Publ. RIMS, Kyoto Univ.
14 (1978), 503-556

Canonical Linear Transformation
on Fock Space with an Indefinite Metric

By

Keiichi R. ITO*

Abstract

Canonical fields @, (f) on the Fock space with an indefinite metric << , >=( ,0)
and their canonical linear transformations (Bogolyubov transformations) are investigated.

Let T be a bijective real linear operator preserving the p-symplectic form < , J >,=
Real ( ,pJ ) in one particle Hilbert space 5, where ¢ is unitary and hermitian and J=
VY—=1. It is shown that, under some conditions, 7" has a decomposition T'=V,SV,, where V,
are g-unitary and S is a generalized g-scaling, namely §®’=pS*p=S$, JSJ '=§"Y, SKCK
and SJKC JK for a decomposition #'=K® JK.

T is called O-unitarily implementable if there exists a O-unitary (bounded bijective &-
isometric) operator Ur on the Fock space & such that U;®@, (f) U=, (Tf). This defini-
tion is too restrictive. It is shown that T is O-unitarily implementable if and only if [T, ¢]
=0 and anti-linear part 7 of T is of Hilbert-Schmidt class.

We introduce a less restrictive notion : T is called weakly O-unitarily implementable if there
exist a O-isometric operator Uz' (not necessarily bounded) and a cyclic vector 2: €% such
that Up'@y (Tf)... 0o (TF,) Q=0,(f1)-.. 0 (fs) 27, where 2 is the Fock vacuum. A neces-
sary and a sufficient condition for this implementability are obtained.

As an application, a mass-shift model of the vector field of an indefinite metric formalism
(Stiickelberg formalism) is discussed. A time-evolution of the system by the model Hamil-
tonian is investigated.

§1. Introduction

Let & be a Hilbert space equipped with usual (i.e. positive
definite) hermitian inner product (.,.), and let » be a unitary and
hermitian operator: 7*=7"'=%. We define a new (indefinite) sesqui-
linear form <.,.>=(.,7.) on #. This is a “Hlibert space equip-
ped with an indefinite inner product <,)»”, and denoted {Z, {,)}.

One familiar example of this space is our Minkowski space M=

{#=R* p=diag (I, —1, —1, —1)}. Historically speaking, Pontryagin
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first investigated this space in order to study differential equations,
and physicist also investigated this space in order to describe quantum
electrodynamics (QED).

Some examples of indefinite metric formalism in physics are:

(1) An indefinite metric is needed to describe a massless vector
field (photon field) in a manifestly covariant way.

(2) In the Stiickelberg formalism of the massive vector field, an
indefinite metric is used to cancel divergences due to p*p*/4* in the
propagator of the Proca field (=vector field of positive metric for-
malism).

In these examples, a Fock space with an indefinite metric <, )>=
(,0 ) is constructed by the usual tensor algebra constructions from
the (one-particle) Hilbert sapce # with indefinite metric ( ,¢ ). In
this space, fields are defined in terms of creation annihilation
operators in a similar manner as the definite metric case.

Real linear transformations on # which preserve the commuta-
tion relations of these fields are called ¢-symplectic transformations
and the corresponding transformations of fields are called Bogolyubov
transformations.

In this paper, we study the implementability of such Bogolyubov
transformations B by linear transformation U, preserving the inde-
finite metric ( ,0 ) in the Fock space.

Our main results are about three different kinds of implemen-

tability :

Definition 0-1. B is said to be O-unitarily implementable if U,

and its inverse are bounded in addition to being O-isometric.

We shall show (Theorem 11) that B is O-unitarily implementable
if and only if U; is unitary with respect to the definite inner product
which we use to give the topology for the Fock space. This shows
that the restriction of bounded U, (and Uj;') is too restrictive for

our purpose.

Definition 0-2. B is said to be weakly O-unitarily implementable
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if the Fock vacuum state is transformed by B to a state given by a

cyclic vector in the original Fock space.

This includes a wider class of B compared with Definition 0-1, and
Uy may be unbounded though it will preserve the indefinite sesqui-
linear form in the Fock space. @ We obtain some conditions on B
which are necessary or sufficient for the implementability (Theorems
12, 13). However it is shown that this notion is not invariant under
p-unitary transformations (bijective linear transformations preserving
( ,¢ )) of the space #. We introduce a weaker notion called @-uni-
tary quasi-implementability, which is invariant under ¢-unitary trans-
formations. For this purpose, we study a decomposition of canonical
linear transformations B: A canonical linear transformation B is a
bijective real linear transformations of 4, which preserves the sym-
plectic form given by the imaginary part of the indefinite inner

product {, >=(,¢ ) on #.

Under some conditions, such B has the following decomposition :
(1-1) B=V,SV,

where V, and V, are ¢-unitary and S is a generalized ¢-scaling in
the sense that S is a ¢-selfadjoint canonical linear transformation

commuting with C for some fixed complex conjugation operator
(Theorems 9, 10).

Definition 0-8. A canonical linear transformation B is said to
be O-unitarily quasi-implementable if S-1 is of Hilbert-Schmidt class

and its eigenvalues 2 satisfy

A+

(1-2) 0 > 117720,

It is shown that B is O-unitarily quasi-implementable in cases
Definitions 0-1 and 0-2 and that the @-unitary quasi-implementability
is invariant under g-unitary transformations. The O-unitary quasi-
implementability is shown to be equivalent to the requirement that a

kind of non-zero finite inner product between the Fock vacuum
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state and its transformed state can be defined in a certain sense. It
is shown, however, that there exists an example of O-unitary quasi-
implementable B for which the cyclic space for the transformed
vacuum has no intersection with the original Fock space.

The organization of this paper is as follows: In §2, we define a
Hilbert space equipped with an indefinite metric, and construct a
Fock space with an indefinite metric. In §3, we study a ¢-sym-
plectic transformation which is a bijective real linear transformation
preserving the CCR.

In §4—§6, we consider polar and spectral resolutions of a ¢-
symplectic transformation. In §7—§ 10, the implementability is dis-
cussed. Examples are in §11.

An application is discussed in § 12, where amass-shift model of
the vector field of an indefinite metric formalism (Stiickelberg for-
malism) is investigated. The time-evolution by the ©-selfadjoint
Hamiltonian is also discussed.

Concluding remarks are in § 13.

§ 2. Fock Space with an Indefinite Metric

In this section we define notation for the Fock space with an
indefinite metric. Let &, (i=+, —) be a Hilbert space with (posi-
tive definite hermitian) inner product ( , );, and let X=2.DF_
be a Hilbert space with inner product (, )=2.(, ).

Let P; be projection operator to £, and let

2-1 p=P,—P_.
We consider an indefinite hermitian inner product

(2-2) <L, 0=0,7),

and we call the pair {&, {, >} “a Hilbert space with an indefinite
metric”’. See Refs. [4, 16—18, 21].

The set of bounded linear operators C: &, —%, is denoted by
B(L:y L), and B(ZL, Z) by Z(ZL).

Any Ae# (Z) is decomposed as
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AL, A
(2-3) <Ai+ A__>
on ¥=2_PF_ where
(2-4) A,;=PAP,c B (%, £;).
Its 7-adjoint A% (&) is uniquely defined by
(2-5) (g, Ap>=<AP¢, $).
It is given by
ALy —Af+>

2-6 av=yary=( .
(2-6) AT ax A*_

Definition 1. A= # (L) is said to be
(1)  y-selfadjoint if A=A®,
(2) 7p-unitary if A7'=A%.

Remark 1. Even if an operator preserves <{, ), it is not neces-
sarily a bounded operator. Note that our definition of an »-unitary
operator requires the boundedness. In this case, if U is y-unitary,

then
U =1pU*n|=1IUl|.

This also means 1=||Ujj, and it is easily confirmed that |[|Ul|=1 if

and only if U commutes with 7.

We want to introduce a Fock space & over a Hilbert sapce #
with an indefinite metric ( ,¢ ). The space & is defined by

@7:032'(11),
FO=C, FO=5,[RA1=Q:F.
Here S, is the following symmetrization operator :

Sn[¢1®®¢n] = (7’1 -’) -1ZPBrm¢n(l)® ®¢8(n)'

Definition 2. For A€ (#), ['(A) is defined by
Fr(AH\F»=AQ KA (n-times),
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and dI'(A) by
dIr (A)1F " =AR1Q Q1+ - + 1R - RIRA.

Their domains of definition are extended by linearity and closure.

Remark 2. I'(A) is a bounded operator if and only if [|A||=]1,
and dI'(A) is unbounded whenever A#0.

The Fock space & has a positive definite hermitian inner pro-
duct (, ) naturally constructed from ( , ) in #. We now introduce

on & the following indefinite inner product
<y 2=(0,0), 0=I(p).

Note that © is unitary and hermitian.
The usual creation operator a*(f) for f €4 is defined by

a* (f) (Sn[¢1®¢n]> = (n+ I)I/ZSn+l[f®¢l®'“®¢n]>
and the selfadjoint (Segal) field by
(2-7) ()= (2)[a*(f)+ @* (N)*].

Though a*(f) is complex linear for fes#, @(f) is not complex
linear for fe#.
The O-selfadjoint field is defined by

(2-8) ?,(f)= @) [a* () + @ ()]~

where the bar denotes the closure. Since (@*(f))®=06(a*(f))*O=
(@*(of))* by the definition of ©, we have the following commuta-

tion relation :

(2-9) [2,(), @,(e)1=7 Im(f, pg) =i Im <f, g>.

The creation operator a*(f) can be expressed in terms of @,(f) by
(2-10) a*(f)= (D) 7"[2,(f) —i9,()]

where J is the multiplication operator of i=y—1.

Remark 3. @,(f) is O-selfadjoint but not * selfadjoint. Then
exp [9,(f)] is unbounded in general.
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§ 3. Canonical Linear Transformation

Definition 3. A real linear bounded operator B on # shall be
called a canonical linear transformation if the commutation relation

is preserved, namely if
(3-D Im(Bf, ¢Bg)=1Im(f, ¢g).

A canonical linear transformation B shall be called a ¢-symplectic

transformation if B is bijective.

From the definition, it follows that canonical linear transformations
form a semi-group, and p-symplectic transformations (= ¢-Bogolyubov
transformations) a group.

To obtain an operator form of the condition for B, we introduce

a real bilinear inner product on # by

(3-2) (f,g),=Re(f, g,

and denote the multiplication of 7 by J. The adjoint of real linear
operator B with respect to (, ), will be also denoted by B*. It
coincides with ordinary * if B is complex linear (namely if [B, J]
=0). We define BY=¢pB*¢.

Lemma 1. B is canonical linear transformation if and only if
(8-3) B®JB=J.
Proof. (3-1) is equivalent to

(Bf, ¢JBg),.= (f, ¢Jg).,

which is equivalent to

(s p[B®IB—J]g),=0
for all f,ge=#. Q. E. D.

Any real linear operator B can be uniquely decomposed as a

sum of complex linear and anti-linear operators:

B=B,+B._, Bi=%(BiJBJ“).
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When B is a ¢-symplectic operator, B_ is called as its ‘“off-diagonal
part”.

Lemma 2. B is a canonical linear transformation if and only if

BYB,—BYB_=1,

3-4
@-4) BYB_=BYB,.

Proof. (3-3) is equivalent to
(BYB,—B®B_)+ (B¥B_—B®B,)=1.

Complex linear and anti-linear parts of two sides of this equation

are the two equations in this lemma. Q. E. D.

We are interested in the transformation of the field under

Bogolyubov transformation, which is given by

(3-5) 3@, () =0,” () =, (Bf).

§4. Polar Decomposition of ¢-Symplectic Transformation

The main purpose in this section is to prove the following theo-

rem:

Theorem 3. A ¢-symplectic operator T such that 0 is not an
eigenvalue of TOTH |T|®|T| has the following decomposition :

(4-1) T=00|T|
where O, 0 and |T| are ¢-symplectic operator such that |T| is
selfadjoint positive,

(1) 0 is orthogonal and ¢-selfadjoint,

(2) O is complex linear and unitary.

This decomposition is unique up to the transformation
(0, 6)—>(0V, V')

by selfadjoint, unitary operator V commuting with .

We prove this theorem through several lemmas [20, 24, 27].
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Lemma 4. Let T be a ¢-symplectic operator. Then there is a

unique decomposition of T as follows:

(4-2) T=Q T,
where |T| and Q are p-symplectic and
(4-3) I T|*=[T|>0, Q*=Q".
Proof. Let
T=Q|T|

be the unique polar decomposition of an invertible operator in a

real Hilbert space. Since T is g-symplectic, we have
oJT*pJ =T

Hence

oJ|Tlp eI Q" ¢J7'=|T|7Q7"
By the uniqueness of the decomposition, we have

pJQI79=Q, oJ|T|J = |T|™

Q. E. D.
Lemma 5. Let Q be an orthogonal operator commuting with ¢J.

Assume that —1 is not an eigenvalue of QYQ. Then there is the
Jollowing decomposition of Q :

4-4) Q=00,
where

0*=pOp=J0J =071,
(4-5) eoo

0*= 0", JOJ'=¢0p=0.

This decomposition is unique up to a unitary and hermitian operator

commuting with ¢.
Proof. We explicitly construct = (Q¥ Q)"
Let

p=3 (0t D=P., ¥=Q"Q

be two projection operators. For any two projections E and F, we
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define [2]
EAF=1lim, ... (EF)".
We first note that p’A(1—p)+pA(1—p")=0 due to the absence of

the eigenvalue —1 for Q¥Q=[p— (1—p)]1 [»'—1-2")]
Let

0= (1=p)A(1—p") +pAp’+4(1—pAp'— (1=p) A(1=7))
where
A= pp'p) "+ [(1—p) 1—p") 1=p) 1"+ (p'p) b0’ (1—p)
—[A=p) A=) A=p)T" (A =p)p'P-
Then by the construction [2],
0*=0"", JOJ'=plp=0", = Q¥ Q.
Next let
0= Qo

Then O is again orthogonal and commutes with ¢J. Further O also
commutes with ¢ (then also with J) :

0'p0=0Q "0 Q0= 0p0*6~*= .
Q. E. D.

§5. Another Decomposition of ¢-Symplectic Transformations

We first introduce several notions [16—18, 217 :

Definition 4. A closed subspace © of a Hilbert space # equip-
ped with an indefintie sesqui-linear form <{ , > is said to be

(1) non-negative (resp. non-positive) if and only if
{z, >=0 (resp. =0) for any z= 9,

(2) positive (resp. negative) if and only if
{z, z>>0 (resp. < 0) for any z(#0) €9,

(8) wuniformly positive (resp. uniformly negative) if and only if
there is a non-zero positive constant y such that

Kz, y=p(z, x) (resp. =—p(z, x)) for any z€ 9,
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(4) o-complementary if and only if
H<+>n H= {0}

where H<*> is the orthogonal complement of © in H with res-

pect to { , .

Definition 5. A ¢-selfadjoint operator A is said to be

(1) non-negative (resp. non-positive) if and only if
{z, Az>=0 (resp. <0) for any z=H#,

(2) positive (resp. negative) if and only if
lz, Az>>0 (resp. <0) for any z(#0) e,

(8) wuniformly positive (resp. uniformly negative) if and only if
there is a non-zero positive constant pu such that

lz, Azd>z p(z, z) (resp. =—pu(x, x)) for any z&H#.

We study absolute value |7'| of a ¢-symplectic operator T on #
relative to the real indefinite inner product <, >,=( ,¢ ),. Let

(5-D H=¢|T]|.

Then this satisfies

(5-2) HY=H, JHI'=H".

Moreover H is uniformly positive with respect to < , >, :
(5-3) {z, Hz),= (z, |T|z)zp(z, z)

with g=[|[T[7|i™

For a uniformly positive 7-selfadjoint operator A on a complex
Hilbert space # with an indefinite metric 7, A has the following
spectral resolution in terms of 7-selfadjoint projection operators
{E(Q); 2c(—o0, )} (see for example [16—18]):

(5-4) A=S°° AdE(2)
where E(2) is g-additive,

E®@)=E), E@QE@)=E@nY),

© E(—o0, 0)=1
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and E(£) is uniquely determined by A.

We take the complexification of # to be s#.. Define the complex
conjugation operator C on #, by
(5-6) C(fDig) =fD—1g.
We extend H to be an operator on . satisfying CHC=H. Then H
satisfies the requirement for Aabove and hence we have a spectral

resolution
(5-7) H= S“ AdE ().

From CHC=C and the uniqueness of E(2), we have CE(2)C
=E(£) and hence E(£) leaves the real linear subspace # of #.
invariant. Hence we can restrict the above resolution to #.

Since JHJ'=H™', we also have

(5-8) JE(Q)J=E@@Q™).

Lemma 6. Let H be a ¢-selfadjoint g-symplectic operator which
is uniformly positive with respect to { , >,. Then there exists a real
subspace K'CH# such that K'NJK = {0}, # =K' DJK with respect to
< 3 >r and
5-9) HK'CK', HJK')cJK'.

Proof. We use the spectral resolution (5-7). Let

#{E1H=E({£1})#.
Then J# ({£1})=#({x1}). Since £, >=u(, ) on #({x1}),
it is possible to find a subspace I(#1) of #({+1}) satisfying
I(=1)NnJI(x£1)= {0},
#({£1H=I1(xHDBJI(£ 1),
where direct sum referes to the orthogonality with respect to < , >.
Let
K'=E((—-1, )#DI(+DDI(-1).
Then
JK'=(E(—oc0, —1)+E(l, 0))s#PJI(+1)PJI(—-1),

and
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HK cK’', HJK)cJK', K'nJK'= {0},
#=K®JIK'.

Q. E. D.

To state the main result of this section, we introduce the follwing
terminology :

Definition 6. In a 2X2 operator entry representation of an
operator on H relative to the given decomposition # = KPJK where
direct sum referes to the orthogonality with respect to ( , ), and
{, >, an operator

(5-10) S=<g1 j_l)

with ¢-selfadjoint uniformly positive operator A is called a ¢-scaling.
(The unique J-linear extension of A to H will be denoted by the
same letter A.)

Our discussion above yields the following main result in this
section :

Theorem 7. A ¢-symplectic operator T, such that the orthogonal
part Q in the polar decomposition of T commutes with ¢ (or equiva-
lently commutes with J), has the decomposition

(5-11) T=USU,
with g-unitary U; and a ¢-scaling S.
Proof. Let
K'=K,®K.,
where
K.=EQ, H)#PI(+1), K_.=E(—1, 0)#PI(—1)
Since for ze K.,
(2, 2),2 <z, 2>z, Had,Zp(, o),

there exists a bijective ¢-isometric (namely ¢-orthogonal) operator
U on # which maps K and JK onto K’ and JK' respectively. Then
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U is p-unitary and T= QeH= QU 'SU_,=U,SU.,.
Q. E. D.

A notion of ¢-scaling is an extension of the notion of scaling
operator in symplectic space [15, 27]. When ¢=1, this decomposition
is in [24].

The operator T of Theorem 6 corresponds to the case ©@=1 in
Theorem 3. On the other hand, the operator 6 itself has a similar

diagonalization as above.
Lemma 8. Let 6 be an orthogonal operator such that

plp=J0J*=6"".

Then there exists a O-invariant real subspace K" such that K'NJK’

= {0}, K" and JK" are mutually orthogonal with respect to both

<, > and (,),and

(5-12) #=K'PJK".

In this case

(5-18) u=01K", u'=01JK"

are orthogonal operators such that pup=u""

Proof. After the complexification, we have
(5-14) o=\ eap()

where {P(2); 2C[—=, w]} are selfadjoint projections such that

0P (2)p=JP(2)J'=P(—Q) for 2C[0, r)

5-15
&1 ¢[P(—n)+P(x)]o=J[P(—=n)+P(x) ]J'=P(—n)+P(x).

Since P(£2) commutes with ¢J for all 2c (0,7), there exists a
decomposition # (2)=P(2) # =k (2)DeJk (2) into subspaces k(2)
and ¢Jk(2) which are P(2)-invariant for all 2: P(2)s# is decom-

posed as
k(2) DoJk (2)

where k(2) L pJk(2) with respect to (, ),. Let P,(2) and P,(2)
be selfadjoint projections to 2(2) and ¢@Jk(£2) respectively. They
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satisfy
(5-16) P,(2) = JP,(2)oJ, P,(2)P,(2)=0,
and
(5-17) PQ)=P.(2)+P.,(2)
Define
(5-18) P(—Q)=¢P,(De i=1, 2.

Then {P,(—£)} again satisfy (5-16) and (5-17), and
(5-19) JP,(DJ=P,(—2), JP,(D)J'=P,(—2) for 2C(0, x).
By the construction P;(2)+P,(—£2) with i=1,2 are selfadjoint

projection operators commuting with .
For #(1)=P0)# and #(—1)=(P(x) +P(—n))#, there are
similar decompositions as Lemma 6 :

(5-20) # (1) =L.BJL,

where I. are orthogonal to JI. with respect to both (, ), and

<o o

Let
(5-21) K'=[P,((—=, 0))+P, (0, n))]ADL.DI_.
Then
(5-22) JK" =[P,((—=, 0))+P.((0, =) o#DJI,.JI_
and
(5-23) u= (S_ —i—S:)e"’dPl (t)+P,—P.
where P, are projections to I,. Q. E. D.

§ 6. ¢-Polar Decomposition of ¢-Symplectic Operator

We shall discuss the polar decomposition of a ¢-symplectic

operator relative to the ¢-inner product:

T=UH
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where U should be ¢-unitary operator and H ¢-selfadjoint, ¢-sym-
plectic with spectrum in the right half plane. Even in a finite
dimensional case, there are examples of T for which such a decom-
position is not possible. Therefore we impose a condition in the

spectrum of T in the following theorem:

Theorem 9. Let T be ¢-symplectic, Tizé(TiJTJ“) be its com-

plex linear and anti-linear parts. Assume that T_ is of Hilbert-
Schmidt class and the closed negative real axis [— oo, 0] belongs to
the resolvent set of T T,. Then there exists a ¢-unitary operator U
and g-selfadjoint @-symplectic H with its spectrum in the right half
plane satisfying

(6-1) T=UH.
Such a pair (U, H) is unique and satisfies
(6-2) JU=UJ, JHJ'=H""

Definition 7. Relative to a given orthogonal and ¢-orthogonal
decomposition # = KPJIK, a ¢-selfadjoint ¢-symplectic operator S is
called a generalized ¢-scaling if S has the form

¢oo)

in the 2X 2 matriz representation of an operator on H relative to the
decomposition # = KPJK, where h is a ¢-selfadjoint operator leaving
K and JK invariant.

Theorem 10. For an orthogonal and ¢-orthogonal decomposition
#=KPJIK,

assume that a ¢-symplectic operator T leaves K and JK invariant and
satisfies the assumption of Theorem 9. Then T has the following
unique decomposition :

(6-4) T=US

where U is p-unitary and S is a generalized ¢-scaling with its spec-
trum in the right half plane.
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Proof of Theorem 9. Let
A=TOT=QTPT . —1)+2TYT_.
By assumption, A has the following properties:
(1) A—1 is compact because TYT,—1 =TYT_ (3-4) is of
trace class and 7 is of Hilbert-Schmidt class.
(2) A does not have a negative or zero eigenvalues. This is an

immediate consequence of the assumption about the spectrum of
TY T, and the identity

%<A+A—l>=2T$>T+—1

which follows from JAJ'=A"! and JTQT_J'=—TPYT_.

We construct the operator
H=— i)~ A| (A—» 2"z
r

in the complexification of the real Hilbert space {#, (, ),}, where
27 is defined on the complex plane with the cut on the negative
real axis such that z7*>>0 for positive real 2 and contour " may be
taken to be the union of the upper side of the cut from —oo to 0
and the lower side of the cut from 0 to —oo.

Due to the two properties of A, the operator calculas in Chapter 7
of [8] is applicable. By Theorems 10 and 11 in that Chapter, H,=
A and the spectrum of H lies in the right half plane. By a straight-

forward calculation, we have

H= %S” (A+7%)~dr.

Hence H can be considered as a real linear operator on #. By ¢-
selfadjointness of A, we have

o= A" (a0t de= g,
Since A is ¢-symplectic,

JHI =200 Ay
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- %g" (A+0*) 'do=A"H

by the change of variable r=6¢"". Since A=H? we have JHJ '=
H™'. Hence H is a ¢-selfadjoint, ¢-symplectic operator with its
spectrum (on the complexified space) in the right half plane.

Let U=TH™. We have

UP=(H)WT9=HT®,
Hence
UPU=H'TYTH'=H'(H)H'=1.
Since U is invertible, U is ¢-unitary. Since 7% and H are ¢-sym-
plectic, U is also ¢-symplectic, which implies
JUJ = (U®)'=U.

Thus we have the desired decomposition 7= UH.

To show the uniqueness, let U,H, be another decomposion. Then
H:=TYT=H*. By the uniqueness of the square-root with the spec-

trum in the right half plane (see, for example, Chapter 7 in [8]),
we have H,=H, and hence U,=U. Q. E. D.

Proof of Theorem 10. We define
TIK=T, TYJK=T,.
Since T is ¢-symplectic,

JTT =Ty

and hence
JTPTJ'=(TYT,)"".
Let
h= (TP T)@J(TPYT)J™,
and let

U= T, (T T)@JT, (T T,) 2.

Then for feJK
(TPTYf=hf
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and

T,(h™)~f = TRk f=Ty(TP T) b~ f
= TW-'h~f=T,h~ f=Uf.

Q. E. D.

Our question is whether the ¢-selfadjoint, ¢-symplectic operator
H is always similar to a generalized ¢-scaling S via suitable @-unitary
operator V:

H=VSV-.

This is affirmative for dim #< oo, and T in Theorem 9 always has
a decomposition

T=V.SV,

where S is a generalized ¢-scaling with its spectrum in the right half
plane and V; are ¢-unitary operators. But for dim #=co, ¢-isomet-
ric operator V seemes to be unbounded in general.

As we have already proved in Theorem 7 and Lemma 8, this
diagonalization is always possible if H is uniformly positive or ortho-
gonal.

For given generalized ¢-scaling S, let ¢-symplectic operator T be
given by V.SV, where V, are ¢-unitary. By the boundedness of V,
and V,, (H.S. means Hilbert-Schmidt)

T_1is H.S. « S—S*'is H.S.
< §—11is H.S.

The role of condition that (—oo, 0] is in the resolvent set of
TYT, in Theorem 9 is necessary by the following example which

does not have a ¢-polar decomposition as (6-1) :

T—[ 0 cosh 7,4 Csinh z-l]
" Lcosh 7.+ Csinh 7, 0

on #=C* where 7,#7, ¢=diag(l, —1) and C denotes the complex
conjugation.
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§7. O-Unitary Implementability

Recall that a ¢-symplectic operator T is @-unitarily implementable
if there exists a @-unitary operator Ur such that U.9,(f)U7'=9,(Tf).
The main result in this section is the following:

Theorem 11. T is O-unitarily implementable if and only if T
commutes with ¢ and T_ is in the Hilbert-Schmidt class.

Proof. We first prove that if T does not commute with ¢, then
U;* does not exist. Let fe#,=P,#. Then @,(}) is selfadjoint and

exp [9,(f)] is a bounded operator with norm one. U, implements
U,9,(f)Ur'=9,(Tf)=0,(P. T +0,(P-Tf),

where @,(P,Tf) and iQ,(P_Tf) are selfadjoint and commute each
other. Thus @,(Tf) is a normal operator. If U; is O-unitary, then
[1U:||=11Uz"l|<o° and

U,e D Uzt = ¢i%F+TNgit(P-11

must be a bounded operator. But |lexp[i@,(P-Tf)||=cc whenever
P_Tf+#0. Then P_.TP,=0 if U, is O-unitary. Next let fes_.
Then 79,(f) is selfadjoint in this case. By similar reasons, we see
that P,TP_=0 if U; is @-unitary. Thus T commutes with ¢ when-
ever T is @-unitarily implementable.

We may restrict our attention to the case where 7 commutes
with ¢. We wuse the decomposition #=#,@H#_ according to the
eigenvalue +1 of ¢. Correspondingly we have T=T.DT, F (&)
=F (H#,)QF (#-). Each T, is symplectic as well as being ¢-sym-
plectic.

If T_ is of Hilbert-Schmidt class, then (7,)_ is of Hilbert-Schmidt
class and hence the corresponding Bogolyubov transformation is
unitarily implementable by a result of Shale [24, 27]. Furthermore
the unitary operator implementing the Bogolyubov transformation
commutes with @(0@=1"(¢) being identity on F (#.) and (—1)¥ for
a number operator N on % (#_)) and hence is ©-unitary.

Next we assume that 7_ is not of Hilbert-Schmidt class. Since
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T is symplectic, the result of Shale [24] implies that the Fock
vacuum state is transformed to a state which yields a representation
of the canonical commutation relations disjoint from the original one
and hence has no non-zero intertwining operator. Thus there is no
bounded invertible Ur(be it unitary or O-unitary). Q. E. D.

§8. Weakly @-Unitary Implementability

Recall that a Bogolyubov transformation Tp=B,+ B_ is weakly
O-unitarily implementable if there exist a complex linear G-isometric
operator Uz’ on & (#) and a cyclic vector 2% (#) such that

(&-1) Us'P(@,(Bf), > @,(Bf.))L=P(P,(f);, 0, (f1))2s

for any polynomial P of (non-commutative) fields and any test func-
tions f;(Uz" is not necessarily a bounded operator).

For this implementability, we do not have a complete criterion.
A necessary condition and a suffcient condition are given by the

following theorems :

Theorem 12. If a Bogolyubov transformation Ty is weakly ©O-
unitarily implementable, then B_ is of Hilbert-Schmidt class and the

negative real axis and zero is in the resolvent set of BYB,.

Theorem 13. Bogolyubov transformations Ts and Ts-1 are weakly

O-unitarily implementable if the following conditions are all satisfied :
(1) S_ is of Hilbert-Schmidt class,

(i1) S is a generalized ¢-scaling:

h 0
= 4
0 At
on # = K@PJK where K is a real linear subspace of # such that K1 JK
with resect to (, ), and { , >,

(i1) The spectrum of the selfadjoint part a,= (a+a*)/2 of a=h"?
is in [c, ¢7'] for some 1=c>0.

Remark 4. For the necessity of the positivity of «,, see Theorem
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27.

In connection with the discussion of G-unitary quasi-implement-
ability, we compute the overlap of the vacuum £ and the transform-

ed vector £25 as follows:

Theorem 14. Under the condition of Theorem 13, the overlap
K2, 25> | of the Fock vacuum 2 and the transformed vacuum 5 is
given by

(8-2) det (PR,

which is non-vanishing finite. Further for B=V,SV, with V, ¢-uni-

tary, if 2 exists, then

h+h™
2

=det™*(1+B¥B_) =det™*(BYB,).

(8-3) K2, 255 |=[<Q, 25 |=det™"( )

Remark 5. When ¢=1, from Theorems 12 and 13, we see that
symplectic operator T is unitarily implementable if and only if B_is
in the Hilbert-Schmidt class [Shale]. Further

1=det(1+B*B_) <0

if and only if B_ is in the Hilbert-Schmidt class, and hence T3 is

unitarily implementable if and only if the overlap is non-vanishing.
In these theorems 5 is well defined by the following lemma :

Lemma 15. Under the assumption of Theorem 13, a wvector £
in the Fock space, which is cyclic for the polynomials of fields and

satis fies

Ly P(P, (f1)55 9,(f))2s
=<8, P(D,(Sf); > D,(Sf))2

for all polynomials P and test functions f, -, f, is unique up to a
multiply of identity.
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The following theorem means that the vacuum 5 is in the
domain of the number operator N.
Theorem 16. Under the assumption of Theorem 13,
Q2seD(N)
where N is the number operator.
The proof of Theorem 13 involves the “Q-space” method, which
we shall discuss in the next section. The proofs of Lemma 15, which

is related to Theorem 13, and Theorems 13, 14 and 16 will be given
in §10. We shall prove Theorem 12 in this section.

Proof of Theorem 12. We shall use the following well known

property of the Fock vacuum vector £2:
(84 [0 ()19 0= 5 (0,() +i0.())2=0
for all fes#. By definition 2, satisfies

(8-5) (@,(B7f) +i®@,(BJf))2:=0

for all fes.
To show that B_ is of Hilbert-Schmidt class, let

0y =Py, WS F™
where F®=S§,(®),#) is the n-particle space. Then (8-5) implies
(8-6) B .Sy 0w>=0,
(8-7) Vm+1 W B f+im S.LUB™Y-)Rwurn]=0

where m=1 and W, is the following mapping of # into Sq.-y
X (®n-1 #) defined by the vector oy, in S,(&,.#) through the

characterizing equation

<8, (g1® ®gm—1), W.g>=<8S. @& ®gm—1®g) Dy )

relative to the inner product <, >=(,6 ). In particular W, is in
the Hilbert-Schmidt class.
First we show that the kernel of B, is {0}. Assume B,f=0 for
fes#. Then
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a* () 0= 1 (B, =0, ()2

— ‘/% (0, (Bf) —i®,(BJf)) 2
= 3 Us' (0,(B_f)+i0,JB_£))2=0

due to B,f=0 and the equation (8-5) (with f replaced by B_f). A
vector in the Fock space which is annihilated by a creation operator

a* (f) must vanish, which contradicts to
(8_8) <‘Qs ‘Q>=<‘Qm ‘QB>= L.

The first consequence of this result is that the range of (B™)., is

dense because

fy (B™).+g>=0
for all g€ implies
0=[(B™),19f=B.f
where we have used B'=JB®J'=B%¥ — BY.

As a consequence @,=0 for all odd m: For, (8-6) implies wy,=0
by the density of the range of (B™);. The relation (8-7) then
recursively implies ®.y=0 for all odd m again due to the density of
the range of (B™),.

Since @=0 would imply o,=0 for all even m by the same
recursive argument and this would contradict with (8-8). Hence
w,#0.

We can now use (8-4) for m=1 to obtain
0y (B™) _f=—V2W,- (B™) /-
Since W, is in the Hilbert-Schmidt class, so is (B™)_. Hence
B_={J(BYH)_JH®
is also in the Hilbert-Schmidt class.
Now we assume that BPB,g=—Ag with 2=0, |ig|//=1 and we
shall derive a contradiction. First we consider the case 1>0.

Let L be the set of all vectors satisfying BYB,g= —Ag.
For gL, we have



FOCK SPACE WITH AN INDEFINITE METRIC 527
BYB,BYB_g=BYB,B¥B.g
=BYB_BYB.g=—1B¥B_g

and hence BYB_g again belongs to L. Namely BYB_ is a Hilbert-
Schmidt operator leaving L invariant. Furthermore
(BYB.)*=BYB,(BYB,—1).
Hence
{BPB_+[2(A+1)]/4 L
isin the eigen space of BYB_ belonging to the eigenvalue =+ [2(2+1)]"%,
and at least one of them is non-zero. Letg be a non-zero vector
in one of these spaces. Then f.=BYf, f=B_g has the following
property :
fir=x[20+1)]"g,
f-==(1+Dg.
By (8-5), we have
(8-9) [9,(B7'f) +i®,(B7'Jf)]2;=0.
By the canonical commutation relation
(8-10) [2,(g), D,(g)*1=1[P, (gD, ?,(¢g.)]
=1 Im<{gi, ¢g.>=—1(g» Jg2) 1
we obtain
(8-11) [{o,(B/)+i0,(B N}, {@,(Bf)+i®,(BJf)}*]
=2(BJf, JBf),=2(JBYJf, BYf),=2(f+—f- f++f).
=2(lf I P= -1 = =21+ ) ilgll,
where we have used (&, Jk),=0 for any h€s# and JB'J '=B¥=
BY 4+ B®.
Combining (8-9) and (8-11), we obtain the following contradic-
tion :
0=<|{®,(B7'f) +i®,(BJf)} *2uil'= —2(1+ 2) |1 gl 12| *<<O.
This proves that BYB, does not have negative eigenvalues.

Finally consider the case 2=0. By the same computation as the

previous case, we obtain
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(BYB_)g:=0, (BYB.)g:=0

for g.=(BYB.)g. Because B®B_=B®B,, we obtain
(BY+BY)B.gi=B"B.g:=0.

By the invertibility of BY, we obtain B,g,=0. Since Ker(B,)= {0},
g,=0. Thus

BYB_g=0, BYB.g=0.

The same argument as above now shows that g=0. Therefore 0 is
not an eigenvalue of B¥B,. Since BYB,—1=BYB_is compact, this
shows that the negative axis and zero are in the resolvent set of

BYB,. Q. E. D.

§9. @Q-Space Methed

As a preparation of the full proof of Theorems 13, 14 and 16,
we prove them for a special case of finite dimensional # using the
following Q-space method.

Corresponding to any direct orthogonal decomposition # = K,BDJK,
with respect to the positive definite inner product ( , ),, we have a
maximal abelian algebra generated by (the spectral projections of)
selfadjoint fields

O(f)=2""@*()H+ @ (NH)*),
and hence we can identify the Fock space as a certain L* space
where fields @(f) with f€ K, are multiplication of certain functions.
We shall use such a structure in this section to discuss & (#) with
indefinite metric < , >=(, @) and the O-selfadjoint fields D, (f).
If we fix an orthonormal basis e, -, ¢, in K, relative to the

definite metric, there exists a unitary map W from & (#) onto

1*(Q, dg) such that

WP(@(el)j @(ez), Ty (D(en)).QzP(ql, Q2 s qn)
for any polynomial P where Q= R" and

(9-1) du,=7""" exp(— Xq?) Ildg..
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Let #=K®JK, K and JK be ¢-invariant and mutually ortho-
gonal, K,=P_K and K,=K.@JK_. W should implement

(9-2) q:{resp. —i az +1iq,} for e, eK,,
WO, (e,) {resp. ©,(Je,)} W= a’
—1iq; {resp. — W‘i‘ q:;} for e;,eK_.

Let ¢=P,+iP_. Then ¢ commutes with ¢ and ¢*=¢7!, ¢F=¢.
For the decomposition of S relative to KJK, ¢*h™'¢ is p-selfadjoint
and symmetric in the sense that A"=CA*C=A for the complex
conjugation C= (+1)@(—1) on KBOJK and A=¢*h7’¢.

We introduce a matrix « by (g, aq)=};a,9,9q, where a,=
(e,, 9*¥h%¢ge;) is symmetric due to (¢*A7%¢)"=¢*h*) and Ce,=e,.

We claim that

(9-3) 2,=[det alexp| —5 (@ @= 1) ]

has the following two properties:
(i) For n=0, and any polynomial P.

9-4) P(q,, -, ¢.)92s€L7(Q, du,),
(ii) TFor fes#,
(9-5) (@,(S7f) +i0,(S7Jf))2s=0.

The property (i) is immediate from the definition due to the assump-
tion that zero and negative real number are not eigenvalues of a,
= (a+a*)/2 and hence &5 has Gaussian fall-off for large|g|. The
property (ii) follows immediately

Proof of Theorem 13 and Lemma 15 for finite dimensional #.
We define an operator Uz’ by

(9-6) Us'P(9,(f), > 9,(£.))8
=P(9,(57/), -, ,(S7 /)%,

where the polynomial P and test functions f;, -, f, are arbitrary.
Since any polynomial annihilating £ is known to belong to the
left ideal generated by annilhiation operators @,(f) +:9,(Jf), (9-5)

guarantees that zero vectors are mapped to zero vectors by U;' and
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hence U;s' is a well-defined linear operator.

Since 25#0 for all ¢ and £ exp[—%Zqﬁ-] has a Gaussian de-
crease at g=o0, &5 is cyclic for the polynomial P in L*(Q, du)-
Hence the image of Us' is dense in L*(Q, du,).

Next (9-5) and the canonical commutation relations uniquely

determine

<QS’ P(@g)(fl)! ) @p(fn))‘gs>
because (@,(S7'f)+i9,(S7Jf)) and its O-adjoint (9,(S7'f) —i®,
(S7'Jf)) generate the polynomial algebra. Hence it must be equal to

L, P(9,(Sf); 5 9,(8£))2

which means that U’ is G-isometric.
Finally to prove that S™' is also weakly @-unitarily implementable,
let

hi=a=a,+ia;
where «a, and i@, are selfadjoint and skew-selfadjoint parts of «
respectively. For S7!, we have
a'=(a,tia,) = (a,t a7 ;) ' —ia ', (o, T a0 a;) 7

1

Since (a™'),= (a,+a,a7'a,)”" is again a positive operator, S7' is also

weakly O-unitarily implementable. Q. E. D.

For the purpose of our proof for the infinite dimensional case,
we need a few more estimate about £s. First we mention the

following two lemmas due to Klein [15, 27]:

Lemma 17. Let (Q., du.) be a sequence of probability measure
spaces. Assume f,=20, f,€Ll*(Q: du.), and ||fill.=1 for all i. Let
F,=11.,f. If Hz||fll,<oo for some p>2, then for some FeL*NL?,

F,—~F
in L.

Lemma 18. Let f,(q) =12 exp[—-%(lz—l)qz], and let||-||, be the
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norm of f with respect to the probability measure dy,==""* exp(—q?)
dq. Let 1=c¢>0 be given so that ¢cSX=c™'. Then there is a constant
y for some p>2 (any p<2(1—c)™") such that

i@, =exp(n(#~—1)*).

These two lemmas imply that a formal vacuum given by
Q=TI A exp[——5 (E=1)q7]

is in L* if )} (&—1)°<co, and can be directly applied to our case if
p=1, because S is a selfadjoint scaling operator in this case ({#}

are eigenvalues of « in this case).

In order to prove the following theorem and as a preparation
of the next section, we briefly discuss the compact operators and
determinant of Hilbert space operators [see, for example, 6, 23, 25,
26].

Let # be a separable Hilbert space and let # (&#) be the
C*-algebra consisting of the bounded operators on #. For a complete
orthonormal basis {¢;; i=1, 2, -} in J# relative to the inner prod-

uct ( , ), the trace of operators is defined by
-7 Tr(A)=2:(¢.,, 49)).

If A is positive, selfadjoint, then Tr(A) does not depend on the
choice of the basis.
Let |A|=(A*A)Y* and define

(9-8) ¢,={Ac€ % (A);Tr(|A|?") <o},
and
-9 A= (Tr(]A|?))".

Especially %, is called the Hilbert-Schmidt class and is a two-sided
ideal in 2 ().

We summarize several inequalities without proof [16, 25, 26]. If
Aew,, Be#, with p7'4+q'=1, p, g=1, then both AB and BA are
in ¢, and Hoélder inequality holds :
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(9-10) ITr(AB) [=]lABlL=  [AlL,ilBll.-
If Ae % (s#), Be#,, then

(9-11) lAB|, =!|AlllIBll,, [IBAll,<IIAlll|Bil,

Let {4 (A);7i=1,2,...} be a listing of all the non-zero eigenvalues
of A counted up to (algebraic) multiplicity. We define

det (14 A4) =TI (144 (A)).

Let {#(A);i=1,2,...} be a listing of all the non-zero eigenvalues
of |A| counted up to multiplicity. Then

(9-12) I<det(1+ [A)=II(1+ x(A)) Zexpl|All,

and det(1+ |[A|)< oo if and only if A€ %, The following inequal-
ity is due to Weyl [6, 26]:

(9-13) 214 P 2w (A =lAll;

for p=1. Therefore det(1+A) exists for Ac#,. Further [6, 26]
(9-14) ldet(1+A) |<det(1+ |A}).

Our final theorem in this section is the following that is a gene-

ralization of Lemmas 17 and 18:

Theorem 19. Let « and B be bounded symmetric operators (of
arbitrarily large but finite rank n) such that

(1) 0<c=Za, B.=c7, 1=Zc>0,

(i) —m=a, ;=m,

(ii1) |la—1j IB—1.Zk, for some k< oo independent of n.
Here a, and ia;(resp. B, and iB;) are selfadjoint and skew-selfadjoint
parts of oa(resp. B) respectively. Let

f= (det @) exp[ = (@ (a=D) |,
fi=(det )" expl —§ @ =D,

and let |||, be the norm with respect to a probability measure dy,
=117, z7 exp[—q¢ildg.. Ifila—B||. is sufficiently small, then there
is a constant 7 such that
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W= felE=nlla— Bl

for an appropriate choice of the quadratic root of det(a) and

det(B).
For the proof of this theorem, following lemmas are useful:

Lemma 20. Under the same assumption of Theorem 19,
|det a|?*

[det<1+l§-(a,— 1))]”2

Jor p<2(1—c)7'. Further in this case, there is a finite constant 7
such that

alls=

£l Sexp gor llal i+l — 115 |

Lemma 21. Let «, and B, be the operators defined in Theorem
19. Then

1
2

s — (B Y, < 2,

Hayz'—ﬂ;l-/z”zé C-quar_ABrHZs

12— (B e, Bl

Lemma 22. Let a, and B, be as above. Then

detl/z( ar;ﬁr)
I=K= det” (a,) det”? (8) =exp[ (2¢) ~Y|a,— 8,151

Lemma 23. Let a=a,+ia;, f=p.+18; be as in Theorem 19. Let
A= o taat, B= g6,
and let
M=[det*(1+ A% —det”*(1+B) ]

Then there is a constant c¢, for sufficiently small ||a— ||, such that
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M<colla— Bl

(For example, c,=exp(- 55 )re, 1= 2me™ (me+¢™), for |la—plb=a)

4c?
Proof of Lemma 20. Since
il = ldeta [ exp[ = (@ (@—D)]

the first equation is obvious, while

|deta |?=det(a,+ia;) det (a,—ia;)
=det(a?)det(l+a; Va0 a;a7?)
<expl[|le/*a,a  a;a7 ||, ]det (a?)
<expliia;?|lllaill.]det (a?) =exp[c™*||a:[[}]det (af).

Then

1 2 (det (&))" %
| = gp 1%l il
|,fa||,,§expl: 8¢ el :l [ (det(l‘l‘%(ar— 1))1/2]

Hence we obtain the desired inequality :
IiprSeXp[ ol 247l (. — D]
Q. E. D.
Proof of Lemma 21. Let {¢;} be the complete orthonormal eigen-

vectors of a’+ 87 and let {4} be the eigenvalues. Then 2c"*<2

<2¢72. Since
a,—B.= é—[ (a4 BY*) ("= B + (a0 — BY) (@ + 8% ],

we have
== T 1By (@= 86"
= 5 (ATE) 1@ @ =89
24X (B (a— B g )" | =dellacs'— B

Other inequalities follow by substitution. Q. E. D.
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Proof of Lemma 22. Let x=a;"?B,a;*>0. Then ||z7*||<c7% and
1<K= det""(l-l—%x"‘(x—1)2>§exp[Tl6—Hx“li!|(x—l)zlll]
Sexp| e llar (@, — eIt
<exp| [ lia o lla,— 88| Sexpl 26) e — A1)

Q. E. D.

Proof of Lemma 283.
M=det’ (14 A% (det[1— (14+49) (4= B) (1+4) ] - 1)
< exp| L I14J% |[expilA'— B, — 1T

Note A, Be %, By Hélder inequality,
HAZ""lelléHA+B||2”A_BHZ§277’LC_1”A—'Buz
Further

A= Bll= lla; @ — 8,7
=l e (= B B e B (= B
BB (i B B
< (lla 11187 e |+ 116711187 B 1)
X /= B+l 1181 .= Bl
<2me™ |t~ Bl +c e~ il

Then by Lemma 21, we finally have
|A—Bll.=mc™|la, = Bliz+c 7o, — Bil . = (me™+c7) [la— Bl
Thus
{expilA*— Bl 1}* = {exp[2mc™ (mc ™ +c™) [la— .1~ 1}7,
and then there is a suitable constant d such that

=dl|a—Bifi.

We set co=dexp[%liA|{§] to complete the proof. Q. E. D.

Proof of Theorem 19.
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Vi fle= 1A+ 1A= (A fdp—

={| det (a) '1/4__ | det (8) | 4}z
det(a,) det(8,)

+2 | det(a)det(8) det™ (a,)det™(B,) |/
— (det’ (@ det (B det (X 3B )4 (@a, 5-))

Let
A= 0{,—1/26[',0(,_1/2, B= ‘3,.—1/2‘8“@,._1/2, C=< ar+18,- )‘1/2( a’,-—,@,- >< a,—"‘,B,. >_1/z.

Then these are in #, and

iicnzggc-ﬂla.-—ﬁ.-nz.

We have

[Ifi= filli= {det”* (14 A%) —det”*(1+ B*)}*+2det”* (14 A*) det’*(1+ B*)

— et (@) det™(8) gy 4 o)
detllz < Ct',_,‘ ﬁr >
2

X [det”*(1—7A)det”*(1+iB)det”*(1+:C) + (4, B, C>—A, —B, —()].

Let
[=det”*(1—iA)det”*(1+iB)det”*(1+:C).
Then
|l|=det”*(1+ A% det”*(14+B*) det”* (1+C*)
and / is given as
o, |o|=1.
Let o,=Re w. Then we finally have
| fo—=Folf=M~+2|l|det™* (14 C*) K'[det”*(1+ C*) K~ wo,],

where M and K are quantities given in Lemmas 22 and 23. By
previous lemmas, it suffices to prove that, if [la—p|Z is sufficiently

small,

lo.—1] =nlla— Bl



FOCK SPACE WITH AN INDEFINITE METRIC 537

for some constant 7.

For this purpose, note that

I=det”*(1+iC) (1—i4) (1+iB) (1+:C)
=det”' (1+ A+ H)

where
H=A(B—-A)—i(A—B—2C)+iCAB+i{ABC+ (A—B)C+C(A—B)
—C*+iC(A—B)C—CABC.
We prove HE %, and [|H|,=<7,||a—B!l, for some constant 7,. Since
A, B and C are in

HA(A—B) | <||AllI|A—B|l.< const. lla—B|l;,
IABCI|,=||ABJL.{|C|l.= const. |la—§l|;.

Thus it suffices to prove ||[A—B—2C||;<7,/la—Bll. for some constant

E A-B—2C

= (B — ) B e BB (B — V)

() ) e

N O CON

Here a,, B, €%, and by Lemma 21, <a_,—2l—ﬁ V2 @2 and <%ﬁ—'>

— B are of Hilbert-Schmidt class whose Hilbert-Schmidt norms are

dominated by const. |ja—B|,. Then there is a suitable constant 7,
such that |[|[A—B—2C|;Zn,|la— Bl
Let H, and ¢H,; be the selfadjoint and skew-selfadjoint parts of
H respectively, and let

det(1+A’+H)=det(1+ A+ H,)det(1+:H,),
where
H;=(1+A*+H,)H,(1+A*+H,)™"
is a selfadjoint operator such that

NHiL =4+ A+ H) I HIL =7l (1+ A+ H) 7| la — Bl
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Then
det(1+:iH;) =det”?(14+ H?) exp i Tr[SinH:(1+ H?) "]},

and

@, = cos 1 {Tr[SinH! (1+ H =1},
which completes the proof. Q. E. D.

§10. Proof of Main Theorems in §9.

For a generalized ¢-scaling S given by (6-7), S- is given by

sy HO

on K@JK. Then

(10-2) S_is H.S. A=k s H.S. ®»a—1=A"7—1, a'—1 are
H.S. —»a,—1, a;, (@),—1, (a7); are H. S.

Let E, be an increasing sequence of finite dimensional orthogonal
projections commuting with ¢ and tending to 1 as n—co. Let A,=
(E,aE)™*+ (1—E,) and S,=h,®k;' on KBOJK. Then {S,} is a

2

sequence of generalized ¢-scalings of finite rank with a,=#A;? satisfy-

ing |le,—1]l,<t, c=(a,),Zc™* for all » and
||am_an||2—)0
as m, n—>o0. The sequence of transformed vacua {25} with
2:,= [det (@) ]V exp[— 5 (¢, (@~1)9)]
is Cauchy is L*(Q, dy,) by Theorem 19:

(10-3) 05, >0, €L4(Q, dp).

The phase of (det(a,))”* is chosen so that (det(a,))”*>0 if det
(a,) >0. Thus we can prove Theorem 13 and Lemma 15 through
Lemmas 24-26:

Lemma 24. Let P be a polynomial of the fields {@,(f.)}. Then
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(10-4) Sup,|[P2s ;<.

Proof. Tt suffices to prove the lemma for a polynomial of {g.}.
In fact derivative terms {0/0g;} in @,(f;) are only to induce linear
terms of {g;} as ).;(@,);q; in P, which stay in a bounded set of
L*(Q, dp) with p=2: X, |(a,);;’< (1+«)* for any n and i.

By Holder inequality

1Pa, =\ 1Po,, Pap,
<IIPI 1195 1

where p’, ¢'=1 and (p")7'+(¢')'=1. By Lemma 20, there is a
constant p in (2, 2(1—¢)™") such that

12,1 Sexp| sl @) i+ 711G — 118

We put p'= p/2>1, which completes the proof. Q. E. D.

Lemma 25.
(10-5) s, PRsY=K82, n(P)2>,
where P=P(9@,(f), -, 0,(f,)) and =s(P)=P(®,(Sf), -, ,(S5f.)).

Proof. Let ¥,=Pf2;. By the above lemma, ¥, has a sequence

converging to a vector ¥. Since P is a closed operator,
{2, ¥} € graph P.

Then ¥ does not depend on the subsequence and ¥, weakly conver-
ges to

U=PQ,, 2;,&D(P).
For finite rank S§,,
(s, PRs>={Q, x5 (P)2).
Then

s, PRH=(Q, n5(P)2).
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Q. E. D.

Lemma 26. £ is a cyclic vector for F.

Proof. First note that {Q2;} = {P2;}, where {Q2;} denotes the
set of Q(q)2s with Q(g) polynomials of {g}. As we have already
proved,

{Q2s} 295,

if a—a, is of finite rank and c<Z(a),, (a,),=c™' for some 1=c>0.
Let E, be an increasing sequence of finite dimensional orthogonal
projections tending to 1 as n—oc and commuting with ¢. Let a,=
E+(1—E)a(1—E,). Let h,=(a,)™ and S,=h,Dh;' on KPJK.
Therefore {Q2s) 20 and |la,— 1,0 as n—>0co, which implies 25 —>#
in L*(Q, dp) and

Qe =2

By the explicit evaluation of ||g"Q%2s||, as a function of =, it is
seen that Q25 for any polynomial @ of {¢} is an (entire) analytic
vector of g, Hence exp(iag;) Q2s€ {Q2s} for any real a. This
shows that {Q%;} is invariant under the commutative von Neumann
algebra M generated by {exp(iag;)}. Since the Fock vacuum is
known to be cyclic for M, {QRs>2 implies that {Q2;} is the
whole Fock space &. Q. E. D.

To complete the proof of Theorem 12, it suffices to prove that
T, is again weakly @-unitarily implementable. This is obvious since
if a—11is H.S.,, then a*—1 is again H.S. (see (10-2)) and if «,
is strictly positive, then (a™), is again strictly positive as we have

already proved in finite dimensional case. Q. E. D.
Proof of Theorem 14.
For finite rank S,,

d
@, 2,5=det" (@) {exp[ 5 (@ (@t Dg|TTIL
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=det"*(a,) det“/z<~————a"; 1 >
=det (BB Y = e 14 (h— i

Take the limit n—oo. Since 5% and h—h™" is H. S., this is non-
vanishing finite. (Moreover this is positive since det (A)>0 if A is
symmetric ¢-selfadjoint operator such that A,>0).

If T,=V,SV, with V; ¢-unitary, then

For the above Ts, Upy=I"(V,) UL’ (V,). Since {I'(V,)} do not change
the Fock vacuum, if 2,&D("(V;")), then
K9, 2;>=<8, 2.
Q. E. D.

Proof of Theorem 16.

The number operator N is given by

0

2.a*(e)ale) 2%2‘-(—3—%4'261.) 0

0g;
in the Q-space. Let
0,=NO,=£.0¢,
where
Q=L@ D +ai— (Z,a,0)712= /(@ 9
Since a—1= %, and a™' is bounded, it is explicitly shown that
19:1= 5.\ 15,12 Fdpu< oo,
Q. E. D.
Remark 6. By similar method, it will be proved that 2,&D(N")

for n=1, 2,---. This is the “locally Fock property” of the vacuum
defined by Glimm and Jaffe [7, 8].
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Finally in this section, we prove that the condition spec a,>0 is

necessary to ensure 2,&%.

Theorem 27. Let S be a generalized ¢-scaling. The vector 2
such that

Q, ns(P)2>=<8s, P2s)

is not in the Fock space if inf spec a,<0.

Proof. a=h"" takes the following form on JK,@JK_=JK due
to the ¢-selfadjointness of a:
<(ar)++ (a) +—>
(a;) -+ (a,) - ’
namely a,= (a,),:@(a,)_- on JK,@PJK_. First assume that inf spec
(a,)++=—4<0. Then there is an eigenvector feJK, of a, belong-

ing to the eigenvalue —A. In this case @,(f) is selfadjoint and
llexp i1@,(f)||=1. Now

(0, mlexp(0,())19>=(2, exp(i?,(5)2)
= exp| — <8f, 5P |=exp| — (5 @) ]

=exp| 40 D |

If 2>0, then the right hand side can be made arbitralily large,
which contradicts [<2,, exp (19,(f))2s> | =[|2s[;< 0.
The case of inf spec (a,)-_<{0 is similarly discussed. Q. E. D.

We remark that the state p,=<2, 75(. )2> cannot be extended
in general to a state on the C*-a gebra generated by {exp i@(f);

fe#}, as can be immediately seen from the above proof.

§11. Examples of @-unitary Quasi-Implementability

For weakly O-unitary implementability of a Bogolyubov trans-

formation B, we obtained the following sufficient condition in
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Theorem 13:
S_€H. S., and spec («),>0
and the following necessary condition in Theorems 12 and 27:
S_€H.S., and spec («),=0.

We now want to present two examples of B where this necessary
condition is not satisfied and yet a quantity which can be interpreted
to be the overlap {2, £,> is-non vanishing finite in contrast to the
situation of positive definite metric where the last condition is equiv-
alent to the unitary implementability [Remark 5].

The first simple example provides the case where B_is H.S. but
spec «, can become negative. The second example provides a case
with B_ non H.S.

Let {s#,; I=1, 2,-+} be a sequence of two-dimensional Hilbert
space #,=C” equipped with an indefinite sesquilinear form < , >=
(,0, ) where ¢,=diag(l, —1). Let #=@,#, be a Hibeit space
equipped with an indefinite sesquilinear form < , >=( ,¢ ), o=@,
Let {T"; I=1, 2,-+} be a sequence of g-symplectic operator on #,,
and let {#, (, >} be a Fock space equipped with an indefinite
sesquilinear form <, >=(, I",(¢;) ) constructed from {#, <, >}
with the Fock vacuum £, The Fock space over s is identified
with

F=Q,(F,, 2), @zr(‘ﬁ):@z[‘z(@z)

Example 1.

= <gl h—01>
;

on K,@PJK,, where K,= K @K" and A, is such that the correspond-

ing matrix «;, is given by

cos 26, isin 26,
w=(

=2u (20,
7sin 26, cos 2(9,> w(26,)

with 0=<60,<z/2, 0<2, for all I

The formal vacuum 2% is given by
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[det(a)]"exp[— (4, (= 1)g®)]
= hexp| — 1(¢®, (u(26)— g™ |

where

Then 2{?F, only for 0<20,<n/2 and

19lj3= [cos 20,171
1+ 2 (22—-1)
2
with
x,= 2 (cos 20,)"?
for 0=p<<2(1—c¢)7' (c=cos 20, Xmin {%£, 247?}). The transformed
total vacuum is given by
X027,
T_=@,T® is Hilbert-Schmidt if and only if
2.:[ cosh®z,sin*d, -+ sinh*r, cos® 6,] < o0
<o lzn—2 <o) |z — 1P
where 4,=exp(r;) and 2,=2exp(i0,). =z, is one of the eigenvalues of
h,. T is weakly O-unitarily implementable if 0=<6,<x/4 for all /
and 7T_H.S.

The overlapping of the vacua is

W, PPy = [det( hz‘zhl_l >:|_1/2=2 | 2,427

where 2% is the Fock vacuum in &,. The formally defined overlapp-
ing II, 2|2,+27"|™" can converge to a non-vanishing finite quantity
even if spec a,>0 does not hold. In this example, the overlapping
is non-vanishing if and only if 7_H. S.

Example 2.

T — <h, 0)
0 ht
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on K @JK,, where on K,=K ,PK-

1

h,=1+n,<_1

1
), n,€R.
-1

1 1
-1 -1

1 1
S
1 1 nz(_ 1 — 1>:

a= 1—2n1<; ~ 11)

Thus 7- is H.S. if and only if )], |7n}|<co, and T is weakly O-
unitarily implementable if T_€H. S. and |7,|<1/2 for all /. But the
overlapping is independent of {n} :

Note that h,——1=n,< > is a ¢-selfadjoint nilpotent operator,

and

0, 9Py=1, <9, y=1.

§12. Applications to Physies

As an illustration, we consider, in this section, a mass-shift model
of vactor field 4, in two-dimensional space-time with periodic bound-
ary condition (other more non-trivial models, see [5, 11—13, 19, 29]).

We shall consider Bogolyubov transformations related to this model
and discuss its implementabilities. First we consider the Bogolyubov
transformations which diagonalize the Hamiltonian of this model
and second we consider the time-translation operator of this model
as Bogolyubov transformations.

The (Stuckelberg) vector field 4, in two-dimensional space-time
can be described in terms of a scalar field ¢ on the Fock space #y
with a positive definite inner product and another scalar field B on

the Fock space &, with an indefinite inner product:
A,‘=%[sﬂva"¢+a”B]

where ¢ >0 is a mass of ¢, ¢, is the antisymmetric tensor with values

+1, and we assume B has a mass ¢ =0. (UF=%5,”8”¢ is the Proca
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field of mass #in two dimensions and B is the gaugeon field of mass
¢ See [9, 11—-13].)
The total Hamiltonian H of the mass-shift model is then

H=Ho(¢)+HO(B)~—;-5gZS:Aé(x, 0)— Az, 0) : dz

where H,(¢) and H,(B) are the free Hamiltonians and: : denotes
the Wick product. To set up simple well defined model, we limit
the space to the finite interval A=[—L/2, L/2]CR with periodic
boundary condition and furthermore use the cutoff (periodic) field
A, .(z, 0) instead of A,(x, 0) (high momentum parts ([p|>c¢) and
zero momentum parts are completely omitted in A4,,(z, 0). See
[11—13] for details).

Without loss of generality, we set #'=0 in the following, which
corresponds to the Landau gauge formalism of the vector field [9,
11—-13, 19, 29].

In terms of creation and annihilation operators {a* (p), a(p), b (p),
b(p); pel'=2rZ/L} of ¢ and B, the Hamiltonian is

(12-1) H=H(L, 0)=2T-ir2pep.,;p>o: A (p)AH (p)A (p) : —E(L, o)
where

E(L, o)= Z;er.azp>0<q0_—7)°_ %i)

Po: (Pz_!_)az)l/z’ o= (P<21+5/12)1/2

is a constant (the vacuum energy) chosen so that inf spec H(L, o)

b
A= | LT (p)= (@ (p), b*(p), a(—p), b(—p)),

and s (p) is a 4X4 hermitian matrix given by

<9‘f+(1>) H-(p) >

12-2 — —
(122 H_(—p) H-(—p)
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with
pr3 Mg
H(p)= Y
-1-*#70) @) —lp|
POl e
'%" (P) = 5#2 5#2
_;ou oY
z ﬂz G)(P) #2 lpl
where
0+ 0__ y
gy EHLEDE s =15

25151 CPT apipl
In this approximation, # . =#_=0(I") and F,=F (H.), Fz=
Z (#_) and the following CCR with an indefinite metric hold:
. L
[a+(p)5 a(‘])]zh[b (P)) b(q)]:é;doqa
any other commutator=0.

Here

at(p)=[a@) 1 =[a(®)]1* b*(L)=[@)]1” =—[b() 1%
and {a(p), b(p); pI'} are the annihilation operators:
a(p)L=b(p)2=0
for all p.

We shall now discuss the following items about the Hamiltonian
(12-1) :
(1) Diagonalization of H=H(L, ¢) by a ¢-symplectic operator 7, in
the sense which shall be explained.
(I) The implementability of T..
() The Bogolyubov transformation a, (=exp[itdy]) induced by H.
(V) The implementability of a,.

Before studying these problems, we shall note a property of
H(L, 0), namely H(L, o) is @-symmetric:

¢, H(L, 0)¢p=<H(L, a)¢, ¢ for ¢, $D(H(L, 0)).

Further in the present case H(L, o) is O-selfadjoint. In fact the
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symmetric operator ®H (L, o) is selfadjoint since ¢< oo, which implies
that H(L, o) is O-selfadjoint [5, 13].

I and II: We choose a 4X4 matrix S(p) which diagonalizes
# (p) and leaves the CCR (with indefinite metric) invariant:

S*(p)# (p)S (p) =diagonal matrix,
S*P)TS(p)=S®)TS* (p)=T,

=G )

with p=diag(l, —1). This S(p) is obtained by solving the following

where

equations :
det[# (p) — Tz]=0, #(p) Tu,=e,u,

with the normalization with respect to ( ,7 )=, >r:
uy Ujpr=(T),,
Here {e;; i=1, -, 4} are the roots of the characteristic equation,
and are given by {+¢°==+ (p*+p+d)"s, +1pl|}. Then S():;=
(Tu; ()
S(P)=<§+((P) S-(@) >
~(=p)  S:(—p)

where
Pt g _wopgp
2umlp’e®  2upip’lp]
S+ (P) = R
Wy o gt
2uplq’ | p | 2up
e —pgp 0P
2umlp°q° 2umip’ | p|
S (p)= ﬂ;;f:p /1#5 ; I
T 2upig 1P 2up
with g= (f2+02)".
Let
S, (p) 0 \* 0 S_(P)\*
B = 3 B— =C )
- =( . S+(—p>> ®») <S_(~p) . )
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where C is the complex conjugation operator on #. Let

(12-3) T(p)=B.,(p)+B-(p),
and let
(12-4) B, (0) = @s<rs.Bs (), T.=B,(0)+ B_(0).

Thus Ur, should implement & (p)—>S(p)« (p), and then implement
A,,(z, 0) ——>A~,,,,,(x, 0), where Ap,,(x, 0) 1s the vector field of mass
g= (+o6p)" (in the Landau gauge formalism).

Since S, (—p)e=_S,(p) in this case, we see U,T,U;*=T, where

o=y )

iIs a unitary matrix commuting with ¢, and

T,:(t"(+) 0>
0 (=)
where t,() =@oc,=.t (Fp) with
t(+p)=81(Ep) = oCS2(£p).
Thus it suffices to consider the implementability of T,. Since
for K,=K,®iK_,
t,(£)K,CK,, t,(£) " K,=@ocps, (ST (£5) £8* () =t,(£)y
t,(£)JK,CIK,, t,(+) 1 JK, = Docss, (ST (£ ) FS2(£)) =t,(£)s
T, takes the following form on K,PJK,:
T, 0
)
where
t,(+), 0 t,(+), 0
T"":(o( )za<—>1>, T’”:(o( )t,<—>2>
and, of course, JT,;}J'=T%.

We investigate a=T¥T,, which is g-selfadjont and symmetric :

(12-5) a= @ a(p)

—0Zp<o, pF0
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(12-6)  a(p)=(S1(p) —S2(P)) P (St(p) —S(»)

(£y 2 RN
_|\e/ 7 D)
O pp 1 [ P
il i £ ¢ (51)?
t #2 qo‘/pop ﬂzﬂz # qo(,u)i|

a(=p)= (ST (=) +52(= ) (SH(—p) + 5% (— )
qo 4_L 2\ 2 5#2 y2d
[e-Fawy] %

_| #er # AP
R (2
/lz ‘/ Po » P /

with p>0. Therefore a,(p) >0 for all p if |04 |<tF, and

(o

. (74
1 =1+
im a(p) . -1

p—>too /,[

The formal vacuum £; is given by [det(a)]““expli— —é— (q, (a~1)q)]
which is in the Fock space if o<{co and {og*|<pf.
The overlapping is given by
det™[B, (6) 1=, (L, 0) = Il,c,<,det™S. (p)

and is non-vanishing finite for 0¢°= — ¢, and absolutely converges to

a non-vanishing finite value w,(L, o) as ¢—>o0 since

- 4020 p°q°
S D=y e — GR T
=1+0(™)
as p—>oo.
As conclusions, T, is weakly @-unitarily implementable for g<oo
and |0g°|<g, and O-unitarily quasi-implementable for ¢<o and
opr= — 1~

Remarks 7. (1) The following quantity exists:

&, =lim -71:1ogwo<L, o) =Jfgwdp log[det(S. (»))].

L, g—>c0 271' 0

This is called the effective potential in field theory (the subscript “p”
means the periodic boundary condition). Since the indefinite metric

formalism is used, this is not necessarily positive. In fact det(S, (p))<1
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for large |pl.

(2) The vacuum energy per unit volume converges for L, ¢—o0:
m L =1 <o_ o_E£>
im B =5 So W\~ =g )

(3) Let @,(f) be the O-selfadjoint field as before. Then
ps(exp i0,(f)) =<2, exp(i®,(Bf))2>
:CXPIZ*%<Bf9 Bf>:l’

which converges uniformly as L, 6—>o0 for any feL*(R*; d’z). (See
also [7, 8, 22, 23].)

III and IV: Let H,(L, 0) be the diagonalized Hamiltonian by
the transformation “S(p)”, and let U, be the operator on the Fock
space which implements the transformation of the fields. Since Ur
is unbounded, we can say that H(L, ¢) is similar to the selfadjoint
operator Hy,(L, o) which commutes with by unbounded @-isometric
operator Ur. By the definition of E(L, ¢), inf spec H,(L, ¢)=0.

We say that a closed linear subspace § in # is uniformly
definite (resp. strongly definite) if it is uniformly positive or negative
(resp. positive or negative). We have obtained the spectral resolution
of H(L, ¢) in terms of O-selfadjoint projection operators (for |dz|
< #*). But their ranges are not uniformly definite.

H(L, o) is considered to be the generator of the following differ-

ential equation :

%m =H(L, 0)$(t),
p(=0)=¢,eF,

12-7)

i.e., we formally have
(12-8) d@)=U(—t)d,, UQ)=exp[itH(L, a)].

We proved that H(L, o) i1s O-selfadjoint, but formally defined
U(+t) cannot be bounded in general except for t=0: U() is an
unbounded operator which implements the following transformation
of the field:
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(12-9) a,(?,(f)) =expitdy-P,(f)=@,(B() 1),
where B(¢)=B7'K,(¢)B=B,(t)+B_-(t) is a one-parameter group of

p-symplectic operator and K,(¢) is a one-parameter unitary group
defined by

(12-10) exp 10y, P, (f)=0,(K, () f).
B, (t) are explicitly given as follows:

B.(t)=BYK,(t)B.—B¥K,(t)B_,

(12-1D B_(:)=BYK,(t) B_.— B¥K, (t)B..

Even if (B,, B.) is weakly O-unitarily implementable, (B.(2),
B_(%)) is not necessarily weakly @-unitarily implementable. Such a
phenomenon can be easily confirmed in a simpler example. (B, (?),
B_(t)) is O-unitarily quasi-implementable in general. (Note that
B_(¢) is H.S. if so is B_.)

Remark 8. One-parameter O-unitary group U(t) is called stable
[18] if ||U@®)||SM for all ¢ R. By connecting results in [18, 21],
we see that the necessary and sufficient condition for H to be a
generator of one-parameter stable O@-unitary group is that H is
similar to a selfadjoint operator H,. On the other hand, by a theorem
owing to Phillips [18, 21], we see that the necessary and sufficient
condition for the O-selfadjoint operator H to be similar to a selfad-
joint operator H, is that H has two closed invariant uniformly definite
subspaces # ® such that F=%YPF ) with respect to { , >. In
physics, it is not expected that the Hamiltonian becomes a generator

of a one-parameter stable @-unitary group.

§13. Concluding Remarks

We first discuss some properties of Ujz' which is weakly 6-
unitarily implemented. For simplicity, we assume that B is g-unitary
(then Uz'=I"(B™)).

Let ¢=P,—P_ as before and let #=4#,DHA_ where #. =P, H.
Let B #=B7'#.@B'#_. The topology of s is introduced by
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the inner product
(13-1) (x, 2)1=4Tsy T4 —<Zy 2-)

where z,.€,, while the topology of B™'s# is defined by the inner
product

(13-2) (@, ). =24, T2 —<2, T
where z,€B'#,.. Since Bx,.e ., we have
(z, £),=<{B'Bz,, B'Bx.,>—<{B'Bzx_, B'Bz_>
=<{Bzx,, Bx,>—<{Bx_, Bx_>= (Bx,, Bx,),+ (Bx_, Bx_.),.
Thus there are constants 0<g < p,< o0 such that
(13-3) wllzlR =11zl E = izl

which means that the topologies of # and B™'s# are equivalent. The

unitary and hermitian operator ¢ is again represented as a unitary
and hermitian operator &:

(13-4) =P, — P,

where P, are projections to B7'#, and are selfadjoint with respect
to (, e

Next let F(#)=F (H#,)RF (#_) and let
(13-5) O0=I(p)=0,—06_
where O, are projections:

1 on F(HAIQFE(H),
—1 on F(HLH)QF®(H#)

where n=0, 1,---. Let #.=6,.%. Then the topology of the Fock
space % is defined by the inner product
(13-6) ($ $):=Lps, ¢>—<P-, 6>

where ¢.= % ., while the topology of F (B'#,)XF (B'H#_) is
given by
(13-7) (@, 6).={p., 9.>—<9_, >

where ¢.€F.(B7'#) and Z.(B7'X) =Prccventoanr F (BT ) QF
(B-#).
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Ir's(B)=IB")IF“(#)=B"'QR QKB (n-times)
FO(H) =D, 40_=aF " (H ) QF " (H-).

Then for ¢ F (B H#)=1""(BHF™(H), we see

(13-9) llgll= 11" (B) @l [3-

Therefore there is a vector ¢ in & such that ||¢|[;< o0 and |{@|[z=o0.
This shows that &# (#) and & (B™'#) are different.

Due to this phenomenon, the set of weakly @-unitarily implemen-

(13-8)

table B does not form a group and is not invariant by ¢-unitary
operators.

Remark 9. If V is g-unitary, @,(V/)=I'(V)®,(f)I' (V™). Then
for a decomposition T=V,SV, with V; ¢-unitary, we define U,=
I'(V)UI'(V,). Since I'(V)2=92, 2,=92; if T=VS (as in Theorem
14). Contrary to the case of generalized ¢-scalings, even if 2,€%,

Q71 is not necessarily in the Fock space.

In this paper, we considered the properties of £, which satisfies
@, n3(P)2)=<2s, P2y
where P is a polynomial of fields {@,(f.)}:
P=P(D,(f), - 9,(f.)),
and
m5(P)=P(9,(Bf),, P,(Bf.))-
Let
(13-10) 08 (P) = <25, P2;).

In physics, expectations {oz(P)} are easily calculated rather than
7z (P) themselves. To obtain mp from pz is the converse problem
which should be investigated in the next step. (See, e.g., [10, 28].
See also [13, 29] for the problem in physics.)
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