformations N, there exist differentiable embeddings /c(l)

from M to N and an analytic map h from S to T such that

and

for any s close to the origin 0 in S, where a)(s) denotes the elements

in r"M(M, T"(X)(0T")*) defined by the complex analytic family in

Lemma 6. 33 and ft>(s) '/c(s) denotes the partially complex structure on
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M induced via /cw by (N, "^T").

Theorem 6. 6. The deformation constructed in § 5 is versaL

Proof. We shall prove this theorem using the above C°° functions

{zaj(s}}^A and a priori estimates obtained in §3. It makes no differ-

ence for the proof and it makes the writing much easier to assume

dim S= 1.

For any deformations of complex structures (N, "^T"), there exist

a finite covering {^ ,-} JGA of N and differentiate isomorphism £,-($) =

(z](s)9 ... 5 z* (s)) from °tt j to a ball depending analytically on s such

that

*;(0 =/;.*(**(*), *) on «r,n#4
and

where /*.* is holomorphic in z\(s) and 5, {2;}} is a complex coordinate

system of (N, -^T7*) and {^"(5)} a complex coordinate system of
(N9 •(f)T-F). After this we identify a ball in C" with WjXs via the

diffeomorphism Zj(s) if there is no confusion. We define embeddings

/c(1)(j) from >T,nMx {5: |s!<£} to V ,x [s : \s\<e], where TT,C#,

and U ^ D M a s follows: For each (^-(5)5
 5) e^T-RMx {5 : |s|<e}3je/l

we set

/eO)(f) (*/*)> 0

where C(1) is any element of r(M9 TQ. This map is well defined if

e is sufficiently small. This is not defined globally on MX (5: |s |<e}

but is well defined modulo s2. In fact the following relation assures

this.

on
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From this, we shall define ^0)0/c(D(s) in /"(^.flM, Tf(g)(0T"r)*)

as follows :

(6. 6)' (X+o>(*) o/c(1)w (X)) (*•(*) +C(1) (*?(*)» = 0

on # ynM, a- 1,2,... , n and

Then we have the following lemma.

Lemma 6.7. <w(s)0 /u) depends holomorphically on s.

Proof. Let /i be a defining function for M in ^ and {^]}i<a<ra

be a complex coordinate system. Then there exists a system of mov-

ing frame [eft P=lt2 ..... „-, of °T// |^.nM and moving frame {ej},.il2 ..... »-i,

C of T^l^.nM such that

and

where we assume that dh/dz"^0 on ^-flAf. Using this frame we

define C°° functions (co(s)of^ yr? as follows.

Using these functions we rewrite (6.6)' as follows: for any e]

1, 2, . . . , n— 1, we have

(6.7) s V w a ) ) ^ ^ ( ^ W + C ( 1 ) ( ^ W ) 0

We note that the relations

e;-z" = 5r.a l<a, r<n

holds.

We put (n, n) -matrix £(5) as follows.
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Of course B(0) =En and B(s) depends analytically on s. If s is sufficiently

small, the matrix B(s) has the inverse. Since {a)(s)f(1)}
J
rift ^=i,2.....«

is a solution of the linear equation (6. 7) with analytic functions in s

as coefficients, we have our lemma. Q. E. D.

By this lemma we can expand the left hand sides of (6. 6) into

a power series of s. Then we have

(6.8)

for any Cmer(M, T') and any X<=T(M, °T). In (6.8) putting
C(1) = 0, we have

(6.9) X(*J

From (6.8) and (6.9), we have

(6.10) o>(s)o/W

So we have

(6.11) «(5)o/
* \ _

mod s*

00

For any power series h (5) = XI A^s"1, we put

where hm= (h£\ h%\ . . . , A19))3 g^dim Jf. Let {A}i<^, be a base
of 3P. Then from the construction of ^(0? WG have

)= 2 A1
(A)^+ (P (higher order of 5).

^=i

After the above preparation, we shall find h (s) and the map /c

such that

This equation becomes
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(6.12) co(s)of0-5T^s = Zh^^s.
mod ,2 *-l

This equation has solutions h?\ C(1). In fact from the relation

3#0>(5) °/o+ R*(<»(S) o/0) + £8(a>(5) °/o) = 0

we have

Therefore we define homogeneous polynomials /Zi(s) and C(1)(5) of

degree 1 as follows :

and

Then (6. 12) is satisfied.

We shall prove that we can find solutions h (s) and /c(s) formally

by induction on the order of powers in the parameter 5

The first step in the inductive proof is completed.

Assume that the embedding maps /(t) from Mfl^-X [s : \s\<^ek]

to <%jX{s; |s|<e4} are determined so that /c<«(f) is well defined

globally modulo sk+l on M and the analytic maps hw (5) from S to

T is determined as a polynomial of degree £ satisfying the following :

Lemma 6.8. Assuming these situation, the map /(i) can 6^

extended to a map fw y , which is well defined globally modulo
C ( S )+7£_ |_ lVS)

5fe+2 0?2 M.

Proof. We shall define embedding maps /(ft) . fromc (*) +>?^^_j(*)
(Mn-JfQx {$: ]^i<£,+1} to *yx{5: I5|<e4+1} as follows: First we

define an element yi+i(s) in C° ( {^ n M} , T'AT) as a homogeneous

polynomial of degree £+1 as follows:
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i+i fa) = S (9/y,/9*<) Pi<rt.j,
mod **+2 '"

whe re ffs.j = (tf?./) \<a<m,

al ,.= z*(s) +C«"fa) -/7-y(*y (0 +Cf fa), 0,

(9/y</9**) denotes the O, n) -matrix (3/y.,-/^f)1^ai^n and

0?*'+i fa)) !£«£.•• Then from the assumption, we have

ffifj = Q mod 5ft+1.

From the relations

and

*5. . = 2^ (5) + Cf • - (S) - /5. , (2, (5) + £" (5) , 5) ,

we have

So

and from the definition of ^J'+ifa), we have

Therefore we have

For any r(M, T'} -valued homogeneous polynomial C*+ifa) of degree

k+ 13 we have

(6. 13) z:fa) +Ciw-

Now we shall solve the following equation. We shall find solutions

C*+1fa) and A t+ifa) as follows.
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The left hand side of this differential equation is well defined modulo

s^2 from (6.13).

By definition of *>(s)ofw we havec w+'*+iw+c*+iw

(6. 14)

a=l, 2, . . . , n for any Xe;F(M, °T").

Then we can prove the following lemma using the method of the

proof of Lemma 6. 7.

Lemma 6.9. For any F(M, T") -valued homogeneous polynomial

C*+i(s) with degree k+\ in s, ( o ( s ) o f W J depends analyti-
C W+9A + iW+^ + 1W

We can expand both hand sides of (6. 14) into power series of s.

Then we have

(6.15) ^

Putting C*+1(s)=0 in (6. 15), we have

(6.16) X^(s)+c

+ Xtf'«(*)•

o/e(i)(i)+?i{+i(i)

= 0.
mod **+2

From (6. 15) and (6. 16), we have
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Therefore we have

(6.18) (<»(*) °/cW(l)+?j

that is to say,

(6.19) a»(5W

Now we shall prove that the following equation has solutions

iO) and hk+l(s) :

(6.20) ^(

From (6. 19), we have

(6. 21) -3T

where {^}i^2^- denotes the base of 2ff. Since the map f r ( n t . , j ,. is
C C*y 'jfe + 1

well defined globaEy on M modulo 5*+z, we have

(6.22) P(«(5)o/ ) = 0.+

While the following relation holds.

(6.23) P(p(A»(s))) = 0.

From (6.22) and (6. 23), we have

(6. 24) 3^(a»(5)o/c(,,w+f/ iW)-3^f (A^'

w(0)

= 0.
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From the assumption of the induction, we have

(6.25) «W°/

From (6.24) and (6.25), we have

(6.26) 3$("«°/cc«wV W -P(A«(5) ) )= 0.
C W+f 4 + 1W m«d.*+ 2

We shall put the homogeneous polynomials hk+l(s) and C*+i(s) of

degree & + 1 as follows:

hk+1(s) =

and

C*+1W = 3?>NT,(a>(s)of .
m o d 5*+2 c W+»4 + 1W

Then the equation (6.20) is satisfied (Hodge decomposition theorem).
00

We shall prove that the above formal power series Z!^*(5) an(i
00 * = 1

ZK^+iW+Ci+iW) converge in || H'^-norm, to be introduced next,
* = 0

for sufficiently small \s\. To do this, we shall recall the following

estimate (Propositions 3. 10 and 3. 11).

Proposition 3. 10. The estimate

holds uniformly for all jj. in P(M9 TX®(0T^)*) and for all non-negative

integer m.

Proposition 3. 11. The estimate

holds uniformly for all ft in F(M, Tf®(?Tff} *) and for all non-negative

integer m, where NT, denotes the Neumann operator for Dr'-

Let r={r.}ieA be a chain where F. is a T'-valued form on

Vs= -T,nMand {Wf} ieA be a refinement of {Vs} ieA. We define a

semi-norm on T'-valued chain as follows.

For each F= [rt}ieA in C°(7,., T'), we put
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where we use the notations C°(Vi9 T") for T'-valued chains, by

jT" a=l, . . . , n we denote C°° functions on Vf defined as follows;

where {gj} i^r^n-i and £ are the system of moving frame of Tf \ V{

introduced in Lemma 6. 7 and di^ means the volume element on

y.— i^.[\M. induced by the diffeomorphism to a ball in R2n~l. And

we set

where [xik] is a real coordinate system on Vt. With these notations

we define a new norm | |i'(m) as follows: for each r={r.}iGA in

c°(y,, TO,

where by ^rF we denote the T'-valued function on F, defined as

follows :

and we put

\\ffp\\z — VV V \ P PiTa» P Pi'T~a/1a6r

\\erl I | (m)— 2-1 2_l 2-1 \ -OM i'lfPT1 iar •
» a |J|£» J^i

After this we fix these real coordinate and moving frames.

Now we shall prove the convergence. Consider the series :

A (5) = &/16c £(<*)*/*',4=1

where b and c are constants to be determined later. Then we have

A (*)•<(& A) -^(5),
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00

where we write a(t)<^b(f) if a(£) and b(f) are power series 2 akt
k

*=o

and S bkt
k such that

For each power series in C°(Vi9 T')3 we set

Then we have the relations: for any /\(0 and A(0 in C0(F.3 T')3

(6.27) ll/\(0+A(OII'w<ll/1i(OII'c.> + II AW II w

and

(6. 28) | |A (0 r2 (o | |'Cm)<CI IA (0 1 |'w | |A (0 1 ,'„

hold.

In fact for any A (f ) = S A. ,f * and rz(0 = E A-**1, we have

I!A(0 l'w=f:oll/1,.»ll/(.)*' and ||r2
0(OI!;m)=2ol!A.i|lw^"°Therefore from

the relation" ||r,s+r2,||'w ^IIA.,11^ +|;r,.,||'W) we have (6.27).

Similary we have

r=0 r=k+l

Whle lir^.r^l^^CJir^ll^lir^li'^ since m>n-\. Therefore we

have (6.28).
00 00

To prove that the formal power series 2] hk+l(s) and
A = 0

converge^ it suffices to see the following relation:

(6. 29) HC*+1(s)ir

and

(6.30) i|^

where -K is a constant, whose existence we assert, such that

I I^AWII 'w<K\\lA\'w for all fif=r(M, T'(x)CT")*) for all integer k

if & and c are sufficiently large. We set b and c sufficiently large so

that the following estimate holds.
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By induction, we shall prove the relations (6.29) and (6.30). For

k = Q, it is easily seen that the relations (6.29) and (6.30) hold if b

and c are sufficiently large. Assume (6.29)* and (6.30)* and let us

prove (6.29)4+1 and (6.30)*+1.

From the relations (6.16) and o>(s)-/( t) (X) = ^(/^(s)), we
C W mod ** + *

have the relation:

m (S) ) • (Z'}- Z"j (S) ) + X(Z"J (5) - Zj)

We use the notations (o>(«) •/„, , (X)z*)*+1 for the homo-
C (*)+9j + i^*)

geneous term of degree k+l. Then from (6.31), we have

(6.32) C(«

Therefore we have the relation :

(6.33) IK«W-/

where for each element in F(M3 T'(x)(0T")*) we use the norm
introduced in §3. Moreover from the definition of r]j

k+l(s} :

where cj,. — (<,-)i^^ and
(Zj(s)), 5)5 we have the following estimate by an induction.

where Kx is independent of &.
In fact, aitj being a homogeneous polynomial of degree k+l, we
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have the relation:

(6. 34) *;.,= te(0-/Zy(*/«+CW

We use the notation:

Z-j
I.L.k

Then from (6. 34) we have the relation

where by I and I- we denote multiindices. C^OO2? being a polynomial

of degree k—\, we have

(6. 35) *?.,= (S A;. ̂  (C<»(*) (z((5) -z,))1^ (5)*,)V)'+1

We may assume the relations

for any /, L and k.

Similarly we have

for any I? L and ^. We may assume

lkHc»)<^(«) as a chain.

So from (6. 35) and an induction, we have the relation :

(6.36) il(3Ai/3^)^,y||
/
w

<C1|A(2;) 2+ 2B0.BJJ |+ |L|+4A(5)» | J |+ |L|+*
( U I . U I . 4)^(0. 1,0)
(!I|, |L|)^(0,0)

now the relation 2|/ |+ \L\ + k>2 holds. So we have the relations
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(6. 37) (A(s)yi+lLl+k^(b/cyl+M+k-2A(sy.

From (6.36) and (6.37), we have the relation:

if c are sufficiently large. So we have

(6.38) ll^+iWllw<^i^W

<p(f) being a convergent power series, we have the relation:

for any /, where <p(f) = ^<pitl. So we have the relation:
;^i

(6.39)

From (6.33), (6.38) (6.39) and the construction of hk+1(s~), we

have

if c is sufficiently large, where K' is independent of k. Similarly we

have

Therefore 2] hk+1 (s) and S (C*+i(5)+$+i W) converge in || ||'(m)

norm. By Sobolev lemma, we have that they are in C2-class. So we

have our main Theorem.
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