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Mod p Decomposition of Compact Lie Groups
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Mamoru MlMURA*, Goro NlSHIDA** and Hirosi TODA**

§ 09 Introduction

Let p be a prime number. A simply connected CW-complex X is

called mod p decomposable into r spaces if there exist simply connected

CW'-complexes Xt (l<z<>) such that Jf*(J^; Zp) 7^=0, and if there exists

a ^-equivalence f: JJ Xi—>X. A mod p decomposition JJ X^-^X is
l^i^r l<i<r

irreducible if each X* is not mod p decomposable.

In the present paper we shall consider the mod p decomposition of

simply connected simple Lie groups. For Lie groups (more generally,

for finite J^-complexes) there is a well-known rational decomposition

into the product of spheres. J.-P. Serre has shown a similar decom-

position into a product of spheres for primes greater than a fixed prime

depending on G using the class theory. Then our main theorem is stated

as follows. If a compact Lie group has no />-torsion, then as is well

known H*(G; Zp)=A(Xi, • • • , ^ t ) is the exterior algebra with degxt=2nt

— 1. We define an integer r(G) to be the number of nt's which are

distinct in ZP-I.

Main Theorem. Let G be a simply connected, simple Lie group

-without p-torslon. Then if G=^Spi?i (2;/), G is irreduclbly modp de-

composable into r(G) spaces and Sphi(2n) is irredncibly modp decom-

posable into r(G) +1 spaces.
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For more concrete expression of our results see Theorems 3. 5,

4. 1 and 8. 1 (cf. Theorem 4. 2 of [6]).

The factors of the modp decomposition of G are, what we call,

mod^ Stiefel complexes Bm
k (p) having the following properties:

(1) H^(Bm
k(p');Zp)^:A(x2m+l9x2m+1+q, ••• ,^2 m + i + a-1)g) with q = 2(p — V)9

(2) there exists a map

inducing an epimorphism of Zp-cohomology.

The proof of the main theorem for the classical groups is quite

different from that for the exceptional groups.

Among classical groups, SU(n) is particularly important and modp

decompositions of Sp(n) and Spin(n) follow from that of SU(?i) by the

result of Harris [6]. Our modp decomposition of SU(n) is an unstable

version of the modp decomposition of p-adic complete X^-theory (hence

the decomposition of BUP~) by Sullivan [21, 22], and the localization

technique is used to make the decomposition in the category of finite

complexes.

For the exceptional groups, first we introduce a spectral sequence

which is quite useful to compute the homotopy groups of a certain com-

plex, especially a complex whose cohomology mod^> is an exterior algebra.

Then we construct Bm
k(p) and embed them (in the mod^ sense) into

G by making use of the obstruction theory, after calculating n^(G:p),

the ^-component of it* (G) , by the above spectral sequence.

The paper is organized as follows:

Chapter I The classical cases.

§ 1. Localization of CW-complexes,

§ 2. A construction of Sullivan,

§ 3. Mod p decomposition of SUty) ,

§ 4. Mod p decomposition of the other classical groups,

Chapter II Modp Stiefel complex Bm
k (p) .

§5. Existence of Bm
k(p),

§ 6. A spectral sequence for meta-stable homotopy,

§ 7. Characterization of some Bm
k (p) ,
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Chapter III The exceptional cases.

§8. M.odp decomposition of ^-torsion free exceptional groups,

§ 9. Mod 5 decomposition of E7 and E7/GZ,

§ 10. Mod 7 decomposition of E7 and E8.

In § 1 the localization theory is summarized. Details of Sullivan's

construction (an unstable version of the Adams operation) are given

in § 2. Then mod p decompositions of the classical Lie groups are proved

in § 3 and § 4. The complex Bm
k (p), which is a factor in the mod p

decomposition, is constructed in § 5. A spectral sequence converging to

meta-stable homotopy groups of a space is constructed in § 6. The com-

plexes Bm
k (p} are characterized for particular k, m, p in § 7. The section

8 is to discuss the mod p decomposition of the ^-torsion free exceptional

groups and to state the main theorem for them. In § 9 the mod 5 decom-

position of E7 and in § 10 the mod 7 decomposition of E7 and E8 are

proved.

Unless otherwise stated, the coefficient Z of the integral (co) homo-

logy shall be omitted.

The present paper is the revised version of the two mimeographed

notes [12] and [17] circulated in 1970 and 1971 respectively. In fact,

the note [17] corresponds to Chapter I which was written by G. Nishida.

The note [12] corresponds to Chapter II and Chapter III, although enti-

rely rewritten, and they were written by H. Toda and M. Mimura.

Chapter I The Classical Cases

§ 1. Localization of CIF-Complexes

Let P be a set of prime numbers and let Qp denote the ring of

fractions whose denominators are, in the lowest term, prime to p for

any p^P. If P is the void set, Qp—Q is denoted by Q(0).

The notion of localization of CT^-complexes at P is defined by Bou-

sfield-Kan [5], Mimura-Nishida-Toda [16], Sullivan [21,22] and others.

According to Sullivan, we define the localization of a CW-complex as

follows. A CW-complex Y is called P-local if 7T#(Y) is a Qp-module.

A continuous map
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from a 1-connected CW'-complex X to a P-local space XP is called the

localization if for any map f\ X--*Y, Y P-local, there exists a map g:XP

— >Y, unique up to homotopy such that the diagram

XP

is homotopy commutative. Then for 1-connected CW-complexes, the lo-

calization theorem is stated as follows.

Theorem 1.1 ([21]). Let X and XP be l-connected CW-com-

plexes and let l:X—*XP be a map. Then the following conditions are

equivalent:

(i) / is a localization,

(ii) there is an isomorphism u%(XP)^7C*(X)(><)QP 'which makes

the following diagram commutative

(iii) there is an isomorphism H* (Xp) —H^. (X) (X)QP which makes

the following diagram commutative
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where j:Z— >QP is the canonical injection.

Theorem 1.2 ([21]). In the homotopy category of \-connected

CW- complexes, there exists a covariant functor L and a natural trans-

formation 0: Id-^L such that, for any complex X, (j)x'-X-^L(X) =XP

is a localization,

Now we recall the notion of P-equivalence and P-universality [13,

15] . If p is a prime or Os we denote by Zp the prime field of character-

istic p. Then a map f;X-*Y is called a P-equivalence if

is an isomorphism for any p£=P and />~0. It is known that P-equivalence

is an equivalence relation in the category of P-universal spaces. Then we

have

Theorem 1.3 ([16]). Let X and Y be l-connected CW-com-

plexes of finite type. Then a map f:X-*Y is a P-equivalence if and

only if fP:XP— >YP is a homotopy equivalence.

Now a countable l-connected CW-complex Y is called finite P-local

if J/t (X) is a finitely generated QP-module.

Proposition I* 4, Let Y he a mod 0 H-space. Then Y is finite

P-local if and only if there exists a \-connected finite complex X

and Y^=iXp. Furthermore such a complex X is unique up to P-equi-

valence.

Proof. The "if part" is obvious. So assume that Y is finite P-local.

Let

be the localization at 0. By assumption, H%(Y(0)) = jH#(Y) (X)Q is a fini-

tely generated Q-module. Since Y is a mod 0 H space, we have a homo-

topy equivalence:

y(0)~n
Then we see that
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Consider the diagram

where F is the complementary set of P. Let X= Yx r0(II 52ni~1)p be

the pull-back. Then we have a homotopy commutative diagram

Let F be the fibre of l:(T[&nt~1)P-*YM which is also the fibre of f:X-*Y.

Since I is the localization, we see easily from Theorem 1. 1 that H^ (F)

is a jP-torsion group. Consider the Qp-coefficient homology spectral se-

quence associated with the fibring:

Since H*(F;Qp) = 0, we see that

/*; H*(X)®QP-^H*(Y)(x)Qp=H* (Y)

is an isomorphism. This shows that f is the localization. Similarly we

can see that H* (X) is a finitely generated abelian group. Hence we may

take X as a finite complex. Meanwhile Y is a mod 0 H-space and hence

P-universal ([13]). Then uniqueness up to P-type of a complex^ fol-

lows from Theorem 5.3 of [16]. Q.E.D.

Lemma 1.5. If p e P or p = 0, then Z*: H* (XP; Zp) -*H* (X; Zp)

/5 aw isomorphism. Ifp$P9 then H*(XP; Zp) =0.

Proof is easy using the universal coefficient theorem.

§ 2. A Construction of Sullivan

In this section we shall state the Sullivan's construction of unstable

Adams operations for the classifying spaces of U(n) and SU(ri)9 and
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give some easy consequences of the construction.

Theorem 2.1 (Sullivan [21]). Let n be an integer. Let q be

a prime >;?, then there exists a map ([jq:BG-^>BG, G =[/(??) or SU(?i),

such that (0Q)*£, = gV, -where c^ Hli(BG\ Z) is the i-th Chen class.

We give an outline of the proof, Let G1lik (C) be the Grassmannian

variety, It is shown (Theorem 5. 2 [21]) that the "complete etale homo-

topy type" of BU(?i) = \im Gn<lf (C) is equivalent to the profinite comple-
L

tion BU(?i) of the classical homotopy of BU(n) . Since the algebraic

variety Gfl-A.(C) is defined over Q, the natural action of the Galois group

Gal(Q/Q) on the etale homotopy type of Gn>k(C) defines the action of Gal

(Q/Q) on Gn,k(Cr and BC/W, where Q denotes the field of algebraic

numbers. The action on cohomology is given as follows (Cor. 5. 5,

[21] ) . It is known that there is a canonical epimorphism

where Z* is the group of units of the profinite completion of Z, and

Ker A= [Gal (Q/Q), Gal (Q/Q)]. Let (fe Gal (Q/Q) and let A(ff) =a.

Then

where c { G H" (BU (nY* ; Z) ^Z[cl9 • • - , cn~\ is the Chern class.

Now let q be a prime and let [g] denote the set of all primes

except q. Let

q= {q, q, -f q, 1, q, q, -}

where 1 is the coordinate of ZQ*. Let (Te Gal (Q/Q) be such that A((T)

= g. Next let q = {1, • • - , 1, <?, 1, • • •} eZ such that q>q = q(=Z(^.Z. We

shall show that if q^>n, then there exists a map

such that

A* = ?fe • zW: H 2fc (BC7(») " ; Z) -*£Pfc (Sl7(w) " ; Z) .

Let TndU(n) be a maximal torus and let NdU(n) be the normalizer
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of Tn. Then the Weyl group is N/Tn = 2n and hence we may identify

BN with ESn X BTn/2n, where E2n is a universal ^-space. If

then from the fibring

we see that

i*:H*(BN-, ZJ

is injective and Im i* = H*(BTn; Zg) In, the invariant subgroup of

Hence we see that the induced homomorphism

is an isomorphism. Since BN has a bad fundamental group, namely nl

~=2nj we consider the canonical projection

BN= E2n x

Then by the Leray spectral sequence of the above map, we see that

is an isomorphism.

Lemma 2. 2- Let X be a \-connected CW-complex. Then the

symmetric product SPn(X) =Xn/27l is \~connected.

Proof. Let K be an s.s. complex and let \K\ be the geometric reali-

zation of K. Then it is known that there exists a canonical weak homo-

topy equivalence

\SPn(K)\-+SPn\K\.

Let S(X) be the singular complex of X. As is well known S(X) has

a minimal complex K as a deformation retract. Then if X is 1-connected,

K has unique 0 and 1 simplexes. Hence so does SPn(K) and we see that

has no 1-cell. Therefore we see that SPn(X) is 1-connected.

Q.E.D.

Then by the obstruction theory we obtain a homotopy equivalence:
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such that the following diagram is commutative:

BU(n\

Let /: BT^BT be a map of degree q on H2(BT' Z) . Then /'l:
n defines a map on BTn/£n and hence defines a map g:BU(?i)^

such that g-z / xc±z /N(/? l)xx . Then by the homotopy equivalence

, we define

* = 0 X zV

Note that ^I*(W(;ir;Z)=W*(£a^ by

the Kiinneth formula and by the fact H*(X^\ Zp} =0 if q^p and if X

is 1-connected and of finite type. Then comparing A with

, we have

Now let us consider the composition

Iff :

then (lff)*=q*-id on H
n

Since the rational type of BU(n) is homotopy equivalent to JJ K(Q,
k = l

2k) , we can define easily a map

r: BC7(») co> ->#£/(«) <o>

such that r*=qk-id on H2fc (J5C7(w) (0) ; Q) .

Finally to get a map on the ordinary homotopy type BU(n) from

maps on the profinite type and on the rational type, we must check the

coherence condition ([22]). Here the coherence map is a canonical homo-

topy equivalence

where Xf* denotes the formal completion ([21]). The coherence condition

requires that the map (A(T) (0) on (BU(n) ~) (0) is homotopic to (r)/^ on
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co))/" after identifying by c.

Note that we have a homotopy equivalence

, 2*).

But it is clear that (70") (0) and (r)f~ are homotopic after this further

identification. Therefore by the pull-back of A(T and r we obtain a map

(in general not unique up to homotopy)

09 : BU(ti) -*BU(n)

satisfying the required property. Now BSU(n) is the fibre of the map

BU(n)—>BU(l) ~K(Z, 2) corresponding to the first Chern class. Hence

0g restricts to (f)q : BSU(n) -*BSU(ii) . Q.E.D.

§ 3. Mod p Decomposition of SU(ri)

Let n be a positive integer and q^>n a prime. Let t//: BSU(ii)

-*BSU(n) be a map defined in § 2. By applying the loop functor, we

obtain a map

J205 : SU(n)-+SU(n).

Recall that H*(SU(n) ; Z) ̂ A(h2, • • • , An) is the exterior algebra gener-

ated by the universal transgressive generators /z^ with deg/ii = 2z" — 1.

Since (0«)*r = 0*;r for any x <= H*k (BSU (n) ', Z) by Theorem 2.1, we

have

Let kr'.SU(n)->SU(n) be the map defined by *r(j:) =jc~« r for x

e SU(n) . We define a map

^r=Q(^'kr\ SU(n)-*SU(ri)

as the composite

where d is the diagonal map and jj. is the multiplication of SU(n).

Lemma 3. !„ (A5f r) * (/^) = (q€ — qr)hi.
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Proof. Note that ht is primitive. Then as is easily seen, kr*(ht}

cfhi and

X kr) * (A,® 1 + 1® A,)

)ht. Q.E.D.

Lemnia 3. 2. Let n be a positive integer and p a prime. Then

there exists a prime q^>n 'which is a primitive root mod p.

Proof. Let k be a primitive root mod p. Then so is k+pt for any

positive integer t. Since (&, p) =1, there exist infinitely many primes

of this form by the classical theorem of Dirichlet. This proves the

lemma. Q.E.D.

Proposition 3* 3. Let n and p be as in Lemma 3. 2. Then for

each m, 2<m<^min(n, p), there exists a ^-connected finite complex

Xm(n) and there exists a map fm: SU(n) —>Xm(n} satisfying

i) H*(Xn(ri);Zp)=A(xm,xm+p-.l9 • • • , ̂ TO+S(P_D),

-where degx f = 2z —1 and s=\ — is the largest integer < — ,
\_p — 1J p — l

ii) /,

Proof. We choose a prime as in Lemma 3. 2. Let

be the composition of ^.^ 2<^*<^, z^m(mod^ — 1). Let gly g2j "" be all

primes except p and let dfc=q1
k--qk

k. Let rk(x) =xdle, x^SU(n). Con-

sider the sequence

SU(n)

Let Xm(n) be the telescope of the sequence. As is easily seen,

and by Theorem 2. 1 and by Lemma 3. 1
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= n («*-«')*•.
t^m(mod p— 1)

p — 1), c = II (^* — #0 =0 and if i=m(modp — 1) then
2^«^re

£^m(mod p-1)

by Lemma 3. 2. From this we see easily that

H*(Xm(n); Zp)~

and

where deg(y<) — deg(;y/) — 2* — 1 and 5= — — ̂  . Since Xm(n) is 1-
L /> — 1 J

connected, we see that Xm(?i) is finite />-local and is a mod 0 //-space.

Then by Proposition 1. 4, there exists a finite complex Xm(ti) (unique

up to /^-equivalence) such that

Xm(n-),-Xm(,i).

Let j: SU(n) —>Xm(ti) be the canonical inclusion map and let 1: X m ( f i )

-*Xm (n) p—Xm (n) be the localization map. Note that nt (Xm (n) p, Xm (n) )

is a torsion group without elements of order p. Then by the obstruction

theory, we see that the map j can be compressed into Xm(n) after com-

posing ki : SU(n) —>SU(n) for some I, i.e., there is a map

such that the diagram

f,
^ m n

is homotopy commutative. Note that kL is a /^-equivalence and (ki) * (h^

— dfii. Then by Lemma 1. 6,

H (Xm\n) ; Zp) ̂ A(xm, o:m+p_1? • • • , ^m+»(p-i))

and

(mod/>). Q.E.D.

Although the mod/? splitting of SU(n) follows immediately from

the above proposition, we state it in a slightly different form. Put
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v/here Xm(ii) =* if m^>?i. By the above proposition / is a ^-equivalence.

Since SU(?2} is ^-universal, there exists a converse /^-equivalence

(7 : f fX»(») ->5C7(«)
m=2

by [13], Let f/,,, denote the composite Xni (/O — >£[ X£(;/) •^SU(n') . TJie
» =- j

construction of A'?l(^) depend1^ on d choice of the map 0?, BSU (ii)

— >BSLJ(?t} . (Note that (t')
q is not uniquely determined). However we

have

Proposition 3.4, Let Ym(ii) be a finite complex (2<m<p) and

lei a m : Y m ( f i ) ->5C7(//) be a map such that H*(Ym(ti) ; Zp) ^A(ym, ym H j p-i ,

/5 a// epimorphism. Then

i) ym(w) 25 p- equivalent to Xm(n) ,

ii) z/ w + 5(/> — !)<«<«'< w+ (5 + 1) (/» — !), then Yn(n) is p-

eqiiivalent to Ym(n'),

iii) there exists a sequence

'which is p-equivalent to a Jibrmg.

Proof. Let m + s(p-V)^n<m+ (5 + !) (/»-!). Let g/ : Xm (w + 5

(w) be the composite and let

where // is the multiplication. Similarly consider

X n
1=^=771

Then clearly g' and g/x are ^-equivalences. Since all spaces in the above

are ^-universal, we see easily that Ym(?i) is /^-equivalent to Xm(m + s(J>

— 1) ) . This proves i) and ii) .
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Next let

be the usual fibring. Let TT' be the composite

and let F be the fibre of TT'. Then we have a homotopy commutative

diagram :

I
F

where a is an induced map. Then easily we see that a'.F—:>SU(inJrp — 2

+ 5 (/> — !)) satisfies the condition of the proposition and by i) and ii)

we have

This completes the proof. Q.E.D.

Now by the above proposition, if m + s(p — V)<ji<^m-\- (s + 1) (p — 1),

Xm(n) uniquely determines a mod/> homotopy type which we denote by

B*m-i (P) by an abuse of notation (cf. § 5) . Then from the above argu-

ment, we obtain

Theorem 3. 5. Let p be a prime and let l<ra</> be an integer.

Then for any positive integer k, there exists a space Bm
k (p) and there

exists a p- equivalence

-where h( n, m) = \U m, 11.
L p — l J

Corollary 3. 6. Let p, m and k be as above. Then the space

(p) is a modp H-space,

Remark 3- 7. In § 5 there is given a slightly different definition
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of Bm
k (p) for general m. The difference with this definition is to require

the existence of a map to SU(m + 1 + (k — 1) (p — 1) ) /SU(m) instead of

SU(ii) . In this weaker definition, it is not known in general if Bm
k (p)

is unique up to ^-equivalence.

§ 4. Mod p Decomposition of the Other Classical Groups

In this section, p denotes always an odd prime. Let F—*E—*B be

a fibration. A map 5: B—^E is called a cross- section mod/? if /?°s is a

/^-equivalence. Let E be an //-space mod/? with the mod/? multiplication

ft. Suppose p:E-*B admits a cross section mod/?. Now if F, E and B

are 1 -connected finite CW-complexes, then FxB—*ExE—*E gives a /?-

equivalence by Serre's class theory.

Consider the canonical bundles associated with the classical groups:

Sp 00 ->St7(2») ->St7(2») /Sp (n) ,

Spin (2n + 1) ->SC7(2« + 1) -*SU(2n + 1) /Spin (2n + 1) ,

Spin (2n ~ 1) -*Spin (2n) -^S211'1 .

B. Harris [6] has shown that such bundles have cross-section mod/? for

odd p. Hence we have /?-equivalences :

Sp(n) X (SU(2n~)/Sp(ji))—SU(2n),
P

Spin (2n + 1) X (SU(2n + 1) /Spin (2n + 1) ) ~SU(2n + 1) ,
p

Spin (2n - 1) X S^^—Spin (2n) .
p

It is also shown in [6] that Sp(ii) —Spin(2n + 1).

Theorem 48 1. Let p be an odd prime. Let kab=
L P — 1

Then there exist the folio-wing p- equivalences:

Sp(n)~Spin(2n + l)~
p

(p-l)/2

5/«»(2»)=5f-1x n

SU(2n)/Sp(n)~ R
p m = l
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Proof is straightforward from Theorem 3. 5 by virtue of the above

formula and will be left to the reader.

Theorem 4. 2« SU(n) has no modp decomposition into p spaces.

Let p be odd^ then Sp(ii) and Spin(2*n-\-V) have no modp decomposi-

tion into - - spaces, Sp(n) has no mod 2 decomposition into 2 spaces,
£

Proof. Assume that SU(n) is modp decomposable into p spaces, i.e.,
p

JJ Xf~SU(n). It is easy to see that H*(Xi\Z^) is an exterior algebra
*=i P
and hence there exists a number t such that the degree of the lowest

generator of H*(Xt\ Zp) is greater than 2/> + l. Let x be such a gener-

ator and let & = deg.r. Then clearly the modp Hurewicz homomorphism

h'*Kk(II-2Q®Zp->Hit(n-Xi; Zp) is non-trivial. Hence so is h: nk(SU(n))

0Zp^Hk(SU(n) ; Zp). But since k>2p + l, this is a contradiction. For

Sp(n) and Spin(2n +1), the proof is quite similar. Q.E.D.

Chapter II Modp Stiefel Complex B£(p)

§ 5B Existence of B%(p)

Throughout this chapter p will be an odd prime and we use the

notation q — 2(p — 1).

Definition 50 1. i) A map f:X-*Y is called a modj^ injection

(resp. a mod^> surjection) if /induces an epimorphism (resp. a monomor-

phism) f*:H*(Y; ZJ -^H* (X; Z,) .

ii) A complex B is called to be of p- type (nl9 n2, '°'->ni} and indi-

cated by B = B(n1,n2, • •• ,^0 if

where degxn. = niy z = l, • • • , / , and each cell of B represents an additive

base of H*(J5;ZP).
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Note that

(5. 1) if X is \-connected a?id H* (X; Zp) = A(xn^ • • • , xni) for di

---- h#i, then there is a complex E of p- type (n^ • • • ,^) with a mod p

injection f:B-*X.

Definition 5.2. We call a complex Bn
k(p) of p-type (2m + 1,2m

+ l + <7, • • • , 2 t f z H - l - j - (£-!)£), q = 2(p-l), a mod p Stiefel complex if

there exists a mod p injection

where s = l+ (£-1) (/>-!).

Note that

(5.2) H*(Wm+SiS; Z) ==yi(^:2m+1,^:2(m4.1)+1, • • • J x 2 ( m r S _ 1 ) H 1 ) and in Zp-coeffi-

cient -we can choose the generators xz(m+j}+l such that /*(^2(m+j)+i) =0

for j^O (mod^-1) a?2^ /*(^2m h l T < a) =j:2m+1+ig /or

Example 5. 3. 1. Bm
1(p) =S2m+1.

Example 5.3.2. Bm
2(p) =S2m+1 xS2^2^1 if m=0 (mod p) and

Bm
2(p)=Bm(p) if m=£0 (mod^>)? where BOT(» is a 52m+1-bundle over

Example 5. 3. 3- B*n+l(3)=Xn^ktk=Sp(n-\-'k) /Sp(n) with the natu-

ral map /: Bk
2n+1 (3) ->SU(2n + 2k) /SU(2n + 1) .

Example 5. 3» 4. By Theorem 3. 5, for l<??z<^ there exists

Bm
k(p) with

/: B^^-

-*SU(m + 1 + (A - 1) (p - 1) ) /SU(m) .

In meta-stable ranges we have the following theorems.
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Theorem 5, 4. If k (2m + 1 + (k - 1) (p - 1) )<2 (m + V)p - 2, there

exists Bm
k(p) uniquely up to p- equivalence.

Theorem 5.5. If

(a) (*-l)(2w + l + £(/>-l))<2(w + 2)/>-2

or

(/?) m is odd and (*-l) (2w + l+ *(/>-!) )<2(w + 3)/>~ 2,

there exists a Bm
k (p) which is a Szm+l-bundle over BJi+p-iC/O.

First we recall James5 work [8]. For each positive integer 5, there

associates a James number b = bs such that for all positive integers n and

N9 there are maps

jf :&mW^.<-*W%^n.t for »<

satisfying the commutativity of the diagram

S2Nbi S2Nbp
-bTJT

W n + i_i}i_i

\Ji-i . i
+ p

TJ7 v T/T7 v C2(n+i-t-2V6)-l
yy n + i+Nb-l,i-l - > ^n + i + y f t , * - »*->

where Wt+t^^SU^t + fy/SU^t) and — >, — > are the natural fiberings.

We put

According to Yokota [25], Kt+iii is embedded in Wt^,i such that

(Wt+i,i, Kt-ri.i) is (4^ + 3) -connected and H*(Kt+iti) has an additive base

2 ( t+/)_i} for the restrictions y2«+/)-i of the generators ^2(^y)-i of

So, by taking N sufficiently large, we have the following homotopy

commutative diagram:

SZNbi

\Ji-i .* i * p̂
 02(71

>o

in which the lower sequence is a cofibering.
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Using (5. 2) and the above diagram inductively we have

(5.3) js : S2NbWn+s,s-*Kn+s+NbtS and the adjoint map Js : Wn+,.,-*StNb

Kn+s+NbtS satisfy ^(^cn+i+^o+i) =Szmxz(n+i)^ and Js*((r2^2U4^v&)+i)

=xZ(n+i)+i- Thus js is a mod/? surjection and Js is a modp injection.

By Corollary 9. 5 of [16]

(5. 4) we have a p-equivalence
p~2

g' : Kn^.s+NbiS— > \/ Li ,
i = 0

where L* = SYU eM+q U ••- U eM+hq for M=Mt = 2(n + i + M>) +1 and

From (5. 2) , (5. 3) and (5. 4) we remark that

(5.5) there is a mod^ surjection S2NBm
k(p) ^>LQ for sufficiently large

N, given the existence of Bm
k (p) , where L0 = Szm+2N+1 U e

2m+ZN+1+<l U
i i _2m+2#+l+(fc- l )g

' * * \J t> .

An easy calculation, using Corollary 3. 3 of [24], shows

(5.6) H*{QzmLt\ Zp) =A(xZn+2i+l,x2n+2i+1+(L9 •••9x2n+2i^l+h(l) for dim<2(»

and for the composite map

(5. 7) gr* : H* (Otm(\/Ll) ; Z,) -*H* ( Wn+,.,; Zp)
i=0

are isomorphisms for dim <^2(n + 1.)p — 2.

Then it follows from (5. 1) that
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(5.8) if (A + l)(2w + 2z + l + A(/>-l))<2(» + z + l)^-2 there exist a

complex Ei of type (2w + 2z + l, 2n + 2i + I + q, - • - , 2n + 2i + \ + hq) and

a modp injection

Proof of Theorem 5. 4, Let n~m, s = 1-f- (£ — 1) (p — 1) and con-

sider the following diagram:

/.
\/ J
V -^t

1=0

where j"0 is the composite map of fQ:B0-^>S2NbLQ and the inclusion J22V°L0

~>^2Ar6(V^). By the assumption, dim J50<2(w + \)p-2. By Corollary

1. 4 of [13], J30 is ^-universal. Applying Theorem 2. 1 of [15], we have

that there exist a ^-equivalence h and a mod p injection f such that the

above diagram homotopy commutes. Thus B0 = Bm
k(p).

Given a Bm
k (p) with a mod^> injection f:Bm

k(p)-*Wm+SiS, consider

the composition

It is easy to see that g*: //*(fiz^L0; Zp) -+H*(Bn
k(p) ; Zp) are isomor-

phisms for dim<2(m + !)/>-- 2. Apply the above clicussion to g, in place

of g, then we get a mod^> injection f: B0-*Bm
k(p) which is a ^-equivalence.

Q.E.D.

Proof of Theorem 5.5. First consider the case (a). Let n~m

+ 1, 5= (£ — 1) (/> — !) and apply Theorem 2.1 of [15] to the diagram

The condition (a) is equivalent to dim Bp-2<^2(m-l-2)p — 2. So, we get

a mod^> injection /':5P_2— >Wm+1+StS. By composing the projection Wm+1+s,s

-^^771+1+5.5-^+2, we see that Bp-.2
 = Bm+'p-i(j>) • Consider the sphere bundle
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S2m+1->Wm+1+s ,1+,— >W7n+1+, ,s and let B be the total space of the sphere

bundle induced by/. Then B is an S^ '-bundle over Blr^-i(P) with

the induced map f:B— >Wm+1+Sil^-s. Obviously f is a mod^ injection and

B = Bm
k(p~).

For the case (/9), let 5' =5/2, m' = (ra + l)/2 and use the composition

(V LO -^>£2*4 (* v
i = 0 .7=1

in place of g. We see that g'* are isomorphisms of JfJ*( ; Zp) for dim

-i- 3)^-2. Then the case (/9) is proved similarly. Q.E.D.

A slight generalization of Theorems 5. 4, 5. 5 may be obtained in

unstable ranges, as will be seen in the proof of Proposition 5. 6.

For small values of k we have

Proposition 5.6. (i) Bm
k (p) exists if k = l, k = 2, k = 3.

(ii) Bm
4(p) exists if p^>3 or if p = 3 and m is odd.

Proof. By Proposition 3. 4, Bm
k (p) exists for m<^p. So, we may

assume that m>p.

For k = 3, the condition (a) of Theorem 5. 5 is equivalent to

- --- which is satisfied for m>p>3. Thus Bm*(p) exists. The exi-- ---
p — 2

stence of Bm
l(p) and Bin

z(p) is easily proved.

For & — 4, the conditions (a} and (/?) of Theorem 5. 5 are equivalent
,i . O O fa O

to m^> — — - and m^>- 0 respectively. Thus Bm
4(p) exists for

/> — 3 ^> — o
and for /> = 5 and ??z^5, 6, 8. For odd m, Example 5. 3. 3 shows the

existence of JB7n
4(3).

Consider the construction of jB8
4(5) along the proof of Theorem 5.5.

Then the only difficulty is to extend a map /of JBJ2(5) into WZi,iz~SU

(21)/5C7(9) over the top cell of B?2(5), and the obstruction lies in the

kernel of 522V&:7T98(5
19) ->7i:g8+2m(Sig+2Nl)) . By [24], this Sm is a mod 5 in-

jectioii. Thus J38
4(5) can be constructed. 55

4(5) is similarly constructed

by using X,.. = Sp(9)/Sp(3).

Finally, the obstruction to construct B6
4(5) lies in the kernel of
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flf* : 7r86 (5C7(9)/5C7(7)) ->7T86 (Q
zm (S15+2NbyS17+2Nb)-) . Here SU(9)/SU(7) is

^-equivalent to S15xS17 and g* is equivalent to SZNbXSZNb on Tr^S15) X7T86

(517) which is mod5 injective by [24]. Thus 56
4(5) can be constructed.

Q.E.D.

§ 6. A Spectral Sequence for Meta-stable Homotopy

In this section all homotopy groups Tti(X) are localized at p and

considered on 1-connected spaces of finite type. We use the notations

for Gf = lim nf+n(S
n),

n

where

— m, n(=Z\ (
m

Let n be an odd integer ^>3. We shall give a functor which associ-

ates a spectral sequence {Er
Stt} for each ^-connected map /: B— >X, satisfy-

ing the following properties.

(6. 1) (i) £J.« = 0 for s<n, &n.t=nn+t(B:p') and Eltt=nn+i(Bs:p) for

, where Bs = \/Sn is a bouquet of n- spheres.

(ii) With respect to the differential dr: -E5,t— >£J_ r f8+r_i

drdr=0 and

(iii) Ergtt = ETtt for r> Max (5-^,^ + 1). E^t = Dg,t/Dg.lit+1 and

for a filtration

(iv) dl(E\it} dp.El_1>t for s~

(v) For each Y^7Tn+u(S
n), there associates a map (composition)

•f:Er
Sit—>El>t+u of the spectral sequences such that @-Y = 0°(Stff) for /?

e 7Tn+ 1 (Bs : p) = E]t t and similar for /? e £>., t C TTS+ ( (X : p) .

(vi) A spectral sequence converging to 7ls+t(X, B: p) is obtained

by taking Er
nit = Dntt = Q.

Let N={nl9n29 •••} be a strictly increasing sequence of positive inte-
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gers ?^>3, and let

n = ?il — 1 if H! is even and n = n1 — 2 if ^ is odd.

Theorem 6. 1, For the map f:B—*X assume that

H*(XiZp)=B^A(xni:nt is odd) ®Zp[xnt: n, is even]

for dim<M+l</>(w + l), /*(^.) =0 and /*|J5* fs <2?z isomorphism

of B* onto H*(B;Zp). Then the above spectral sequence {Er
Stt} satis-

fies the following properties.

(i) Let s<M, then Bs = Sn (s(=N) and £, = * (s&N).

(ii) Let 0^Er
s>t for l<r<#, s<M and s,s-r^N. If r = I,

dl($)—aft for an integer a=0 (mod^?) satisfying (d/a)xs-l=xs

(mod decomp.) for a^=0. dr ($) =0 if l<r<q. Ifr = q, d*(ff) =ba1-@

for some b^Zp satisfying S>1xs-q = bxs (mod decomp.) , -where a^Tin+q-!

(Sn:p) is detected by Q\

In the following (Hi) and (iv), ze;£ assume that s, s — r&N, s<^My

aoSr-1/9 = /9oSK
r = 0 /or ae^n+r_1(S*:^)=^_rir-1, ^e7rn+,(5n: />) =JEJ i l,

r<=Ttn+u(S
n), dr(c)=afor the identity class c<=nn(S

n: p) =EliQ and f

indicates a suitably chosen element of

Moreover we assume El
s_i>t+i = Q for l<z<r.

(Hi) If [/?]<E7rs+t(X:/>) is represented by 0GE?it9 then

(X: p) is represented by ?^ET-r,t+r+u-

(iv) // dr'(d}=@ for some d £^Er
s'+r,it,r,+l, then dr+r' (8 • r)

= £(= J?r+r'
* ^ •L~/s—r,t-rr+U'

(v) If B = S2m+\ by shifting Er
n>t to EJm+M, the above (ii), (Hi),

(iv) are satisfied for s — r — '2,mjr\.

Corollary 6.2. Ifxk(X,B:p)=£Qfor some k<M-l, then k = s-\-t

for some s^N and t uoith (Gt:

The construction of the spectral sequence and the proofs of (6. 1)

and Theorem 6. 1 will be given at the end of this section.

We shall show some applications. Recall the following results on

the stable homotopy groups of spheres from [23].
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(6.2) For 2<(2£ + l)# — 2, the groups (Gt:p) have the following gen-

erators:

(G0: P) = Z(p}(c), c is the class of the identity,

(G>g-i:/0 = Z/ar> for 0<r<2p and r^p,

(Gspg_i : p) = Zp2(a'spy for 5-1,2, pa'ip = asp ,

(Gspq^2s:p) = Zp<&-> for 5 = 1, 2,

(G(.p+i,fl-2f-1:#)=Zp<a1/91
f>/or 5 = 1, 2.

(6.3) a1ar=a1asp = 0 a^J {a1? ar, ^} contains ar/r ( = a'sp/s for

A typical case of X is the following one.

(6. 4) H*(X; ZJ =A(x2m+1, £P^2m+1, -, Q«^x^,

Proposition 6. 3. For a 2-connected X -with the property (6. 4) ,

nt(X:p) =0 for *<Min(2(wz + l)£-3, 2m + (2p + 1) q - 1) except for the

following:

/or k<J<p and p + k<j

/or

exception

?r2m+M (X: />) = Zpp< [a, (2m + 1 + (/> - 2) </) ] > for k=p ,

and, in addition for k<^p,

for s = l, 2,

Here Y(s)^Er
Sjt indicates the element 'whose stable class is 7%

and [7(5)] <=7ts+t(X:p') is represented by the permanent cycle y(s)
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Proof. For f<2(m + l)£-3, UL(Szm^1: p) is stable. We use the

spectral sequence {E^^} converging to 7tt(X: p) with E\t t = (Gt : p) for

5 = 2772+l + z# (0<;z<<&). The first non-trivial differential is dq and it is

computed by (ii) of Theorem 6. 1 and by (6. 3) , (6. 4) , and Eft1 has the

following generators :

pc (2m + 1 + iq) for 0<i<k ,

for 0<z'<& , 2<r , z=£0(mod/>) and

for 0<z<&, 5 = 1, 2 and sp + i<2p ,

^ (2;?z + 1 + (& - 1) 3) , ft (2w + 1) , aSi (2m + 1 + (k - 1) q)

and A2(2

Next ^we have

(6.5) <?*(lf-lt(2m + \ + iq))=af(2m + \+(i-f)q) for !</<z up to

non-zero coefficients.

This is true for f= 1 by (ii) of Theorem 6. 1 and proved inductively

by use of (iv) of Theorem 6. 1 and (6. 3) . For dimensional reasons

and by the following lemma, the other non-trivial differentials are d(p~^q

(a1/31
s~1(2m + l+(p-l')q))=l31

s(2m + l), s = l, 2, of the case k=p. By

use of (ii) of Theorem 6. 1 and (6. 3), we see that the groups TiZm^j(l(X\ p)

are cyclic. Consequently we obtain the required results. Q.E.D.

In the above proof, the only differentials in question are

diq(ap-i(2m + l + iq))=a'fi1(2m + l') for some

The element &(2m + l) is stable only if m>p.

Lemma 6. 4« Let m>p and 1 <&'<&. Then

diq (ap-t (2m + 1 + iq) ) = 0 for i<p - 1

and d(*-l^(a£rl(2m + l+(p-l)q)} =ft'(2w + l) for k=p

up to non-zero coefficients.
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Proof. We shall consider a complex

for k<p<m. Denote by Lm
3 the 2w + l+C/ — 1)# skeleton of Lm

k, by

ij : Lj-^L^+l the inclusion and by

the attaching class of the top cell J^1***-"*. pirst we prove

(6. 6)k. For 2<k<ip, there exists a complex Lm
k such that Yk—Yk,k-i,

-^J^k — T) and Tktl=ak-i(2m-\-T) up to non-zero coef-

ficients, for a series of elements

This is obvious for k = 2, Lm
z = S2m"rl U e2m+1+q the mapping cone of

al(2m-}-T). Assume that (6. 6)fc_! holds for &>2 and consider Lj^V-i-

We define Lm
k as the mapping cone of a map/: SLlr+q-i— >5'2m"rl such that

f\SLl
m+q_-L^f\Szm+Z(l represents al(2m^-V). The existence of such a map

/ follows from 7T2m+/g_1(5
2m+1:^) - (G,,-,:/*) -0 for l<j<p. The attach-

ing class fk is given by a coextension of the attaching class Sj"k-i f°r

SLOT+g-i. If Tkj+i is given by a coextension of Sj"k-u, P'Tkj+i is a coex-

tension of pSYk-i,j = Sij-i^Sj'k-i,j-i' Then p-Tkj+i ~ij*Tk,j for a coextension

Ykj of S^K-u-i. Since 7"ft,2 is a coextension of Sfk-iti =Tk-z in the mapping

cone Lm
2 of ^(2^ + 1), ^•rA ; ,2

 = ^i*{^i(2w + 1)> «*-2, M =z"i*(afc_1(2m
+ 1)) by (6.3). Thus (6. 6)ft is proved by induction on k.

Next we show

(6.7) Let jk:S
2m+1-*Lm

k be the inclusion. Then jp*(A(2w + l)) =0

and jk* (ap
f (2m-\-l)) is divisible by pk~l if k<j>.

Consider the map f:SL*l~+
1

q_1-*Szm+1 and try to extend /over

The obstruction to the extension is

Assume that /*(5rp) =0, then / can be extended over /: SL^l+^t^-S2m+1.

Then in the mapping cone of f we have ^P'^P'^'^O which contradicts

to the Adem relation S)15)p~1 = 0. Thus /* (5rP) =7^=0, and in the mapping

cone Lm» of/, j,, (A (2» + 1) ) =0.

It follows from (6.6), that f^Sr^-i) =Pp-'ci1*(i31(2m + l)) =0 for
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Thus there exists a coextension Cfc^7r2m+Pq(l^m
fc) of Sfp^-i- Then

Pk~z£k=i*'fl for a coextension fj of TP,I—°^P-I an^ for the inclusion i : Lm
2

-*Lm
k. By (6.3),#-7 = flt{a1(2OT + l),ap-1,M=fi*(ap /(2m-l-l)). Thus

Plc~l£k = i* (P'rf) —A*(^p /(2w + l)), which completes the proof of (6. 7).

Now we go back to the proof of the lemma. A mod^ injection S2m+1

= Lm
L->X can be extended over a map g:Lm

k—^X since nZm+iq(X: p) = 0,

!</"<£, as is seen in the proof of Proposition 6.3. Since ap'(2ra + l)

is divisible by pk~1
9 so is it in X, and n2m+pq^X: p) contains a cyclic group

of order pk + 1. By counting the orders of generators in Elt2m+Pq9 we have

that ap_i(2ra-|-l-f z<?), /</> — !, are permanent cycles for k<^p.

In the case k =p, & (2?n +1) vanishes in Lm
p, so does it in X and E°°,

and diq(ap-i(2m + l + iq^ =ft(2m + l) for some f. If z<# —1, (^i(2m

+ !+(/> — !)(?) is a permanent cycle. Then by use of (iii) of Theorem

6.1 and (6.3), we see that 0^(2^ + 1+ (p— j}q) are permanent cycles

successively for j = l, 2, mmt
9p — 1. This contradicts to the above result

for j=p-i. Thus ^-1)5(^i(2m + l+(^-l)g))=/?i(2m + l). By (iv)

of Theorem 6. 1, J(p-1)5(^1A(2w + l+ (£-1)0)) =&2(2m + l). Q.E.D.

Remark 6. 5, For the case H*(X', Zp) = Zp[>2m+2, ^o:tm+l9 -, ^P*"1

•^2771+2] for dim<2/>(m-f 1), a result parallel to Proposition 6.3 holds by

considering SLm
k or J2-X". In general H* (X; Zp) may be the tensor prod-

uct of some subalgebras of the above type and the type of (6. 4) , and

the discussions of differentials in the proof of Proposition 6. 3 are valid.

In particular, Lemma 6. 4 may be applicable provided there exists a mod

p injection g : Lm
k^X.

If the connectedness is lower, such as Bk (p) , Proposition 6. 3 is not

so useful. In such a case it is convenient to consider the fiber Fk of

the mod^? injection B* (p) — ̂ B^ (p) because

(6.8) 7TeCBr(/>):/0 =Z(P) for t^3 (mod q) and -0 for t=£3 (modg).

Then we have

(6.9) H*(Ffc;Zp) =Zp[>2+fcq, x2+(fc+1)q, x2+(k+2)q, •••] for

-2 and Qlx^= C/-l)x
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Computing nt(Fk:p) and applying the exact sequence

• • • -»nM (Br (P) ) -*nt (Fk) -*nt (B* (/>)

and also using the fact that nt(B* (p)) is finite for £>3-f (& — l)g, we

have the following

Proposition 6.6. Let 2<k<p + I. For t<Mm((kp + l)q — 1, (2/>

£/i£ group nt (B* (p) : p) vanishes except the following
values of t:

for 0<f<* ,

for i>k ,

For the group structure of non-trivial nt (B* (p) : p), see [7].

We shall construct the spectral sequence {Er
Sit} for a given ^-con-

nected map f-.B—^X. For the sake of simplicity, every space will be

localized at p\ n*( '.p)—n*( ). We define a sequence of fiberings

by giving maps f=fs inductively. For s = n, fn—f:Bn — B—>X=Fn-i, then

Fn is (n — 1) -connected. For s^>n, given an (n — 1) -connected Fs-i, there

exists a bouquet Bs — \/Sn of ;2-spheres with a map fs:Bs—*Fs-i such that

f*:Hn(Fs-1;Zp)~Hn(Bs;Zp), then the fibre Fs is (^-1)-connected.

Note that Bs and fs are unique up to ^-equivalence.

Put

for s>n ,

for 0 for

The following exact sequences are those of homotopy groups for

the fiberings (6. 10)s, s>n, and trivial ones (dl=id) for
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So, we have an exact couple (r —1) and derived couples (/* = 2,3. • • • )

Mr, E r ;9 r , / r , / r) , A r^I]AU Er=^tE
r
Stl with exact sequences

where A^ = 9r(AUM 0 - OO'AU.i+r, Qr+l = d,\A^\ El?=H(ElJ with

respect to the differential

fr , i is induced by fr and /ru by irdr~
l-

Proof of (6, 1) . The properties (i) and (ii) are obvious.

Put A,,=Ker((91)" I l+I: ns+f (X) = Al_M+i-,->^M-i)3 then

^A^-l^AJ.,.! for r>5-^ + l.

Since F8 (s>?i) is (n — 1) -connected, Ar
Stt = 0 if 5>« and £<0. So, we

get a short exact sequence

Q^E^AA^AA^^-^Q for r>Max(* + l,s-7z).

From these results (iii) follows easily by putting E™t — ET
Sit for r>Max

(^ + 1, 5-7Z).

For g = ioj:B,-+Fi-1-»B,-1, g* = 0: Hf t(5s_ i ; Zp) ->Hn(Bs; Zp) . So,

there exists a map g': J5s-^jBs_! such that g is homotopic to g'°(p-id).

Then (iv) follows.

The compositions /?-7* = /J° (S*7*)» @^nn+t( ), define a map -7: (Aj i{,

^s,0 — >(AJ i t+ t t , jEs f f+l i) of the exact couple. Then (v) follows.

From the fibering (6. 10) „ Ks+t (X, 5) ̂ n^^ (Fn) . Use /: B^-^Fn

in place of jf: B—*X, then we get a spectral sequence {'^M} converging to

7T*CFJ with /
JEJ f e = JEJit for s=£n and 7jEi t t = 0. Then (iv) follows.

Q.E.D.

For homogeneous elements xa, A(xa) denotes the free commutative

algebra generated by {.ra}, i.e.,

A(j:a) =A(xa',degJCa is odd)(g)Zp[^Q;;degxQ: is even].

Lemma 6. 7. Let F^B-^X be a fibering, xa e Ker (/* : Hn"(X; Zp)

5* ^ a submodule of H^(X;ZP) such that
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f*\B*: £*->//* (B; Zp) is bijective. Assume that the natural map, de-

fined by cup product,

is bijective for dinK^Af and injective for dim = M9 then, for the coho-

mology suspensions ff(x^^Hna~l(F',Z^, the natural map

is bijective for dim<Min(M— 1, /?(ra — 1)) and injective for dim

= Min(M— l,p(m~ 1)), -where m = Min (deg xa — na : odd) .

This is proved by use of the comparison theorem (cf. Cor. 3. 3 of

[24]).

Proof of Theorem 6. 1. Applying Lemma 6. 7 successively we

have

(6. 11) the natural map A(Gs~n+lxn.-, n^N, s<X<M) -^H*(FS; Zp) is

bijective for dim< M — s -j- n — 1 and injective for dim = M—s -\-n-l.

Then (i) follows immediately.

Let s,s-I(=N. Then dl(t) =at for the degree a of Q = i°f: Sn = Bs

-*Fs-l-^Bs-l=Sn. a^O (mod£) by (iv) of (6.1). Then (S/a) (ft*-"'1

X.-J =ffs~n~1a:s in H*(F5_2; Zp) - {(f'^lx9.l9 as~n'lxs, -} if a^, whence

(d/a)x,..l=x9 (moddecomp.). By (v) of (6.1), dl(^) =d>(t-$) =aC-{3

— a^, and the first half of (ii) is proved.

Let s^N, g: Sn+t-*Fs be a map, put g = i°g: Sn+t-*Bs and let L = Sn

U en't+1 be the mapping cone of g. The following (6. 12) is proved by

constructing maps.

(60 12) There exists an extension h: L-*F9-i of f:Bs-^Fs-i such that

holds for any coextension ^^nn+t+u+1(L) of

Apply this to the case * = 0, g=f: Sn-»Fs and L = Snl)en+1. In the

homotopy exact sequence of the fibering (6. 10)s_t-:
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the last term vanishes for l<z<r — 1 (<<?) by (6. 2). Thus there exists

an element f]^ [_Sr~2L, Fs_r+1] such that (9^)^=^}. <F (0) = ff* (0)

= 0 for @^Elit. So there exists a coextension $e7rn+J+1(L) of @^Eljt

= nn+t(S
n). From

/X/?) =0*0?) = 0i(W°£) = 9i((9*)r-V£) = Oir-'O^Sr-W

we have that /iO?°5r~2£) =2* 0?) °Sr~2/9 represents cT (0) , where z": Fs_r

->Bf-r = S*. If l<r<g, **(??) e [S7"2!,, 5n] -0 by (6. 2), and <f (/?) =0.

If r = q, f*0?) =;:*(*•«!) for the projection 7t:Sq~2L->Sn+q~1 and for some

Then <^9(/2) is represented by

Let ^-5reU C(Sq~2L) = (S^S^B^) U ̂ +g be the mapping cone of

a representative of 77. Then we can construct a map of K into Fs_ r_i

inducing isomorphisms of JjP and Hn+<l. Then the relation S)1xs-q = bxs

(mod decomp.) follows from (6. 11) , completing the proof of (ii) .

Next consider the property (iii) . From the assumption dr (0 = a,

/i(0 = (5i)r~1a and ii(a)=a for some a^Aj_r,r_i. Apply (6.12) to a

representative (7 of a, then L = Sn\J en+r is the mapping cone of a and

hiL-^Fs-r^ satisfies fc|S"=/ and ^(/^C) =ff*(O =a-0 for ^ = Sr~l0.

Then f1(0) = (diy-1a-0=(diy(h&. Since /9 represents [/3], /x(/9)

= (9i)r(9i)'~r"n[/S]- From the assumption -EJ+ < f t_i = 0, l<z<r, it follows

that (9i)r: AJ_ r_ l i r+ t->Ai_M is injective. So, (ft)'-'-*^] =A*C. Since

C is a coextension of S1"1^ C°^+rr=^(f) for a f of {a? 5
7-1/?, S^^V},

where j: Sn—>L is the inclusion. Then the equality

shows that f represents [/?] • 7*, and (iii) is proved.

Consider the property (iv) . The equality dr' ' ($) =/3 means that fi(S)

-=(diY'~l$ and /i(/5)=/5 for some 0^A\it. Apply (6.12) to the repre-

sentative g of j8, then L = S7 lU£?n + £ + 1 is the mapping cone of 0 and A: L

-*FS_! satisfies AlS^/and ^(^C) =Q^ = ̂  • r for C = S*r. Let j: S^-^L

be the inclusion and %GE [L, -F,_i] be the class of h, then j* (jii) —fi(t)

— (d1)
r~1a and i1(a)=a. In the exact and commutative diagram
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A

\J*

£S_J 4 [S'L, F.
J* J* J*

-Ei-*.t+t=[iS l r i+t+<, S,_£]=0 for l<z<V by the assumption. By diagram

chasing, we get a sequence of elements f ] t ^ [^Sl~1L, jBs_j], f = 2, 3, •••, r,

such that d*07j)=ft-i and j*(^) = (90r"*a. Since j% 0?r) = fj* (^r)

— ii(&) —ct, i*7]r^[Sr~1L, Sn~] is an extension of a. Since C is a

coextension of 5V, i* (f]rQSr~1^} =f e {a, 57""1/?, y^V}- This and the

equality

show that dr^r'\$-j) =$, proving (iv).

When B = S2m+l, we define the spectral sequence by putting

for

for

for

for

7Ts+,(52"l+1) for s = l

0 for

Then we get the required spectral sequence in (v). Q.E.D.

§ 7. Characterization of Some B£(p)

We shall try to characterize Bm
k(p) of some type by its cohomological

structure.

Proposition 78 I- Assume that m=£Q (modp), m=^=2pz~3p — I and

m<2p*-2p-\. Let B be a complex of p-type (2m + ly 2m + 2p-l) such
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that H*(B; Zp) = A(x2m+1, $
lx2m^). Then B is p-equivalent to Bm

z(p).

Proof. B = S2m+l(_)e2m{Zp-l\Je*m+Zp. From m=f=Q (mod^) we have

H*(Bm*(p) ; Zp) = A(x2m+1,3?1xZm+1). We consider an extension B->Bm
z

(p) of a mod^> injection Szm+1—»5TO
2(/>). The obstruction to the extension

lies in 7r2m+2p_2 (Bm
z (p) : p) and 7r4m+2p_1 (Bm* (p) : P]. These homotopy

groups are in the meta-stable range and they are computed in Proposition

6. 3 when 4m + 2£-l<2m + l + 2(2#> + l) (£-1) -2, i.e., m<2pz-2p-l.

By Proposition 6. 3, 7r2m+2p_2(£m
2(>) :/>) =0 and the case nim+2p-1(Bm

z(p) :p)

^0 may occur only if 4m-}-2p — 1 = 2m + 1 + 2/> (/> — !) —2 or =2m + I

-}-4p(p — 1) — 4, that is, m=pz or m = 2pz — 3p — I which are excluded by

the assumption. Thus we have an extension B—>Bm
z(p} which is a _£-

equivalence by the naturality of £P!. Q.E.D.

Proposition 7.2. Assume that p^>3, ra^O, 1 (mod/>),

and m=^=p — l, ±—^- - —1, pz — 4p + 2. Let B be a complex of p-type

(2m +1, 2m-t-2p-I, 2m + 4p-3) such that H*(B; ZJ =A(x2atn,

2?lx2m+l,9?zx2m+l). Then B is p-equivalent to Bm
z(p).

Proof. B consists of cells of dimensions z' + l for

— 5, 6m + 6p-4.

As in the previous proof it is sufficient to show that TCi(Bm*(p) : p) =0

for the above values of i.

Let m<^p. By Proposition 6. 6, we see that the possibility of 7^

(Bm
s(p):p)^=0is j = 4m+2p-I = 2m + 4p-3 or i~-=2m + i - h 2 k ( p - l ) -1

~6;;2 \-6p-4, that is, ?n=p~l. or 2m= (k — V) (p — V) —1. The first case

is excluded and the second one does not occur since p — 1 is even.

Let m>p. Then the homotopy groups are in the meta-stable range

and computed in Proposition 6. 3 for i<2m + l + 2(2p + l) (p — l) —2, that

is, m<^pz — 2p for i = 6m-f6p — 4. Then an obstruction may appear in the

following cases:
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-I)-l, 2m + 4/>-

The cases 2m -\- 1 -\-4p(p — Y) — 4= ••• do not occur since p~l is even.

The remaining cases are excluded by assumption. Q.E.D.

Proposition 7. 3. Assume that £>5, m&O, 1, 2 (mod/>),

p~5p~V -1, 3m=£(p-6)(p-I)-2, 2(/>-3)(/>-l) -3,

^—2 (mod^ — 1) arcJ m^—I, —2 (mod /> — !). L<?£ B be a complex

of p~type (2m + l,2m + 2p-I,2m + 4p-3,2m + 6p-5) such that H*(B\

Zp) = A(x2m+1, 3?1x2m+1, 3?2X2m+i9 3?3xzm+i). Then B is p-equivalent to

Proof. As before, it suffices to show n2m-ri^(Bm
4(p^) \p) =0 for j

= 2m + 2£(p-l) (^ = 1,2,3,4,5), j = 4w + 2*(#-l) +1 (* = 3,4,5,6)

and for j = 6m + l2(p-l) +2. These j are not of the form 2h(p-l) -1.

So, we need to exclude the cases j = 2p (p — 1) —2, j = 6(p — 1) +2(£ + l) •

(/> — 1) — 3 and j = 4/>(p — 1) —4. And, we see that the assumptions on

m are sufficient to construct a ^-equivalence B-+Bm
4(p). Q.E.D.

Proposition 7« 48 JL££ B be a complex of p-type (3,

3+(& — l)g), A = 3, 4, 5, and let 0 be a secondary operation which

detects az.

(i) If k = 3 and H*(B; Zp) =A(xs, £P^3, 0xJ, then B is p-equiv-

alent to B*(p).

(ii) If 4 = 4, P>3 and H*(B; Zp) =>l(a:,, ff1^,, 0*,, ^P1^,), ^^

^ /5 p-equivalent to B^(p).

(iii) JET * = 5, £>7 and JJ*(5; Zp) =^(a:,, ff1*,, fc,, ff'fc., ff'fc,),

^A^^ .B z'5 p-equivalent to B*(p).

The proof is given by use of Proposition 6. 6 and omitted.

In the sequel of this section we consider the complexes 5^(7), J59
3(5)

and B* (5) which have been not characterized by the previous propositions
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and will be used in the next chapter. Note that these three complexes

are unique up to ^-equivalence by Theorem 5. 4 and Proposition 3. 4.

First we see that the only obstruction to construct a ^-equivalence

B = B(23, 35, 47,59)-»J3Ji(7) lies in 7r10B(^i(7) :7) which is generated by

[/?!(23)]. This obstruction can be removed by use of the following

Lemma 7. 5.

Let 5U7) (fc) denote the ^-skeleton of 5^(7). Let f €E 7r105 (B}i (7) (105))

be the class of the attaching map of the top cell eim of B^ (7) (106) = B^

(7) (105) U em which represents x^xm. & (23) is a generator of the 7-com-

ponent of 7lW5 (5
23) , and we denote by the same symbol &(23) its image

[ft (23)] in 7r105(^i(7)(105)) by the injection.

Lemma 7, 5, For each <z<EZ7, there exists a map h:B*n(7} (105)->B}1

(7)(105) *«£A that h\S2S is a mod 7 injection and A+C?) =»•?-*•& (23) ,

Proof. For the sake of simplicity, we put jB = BJi(7) and Bk =

(7) (fc). S70 = 559 U e70 for a cell ^70 representing x^x^. Let 0:S70->S70

be the map pinching an equator of e™ and let A:570— >B59 be a represent-

ative of [<2i(59)] e7T70(J5:7). Consider the composition

Since & (23) is the only obstruction, JiQ can be extended to hi'.B10

10\ and

for some Z?eZ7 and m^O (mod 7).

Now we assume b = 0 and deduce a contradiction. From & = 0, we

have an extension h2:B
106-*BW6 of Aj. As in § 5, we have a mod 7 injection

(M: large)

j : Bm-*£2ML , L = S2V+23 U e2/Vh35 U ̂ 2jVf47 U ̂  59 .

It follows that iP8^0 in L. By the loop-multiplication we have a map

k=j-l*(j°h2}:B™-^QzML.

Since h2\B
5g = id, k\B59 is homotopic to zero and k is factored as Bm

. Consider the adjoint map K: S2M(Bm/B59) ->L and
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let C = L(JCS*M(BWG/B5g) be its mapping cone. Then $l(ezM+™} = CS2M

(x27x«). By Cartan's formula Q*(xKx^ = 2x47x5g in 5106/559. Thus we

have &*&*&* (e>*-ft*)=2CS**(x4Txe9)=£0 which contradicts to Adem's

relation <P*&19?* = <P*$4 = 0. Consequently we have proved that b=£Q.

Let // be the t-fold iteration of hL. Then h* (?) = ml -f + 6(1 + m(t

-1))/91(23). Since w, £^0 (mod?), -* = i(l + wz (*-!)) (mod 7) for

suitable ^, and the map /z satisfies the condition of the lemma. Q.E.D.

If the obstruction to construct a ^-equivalence 5 = 5(23,35,47,59)

— »5^(7) is a-/9i(23), the obstruction vanishes by changing the constructed

map 5(103)-»5n(7)(105) by the composition with the map h of the lemma.

So, we have

Proposition 7. 6. If 3?sx2Z=x59 in a complex B of 1-type (23, 35,

47,59), B is 1 -equivalent to 5^(7).

Apply Proposition 6. 3 to j39
3(5), then we have

(7.1) 7^CB9
8(5):5) for i<97 has the generators *(19), [5-^(27)],

[25-*(35)], [^(35)], [aa(35)]f ft (19), [a, (35)], [a4(35)], [a/ (35)],
[>i/9i(35)], [a6(35)], [a7(35)] a^J /?i2(19) o/ dimensions z = 19, 27,
35, 42, 50, 57, 58, 66, 74, 80, 82, 90 and 95 respectively.

Consider 5 = 5(19,27,35) with f?2^0. Since the dimensions of the

cells of 5 are 0, 19, 27, 35, 46, 54, 62, 81, the only obstruction to

construct a 5-equi valence 5-^59
3(5) lies in HS1(5; 7T80(59

3(5) : 5)). Thus

we obtain a 5-equivalence of the 62-skeletons: 5(82)->59
3(5) (62). Let s

5

e7T8o(59
8(5)(82)) be the attaching class of the 81-cell of 59

3(5) =59
3(5)(62)

U e81. By the exact sequence

0->7T81 (59
3 (5) , 59

3 (5) (62) : 5) -^7r80 (59
3 (5) (82) : 5) 4^80 (59

8 (5) : 5) ->0 ,

there exists an element f e 7r80 (59
8 (5) : 5) with i*f = [<^i/?i(35)] and 5-f

— m-^ for some raeZ. If m^O (mod 5), 59
3(5) is 5-equivalent to the

mapping cone C of w-f , and j:19j:27j:S5=^=0 in C. But, since w-£ = 5-7''.

5 = 0 in C contradicting the above. Thus m—§mr, m1 ̂ Z, and
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by putting f = f' — m'-^ we have

(7.2) 7r80(JB9
3(5)(62):5)=Z(5)<O + 25<r> with i,£ = 0 and z*r=l>i&

(35)1.

Then we have easily:

(7.3) Let B%*(5\a)=-Bf(S)™Ue* be the mapping cone of$ + a-r.

Then any complex of 5- type (19, 27, 35) with £P27^0 is ^equivalent to

Bg
B (5 ; a) for some a e Z5.

Proposition 7*7. LP£ E be a complex of 5-type (19, 27, 35) ze>?Y7?

7/*(JB;Zs)=yi(j:19,2)1j:J9,£Ppj:J9). T/2^;? ?/zr following three conditions

are equivalent.

(i) 5 z's ̂ -equivalent to S9
3(5).

(ii) TAere ^^"5^5 a ma/> //:(5*U e19) XB-+B such that jU*(xig) =xw

(X)l + l(X)x19 ^^ ifo non-zero coefficients in Z5.

(iii) There exists a mod 5 surjection p : B— >535.

Proof. (i)=»(ii). It is sufficient to prove (ii) for J5 = 59
3 (5) . Let

be the map considered in § 5 (M: large) such that Q = Q' °f: Bg* (5) -»W18,9

-^>&2MLQ induces isomorphisms of cohomology mod 5 for dim<;98. More-

over g*:nt(B9
s(5}:5)~nt(fi

zML0:5) for £<104, ^97, as is seen in the

proof of Proposition 5. 6. Then the composite map

restricted on 5i5(5) C19) X ̂ 9
3(5) is factored through Q, in the mod 5 sense,

and we obtain a mod 5 surjection /<': ft5 (5) (19) X59
8(5) -»£9

8(5). Let ^3

U p433"1 be the mapping cone of o:2, then we have that

(7.4) there exists a mod p injection i\ S3U e4p'1~^B1
k(p) f

For, the inclusion 5s— »#!*(£) is extendable over e^~l since

(/>):/0=0. Then z* (fcs) = (Pz* (j;,) ^=0, and (7.4) follows.

The composite map /*=/*'o (z Xz<f) satisfies (ii) for B = B^
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(ii) => (iii) . By (7. 3) we may assume 5C62) = £9
3(5) (62). Put P= (Sz

Ue19)X£ (62 ) , ^=fJL\P9 y2 = jU\P™:P™^B(62) and let 9?<E7r80(P(73)) be the

attaching class of the top cell e81 = P — P(n\ From the assumption, /^*

C^i 9-^27-^35) —^190^27-^35. Thus jU1:P-^Bg
s(5^) has a non-zero degree on the

top cell, and it defines a 5-equivalence of the mapping cone B(62) U e81

of ^2* 0?) onto 5. So, we may assume that B is the mapping cone of

#2* 0?) • Consider the composite map

where 7T is induced by the projection 7T: LQ->S2M+S5 = L

We shall prove

Then TTog is extended over B, and the extended map gives the required

mod 5 surjection p since the inclusion g35-^2^2^35 induces isomorphisms

of cohomology mod 5 for dim < 178.

As is well-known the suspension S(AxB) is homotopy equivalent

to the one point union of SA, SB and S(A/\B). Put

K2 = (S3 U e1*) A 5(46) , K! = (S3 U e19) A ^(54) ,

^ and ^- (5s U ̂ 19) A#(62) =KQ U ̂ 81 ,

then there is a map SZMK—^S2MP having degree 1 on the top cell. Thus,

to prove (*) it is sufficient to show that the composite map

is mod5 trivial for any map G. K^K.Ue65, K, = K2 U e57 U e™ and K2

consists of cells of dimensions 0, 22, 30, 38, 46, 49, 54, 65. 7r2,¥+£(L0: 5)

~7T,(J223/L0:5)=7ri(59
3(5):5) for £<97. So, by (7.1), G\K2 is mod 5

trivial, and G is factored to

where SzM (KQ/ K2} = (S**+N U e2M+n) U e**+m. Since 7T57 (59
3 (5) : 5) - <ft

(19) >, GQ\S2M+57 is homotopic to a map GO': 6'23/+57->5r2"f+19. Now we can

extend the map G0
r to G': S2M(KQ/K2) -^LQ

2M+27 since 7r2^72(5
2¥+19: 5) =0

and A-7T2jV+84('Sr2'¥+57: 5) ^^/Sioa!) is trivial in L0
2j¥T27, the mapping cone of

CKi. The difference of G and G' is trivial since 7r2jy-+73(JLo:5) = T^M+es^o

:5) =0. Thus G is homotopic to Gr and 7T°G is homotopic to the constant
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map 7T°G', and (*) has been proved.

(iii) =£ (i) . By Theorem 5. 5 we have the following composition of

fibre bundles

which is a mod 5 surjection. By (7. 3) , we may put B — B^ (5 ; a) , then

5(fc)=59
3(5)(fc) for &<81. Compare mod 5 surjections p and p, on B(62\

We may assume that p|JB(35) is homotopic to p^B®®, by composing 5-

equivalences S35^S35. By (7. 1), H*(B; 7Tw(Sg'(5) :5)) = 0 for 35<»<81,

and the homotopy can by extended to one between p\B(QZ} and p^B*62*.

So, we may put p' =p|BW2) =p1|J5(62). The existence of a mod 5 surjection

onto *S35 implies

P*'(£)=O and tf-p*'(r)=P*'(?+*-r)-o.

It is easy to see that p,/ (f) = <*,& (35) generates 7r80 (5
35 : 5) = ZB. Thus

tf = 0 and 5 - 59
3 (5 ; 0) - B9' (5) . Q.E.D.

In the proof we see that

(7.5) JB9
3(5;<z) is 5-equivalent to jB9

3(5) if and only if a = Q.

Next from Proposition 6.6, nt (B^ (5) : 5) = 0 except for £ = 3, 11,

19, 27, 35, 43, 50, 57, 58, 65, 66, 73, 74, 80, 81, 89, 90, 95, 96, • • • .

5 = 5(3,11,19,27,35) consists of cells of dimensions 0, 3, 11, 14,

19, 22, 27, 30, 30, 33, 35, 38, 41, 46, 46, 49, 49, 54, 57, 57, 60, 62, 65,

65, 68, 73, 76, 81, 84, 92, 95. Thus H"(B; n^^B^S) : 5)) =0 if »=

and we have the following:

(7. 6) Let B be a complex of 5-type (3, 11, 19, 27, 35) with &l

and £P2fcs^O. Then B(m is ^-equivalent to B^S)™' Further if B(m

is ^-equivalent to B,5(5)(81), then B is ^-equivalent to Bj5(5).

Proposition 7. 8. Let B be a complex of 5- type (3, 11, 19, 27, 35)

with H^(B-Z5)=A(xz^
1^0x&^10x3j^

20xs), Then B is ^-equiv-

alent to 5^(5) if and only if there exists a mod 5 surjection n:B

->-B9
3(5).
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Proof. As is seen in the first part of the proof of Proposition 7. 7,

the composite map

is factored to J51
5(5)-^59

3(5)4j22ML0 since dim A5 (5) =95<98. Thus we

have a mod 5 surjection

and the only if part of the proposition follows.

Let F be the fibre of 7Tl5 then we have easily that H*(F; Z5) = A(x^

Qlx^. By Proposition 6.6, 7T£(F:5)=0 for £ = 80, 81. It follows that

TTi*: 7T8o(^i5(5): 5) ->7r80 (5g3 (5) : 5) is an isomorphism. Since 7Ti*(.r19.r 27-^35)

=^=0, the follow iig (7. 7) is obtained as in (7. 2). Let f be the attaching

class of the cell *81 = B1
B(5) (81) -B^S) (76).

(7.7) 7r80(A5(5)(76):5)-Z(5)<O + Z5<r> wf*A 7T1 1 | t(f)=0

Now assume the existence of a mod 5 surjection n:B—^B^(5). By

(7.6) we may assume that B(™=B1'(5)™ and by (7.7) that B(81)=B™

U e81 is (5-equivalent to) the mapping cone of £ + 0,-? for some

Obviously #*(£ + #-7") =0. We shall prove

mod 5 surjection p: Bg
z (5)

From (*) and (7.7), we have easily a-a1/?1(35) =0, so a^O and

thus S(81) is 5-equivalent to B2
5(5)(81)' Then, by (7.6), B is 5-equivalent

to Bi*(5), completing the proof of the proposition.

To prove (*), we may replace S35 by £2MS2M+*5 and (*) by a condition

in adjoint maps. Then it is suificient to prove the following:

(7.8) Put y = S2M(g + a-r). For any mod^ surjections 7?,

->LQ = S2M(S19 U ez7 U e™} and for the projection p: L0->527lf+35

implies p*7ri*(^) =0.

Here is an important remark.
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(7. 9) 7} is in the image of the injection homomorphism Tim+m(j$m'B(A®}

For, if (7.9) is not true, then x19x27xS5^S>1H7s(B; Z5) since the

non-trivial elements of n2M+80(S
zM(B™ /B(65^ are detected by 5)1. But

£>1Hn(B-Z5)=<g?1(xnx27x35)y = 0. So, we have (7.9).

In (7. 8) we ma}^ replace n and 7f1 by the compositions with 5-

equi valences of LQ. For example, we may assume that K\S2NB(19y is homo-

topic to Ki\SZMB(l*\ The primary obstruction to extend this homotopy

is in H2jl/+27(S2^;7T2^ Let the

obstruction be represented by g: S2M^27->L0, and construct a 5-equivalence

h:LQ— >LQ such that h\S**r+19 = id and the difference id—h is represented by

an extension of g. Then h°n\S2MB(27) is homotopic to n1\S
2MB(S5\ Simi-

larly, by a suitable change of 7?, we have a homotopy between n \S2MB(S5)

and n,\S2MB(S5\ Since H"(B\ Xn(B9
5(5) : 5)) -0 for 35<^<57, the homo-

topy is extended over S2MB<54\ Then the difference lt — Ttl is represented

by the composite map

As in the second part of the proof of Proposition 7. 7, G°P\S2MB(65) is

homotopic to a map G': S2MB(™->LQ
2M+27. Then by (7.9),

since p(L0
2" /+27)=*- This shows (7.8). Q.E.D.

Chapter III The Exceptional Cases

§ H* Mod p Decomposition of p-lorsion Free Exceptional Groups

By [11],

(8. 1) except the cases

ff~* z_\ (f* Q\ / XT' d\ / XT' f~7\ / XT' r7\
t^j P) ~ \^2, W 9 (&7>b)> (&7>')> V - ^ S y ' / j

p-torsion free exceptional group G is quasi-p-regular, that is,
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G is p-equivalent to a product of spheres and modp Stiefel com-

plexes Bm
2(p).

For the case (G, p) = (G2, 3) , G2 is not mod 3 decomposable since

G2 is not 3-equivalent to our complex Bm
k (p) , but it is 3-equivalent

to an analogous complex:

(8. 2) G2 is ^-equivalent to a complex B of 3-type (3, 11) with a

mod 3 injection f: B->SU(6) =W6,5 (cf. Definition 5. 2).

The main purpose of this chapter is to give a modp decomposition

of the remaining three cases in (8. 1) .

Theorem 8.1. (i) £7~B1
5(5) XSr

2(5),
5

(ii) £7~S1
3(7

7

(iii) £8-51
4(7

7

Theorem 8.2. E7/F4~£9
3(5) and £7/G2—57

2 (5) XJ59
3(5).

5 5

By Proposition 3. 4 and Theorem 5. 4, the complexes Bm
k(p) in the

above theorems are characterized, up to ^-equivalence, by their ^-types

(2w-t-l, 2m + 1 -ft/, • • - , 2m + 1 + (k — T)q) and the existence of modp in-

jections

(8. 3) /: BS(p-)

Propositions 7. 1, 7. 2, 7. 3, 7. 4 and 7. 6 show that the complexes

£7
2(5), A3 (7), B.'(7), B,4 (7) and Bi(7)

are characterized by their cohomology rings with the operations £P* (z

= 1,2,3,) and 0.

To characterize the complexes jB9
3(5) and jB^S), we need more

properties as in Propositions 7. 7 and 7. 8.
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Remark 8* 3, If we weaken the existence of the mod p injection

(8. 3) to that of a modp injection

(8. 3) ' f: Bm
k (p) -+SU(m+N) /SU(m) , N: large ,

then 59
3(5) and 5^(5) are not characterized. In fact, J39

3(5;<2), a=

is not 5-equivalent to 59
3(5) but a mod 5 injection f \B* (5; a) ->St7(22)

/St/(9) exists. A complex B of 5-type (3, 11, 19, 27, 35) has a mod 5

injection 5— »5£7(22) if and only if it is 5-equivalent to a complex Bj*(5;

a) for some <zeZ3, where B*(5\a) is characterized by jH'*(51
5(5; a) ; Z5)

= ^(^8,£P1^8,^8,£P1^jr8,£P2^8) and a mod 5 surjection 5^(5; a) ->59
3

(5; a). A5 (5; a) is not 5-equivalent to 5^(5) if a^O.

The existence of a mod 5 injection/: 59
3 (5; a) -^SU(22) /5C7(9) fol-

lows from that zVOi/3i(35)] =0 for the inclusion z": 59
3(5) -^.B9

4(5) . In

the next section I^5 (5) is constructed as the total space B of the principal

G2-bundle over 59
3(5) induced by a mod 5 injection Bg

s(5) -*E7/G2. Let

g:59
3(5)-»5G2 be a map which induces B. Consider B9

3(5;a) =£9
3(5)(62)

U e81 and g* [tfiA (35) ] e7r80(BG2:5) =7r79(G2: 5). Since G2 is 5-equivalent

to ^(5), 7T79(G2:5) -0 by Proposition 6. 6. Thus g!#9
3(5)(62) can be ex-

tended over g':59
3(5; a) -^BG2. Then B*(5\a) is realized as the total

space of the G2-bundle induced by g' (cf. (5. 1)).

The proof of Proposition 7. 8 yields that there exists a mod 5 surjec-

tion B^ (5; a) ->-535 if and only if a = 0. Thus 5^(5; «) is not 5-equivalent

to jB!5(5) if a^O. On the other hand, the only obstruction to construct

a 5-equivalent 5^(5; a) -^B^ (5) is the element f of (7. 7) and it vanishes

in I?!8 (5), by Proposition 6. 6. Thus there exists a mod 5 injection 5j5(5;

a) — >5!6(5) — »*ST7(22). We have seen that a mod/> injection of the type

(8. 3) ' does not necessarily characterize the complex Bm
k (p) .

The statement (8. 2) can be generalized as follows.

Proposition 8. 4* There exists a complex B of p- type (3, 4/» — 1)

satisfying the following properties.

(i) JT*(3;Zp)-J(^3jfe3).

(ii) There exists a mod^ injection B-*SU(2p).

(iii) TAere ej:z'5*s a modp fibering B-^Bftp) -*S2p+1.
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(iv) B is a modp H- space.

One of the properties (i), (ii) and (iii) characterizes the complex

B of type (3, 4p — 1) up to p- equivalence.

Proof. For p — 3 this is true by (8. 2), and also true even for p = 2

by putting B = Sp(2), 5^(2) =5C7(4). Let p>5. Let g: B1*&)Q*+°=S*

(Jezp+1~^Szp+1 be a map of degree 1, and extend it over B?(p). The

obstructions are in Hn(B?(p) ; 7Tn_1(52p+1: />)) for « = 2/> + 4, 4/> — 1, 4/>-f2,

6/>, 60 + 3. So, the only obstruction is in H*-l(Bl*(p)\K^-i(SP*l\£)')

~n4p-2(S
2p+1:p) =Zp(aiy. But this obstruction is trivial since Qlx2p+1=^

in BI'(/>). Thus we have a mod/? surjection g: S,3(^) ->52p+1, and let F

be its fibre. Then Jf*(F; Zp) =/f (jt"3, fc3)? and we obtain 5 by use of

(5.1) as a complex of type (3, 4£ — 1) ^-equivalent to F. Obviously

B satisfies (i), (iii) and (ii) : B-»B*(p) -»SU(2p).

(iv) is proved by constructing a multiplication BxB—*B directly,

where the obstructions are in Hn(BxB, B\/B; rcn-l (B: p)) . By the fiber-

ing (iii) we have an exact sequence

TT* (&*+l:p-) ->*„_, (B:p) -+*„-! (BStf) : P) -^TT.., (S^-.p) .

Then it follows from Proposition 6. 6 and (6. 2) that 7Tn-1(B:p) =0 except

for

4p-2, 4p, 6p-4, 6p~3, Sp-6, Sp-5 ,

10^-8, 10^-7,

Thus Hn(BxB9B\/B',7:n-1(B'.p))=Q, and (iv) is proved.

The proof of the last statement is easy and omitted. Q.E.D.

§ 9. Mod 5 Decomposition of E1 and Ei/G%

For p>5, the simply connected compact exceptional groups G2, F^

E7 are ^-torsion free and they have the following cohomology rings:

(9.1)

and
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ri ( £L,7 ; Z/p) = A (*r3, xUj X15, X19, JT23, X27, x35) ,

-where x?s are universally transgressive elements of degree i.

As is well-known, we have a sequence of injective homomorphisms

G2->Spin (7) ->Spin (9) ->F4

with Spin(7)/G2 = S\ Spw(9^)/Spi?i(7) = S15 and F,/ Spin (9) =lI = SB(Jew.

Thus

(9.2) we 7zat;e a;? inclusion i: G«~*Ft suck tlmt f*: H*(Ft)

/or dim<C'6.

Next, in [2], we have injective homomorphisms

F4->£6-»£7

such that for the quotient spaces EQ/F^ and E7/E6,

(9. 3) (i) U* (£6/F4) - A (x9, a:17)

(ii) H*Ce(£7/E6)) =^(«g, ^17)(X)Z[^8, z/26] /or dim<26.

Proposition 9. 1. Z/^^ p>5. With respect to the above injections

G2 C jF4 C J57, jP4 (resp. G2) z*5 totally non-homologous to zero mod^ in

E7 (resp. F^) , and

and

H* (E7/G2 ; Zp) =

Proof. Consider the injection homomorphism /*:^f*(£7; Zp) — >H*

(F4;ZJ. Applying (9.3) to the fibering ti(E7/E6) -»E6/F^E7/Ft, we

see that E7/.F4 is 8-connected, and by (9.1) that f*:H*(£7; Zp) =H*(F<',

Zp} for dim<ll and H* (E7/F4 ; Zp) = 0 for dim<10. Again by (9.3)

and the above fibering we have H* (E7/F+ ; Zp) = 0 for dim<17. And,
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by (9.1),

i* : H* (E, ; Z,) ~H * (Ft ; Zp) for dim<19 .

Next, consider the mod p spectral sequence associated with the fibering

in which E2**=£T*(£F4; ZP)(X)£T*(£7; Zp) = ZP[*4> *„, *„, xz^®A(x^ xll9

jr15, .r19, x23, -^27, -^35) • By the above discussion, the transgression r satisfies

r(x^) =^£.1-1 for z = 3, 11, 15, up to non-zero coefficients. Then E*7* = ZP

[•^EI] (8)^(^19? ^23? X2ii -^35) • For dimensional reasons, r(x£) =0 for z' = 19,

27, 35. Since E7/F^ is finite dimensional, r(x23) must be non-trivial.

Thus E**~A(x^xzl,x^=H*(E7/F^Zp}. Then, by (9.1), we see

that the spectral sequence associated with the fibering F4—>E7—>E7/F4:

collapses, and F^ is totally non-homologous to zero in E7.

Similarly but more easily, from (9. 2) and (9. 1) we have that G2

is totally non-homologous to zero mod^ in F4 and jf/* (-F4/G2 ; Zp)=J(^i5,

.TZS). The last statement also follows easily. Q.E.D.

Note that Proposition 9.1 is valid for p = 2, 3 ([1,2]):

(9.4) For p = 2, 3, F4(resp.Gz) is totally non-homologous to zero

mod p in E7 (resp. jP4) .

Now we consider the case p = 5. By Theorem 4. 2 of [11]

(9.5) &lxt=xll9 ^xu=Q in G2, F4, E7 ,

3)1^iB=^M, £P1xtt = 0 in F4, E7,

and

^P1xig=x21, 2?lx27=Xss and S>1xZ5 = 0 in E7 .

Then it follows from Proposition 9. 1 that

(9. 6) H* (F4/G2 ; Z.) = A (xa, 2^ ,

H*(E1/Fi- Z.) =A(xlt, &xlt> £PX9)

and
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7/G2; ZB) =A(x^ x19, Q
lx^ Qlx^ £P2x19).

By Theorem 2. 3 of [14]

(9. 7) fe3 = x19 in H* (£7 ; Z5) .

Proposition 9.2. E7/F< is ^-equivalent to B9
3(5).

Proof, By (5. 1) , we may assume that E7/F± is a complex of 5-type

(19, 27, 35) . Apply Theorem 6. 1 to the inclusion S3 (-»G2) -*E7. Since

£P1j;11=0, we have 7T19(jE7, 5
3: 5) =Z(B)<[X19)]>. By use of a representa-

tive (£19,518)->(£7,5
3) of [^(19)], we get a complex S3 U e19 and a mod 5

injection

Then it is easy to see that the composite map

A : OS3 U e19) X

satisfies the condition (ii) of Proposition 6. 6. Thus the proposition is

proved by (9. 6) and Proposition 6. 6. Q.E.D.

Let

W : Ker £P2 ( C H 15 (X; Z5) ) ̂ H54 (X; Z5) /S>sHi<! (X; Z5)

be the secondary operation associated with the Adem relation

3?8£P2 = 0.

As is well-known (cf. §6), W detects the generator & (15) of 7r53(5
15:5)

Leinina 9. 38 Let X=E7 and E7/G2. The secondary operation

¥ is defined on the generator x15 of H15(X; ZB) and¥(x15) =0 with the
trivial indeterminacy.

Proof. We consider the secondary operation W for X=E7, E7/G2

and E7XE7. For these spaces X, H31^; Z3) =0. Thus ¥ is defined on



674 MAMORU MIMURA, GORO NISHIDA AND HIROSI TODA

the whole of H""(X;Z5). We see also HSO(E7; Z5) = Z5(xzx27,

H*°(E7/G2;Z5)=0 and HSO(E7 X E7; Z5) = Z5<1(X)^27, 1(X)̂ 19,

Xii® -Tig, ^i5(X)^:15, • • • , ^ii^ig®! >. By Cartan's formula and (9.5), we have

that g?*HSQ(X; Z5) =0 and that the secondary operation

is a well-defined, single valued and natural homomorphism for X=E7,

E7/G2 and E7XE7.

For the multiplication ju: E7X E7-^>E7 and the projections ply pz: E7X E7

-*E7 to each factor, we have

V* (¥ (.r15) ) = ¥ CM* <X6) ) = W (a:,,® 1 + I(g)x15)

) + A

This shows that F(a;15) e HM(R,;ZS) =Z5<Xi9x35> is primitive, while -

is not primitive. Thus ¥(x15)=0 in H54(E7;Z5). Let TT: E,-*E,/G2 be

the projection. By Proposition 9. 1, TT*: H*(E,/G2; Z5) ->H*(E7; Z5) is in-

jective. Then the naturality n*¥ = ¥n* implies that ¥(xls) =0 in HM

(E,/G2;Zs). Q.E.D.

Lemma 9» 4* There exists a mod 5 injection f: Bg
s(5) -*E7/G2.

Proof. Let /':j59
8(5) — >E7/F4 be a 5-equivalence given by Proposition

9. 2 and let TT: E7/G2~*E7/F4 be the bundle map with the fibre F4/G2.

By (9.6) and Proposition 7.1, S7
2(5) is 5-equivalent to F4/G2.

We consider to lift the map f to a map /: 59
3 (5) — >E7/G2 such that

7r°/* is homotopic to f *h for a 5-equivalence ^: 59
8 (5) — » J59

3 (5) . The ob-

struction to the lifting is in Hn(Bg
s(5) ; 7rn_i(F4/G2: 5)). The homotopy

groups 7T# (F4/G2: 5) =7r^ (jB7
2(5) : 5) are computed by applying Theorem

6. 1 to a mod 5 injection S15—>F4/G2 or by use of the homotopy exact

sequence for the fibering S15-^£7
2(5) ->523 (cf. [12]). Then we have

(9.8) 7T,(F4/G2:5)=0 except for z = 15, 23, 30, 38, 46, 53, 54, 62, 68,

70, 77, 78, 84, • • • , 'where n^(F4/Gz: 5)=Z5 is generated by the injection

image of & (15) GE 7T53 (S
15: 5) .
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Note that 7li(S15: 5) is unstable for i>77. Then the only obstruction

is in H54 (B9
3 (5) ; 7T53 (F4/G2 : 5) ) . So, there is a partial lifting /, : B9

3 (5) (45)

-^E7/G2. Let ?EE7r54(jB9
3(5)(45)) be the attaching class of the cell e54 = B9

s

(5)(54)-£9
8(5)(45), then

/i* (£)=**(*•& (15))

for some a^Z5 and for a mod 5 injection i: 515— >F4/G2— >E7/G2. The ob-

struction vanishes if and only if *z = 0, whence the required lifting /

exists.

Construct a complex

(Je54

by attaching a 54-cell £54 by fls|c (f) + /2* ( — #• A (15)), where z'j and z"2

are the inclusions of 59
3(5)(45) and S15 into B9

3(5) (45) V^15 respectively.

Then the map fi\/i: -B9
3(5) V S15-^E7/GZ can be extended over a map 7z2: X"

-^ET/GZ such that

hz^:Hi(E1/G2-Z^^Hi(K'JZ^ for f = 15, 54.

As before we see that the secondary operation ¥: H15(K; Z^)-+H*\K\

Z5) is well-defined and single valued. By the naturality ¥hz* = hz*y,

K-Zs)=Q. Next let

p : K-^L = K/B* (5) (45) = 515 U e54

be the map smashing 59
3(5)(45). Then p*: H*(L; ZB) =HL(K; Z5) for z

= 15, 54, and ¥H15(L; Z5) =0. Since L is a mapping cone of a •& (15)

and since 3T detects ^(IS), we have that a = Q, and the existence of the

lifting f is proved. Q.E.D.

Proof of Theorem 8. 2. Proposition 9. 2 shows the first assertion.

By Theorem 4.5 of [11], there is a 5-equivalence B? (5) X B7
2 (5) -*jF4.

So, we have a mod 5 injection

g:S7
2(5)^F4^E7,

by Proposition 9. 1. Then it is easy to see that the composite map

) x B,'(5) ̂ +E7 x

is a 5-equivalence, where jf is the mod 5 injection given in Proposition
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9. 4. Q.E.D.

Proof of (i) of Theorem 8. 1. The mod 5 injection /:59
3(5) -^E7

/Gz of Lemma 9. 4 induces a map /: B->E7 of principal G2-bundles, where

B is the induced G2-bundle over 59
3(5). It follows from Proposition 9. 1

that Gz is totally non-homologous to zero mod 5 in B. Then we have

easily that f is a mod 5 injection, the projection iz;B->B*(5) is a mod 5

surjection and

by (9. 5) and (9. 7) . By (5. 1) , we may assume that B is a complex

of 5-type (3, 11, 19, 27, 35) . Then it follows from Proposition 7. 5 that

B is 5-equivalent to B f f f i . Thus we have a mod 5 injection f: B* (5)

— >J57. Then the composite map

Sx
5 (5) x J37

2 (5) -^>E7 x £7 A£7

is a 5-equivalence. Q.E.D.

§ 10. Mod 7 Decomposition of jE7 and E8

By Theorem 4.2 of [11] and Theorem 2.3 of [14],

(10. 1) in H*(E7; Z7) =

£P^=^+12 for f = 3, 11, 23,

^^ = 0 /or z = 15, 19, 27, 35

and 0xs=x27;

(10. 2) XT/ H*(-E8; Z7) =yi(j:3, ^c15, ̂ 23, x27, x^, jcaq, r47, jr59)

&lxt=xi+lz for i = 3, 23, 27, 35, 47,

5)1^ = 0 /or 2 = 15, 39, 59

Theorem 2. 3 of [14] is based on the existence of honiomorphisms

L £7->C7(56) and /*: £8->C/(240)
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such that A* and//* are isomorphisms of Hs( ;Z7). By use of Theorem

3. 5, we have mod 7 surjections

7T7 : £7(56) -+B? (7) and 7T8 : 17(240) -^B^0 (7) .

Let F7 and F8 be the fibres of the compositions p7=n7°& and A — TTs0/^

respectively. Thus we have fiberings

FAEt^BS'W,
(10. 3)

Lemma 10.1. (i) //*(F7; Z7) = A(xll9 x19, x23? ;CM) (X) Z7 [>38+i2/;

J = 0, 1, 2, »-, 6) /or dim<264, zo/iere £P^=^+12 /or z = ll, 27, 38 + 12;

(ii) H*(F8; Z7) =A(x»,xu,xa9Xn)®Zr\:xWriv', J = 0, 1, 2, • • • ] /or

dim<348, ze;/i^r^ £P1jci=^rl2 /or 7=23, 35, 47 and for i =

(mod 7).

Proof. We shall prove (i). The proof of (ii) is similar, and left

to the reader. As is well-known,

£T*(C7(56) ; Z7) =A(y2i+1-9 z = 0, 1, 2, —, 55)

for the suspension image y2i^ of the (/ + l)-th Chern class Ci^. It fol-

lows from the Wu formula

(10.4) 2> 'y2i+i =

We shall show

(10.5) /f*(A10(7); Z7) =A(x'z+ltJ; j = 0, 1, 2, • • - , 9) for generators

{•^3+12.7} satisfying P7^(x^+12j) —-^s+iy (* = 0, 1? 2), P7*(x^+i2j) =0 (z = 3, 4,

• • - , 9 ) and ^XV-XW+M (^ = 1, 2, • • - , 7).

Since A*:H8(,B1
10(7);Z7)=H3(£7;Z7), we put *,' =A*"1(^.), ^

= £P1^3
/, ^27 = ^3/ and JC27+m = 5>t^27 for 1<^<7. By the naturality,

A*(-^fc') ~^fc for & — 3, 15, 27. By (10. 4), 7T7*(^:fc
/) are indecomposable.

For l<i£<7, Pi*(x'<n+i2t) =3?tx2-i is primitive and it vanishes since the
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generators {xi} of (10. 1) span the set of the primitive elements in H*

(E7;Z7). Thus (10.5) is proved.

Let {jEr**} be the mod 7 cohomology spectral sequence associated

with the first fibering of (10.3): £2** = H*(B1
1Q(7) ; Z7) (X)^*(F7; Z7).

We construct a formal spectral sequence {'j£r**} by putting

' Et** =!!*(&* (7) ;

with F* = A(xu, xig, x2S, XK) ®Zj[xm+1y-9 0 <jf<6],

and by giving derivative differentials dr by

=0 for z = ll, 19, 23, 35 ,

8 + w)=0 (r<38 + 12;) =^,9+

Then it is directly verified that

'E**=A(Xi,xli,xvt}®(Xil9Xn,Xto,x^ for dim<265.

The natural map defines a map /2: 'E2**-^E2**. The differential

^r in £"r** satisfies the properties corresponding to those in x£r**. Thus

/2 induces a map fr\
 7JSr**— >JEr** of spectral sequences such that /„, is

bijective for dim<^265. By virtue of the comparison theorem, it follows

from/2 : /£2*'°=E2*'° that /2:
 /JSB°-* = F*->£2

0'* - H*(F4; Z7) is bijective

for dim < 264. Thus (i) is proved. Q8E.D.

Now apply Theorem 6.1 to F7 and -F8. Then the follwing results

are computed as in § 6.

Lemma 10. 2. (i) 7T f(F 7 :7)=0 except for 7 = 11, 19, 23, 30, 35,

38, 42, 46, 50, 54? 58, 62, 66, 70, 74, 78, 82, 86, 90, 93, 94, • • - . Fori = U,

19, there are mod 7 i?ijectio?is of Si into F7.

(ii) ni(F8: 7) =0 ^t:^^ /or / = 23, 35, 47, 50, 59, 62, 70, 74, 82, 86,

94, 98, 105, 106, 109, 110, 118, 121, 122, 130, 132, 133, 134, 142, 145, 146,

152, 154, 157, 158, 165, 166, • • - . There is a mod 7 injection i: 523-^F8

such that *"* (& (23) ) generates nm(F8:7)~Z7.

Proof of (ii) of Theorem 8. 1. By (i) of Lemma 10. 2, we have
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mod 7 injections f/: SU-*F7 and iz: S
19-*F7. Also we have H*(B,*(7);

7tn-l(F1\ 7)) =0. Thus ii can be extended, in the mod 7 sense, over a

mod 7 injection z'j: B5
S (7) —>JP7.

For the inclusion/': A3(7) ->A10(7), consider a lifting/: B1
S(7)-^E7

such that p7of~f'°h for a 7-equivalence A: I?i8 (7) —»J^8 (7). The obstruc-

tions to the lifting are trivial since £F(A8(7); 7Tn_i(.F7: 7)) =0 by (i)

of Lemma 10.1. Then/exists and it is a mod 7 injection. The composite

map

A3 (7) x B5* (7) x S19 /X*1X*2 > E7xF7x F7

1^x17X17 y-, 7-, _, multip .„,
> ./i7 x -Of x -/I// > ±LI

is a 7-equivalence since it induces an epimorphism, thus an isomor-

phism, of the mod 7 cohomology. Q.E.D.

Proof of (iii) of Theorem 8.1. The proof is done similarly to that

of (ii) by using (ii) of Lemma 10.2. The only difficulty is that

Hn(B^(7)', TT^-iCFs: 7))=£0 if » = 106. This obstruction is avoided by

use of Lemma 7.5 as in proving Proposition 7.6. Thus (iii) of Theorem 8.1

is proved. Q.E.D.
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