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Investigation of Numerical Solutions of Some
Nonlinear Quasiperiodic Differential Equations

By

Taketomo MITSUI*

§ "L Introduction

The Galerkin-Urabe's method has had great success in the numerical

analysis for periodic solutions of nonlinear periodic differential equations.

As an extension of the results, we have tried to deal with nonlinear

quasiperiodic oscillations. It is apparently possible to treat many physical

phenomena with non-periodic motion as quasiperiodic oscillations. In fact,

as far as the author is aware, there are a few papers on the mathematical

analysis of quasiperiodic oscillations. In the present paper a numerical

method will be proposed and the efficiency of the method will be shown

for some nonlinear quasiperiodic differential equations under certain restric-

tions. In addition, numerical examples will be given in some typical cases.

M. Urabe developed the mathematical theory on the quasiperiodic

differential equations ([5], [6], [7]), but did not complete the numero-

analytical methods. On the other hand, some authors have described

both the phenomena with quasiperiodic oscillations and the methods for

analysis (for instance, [1] and [3]). The present paper, however, may

be the first one that contains the numero-analytical methods with precise

a posteriori estimates and the numerical examples of the quasiperiodic

differential equations.

Our numerical analysis of the quasiperiodic oscillations is based on

the following theorem.

Theorem (Urabe [7]). Given a nonlinear differential equation
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(1.1) 2jL = X ( t , x ) t

-where x and X(t,x) are vectors and X(t,x) is quasiperiodic in t

with periods o)l9 o)2,
 m"9(t)m and is continuously differentiable with re-

spect to x for x belonging to a region Q of the x-space.

Suppose that there is a quasiperiodic function xQ(t) zvith periods

a>i, u)2, • • • , o)m such that

(1.2)

dt
<r

for all t. Further suppose that there are a positive number 8, a

non-negative number £<1 and a quasiperiodic matrix A(f) 'with peri-

ods a)l9 co2, • • • , com such that

(i) the quasiperiodic differential operator L defined by

(1.3) Ly = 4L-A(f)y
at

is regular as an almost periodic differential operator-,

(ii)

(1.4)

for some t} C

\^K U II f+\\\^X<L— whenever Lr —x 0m <L0 ,
M ~

-^-<d.

Here W(t,x) is the Jacobian matrix ofX(t,x) with respect to x and

(1.5) M = 2 C / f f ,

-where C and o~ are positive numbers such that Green function G(t, s)

for L satisfies

(1.6) \\G(t,s}\\<,Ce-*^ .

The given equation (1. 1) then posesses a solution x — x(f) quasi-

periodic in t with periods o)ly (j)2, • • • , com such that

(1.7) Ik, (0-£ (Oil 
ĴL — 1C

for all t. For the solution x ( f ) , a quasiperiodic differential operator
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L defined by

(1.8) Ly=L

is regular as an almost periodic differential operator. 'Furthermore,

to equation (1. 1) there is no other quasiperiodic solution belonging

to Q)s besides x = x(t).

When we apply the above theorem to practical computations we must

overcome two difficult points : The one is how to construct an approxi-

mate solution x$(t) with enough accuracy satisfying the conditions (1. 2),

and the other is how to find out a quasiperiodic matrix A(£) which

gives a regular quasiperiodic differential operator L. Furthermore, for

the operator L we must specify the values of constants C and 0" satisfying

(1.6). In order to solve the first point, we shall employ the Galerkin

method. To simplify the second point, we shall treat the case in which

X in (1. 1) is given as a linear term with constant coefficients plus some

nonlinear term, and the linear term is taken as the matrix A(£). At

the same time, in order to avoid computational complexity we shall con-

sider quasiperiodic systems with only two periods o)x and o)z-> but we believe

that this restriction makes no essential change of the problem.

Now we shall give some definitions and propositions on the quasi-

periodic differential equations.

A function f(t) is said to be quasiperiodic with periods 0)1, ct)z, "',

o)m if f(t) is represented as

(1.9) f(f)=ftt(t,t,-,f)

for some continuous function /0(^i, uz, • • • , um) which is periodic in each

Ui with period 0)1. It is to be noted that a quasiperiodic function is

almost periodic. Without loss of generality we may assume that o)l9 a)2,

•", o)m are all positive and further that reciprocals of these periods are

rationally linearly independent.

Let L be a differential operator such that

(1.10) Lx = — -A(t)x.
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We shall say that L is a quasiperiodic (differential) operator with periods

MI, &2, "', ti>m provided that A(0 is a quasiperiodic matrix with the

same periods. The notion of almost periodic (differential) operator is

defined analogously.

An almost periodic operator 8 such that

(1.11) 8y = ̂ — A(*)y
at

is called to be regular if for any almost periodic function 0(0 the equa-

tion

(1.12) &c

posesses at least one solution bounded for all t ([2]).

Proposition 1 ([2]). 8 is regular if and only if there is a

square matrix P such that

(i) PZ = P,

(ii) \\®(t)P®-l(s)\\<,Ce-a{t-s} for *:>5,

(iii) ||0(0(E-P)0-X*)||^Ce-'('-() for t<s,

-where 0(t) is the fundamental matrix of the linear homogeneous

equation

(1.13) gy = 0

satisfying the initial condition 0(0) — E (E is unit matrix) , and C and

o" are both positive numbers.

The fundamental matrix 0(0 satisfying 0(Q)=E will be called a

matrizant hereafter.

A quasiperiodic operator is said to be regular if it is regular as an

almost periodic operator.

Proposition 2 ([7]). If a quasiperiodic operator L 'with peri-

ods o)l9 o)2, • • • , o)m defined by (1. 10) is regular, then for any quasi-

periodic function f ( f ) -with periods col9 a)2, '", Mm the differential equa-

tion
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(1.14) Lx=f(f)

posesses a unique quasiperiodic solution x=x(t) -with the same periods

and such solution x(t) is given by

(1.15) x(f)= rG(t,s)f(s)ds,
J-oo

where

for t>s,

(s) for t<s.

G(t, s) is called a Green function for L, and satisfies the inequality

(1.17)

(1.16)

§ 2. Second Order Linear Equation with Constant Coefficients

In this section we shall analyse a second order linear differential

equation with constant coefficients as the preparations for the sections

below.

Consider the following quasiperiodic differential equation with periods

o)j and a)z
:

(2. 1) —£ + 2fJL— + V2x = a cos \>j + b cos V2t ,
dt dt

27T 27Twhere JUL, pare constants such that v>0, 0<|//|<Cv, and ^ =—, Vz =—•
ft>! 6f)2

From the definition of quasiperiodic function, it is clear that ($1/0)2 is

irrational.

We intend to get quasiperiodic solutions with periods cDi and o)z for

the equation (1.1). Putting y = dx/dt,

r*i r ° i i r ° i
*= ' A=\ « o ' ^W =

iy J L — ̂  — 2^J L ^ cos vj + b cos y2^ J

we may rewrite equation (2. 1) in the vector form

(2. 2) A# = q> (t) .

Let Z/ be a differential operator defined by
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(2.3) Lx = — -Ax.
dt

It is easily seen that the matrizant 0(£) of the linear homogeneous system

(2.4) Ls = 0

is given as follows:

= exp tA

cos dt -f _ sin dt — sin Qt
6 0

— — sin Qt cos Qt — -~ sin dt
6 0

where 6 = vv2 — /jf. We introduce the following ^-norm of vectors and

matrices :

|| v || = max | vt | for vectors v=(vi),
i

\\A\\ =max Y] \au\ for matrices A= (a^ .
i J

From (2. 5) we then have an estimation to ®(t) as follows:

(2.6)

where

Depending on the sign of fl, we have two cases.

Case (I). If 0<#O holds, we can take E as the matrix P in

Proposition 1, and the Green function for the operator L is given by

' — 5) lor t^>s .

(2.7)

0 for

COS 6 (f — S) + — ;

,|2v //
— — sin 6(t — s) cos 6(t — s) — — sin d(t •— s)

6 6

for t^s ,

for t<s.
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dise (II). If 0>/£> — v holds, we can take 0 as the matrix P in

Proposition 1 and the Green function for the operator L is given by

0 for £l>s,

— 0(£ —5) for £O,

(2.8) 0 for *I>s,

u. 1cos 0(t — 5) -r — sin 0(t — s) —sin d (t — 5)
0 0

y" /^
— — sin Q(t — 5) cos Q(t — 5*) — — sin $(£ — 5)

0 0

for £<<s .

In both cases, it is valid that L iy regular as the quasiperiodic differ-

ential operator with peroids o\ and t02- From (1. 15), the quasiperiodic

solution for equation (2. 2) is given by

n
(2. 9) x (t) = I 0 (t — 5) <p (5) ^5

«J -co

for /*>0. Substituting (2. 7) into (2. 9) and integrating, we have

(2.10) x(t)=— a— - --[(v2-^i2) cos Vi* + 2#Visinv1*]

~ y2 cos ^2^ -f ^ ̂ 2 sn

For /£<^0, it is easily seen that the result coincides with (2.10).

Concluding the considerations, -we have

Proposition 3. If 0<|#|<v, the operator L defined by (2.3)

is regular as the quasiperiodic differential operator with periods ^

and u)2, and its Green function is given by (2. 7) (for #>0) or (2. 8)

(for /J<0). The unique quasiperiodic solution of equation (2.2) (or

(2. 1)) with periods ^ <2«<i 602 is given by (2. 10).

§ 3o Duffing Type Equation

3. 1. In this section, we shall consider a Duffing type equation with

quasiperiodic forcing term as the following:
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(3.1) — + 2(7— + ̂ x = ex3 + a cos v^ + b cos V2£ ,
dtz dt

where 0<0"<Cv, S is a positive parameter, Vj = — , Vz— — and o)2/o)i is
ft)i ft>2

irrational.

Let us write the equation (3. 1) in the form

(3.2) ^L = A* + 9(t)+ee(x)
at

where

\x'\ [ O i l f 0
x=\ , A=\ , 9(0 =

LyJ L-^2 -2tfJ L^cosV^ +

Let L be a differential operator defined by

(3.3) Lz = — -As,
dt

then by Proposition 3 we see that L is regular as a quasiperiodic differ-

ential operator, the Green function for L satisfies

(3.4)

where C= —-—-•max(l>v)> and the quasiperiodic solution of the equa-

tion

(3.5) Lx=<p(t)

is given by x = x0(t) = ^°/,N Luvo w j

where

(3. 6) x,(0 - ,_ * . ^,... [(^2-^i2)cos y^ + an;, sin .
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For sufficiently small e, xQ(t) may be regarded as an approximate solution

to the equation (3. 1). In fact, it is shown in [7] that for sufficiently

small e the equation (3. 1) possesses a quasiperiodic solution x = x(t) with

periods 0)1 and o)2 in some neighbourhood of x$(t).

3. 2. Galerkin Scheme

From the definition of the quasiperiodic function, there exists a con-

tinuous multiperiodic function which corresponds to a quasiperiodic func-

tion. Considering this fact, we introduce a partial differential system

which is doubly periodic:

(3-7)

where

i l [ 0
0 > £(«!, «2)= , I,
2(TJ I a cos vlul + b cos P2u2]

r o iw-w-
It is evident that if x = x(uly u2} is a doubly periodic solution with periods

o>! and a)2 of the equation (3.7), then x(t)=x(t, f) is a quasiperiodic

solution of (3. 2) . We shall solve approximately the equation (3. 7) by

the Galerkin method.

Using the doubly periodic finite Fourier basis with periods (Di and

ft)2, we approximate the doubly periodic solutions by

(3. 8)

= a (0, 0) H- ^ 2 {^P cos (A y
 ? «*) + flp sin

(ul9 u2} = a' (0, 0) + ] 2] {a/cos (/>, v, M) + /Sp'sin (^ y, a)} ,
r=l |p|=r

where p is a pair of integers P=(pl9pz)9 u = t(ul,

(p, v, M) =p1V1u1 -\-p2V2u2 ,
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and the symbol ]>J signifies the summation for all p such that \p\=r.
|p|=r

If the function xm(uL,Uz) is given, then it is clear that

(3.9)

It should be remarked that the coefficients (Xp^cz(pl9p2) and /?P=

have the following property

(3.10) a-p = ap9 0-p=-ft, (-/>=( -A,

ap = xm (u) cos (/>, y, u

2 r* a), f* u>a

- r (f/WTirp~ ] ^-mv^; smL
0)ift)2 J° J°

1 f«l f»2

:(0,0)=^- xm(u
COiCOo Jo Jo

because of the symmetricity of the cosine function and the anti-symmetri-

city of the sine function (the same as for ap' and /?/) .

On the location of pairs of integers p= (pl9 p^) , we adopt the follow-

ing order:

(i) The pairs are arranged in the ascending order of their absolute

values, i.e. \p\=0, 1, 2, • • • .

(ii) Among the pairs (pi,p^) with the same absolute value m, we shall

arrange them in the descending order of the absolute value of pl9 i.e.

\p!\=m, m~l, • • • , 1, 0.

(iii) If p^O and A^O, the four pairs (A»A) with \Pi\-\-\Pz\-m and

\Pi\=l are arranged as follows: (l,m — l), ( — l,—(m — l)), (I, —(in

-0), (-l,m~l).

(iv) If A = 0 and \p\=m, the order is (m, 0) , ( — m, 0). I f A = 0 and

\p\=m, the order is (0, w) , (0, — m) .

Hereafter the following notation will be used.

(3. 11) J{/(«)} =— f" f"/(«lf
ft)10)2 Jo Joft)10)2

The unknown coefficients ap, fjp, ctp' and 0P are determined in order

that Dxm — Axm — <p(u) — £f (x^ may be orthogonal to the doubly periodic

finite Fourier basis with \p\<^m. From the equations

(3. 12) >, f , u)

^ [£>*»(»)-?„(»)]=<>



NUMERICAL QUASIPERIODIC DIFFERENTIAL EQUATIONS 803

we obtain

| a ' (0 ,0)=0,

(3.13)

Substitution of the relations (3. 13) in the second equality of (3. 8) yields

the following determining equations :

(3. 14) , /(% («"">) =v*a (0, 0) - £J {xm
s («) } = 0 ,

(3. 14), /£% (a<m)) = (v'-OaCl, 0) +2^/9(1, 0) -2-
Zi

— 2£<jf {xm
s (u) cosy^} = 0 ,

(3. 14) , /(t>> (atm)) ̂  (i/ - v,1) a (0, 1) + 2<Tv2/3 (0, 1) - A
£

— 2eJ {xm* (u) cosvzuz} = 0 ,

(3. 14) 4 /(£;P2) (a
("l)) ̂  {i,2 - fev, + Av2)

 2| ap

-2eJ{xm
&(u)cos(p,»,u)}=0 for

(3. 14) fl gg?,p2)(a(m)) = {v2- (P1v1+Av08}/?p

3(M)sin(A^,20}= :0 for

For brevity, let us denote the determining equations (3. 14) !~ (3. 14) 5

by Fm(a (m))-0, where a(m} ̂  (a(0, 0), •», ap? ̂ p, -), l

Fm(a(m^ =Q is a system of 2??2 ( w -f 1) + 1 equations for

unknowns.

For the elements of a(m), considering the property (3. 10), we adopt

the location order similar to that for the pairs (A, A)- The rules (iii)

and (iv) are, however, replaced with the following.

(iii)' If A ̂ 0 and A=£0, a (&, A) and /?(A,A) with lAl + lA l=w and

lA I ~ ^ are arranged as follows : a (7, in — 1) , $(79 m — l)9 a (I, — (in — I) ) ?

(iv)' If A = 0 and \p\-m, the order is a(m, 0) , (}(m,G).

If A = 0 and \p\=m, the order is a(0, m), /9(0, m) .

3. 3. An Iterative Process

The determining equation Fm(a(m)) =0 is equivalent to the equation
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(3.15) Ama™-a = eCm(a™

where

(3.16)

-£*-m

0
20 v2

0
(3.17) «='(0,0/2,0, 6/2,0, - - ,0) ,

and Cm(a(m)) is the nonlinear function of ft(ljl) such that

(3. 18) Cw(a<w)) = '(*„, • • • ,£ : „ , rf,, -)ipism.Pla»,

(3. 19) £p - 2J {^m
3 (u) cos (p, n, it) }, ^p = 2J {xm

3 (u) sin (/>, v, u) }

Since Am is a block diagonal matrix, it is easily seen that

(3.20) detAm=vz If

The inequality

(3. 21) {v2 - (ftv, + AV.) 2}2 + 4ff2 (ftv, +ft,v,

holds for all (pl9pz)- Thus Am is a nonsingular matrix under the assump-

tion 0<^O.

Considering that £ is a small parameter, we may define an iterative

process as follows:

Starting from a suitable initial value a0
(m\ we make a sequence of

vectors {<2fc
(m)} such that

Assume that there exists a solution <$(m) of the equation Fm(a / (m)) =0.

Because of the formulas (3.8) and (3. 19), CTO(a(TO)) continuously depends

on a(m\ Hence, if we can take sufficiently small £ and the initial value

a0
(m) which belongs to sufficiently small neighbourhood of a(m), the iter-
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ative process (3. 22) would be expected to be convergent to a(m\

3. 4. A posteriori Estimates

After some iterations we have an approximate solution a(m) of the

determining equation JPm(a(m)) =0, which means that to the equation

(3. 1) we have an approximate solution xm(t) such that

(3. 23) xm (0 = a (0, 0) + f] £ {ap cos (/», n) * + /9P sin (/>, y) 4
r=l |p|=r

where (/>, v) =A^i +A^2- After having found the approximate solution

xm(t), it is necessary to verify the existence of the exact solution and

to give a posteriori error estimate for the approximate solution xm (f).

Let us define the residual function to xm(t) as follows:

(3. 24) r (f) = **'*»(*) + 2ffd*»® + v'SmCO - esw'(0 - a cos v^ - i cos V2t.
J^2 J^

The coefficients of the double Fourier series expansion of r(t) are just

given by the elements of the residual of determining equation to a(m).

In the present case, since the nonlinear term of the right-hand side of

(3. 24) is of the third power of xm(t), the double Fourier series of r(t)

is finite, so that we have the equality such that

(3.25) r(*)=/(0,0)+£ S</,cos(AiO* + fir,sin(/>,v)*},
r=l |p|=r

where the coefficients fp and gp satisfy the following relations with

/p
cm)(acm)) and gp

(m)(^(m)) in (3.14):

If _ f (m) (fy(™)\
/(0,0) — /(O.O) \Oi )9

(m>(B™) for

(3. 26)
/,=

for \p\>m,

l)) for |

Consequently we can take such an r in (1. 2) that
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Next, we denote o) by

(3«28) 0 = |a(0,0)|+f] 2 ( ia*l+&>!) ,

then the inequality

/o or\"\ ~^-^ I /_t\ I(o. z9; fr^supl.rOT(£) ]

holds. For the equation (3. 2), the Jacobian matrix with respect to x is

0 1

Hence we have

(3. 30) \\V(t, x) -A\\ = \3sx2\=3s\x\2 .

For x which is in the ^-neighbourhood of xm(t), the inequality

(3.31) \x\^\^(t)\+S

holds. Therefore we obtain from (3.29), (3.30) and (3.31) that

(3.32) \\W(t,^

By (1. 5) , (1. 6) and (3. 4) , we get

(3.33)

under the assumption

If there exist a non-negative number /C<1 and a positive number

5 satisfying the both of inequalities

(3.34)
-~2v(l

(3.35) —£-

the CDndition (1. 4) of the Theorem is fulfilled. Hence the exact quasi-

periodic solution x ( f ) with periods 0)1 and o)2 exists and an error estimation

of xm(t) is given by

(3.36) |Ili(0_

for all *.
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§ 4. Van der Pol Type Equation

4. 1. In this section, we shall consider a van der Pol type equation

with a quasiperiodic forcing term as following:

2- -
(4.1)

dt dt

where A is a positive parameter, y1=27T/co1, v2=- 2n/a)2j co2/co^is irrational,

and neither Vi nor V2 is equal to 1.

Let us rewrite the equation (4. 1) in the form

(4,2)
at

where

o i l r o
cos

Let L(A) be a differential operator depending on /I such that

(4.3)

We apply Proposition 3 to the case / * = — A v = l. Then we have

that L(A) is regular as a quasiperiodic operator for /1<1 and that the

Green function for L(A) is given by

(4.4) 0 for

A 1cos c/ \f s) — sin \}\i' ~~~ Sj — sin \j\i s)
6 6

* of* \ ft/j. \ i " • /}/— — sin u(f — s) cos u(t — sj + — sin u(
0 0

for

where 6 = ^1 — /I2. Therefore, the Green function Gj(£, s) satisfies

and the quasiperiodic solution of the linear equation

(4.6)
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is given by w — w0(t;£) = °, ' ,{ \, where
[_yo{t; *•) J

(4.7)

An 2(!-Vi2)2+4/l2v1
2

-v ' c o s " i * - i s n

— V2 cos

sn W ~ / vi cos

- v2 cos

4. 2. Define the constant K by

(4.8) ^

We shall show that under the assumption K<^J }_z _ there existsr \/V c o / o _ _ ; 2 N
*J £i \ f-j A J

a quasiperiodic solution with periods ^ and o)2 to the nonlinear equation

(4.2) in a neighbourhood of wQ(t;X). Let us remark that K does not

depend on L From the formula (4. 7), we have

(4.9) x»(t;lC)^ as{l]

and /? satisfy

Then, by differentiation we have

{(l-v1
2)2+4/l2v1

2}1/2 + {(l-V2

For all t we obtain

1*1
^-v2

2)2 + 4A2v2
2}1/2

\a\
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Therefore we get

(4.11)

for all t and 0<^/1<C1. We can give the residual enor of the equation

(4.2) for M? 0(£;A) in the following form:

at

Hence we may set

(4.12) r

Let S>K and 3)' be the domains in R2 such that

It is clear that wQ(t\ A) e 5)^ for any £ and S)f^S)K.

Let us denote the Jacobian matrix of the right-hand side of (4. 2)

with respect to x by W ( x \ X ) . Then we have

(4. 13) \\V(x; V -A(X) ||^ai(2|y| + \x\) \x\^

for x^S)'. The inequality (4.5) yields

(4.14) M

In order to apply the Theorem to the present case, we have to

check with the inequalities in (1. 4) . The question is "Is it possible

to take a nonnegative number £<^1 satisfying the both of inequalities

(4. 15)
~2(2- A2)
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2 (2 -A2

(4. 16)

under the assumption

The answer is affirmative when the inequality

_ / Vl-A2

52 (2 -A2)

holds, because then we have

9
52

(4. 18)

W=V_.21K'
52

so that we can choose such a nonnegative number £<1 that the both

of inequalities (4. 15) and (4. 16) may hold.

Summing up the considerations, we have the following

Proposition 4. If 0<A<1 holds, and if the constant

,
-v,2! |l-v,«|' ( l -vj ' l |l-v2

2

satisfies the inequality

K< I V/I~^
* -2 '52 (2 -/I2)

the equation (4.1) possesses a quasiperiodic solution x=x(f)

tvith periods ^ and o)2 such that

(4.19) \\x(t)-wQ(t-$\\<K

for all t.

Of course the above assumption is a sufficient one for the existence.

4. 3. Galerkin Scheme and an Iterative Process

Galerkin scheme and an iterative process for the numerical solution

of (4. 1) are similar to those of the case of Duffing type. So, we shall

state the results without explanations, but the notations are the same as
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those in the preceding sections.

The approximate quasiperiodic solution is written in the form

xm (0 = « (0, 0) + f] XI {&P cos O, »)t + 0p sin O, *) t},
r=l |p|=r

(4. 20)
ct

dx

Then we get the following determining equations:

(4. 21)! /(%(o:(w))=a((), 0) +/U{xm
2(n)ym(^)} =0,

(4. 21)2 /(%(a(wO = (l-O«(l,0)--2M/9(l,0)-- —

Vi«i}=0,

(4. 21) 3 /^, (a<m)) ̂  (1 - v2
2) a (0, 1) - 2^/9 (0, 1) - A

2 (M) ym (w) cos V2w2} = 0 ,

(4. 21) 4 /£>„, (atm)) ̂  {1 - (A v, + AV.) z} a,

For brevity, let us denote the determing equations (4. 21)^(4. 21) 5 by

The iterative process:

Starting from a suitable initial value a0
(m\ we make a sequence of

vectors {afc
(m)} such that

where

(4.23) 1

0
l-y2

o
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(4. 24) a =l (0, a/2, 0, b/2, 0, • • •, 0),

and Dm(a(m)) is the nonlinear function of a(m)

(4. 25) Dm(a™} = '(Co, -,Cp,?P, -),pis».p l2>p,

where

2 (U) y» (u) cos (p,»,u)}9

(4. 26) 2 (ic) ym (a) sin (/>, y, a) } ,

4. 4. A posteriori Estimates

After some itertions, we have an approximate solution a(;?l) of the de-

termining equation. The vector cE(m) gives an approximate solution xm(i)

such that

(4. 27) xm (t) = a (0, 0) + £] S {ap cos (p, ^t + 0p sin (#, p) ^} .
r=l |p|=r

The residual function to xm(t) is as follows:

(4.28) r (0

(0 — ̂  COS i>i£ — 6 COS V2^ •

The residual function r(t) is expanded into the finite double Fourier

series as follows :

(4.29) r(0=/(o,o)

where

f /p(m) (<2(m)) for

/p=
( 2Ac5{xm (j&)ym(u)cQs(p9v,ii)} for(4. 30)

for \P\<^m ,

for \p\>m .

Let us set
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(4.31) r =!/<,,„ | +£ E{\fp\ + \g,\},
r=i |p|=r

then we have

(4.32) \r(t) <> for all t.

Define

(4.33) & =i aW) !+S S(i«Z,| + |&.l),
r=l jp |=r

and

(4.34) £' = £; SI (A") I (is,! + 1^,1),
r=i |p|=r

then we have

(4.35) •fi^suplz-WI, -0'^mply»(*)l.

For a; which is in the ^-neighbourhood of xm(t) =* (xm(£) , ym(f)} ,

we have

(4.36) ||y(*;;0-A(;i)||^ai

By (4.14), for the Green function G^(t, s) we have

(4.37) M

If there exist a non-negative number /C<^1 and a positive number

0 satisfying the both of inequalities

(4. 38) 2 A {0 {2ti' Hh a) + 2 (^ + 2fi) 5 + 352} <

(4. 39) -^

then by the Theorem the exact quasiperiodic solution x(t) with periods

«)i and C02 exists and an error estimation of xm(t) is given by

(4- 40) || xm (0 - £ (0 |
L — K

i.e.

(4.41) A-xm(f) d a(QJ< r -2(2~^
dt dt \ 1 — ic Av7! — t
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for all t.

§ 5o Numerical Results

In the present section we shall show some numerical results obtained

by digital computers. The computations have been carried out by

TOSBAC 3400 in the Research Institute for Mathematical Sciences and

FACOM 230-60 in the Data Processing Center, Kyoto University.

The notations are the same as those in the preceding sections.

5. 1. Numerical Techniques

In Duffing type case, as the initial value <20
(m) for the iteration, we

use the values when £ — 0, that is, from (3.6)

(5.1)

2 (v'-

2 O2-j

and others equal to 0.

When we compute the values of Cm(<2Cm)) for the known coefficients

a(m\ we adopt FFT method twice for the variables u^ and uz. Given

a suitable small positive number A and a positive integer I (maximum

number of iterations), if, convergence criterion

(5.2) \\a^-a(A\\^ for some k<I

holds, then we regard that the sequence {<2fe
(m)} has converged and stop

the iterative computation.

In the case of van der Pol type, the numerical techniques are similar

to the above.

5. 2. Duffing type equation

The constants of system are put as <7 = —, v= \ /2 . Then, we have
8
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(5. 3) 0.025787023<A^!z^!<0.025787024 .
V ; 2v(l + v)

The frequencies of the forcing term are Vi^l, V2—

Example 1. The case s = — , a — — , b = — . m = 8, J = 10~8. 3F 32 8 2
iterations.

(5. 4) xs(i) = 2{0.0589905 cos y^-f 0.0147061 sin vLt

-0.0804708 cos y2£ + 0.0150072 sin v2t

-0.0000016 cos 3vj £4 0.0000015 sin 3^t

+ 0.0000069 cos (2vj +vj)t — 0.0000026 sin (2^ 4- vz) t

- 0.0000468 cos (2^ - v2) £ -4- 0.0000376 sin (2^ - V2) ^

- 0.0000054 cos (vj + 2v2) ^ - 0.0000004 sin (^ 4- 2v2) t

- 0.0000116 cos (vj - 2v2) ^ -I- 0.0000076 sin (v, - 2v2) ̂

-f 0.0000007 cos 3v2^4-0.0000004 sin 3)V

+ 0.0000001 cos (4^ - v2) ^

- 0.0000003 cos (Svj - 2v2) ̂  - 0.0000005 sin (3^ - 2y2) t}

(All the terms whose coefficients are smaller than 10~7 in magnitude

are omitted.)

By (3.27) and (3. 28), we can take r = 1.4 X 10"9 and o) = 0.3385969.

If we take 5 = 0.125 and /C = 0.78136, the following inequalities hold:

_

3s (to 4 5) 2 <Q.02Q14895< y + y )

Hence the approximate solution jcs(t) of (5. 4) satisfies the both

inequalities (3. 34) and (3. 35), and we can assume that the exact quasi-

periodic solution x(t) exists satisfying

for all t.

The values of $ and /C which are chosen to satisfy the both inequal-
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ities (3. 34) and (3. 35), and other data for Examples 2^5 are shown

in Table 1.

Table 1.

Ex.

1

2

3

4

5

6

I

32
1

64
1

32
1
16
1

~8

a

1
IT
1

~4
1
T
1

"8"
1

~8

b

I
~2
I

~2~

1
~2~

1
~2
I
7

m

8

8

8

8

8

Number of
iterations

3

4

4

4

4

0)

0. 3385969

0. 4860409

0. 4868917

0. 3390548

0. 2434459

n

24

24

24

24

24

r

1.4X10-9

1.5X10-9

4.2X10'9

2.8X10-9

2. 1 X 1Q-9

d

I
~S
I

~8
I

32
3

128
1

64

K

0. 78136

0. 6788

0. 97604

0. 95543

0. 97604

error
bound

2.5X10-7

1.9X10-7

6.8X10-6

2.5X10-6

4. 1X1Q-6

Example 2, e - —, a = —9 b = —, J = 1Q-8.F 64 4 2

x*(t) = 2{0.1179220 cos v^ + 0.0294121 sin i^

-0.0804519 cos v2£ +0.0150071 sin vzt

-0.0000065 cos 3M + 0.0000059 sin 3v^

+ 0.0000138 cos (2vj + va) ̂ - 0.0000051 sin (3^ + v2) f

- 0.0000936 cos (2^ + v2) ̂  + 0.0000751 sin (2^ - V2) 2^

- 0.0000054 cos (>! + 2v2) t - 0.0000004 sin (^ + 2v2) ^

- 0.0000116 cos O - 2v2) ̂  + 0.0000076 sin (^ - 2v2) t

4-0.0000003 cos 3v2^-f 0.0000002 sin 3v2£

+ 0.0000002 cos (4Vi — v2) ̂

- 0.0000006 cos (3^ — 2v2) ̂  - 0.0000010 sin (3^ - 2v2)

Example 3. e = —, a = —, b = —9 J = 1Q-8.F 32 4 2

S8(0 =2{0.1181992 cos v^ + 0.0294132 sin v^

-0.0803665 cos vzt + 0.0150070 sin vzt

-0.0000131 cos 3^* + 0.0000119 sin 3v^

+ 0.0000277 cos (2^ + V2) ̂  - 0.0000103 sin (2^ + v8) ^
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- 0.0001886 cos (2vj - V2) t 4 0.0001500 sin (2vj - y2) £

- 0.0000107 cos (v2 4 2v2) t - 0.0000008 sin fa 4 2v2) £

- 0.0000232 cos fa - 2v2) £ 4- 0.0000151 sin (^ - 2v2) t

+ 0.0000007 cos 3v2£ 4 0.0000004 sin 3v2£

+ 0.0000008 cos (4v, - V2) * - 0.0000002 sin (4^ - V2) *

- 0.0000026 cos (3v, - 2vs) £ - 0,0000039 sin (3^ - 2y2) t}.

Example 4B *=—. a = —, b — —, J = 10"8.F 16 8 2

S8(0 =2{0.0591585 cos v^-t-0.0147067 sin v^

-0.0804045 cos V2£ 4-0.0150072 sin v2^

-0.0000033 cos 3vj*4-0.0000030 sin 3^t

+ 0.0000139 cos (2^ + v2) t — 0.0000051 sin (2^ 4- V2) ^

- 0.0000945 cos (2Vj — V2) ̂  4- 0.0000752 sin (2^ - v2) ^

- 0.0000108 cos (Vi -4- 2y2) ̂  - 0.0000008 sin (^ + 2v2) t

- 0.0000232 cos (^ - 2v2) 14- 0.0000152 sin fa — 2v2) ^

+ 0.0000013 cos 3v2£ + 0.0000008 sin 3v2£

4- 0.0000002 cos (4^ - v2) t

- 0.0000013 cos (3Vi - 2v2) ̂  - 0.0000019 sin (3p1 - 2v2) t}

Example 5, £-—, a = —, b = —, J-10'8.
8 8 4

x8(^) =2{0.0590996 cos y^ 4 0.0147066 sin v^

-0.0401832 cos y2£ 4 0.0075035 sin v2t

-0.0000065 cos 3^^4-0.0000059 sin 3v^

4- 0.0000138 cos (2^ + V2) ̂  - 0.0000051 sin (2vj 4- vz) t

— 0.0000943 cos (2^ - v2) 2^ 4- 0.0000750 sin (2^ - v2) ^

- 0.0000054 cos (^ 4 2v2) 14 0.0000004 sin fa + 2y2) ^

- 0.0000116 cos fa - 2v2) t + 0.0000076 sin fa - 2v2) t
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+ 0.0000003 cos 3y2£4- 0.0000002 sin 3v2t

+ 0.0000004 cos (4Vi - v2) t

- 0.0000013 cos (3vj - 2v2) £ - 0.0000019 sin (3vj - 2v2) £}

5. 3. Van der Pol type equation

The frequencies of the forcing term are V1='\/ 2 , Vz— \/ 5 .

Example 6e The case 1 = — , a = — , b = — . m = 8, J = 10~8. 3F 8 16 16
iterations.

(5. 5) x*(t) = 2{- 0.0277900 cos vj- 0.0098404 sin vj

-0.0076639 cos vzt- 0.0010748 sin v2t

-0.0000009 cos 3^^-0.0000006 sin 3v^

- 0.0000011 cos (2Vi + v2) t - 0.0000010 sin (2vj + v2) t

+ 0.0000019 cos (2Vj - V2) ̂  + 0.0000043 sin (2^ — v2) ^

- 0.0000002 cos (vj + 2v2) ̂  - 0.0000003 sin (^ + 2v2) ^

+ 0.0000006 sin (^ - 2v2) t}

(Similarly as in 5. 1, all the terms whose coefficients are smaller than

10~7 in magnitude are omitted.)

We can estimate the value M in (4.38) as

/l2) <32.Q011 .
l2

By (4.31), (4.33) and (4.34) we can take r = 1.4XlO-10,

0.09275984 and Q' =0.1455660, respectively.

If we take 5 = 0.0625 and K = 0.7098, the following inequalities hold:

21 (2Qf + J2 + 35) (J2 -I- 8} <0.0110893<~ ic ,

_r_2\2-^ <1.6xlO-

Hence the approximate solution x8(t) of (5. 3) satisfies the both

inequalities (4. 39) and (4. 40) . Hence we can assure that the exact

quasiperiodic solution x(t) exists satisfying
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for all t.

For Examples 7^9, the values of d and /C, and other data are shown

in Table 2.

Table 2.

Ex.

6

7

8

9

A

1
8
1
16
1
4
1

~2

a

I
16
1
16
1
16
1
16

b

1
16
1

"8"

1
16
1
16

m

8

8

8

8

Number of
iterations

3

3

3

3

Q

0. 09275984

0. 1046678

0. 08980023

0.06894513

&'

0. 1455660

0. 1753960

0. 1422774

0. 1127896

n

24

24

24

24

r

1.4X10-10

1.5X10-"

2.0X10-10

1.8X10-10

8

I
16
1
16
3
32
S

32

K

0. 7098

0. 8599

0. 9933

0. 7572

error
bound

1.6X10"'

6.9X10-*

8.8XHT8

6.0X10-9

Example 7. l = —, a = —, b = ~, J = 10-8.F 16 16 8

x*(f) =2{-0.0303083 cos vrf-0.0053722 sin vj

-0.0155497 cos vzt — 0.0010912 sin vzt

-0.0000003 cos 3^-0.0000005 sin 3^t

- 0.0000007 cos (2Vi + V2) t - 0.0000014 sin (2^ + v2) t

+ 0.0000011 cos (2v! - vz) « + 0.0000062 sin (2^ - y2) ^

- 0.0000002 cos O 4- 2y2) 2J - 0.0000006 sin (^ + 2v2) ̂

4- 0.0000014 sin (^ - 2v2) 4

Example 8. A = —, a = —, i = —, J = 1Q-8.
4 16 16

Zc8(0 =2{-0.0208546 cos v^-0.0147540 sin vj

-0.0072492 cos vj-0.0020309 sin vzt

— 0.0000013 cos SVit — 0.0000002 sin 3^t

- 0.0000020 cos (2Vi + V2) t - 0.0000003 sin (2^ + V2) ^

+ 0.0000041 cos (2Vj - j>2) ^ + 0.0000002 sin (2^ - v8) ^

- 0.0000005 cos (X + 2v2) t - 0.0000002 sin (vx + 2v2) ̂



820 TAKETOMO MITSUI

- 0.0000001 cos (i>! - 2v2) t + 0.0000010 sin (^ - 2v2) t}

Example 9. A-—, a = —, £- —, J = 1Q-8.F 2 16 16

^8(*) = 2{-0.0104283 cos j^ —0.0147438 sin vj

-0.0059563 cos v2t- 0.0033321 sin vj

-0.0000008 sin 3^t

- 0.0000009 cos (2vj + V2) t + 0.0000011 sin (2^ + v2) /

+ 0.0000037 cos (2^! - vz) * -0.0000032 sin(2^ -v2) ̂

- 0.0000005 cos (vi -1- 2v2) ̂  + 0.0000001 sin (Vi + 2v2) ^

- 0.0000005 cos (Vj - 2v2) ̂  + 0.0000011 sin (v2 - 2v2) 4
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