
Publ. RIMS, Kyoto Univ.
13 (1977), 755-776

The Squaring Operations in the Eilenberg-Moore
Spectral Sequence and the Classifying Space

of an Associative H"-Space9 I

By

Mamoru MlMURA* and Masamitsu MORI**

§ 0. Introduction

Let G be a compact, connected, simple Lie group. Let p be a prime.

Consider {G;p} the set of all compact, associative H-spaces X such that

H*(X\ Zp) ~H*(G; Zp} as Hopf algebras over the Steenrod algebra <JLP.

(Remark that we do not require the existence of any map between X

and G inducing the isomorphism.) As is well known, X has the the

classifying space BX (see for example [8]).

The Eilenberg-Moore spectral sequence for X

(0. 1) Ez (X) = CotorA (Zp, Zp) =»H* (BX; Zp),

where A = H* (X; Zp),

is a machinery to calculate H*(BX;Zp). When H*(G; Z) has no p-

torsion, it is quite easy to obtain H*(BX;Zp). In fact, CotorA (Zp, Zp)

is a polynomial algebra and the Eilenberg-Moore spectral sequence col-

lapses. But when H$.(G\ Z) has ^-torsion, it is, in general, difficult to

obtain the structure of H* (BX; Zp).

Let EJ be the compact, 1-coniiected, simple, exceptional Lie group

of rank j (.7 = 6,7). Recently, Kono-Mimura [6] and Kono-Mimura-

Shimada [7] have determined the module structure of H*(BEjm, Z2) (j = 6,

7). Their method was to calculate algebraically CotorA (Z2, Z2) and then

to show the collapsing of the spectral sequence (0, 1) for Ej by making

use of the properties of Ej as Lie groups.

The aim of this paper is to give a proof of the collapsing of the
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spectral sequence (0. 1) independently of the properties as Lie groups,

namely, to show the collapsing of the spectral sequence (0. 1) for Xj

of { E j ; 2 } (j = 6, 7). Our method is to make use of the relationship

between the defferentials and the two kinds of the squaring operations

in the spectral sequence, which was obtained by W. Singer [12].

We denote by EQH*(BX; Z2) the bigraded, associated algebra of

H*(5X;Z2) with respect to the filtration FPH*(BX; Z2) in the sense

of Eilenberg-Moore, that is,

EQ
p'«H*(BXi Z2) =FpHp+q(BX; Z2) /F

p+lHp+q(BX- Z2).

We shall use the convention to identify the elements in EQ JJ* (JBX; Z?)

with those in //* ( BX; Z2) , since E0H*(BX', Z2) =H*(BX- Z2) as mod-

ules.

Our results are stated as follows.

Theorem A. For any X6^{E6;2},

EQH* (BX6; Z2) = Z2[>4, yfl, y7, y10, y18, y32, yu, y48] /R ,

as an algebra, where R is the ideal generated by (3. 7) .

Theorem B. (i) In H*(BXQ;Z^ the following relations hold

mod dec ompo sables.

t=yQ, SqlyQ=y1 , Sq*y9=ylQ9 Sq8y1Q=y18,

(ii) /f*(5Xe;Z2) is generated by y4 and ^v32 over Jlz.

Theorem C. For any X7^ {E7; 2},

EQH*(BX7; Z2) =Z2[y4, ya, y7, y10, yn, y18, y19, y34,

^35, 3^64, ^66, 3^67, 3^96, y\lt\ / R ,

(25 <2?z algebra, where R is the ideal generated by (3.9) a?z^ (3. 10).

Theorem D. (i) In Jf*(B.X7;Z2) the following relations hold

mod dec ompo sables.
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(4) Sq2y± = y6, Sq1y6=y7, Sq*y6=yw , Sq1yw=yn ,

Sq*y1G=y18, Sq1y1B=y19, Sqwy18=yu , Sq1yM=yK ,

5gMya4=y88, -SWee = 3% , -S^32^ = 3>96 , ASg18y9G=yil2.

(ii) H*(BX7\Zz} is generated by y± and ;y64 over c^?2<

Needless to say, Theorems A, B, C, D give the module structure

of H*(BEj\Z^) 0'~6, 7) over ^A2. These are simpler proof than those

of [6] and [7].

Remark. Let G2 and F( be the compact, 1-eonnected, simple excep-

tional Lie groups of rank 2 and 4 respectively. Let X2£= {G2; 2} and

X^{F4-2}. The structure of H4l(BXi-,Z2) (z' = 2, 4) over J12 is ob-

tained more easily by our argument. We leave them to the reader.

The paper is organized as follows. In § 1 we recollect the Singer's

results on the two kinds of squaring operations in the Eilenberg-Moore

spectral sequence. In § 2 we review that these operations coincide with

those defined algebraically on CotorA(Z2, Z2) through the isomorphism

jE2 = Cotor/4(Z2, Zz). In § 3 we calculate squaring operations on Cotor4(Z2,

Z2) for A = H^(X6;Z2) and £T*(X7;Z2). §4 and §5 show that the

Eilenberg-Moore spectral sequences for X6 and X7 collapse and this

leads us to our results. The final section, § 6, will be used to prove

a lemma which is used in § 5.

§ 1. Squaring Operations in the Eilenberg-Moore Spectral

Sequence

Let S% (T1) denote the normalized singular Z2-chain complex of a

space T with all vertices at the base point. Put S*'(T) = Horn (5^ (T7),

2,).

Let X be a connected, associative Jf-space and BX the classifying

space of X [8]. A special case of the dual statement to Theoreme 3. 1

of Moore [9] states that there is an isomorphism

(1. 1) H* (BX- Z2) = Cotors,(jr) (Z2, Z2) (or Ext,.(T) (Z2, Z2)).

Let K denote the coalgebra S* (X). Let C (K) denote the cobar con-
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struction of K, in which Cs(K) =K(^)'--(^)K (s-times) with K= ^Kl.

Then C (K) is a double complex with the external differential induced

from the coalgebra structure of K and the internal differential induced

from the differential in K. Let Tot C (K) denote the total complex

of C (K). Then Cotor^ (Z2, Z2) is, by definition, the cohomology of

Tot C (K). The total complex Tot C (K) has a filtration such that

TTT np .71 "7^ f x^\ V^ T^P, 1 f J7r\r lot C (AJ — 2-i ^ (A.;,
P>r

where the first index p is the external degree and the second one q is

the internal degree. This gives rise to a spectral sequence {ET} such that

a o\ IT* ,-v^ /^rt-j-^..-- (*7 *y \ x rpfc ^ Kii7. ^ "\
- &) -&Z = ^OtOr/fT(X;^,) V.^2? £jz) ^^£J. ^J-3-A., ^2j •

We call the spectral sequence (1. 2) the Eilenberg-Moore spectral se-

quence for X.

Remark. This is dual to the spectral sequence

which is constructed in [9].

Now we recollect the Singer's results [12] for our purpose. Singer

shows that products and squaring operations are defined in Cotor^(^ (Z2,

Z2) as well as in H*(BX',Z^ and the isomorphism (1.1) preserves

them (Proposition 1.1 of [121], Proposition 7.1 of [12 II]). This en-

ables us to introduce products and squaring operations in the Eilenberg-

Moore spectral sequence.

Proposition 1.1 (Propositions 1.2, 1.3, 1.5 of [12 I]). In the

Eilenberg-Moore spectral sequence {Er} for an associative H-space X

the following properties hold:

(1) Each Er(r>2) is a differential algebra and products on E2 deter-

mine those on Er (r>2).

(2) There are squaring operations

Sqk :E/'q-»Er
p+k~q'2* (K>q) ,
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and the squaring operations on E2 determine those on Er (r>2) .

(3) Let p:FpHp+q(BX-,Z2)-*E00
p'q be the natural projection.

For u(EFpHp-q(BX-,Z2) and v^FrH*(BX-, Zp), -we have

i) uv <E Fp+r H* (BX- Z2) a^ d p (uv) =p(u)p (v) ,

ii) (f 0<£<g, rt«w Sqku^FpH*(BX-, Z2) <Z7

iii) ?/<?<&, */I*H S<fi*€=:Fp-*k-q(BX',Z3 and

The operation Sqk:Er
q'p—*E,p'q^tr will be called <2 vertical squaring oper-

ation and Sqk:Er
p>q—>Er

p^k~q'2q a diagonal squaring operation.

Proposition 1. 2 (Proposition 1. 4 of [12 I]). Let u^Er
p'q (r>2).

i) If k<q — r + 1, ^A^;/ drSqku = Sqkdru in ET .

ii) Jf/" g — r-fl<^<g, ^/z^^ 5#*fc survives to Et
p>q^K, 'where t = 2r

+ k-q-l9 Sqkdru survives to Ep+t'2q~2r-2 and dt[S(fu~\ = [S(fdru~\.

iii) // q<k, then Sqku survives to Ep+k-q'2q, -where t = 2r-I,

Sqkdru survives to £^+*-<^-^ and dt\_Sqku~\=lSqkdru~\.

Remark. We sometimes regard the vertical operation Sqk: Er
p'q

-^>Er
p'q+k is zero if k^>q. In this sense the differentials commute with

vertical operations, i.e., drSqku — Sqkdru in Er for every k>Q and r>2.

§ 2e Squaring Operations on the £2-Term

Let X be an associative Jf-space. Put A =

Proposition 2.1 (Theorem 2.2 of [10]).

Z?, Z2) as algebras,

We recall the two kinds of squaring operations on Cotor^(Z2? Z2) .

Let C(A) be the cobar construction of A. Let a = \_xi\-

'q(A). Define an operation Sqk
v: Cp'q(A) -*Cp'q+k(A') by

(2.1) Sqk
va

Then S^fcr commutes with the coboundary in C (A) , since A is the coal-

gebra over the Steenrod algebra. Hence this induces

Sqk
v:
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Let B(A) be the bar construction of A, i.e.,

Bs (A) = H* (X; Z2) (X) • • • (X)H* (X; Z2) (>times) .

There is a map with external degree i>09

satisfying ddi + did = di-1+Tdi-1 (J_1=0). The eup-z-product

U : Cp(A)(X)C5(A)
t

is denned by

(a U /9)(<0 = (a:<8>|9)4(c) for
i

and satisfies

d(a U £) =to U 0 + a U 5/S + a U 0 + 0 U a .
i i i i-l i-l

Then an operation Sq\: Cp'q(A) -^Cp+k-2/l(A) is denned by

(2.2) S(fj,a=a U a + to U a for a<=Cp-q(A).
p-k p-fc+1

This commutes with the coboundary and induces

S<fD: Cotor/'5-^Cotor/+fc'29.

The construction of Sqk
D is essentially due to [1]. The explicit formula

for the cup-z-product may be found in [14]. Especially, we recall the

formulae:

U

— Y1
—

f - r l - - . | - r 1 U P r- l . . . I -rLXJ I 1-^sJ ^ L^-i i I^^
s

where 0(r-1} (x) =1] jc (1)(X)---(X)^ ( r ), 0(r-" :A-^A(g) — (g)A (r-times) , is the

(r — 1) -iterated diagonal map.

Proposition 2. 2 (Propositions 7. 2, 7. 3 of [12 II]). Through the
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isomorphism Ez = Cotor^ (Z2, Z2) ,

i) if 0<^<g, then the vertical squaring operation Sqk on E2

coincides 'with Sqk
v on CotorA(Z2, Z2),

ii) if q<^k, then the diagonal squaring operation Sqk on E2 coin-

cides zvith Sqk'QD on Cotor i (Z2, Z2) .

Corollary 2.3. Let El>i - W eCp '«(A) and I]|>phl| •••kp + / l
T'*(A) represent u^Ef1* and v(=E2

r's respectively. Then

"0 E[^ii---K^il '--i^r]^

ii) if 0<&<<7, then

represents SqK'u c= /?/• " h/l .

i i i ) //^ ^7<^, t h e n

b,] U [x,|-k
JJ-JH 33

represents Sqku^E2
p+k~q'2(l.

Proof. Immediate from Propositions 2. 1, 2. 2 and (2. 1) , (2. 2) .

q.e.d.

Here we remark, for later use:

Proposition 2, 4, As for the vertical squaring operation, the

Cart an formula holds on E2, i.e.,

Sqk(uv)= X] SqluSqjv for u,v^Ez
i \-j = k

and Er (r>2) inherits this formula.

Proof. We confirm this by Corollary 2. 3, i) , ii) , and Proposition

1. 1, (1), (2), though this may be proved by the standard argument.

q.e.d.

Let (f) be the diagonal map of A = H* (X; Z2) . Let L be a quotient

coalgebra of A over the Steenrod algebra <JLZ with projection 0: A— >L.
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0' denotes the diagonal map of L. Note that L is not equipped with

unit. Construct the tensor algebra T(sL) with product </», where s is

the suspension, that is, the operation to make a copy with external degree

added by one. Let / be the two-sided ideal generated by (/>° (s0(X)s0)

o$(Kerd). Let X = T(sL)/I. The differential d on X is induced so

that d = (l)o<l)f°s~l: sL-^T (sL) is derivative. Then d(I) C I and d°d = Q,

and this is well-defined. X is the quotient of C (A) as differential alge-

bra with projection p:C(A)-^-X such that P\XI\ ••• \xn~\ = sQxl--sQxn (see

[11]). The (vertical) squaring operation on X is defined by

Sqk
 vx = 2 sSqklx1 - • • sSqknxn , x = sxl • - • sxn e T(sL)

fo i + ••• + fcjj =&

for

Proposition 2B 5, The projection p: C (A) -^X preserves the opera-

tion Sqk
v.

Proof. Immediate from Propositions 2. 1, 2. 2 and Corollary 2. 3.

q.e.d.

Corollary 2. 6. Assume that p: C (A) —*X induces an isomorphism

on cohomology. Let Xj sx1"-sxp^Xp'q represent u^E2
p>q. Then if

, the element

represents Sqku^Ep'q+k.

Proof. Immediate from Corollary 2. 3 and Proposition 2. 5.

q.e.d.

§3. Squaring Operations on Cotor^ for A = H* (Xs; Z2) and

Let X6e{-Ee;2} and X7e{E7)2

By definition and [2], we have

H* (X,; Zj) = Zs [
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H* (X7 ; Z2) = Z2[^3, x5, j:9] / (xz\ x5\ x9
4) (gM (.r15, :r17, jr^, ^27) .

The reduced diagonal map is given by Theorem 3. 1 of [6] and

Theorem 1.8 of [7], namely,

(3. 1) for X5, X7, $ (*,) =0 (i = 3, 5, 9, 17) ,

(3.2) for X6, 0(x15)

(3. 3) /or X7,

The squaring operations on the elements are given by [2] and [13],

namely,

(3.4) for X6, X79 x5 = Sq2xz, xg = Sq*x5, x17 = Sq8xg, x2Z = Sq*x15,

(3.5) for X,, x27 = Sq*x2&,

(3.6) for X6, X7, x17=Sq*x15.

Proposition 3, 1. (i) Let A = H*(X6; Z2). Then as an algebra^

E2 = CotorA(Z2, Z2) ^Z2[y4, y6, yT, y10, y18, y82, y34, y^~]/R ,

•where the grading s of generators are given by

3^(1,3), yfl e (1,5), y7e(l,6), y10e(l,9),

y18 e (1, 17) , y32 e (2, 30) , y34 e (2, 32) , y48 e (2, 46) ,

(y^(i,f) means yeSg1"7) <^^<^ -R ̂  ^^ ideal generated by

(3.7) y7y10j y7yi8, y?^, yL+y^s+y^ysE .

(ii) The following relations hold in Ez:

Sq2y4^y6, SqlyQ=y7, Sq*y6 = yw, S<fy10=yis, Sqwy32=y48.

Proof. The calculation of Cotor4(Z2, Z2) is purely algebraic, and

hence (i) follows from Theorem 2. 3 of [6] . To determine the squaring

operations, recall the outline of their calculation. Let L — {xs, x5, xs
z, xg,

X17)x15,x23} and denote the corresponding elements by sL — {a4, a6, a7, aw,
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ais, bw, b24} . Then by (3.4) we have

(3. 8) S<fa± = a6, Sq1a6 — a7, Sq4a6 = <z10, Sq8a10 = a18, Sq*b16 = bM .

Form a differential algebra (X,d) as in § 2. Explicitly X is isomorphic

to the polynomial algebra Z2[a4, a6, a7, a10, tfis, £ie> ^24]- Then the projec-

tion ^>: C(A)— >X induces an isomorphism on eohomology, i.e., Cotor,i(Z2,

,d). Each yt is represented in X as follows:

yt: a, (i -4 6, 7, 10, 18),

Note that the squaring operations on yt follow immediate from Corollary

2.6 and (3.8). q.e.d.

We next turn to X7.

Proposition 3. 28 (i) Let A = H * (X7 ; Z2) . Then as an algebra,

E2 = Cotor^ (Z2, Z2) = Z2[y4, y6, y7, y10, yll9 y18, y19, yu, 3^35,

-where the grading s of generators are given by

y4e(l,3), y f le(l,5), y fe(l,6), y10e(l,

yne(l,10), y18e(l,17), y19e(l,18)

yM e (2, 33) , y66 e (3, 63) , y67 e (3, 64) , y64 e (4, 60) ,

ywe(4,92), y1J2e(4, 108),

a^cf ,R /5 the ideal generated by

(3. 9) 3^11+^10^7, 3^6^19 + yi8>'r? Vio^ig-f- 3^18^11 .

2, ^n^L, y?9, ̂ 7^34+^6^35 4- y^n ,
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(3.10) y7y66 + y6y67 4- y?9yM,

3^34^67 + 3>35:V66, 3^66^67 + 3^10^11^112 + ̂ 18

3434 + 3^1834^4 4- yloyliy^ + y^y™ -

(ii) The vertical squaring operations in Ez are given by

Sq2y+ = y6, Sq1yB = y7, Sq4ys=y1Q, Sq1y10=yn ,

04 =3;96, qyw =yllz .

Proof. The calculation of CotorA(Z2, Z2) is the same as that given

by [7], although the relations (3. 10) are dropped there. Recall the

outline of their calculation. Let L — {xs, x5j x^ x^ xs
2, x17, xg

2, x15, x2Zy x27}

and denote the corresponding elements by sL= {a^ a&, a7, a1Q, an, a18, a19,

bw, t>24, b28} • Then by (3. 4) and (3. 5) we have

(3.11) Sq2a4 = a6, Sq1aQ = a7, Sq*a6 = am Sq1a1Q = an ,

Sq*a1Q = a18, Sqlal& = aig, Sq*b16 — bz^ Sq4b2i = b28 .

Form a differential algebra (X, d) as in § 2. Explicitly

I, z = 4, 6, 7, 10, 11, 18, 19, J = 16, 24, 28 ,

•where / is the ideal generated by all possible [<zm, an] and [&p, b^] and by

[fl^fty] except (f , j)=(6,16), (10,16), (6,24), (10,28) and [flfl, b16]

-±aii, [_^iQ,b16]-i-a1ga7, [<ze, b24] +a11a19, [/210, b28] +a2
w. Then the projection

p: C(A)-^-X induces an isomorphism on cohomology, i.e., CotorA(Z2, Z2)

= H(X,d). Each yt is represented in X as follows.

(3. 12) yt: a, (z = 4, 6, 7, 10, 11, 18, 19)

3^4: ^18^16+^10^24+^28, yZ5- ^19^18+^11*24 + ^7*28,

3>66 : ^10*28 + ^18*24 + ^19*28, 3;67 ^ ^11*28 + ^19*24,

y4J: bf 0' = 16, 24, 28).

Remark that the representative of y66 in [7] is incorrect. Now the squar-

ing operations on yt follow immediate from Corollary 2, 6 and (3. 11) .

q.e.d.
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Proposition 3. 3* Sq1^^ = y67 in Cotori4(Z2, Z2),

=3>67 m E2.

Proof. Let C be a representative of ya4 in the cobar construction

C (A) . The explicit form of C is given by

C= Onkis] + Ogkza] + [^5^27] +

Then Sq1
DyM is represented by C U C. By using the explicit formula

i
for the cup-1-produet, we have

C U C= [>,'kak«] + [^5
2k27U27] +r ,

1

where r^Ker(p: C (A) -*X) . Hence

Therefore C U C represents y67, and we have 5g1
jDyS4=y67in Cotor4(Z2, Z2).i

The latter relation Sq**yu= y6? in £2 follows from Proposition 2.2.

q.e.d.

For later use we note

Lemma 3. 4, Sq1y64 = Sq2y6il = Sq*y6i=
:Q and Sq8y64=yi8 in Ez,

Proof. Since Sq1b16 = Sq4b16 = Q for dimensional reasons and Sq2b16

= a18 in X by (3.6), and since y64 is represented by &fe, the lemma

follows from Corollary 2. 6. q.e.d.

§ 4« Collapsing of the Spectral Sequence for X$

Let XQ^{EQ\2} and put ^L = H* (X6 ; Z2) . Consider the Eilenberg-

Moore spectral sequence for X6:

(4. 1) £2 = Cotor^(Z2, Z2)^H*(5X6; Z2),

where the J52-term is given by Proposition 3. 1.
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Theorem 4. I. The Eilenberg-Moore spectral sequence (4. 1) for

collapses.

This will follow from the following lemmas.

Lemma 4, 2B The element yi survives, and hence so do y6, y7,

Proof, For dimensional reasons y4 survives and so do the other

elements by Propositions 1. 2 and 3. 1. q.e.d.

We need the following facts.

(4.2) i) y^O in H*(BXS;Z2-),

ii) y,5=/=0 in E,,

iii) y«'y,V=£0, y4y,V¥=0 in Et ,

iv) yfy^O in E5 .

Proof is clear for dimensional reasons.

Lemma 49 3» The element yM survives.

Proof. Denote Fp = FPH* (BX6 ; Z2) . First note that Sq*y18 =yls=£0

in H^(BX6',Z2) by (4.2). Remark that y?8 <= F\ By Adem relation

yls = Sqi8yl8 - S<fSq»y1B + 5̂ 5̂ 18 -

For dimensional reasons Sq^is&F*, and hence Sq^Sq^^ ^ F3 by Proposi-

tion 1. 1. Now assume that y34 does not survive, then Sq1 6y18 (E F3, and

hence Sq2Sqwyl8^F*. This is a contradiction to yig^-F2- Thus 3;34 sur-

vives and furthermore we must have

Sq16y18=yS4 modF3.

This completes the proof. q.e.d.

In the above proof we have shown
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Proposition 4.4. Sq^y^^y^ mod decomposable s in H*(BX6',Z2).

Lemma 4, 5» Sq1yzz = Sq2yS2 = 0 in Ez.

Proof. Recall that yZ2 is represented by b\§ in X (See the proof

of Proposition 3. 1) and Sq1b1Q = 0 for dimensional reasons. Hence Sq2ysz

is represented by

Sq2b\, = SqlblQSqlblQ = 0 by Corollary 2. 6 .

Therefore we have SqzyZ2 = Q in E2. It is easier to see Sq1yS2 = 0.

q.e.d,

Lemma 4. 6. The element yS2 survives, and so does y4S.

Proof. We first show that yZ2^E2
2'SQ is a permanent cocycle. Con-

sider dr:Er
2'SQ->Er

z+r'zl~r (r>2). For dimensional reasons the possible

elements to be killed by yZ2 are

8 = 0 , y6y7yl<> = 0 ,

Put dz(yZ2) —ayQ
2y^ with a^Z2. Applying Sq2, we have

=S<fdt(yJ =ay7
5

by Propositions 1. 2, 3. 1 and Lemma 4. 5. Then since y7
5=£Q by (4. 2)

we have a = 0. Next put ^4(^32) =ay*y*yi + by?y* with a, 6eZ2. Apply-

ing 5^\ we have 0 = d,(Sqlyzz} =Sqld,(yzz} =ayfyfyr*. Since yfy8
2yf*=£Q

by (4 2), we have a = 0. Then applying Sq2 to ^4(3^32) =by4
3y7

2
9 we have

0 = J4(Sg2y32) =S<fd<(yu) =by#fyf. Since y^.V^O by (4. 2), we have

6 = 0. Thus ^4(3^32) =0. Finally put d5(yS2) =ay4
5y6y7 with aeZ2. Ap-

plying Sg1,

Since y4
5y72:7^0 by (4. 2) , we have a = 0 and d5 (yZ2) = 0. Thus we have
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shown that yS2 is a permanent cocycle. Since yZ2 is not killed for dimen-

sional reasons, we conclude that y32 survives, and hence y48 — SqwyS2 survives

by Proposition 1. 2. q.e.d.

Now Theorem 4. 1 follows from Lemmas 4. 2, 4. 3 and 4. 6.

Theorems A and B follow immediately from Propositions 3. 1 and

4. 4 and Theorem 4. 1.

§ 59 Collapsing of the Spectral Sequence for X1

Let X7£:{E7, 2} and put A = H* (X7 ; Z2) . Consider the Eilenberg-

Moore spectral sequence for K7:

(5. 1) E2 s Cotor4 (Z2, Z2) =*H* (BX7 ; Z2) ,

where the jE2-term is given by Proposition 3. 2.

Theorem 5* 1. The Eilenb erg-Moore spectral sequence for X7

collapses.

This will follow from the following lemmas.

Lemma 5. 2. The element y^ survives, and so do y6, y7, y10, yn,

Proof, The element v4 survives for dimensional reasons, and so do

the other elements by Propositions 1. 2 and 3. 2. q.e.d.

Lemma 5e 3. TVze element yS4 survives and so does y^

Proof is quite similar to that of Lemma 4. 3, though the existence

of the element of degree 19 may make a proof a little bit complicatedo

As an analogous result to Proposition 4. 4 we can show

Proposition 5.4. Sq™y18=yS4 mod dec ompo sables in H* (BX7 ; Z2) .
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Lemma 58 5B The element y66 survives and so does y67.

Proof. Denote Fp = FPH* (BX7 ; Z2) . By Proposition 3.3 the

relation Sq**yi4, = y67 holds in E2. Hence the element yQ7 survives to E^ by

Proposition 1. 2, and we obtain

yv-Sq^y^Sq^yu mod F4

in H*(BX7;Z2). Assume that v66 does not survive. Then

for dimensional reasons. So y67^0 mod F4, which is a contradiction to

y67^Fs, Therefore yG6 survives and furthermore we must have

SqS2yZi=yQQ mod F4 . q.e.d.

In the proof we have obtained

Proposition 5. 60 SqS2yu=y66 mod dec ompo sables in H*(BX7; Z2) .

Lemma 5,7. dr(SqiyQ^) = 0 for i = l, 2, 4, 8 and for all r>2.

Proof. Immediate from Lemma 3. 4. q.e.d.

Lemma 5. 88 The element y64 survives and hence so do yo6 and

3>112.

(The proof will be given in § 6.)

Now Theorem 5. 1 follows from Lemmas 5. 2, 5. 3, 5. 5 and 5. 8.

Theorems C and D follow from Propositions 3. 2, 5. 4 and 5. 6 and

Theorem 5. 1.

§ 6, Proof of Lemma S» 8

The proof of Lemma 5. 8 given here is quite analogous to that of

Lemma 4. 3, although it is much more complicated. To prove the lemma,

it suffices to show that the element y64 survives, since ;y96 = Sq^y^ and

yii2 == Sqwyg6 by Proposition 3. 2. For dimensional reasons yG4 is not killed,
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and hence we need only to check that y84 EE -E2
4' 8° is a permanent cocycle.

Let 5(77) be the set of monomials in jE2*'*

(6. l)

with

(6. 2. n) 4

Note that the Z2-module generated by £(72) is closed under the vertical

squaring operations. The set <S(;z) is ordered lexicographically from the

right, for example, y^y^y^yi^yQ
zy1

zyiQy^ in 5(65) . Since there are rela-

tions

(6. 3) y6yn + ywy7 = 0, y6yig 4- y18y7 = 0, ywyig + y18yn = 0,

9 = 0, y19yS4 + ^8^5 = 0,

the monomials of S(TZ) satisfying one of the following

(6. 4) i) c>l, d>\, ii) c>l, />!, iii) e>l, />!,

iv) <?>3, v) e>l, g>2, vi) g>3, vii) e>2, g>l,

viii) <:>!, g>2, ix) g>l, A>1,

can be reduced either to a trivial one or to a linear combination of the

other monomials of higher order. A monomial is irreducible unless it

satisfies one of the relations (6. 3) . Thus the set of the irreducible

monomials of degree n forms a Z2-basis of S(n).

Remark that the first (possibly) non-trivial differential is

since the elements yt (i = 4, 6, 7, 10, 11, 18, 19, 34, 35) are cocycles. So

the following lemmas are clear for dimensional reasons.

Lemma 6. 1. The irreducible monomials

are non- trivial in Er
p'q for the following cases:

(1) p + q<68 and p + q=£65, when <z>0,

(2) p + q = 69 and 73, when a = 0.
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Lemma 6. 2. The non-negative integer solutions of the equation

(6. 2. 65) and

(6.5)

except the cases (6.4) gives a basis {mr,t} of Er^
r>Ql~r.

Using this basis, each element of Er
4*r<6l~r is expressed as J] ktmr,t

with ki^Z*. Explicitly we have

(6. 6)
Q> 59

ii) EJ' 58 : *KV/y7.Vi kVss 4- *a.V4 W.VIO.VSB + *a .V4 V/y7
2V

9' 56

+ k8y4y6
7ylg + k9y4

v) £a
10' 55 : ̂ ^ynyiQ + kzy4

6y6
2ywyig + ksy4

5y6
2y7

2y19

n + k9y4
2y8

6y1Qyu
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n + kuy4
2y6

sy7
4yu + k12y4y6

6y7
2yn

n + k14y4y6
2y7

7

vi) E7
U> 54 : k&fyt&n -f k2y*y7

2yig

vii) E8
12' 53 : k.y^y.y,, -f ky^y^

+ k4y4y6
2y7

2

viii)

ix) E10
14-51: A.y

x) En
15'50:^y

The above elements are the candidates to be killed off by y64. That

is,

(6. 7) dr(y^ = XI ktmr,i with ^eZ2
i

for dr:Er
4'60-*Er

4+r'61-r (r>2). We will show that all the coefficients

kt are zero in the following way.

First we apply Sql on both sides of (6. 7) . Since Sq1dry64 — drSqlyQ^

= 0 by Lemma 5. 7, we have

where SqlmTii is calculated by Proposition 3. 2 and by the Cartan formula.

Then the linear independency of {Sqlmr>i} by Lemma 6. 1 implies that

ki = Q. By this argument we get

Lemma 6. 3. kt is trivial for

z = 1,6, 7, 8, 9 in (6.6.1),

i = 4, 6, 7, 8, 10, 11 in (6. 6. ii) ,
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z = 6, 7, 9, 10, 11, 13, 14, 15 in (6. 6. iii) ,

i = 4, 5, 6, 8, 10, 12, 13 in (6. 6. iv) ,

i = 2, 4, 5, 7, 8, 9, 11, 13, 15 in (6. 6. v) ,

1 = 1, 3, 5, 6, 7, 9, 11, 13 z>? (6. 6. vi) ,

7=1,3,5,6,8 in (6. 6. vii),

2 = 1,3,5 in (6. 6. viii),

/ = !, 3 in (6. 6. ix),

z = l //z (6. 6. x) .

Then by applying Sq2 on both sides of (6. 7), we get by Lemma 5. 7

where the summation runs over i not listed in Lemma 6. 3.

The linear independency of {Sq2mrti} by Lemma 6. 1 implies

Lemma 6. 4. kt is trivial for

f-3,4,5 in (6. 6. i),

1 — 3, 5 in (6. 6. ii) ,

2 = 1, 3, 4, 5, 8, 12 in (6. 6. iii) ,

z-3,11,14 in (6.6.iv),

z = 1,3, 6, 10,12,14 in (6. 6. v),

2-4,12 777 (6.6. Vi),

z = 2, 4,7 in (6.6. vii),

z" = 4 in (6. 6. viii),

i = 2 in (6. 6. ix) .

Corollary 6» 5* (1) ^yelvv.Vii^ss ^^ ^VLvas ^^^ not trivial in

Er
7'62.

(2) y4
4yiiys5 is not trivial in £r

8iM.

(3) y?yfy?y\\ is not trivial in Er
u'56.

(4) yfyfyu, y*yi<&v&> y^y^y^ yfyuy** yfyfyi* are not trivial in Er
9iQQ.



CLASSIFYING SPACE OF AN ASSOCIATIVE H-SPACE 775

Proof. (1) and (2) : The elements yfy7yny^ and yfyliyK are not

^.-images of y64, since k2 = k^ = 0 in (6. 6. i). So y4yfy7y nyis and yfyhyu>

for a = 3, 4 are not trivial, since dr — Q in these degrees.

(3) follows from that &4 = 0 in (6. 6. vii) .

(4) follows from that *, = 0 for 7=1, 3, 4, 5, 12 in (6. 6. iii).

q.e.d.

Then by applying Sq4 on the both sides of (6. 7) we get the following

lemma by virtue of Lemma 6. 1 and Corollary 6, 5.

Lemma 6. 6, £z fs trivial for

/-2 777 (6.6.1),

/ - 1,2,9 ?;/ (6. 6. ii),

/ = 1, 2, 7, 9 77; (6. 6. iv) ,

z = 2 /TZ (6. 6. viii) .

Corollary 6. 7. y^y^ y^y^ and y^y^y^y^ are not trivial in

Proof. This follows from that k}~k»-=k7~0 in (6, 6. iv).

q.e.d.

Now we apply Sq8 on the both sides of (6. 7) and by Lemma 6. 1

and Corollaries 6. 5 and 6. 7 we get

Lemma 6. 8. £* is trivial for

i = 2 in (6. 6. iii),

/ -=2, 8, 10 777 (6. 6. vi).

Thus we have shown that all kt are trivial. This completes the

proof of Lemma 5. 8.
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