
Publ. RIMS, Kyoto Univ.
13 (1977), 589-626

On the Long-Range Stationary Wave Operator
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Hiroshi ISOZAKI*

§ 0* Introduction

In the present paper we shall be concerned with the stationary

theory of scattering associated with the Schrodinger operator with a

long-range potential.

In quantum theory of scattering, many authors have investigated the

existence and completeness of wave operators W± = s-lim eitHze~UHl
y where

J-»±oo

HI and H2 are self-adjoint operators acting on a Hilbert space M. Among

them, Kato and Kuroda gave an abstract time-independent approach to

scattering theory. They derived a stationary form of the wave operator

in the following way:

(0.1) W± = f °° E'2 (A) (H2 - (A ±xO) ) R! (A ±f
J — 0°

where E2(k) denotes the resolution of the identity for H2, E2'(A) is the

"formal" derivative of E2(£), and RI(Z) and P1 denote the resolvent

and the projection onto the absolutely continuous subspace of Hl9 re-

spectively. They discussed in their abstract theory the existence and unitary

property of this operator and coincidence with the time-dependent one

([8], [9]). In the case of the Schrodinger operators, H±= — J, H2= — A

+ V(x), their theory covers general short-range potentials: i.e. V(x)

= O(\x\~1~£) as |.r|—»oo, e>0. But when V(x) is a long-range potential

V(x) =O(\x\~s)9 0<ff<l, the operator defined by (0.1) does not exist.

Recently, Pinchuk [10] has derived an appropriate modification of

(0. 1) in the case of a long-range potential. His remedy consists in

inserting a unitary operator C7(/l±zO) which depends on the concrete

potential as follows:

Communicated by S. Matsuura, October 12, 1976.
Department of Mathematics, Kyoto Univ., Kyoto, 606 Japan.



590 HlROSHI ISOZAKI

(0. 2) W± = f" Ei (A) (Ht - (A ± fO) ) U (1 ± f 0) & (A ± zO) P, JA .
J-oo

Using this form, he discussed the existence and completeness of the

stationary wave operators for the various potentials. His decay assump-

tions on V(x) are as follows:

dr

gradw YjCx)

dwhere grad^ = grad — a) - (a) = JL*/|J:|), and A denotes the Laplace-
dr

Beltrami operator on the unit sphere. His choice for (7(A±/0) is the
/ z P ! r | \

operator of multiplication by a function exp( — —,— \ Vi(sti))ds) and
\ 2v A Jo /

the method of construction is based upon Kato-Kuroda's abstract theory

(especially upon the "spectral form").

The purpose of this paper is, influenced by the work of Pinch.uk,

to construct the stationary wave operator in the form of (0. 2) for the

general long-range potentials, and to discuss the unitary property. Our

assumption on V(x) is as follows:

V(x) is a real Cm-f unction (m will be given precisely later in

§2), and DkV(x}=O(\x\~k-^ as |.r|->oo, £>0, £>0, where

Dk denotes an arbitrary derivative of &-th order.

And our choice for C/(A±z°0) is the operator of multiplication by the

function exp( — iX(x, V/lifO)), where X(x9K^) is an approximate solu-
dXtion of the non-linear equation 2/Cj - = V (x) + 1 7X\ 2.
dr

Here we must mention the recent work of Saito [12] concerning

the eigenfunction expansion associated with H2. He obtained the spectral

representation of H2 in the following way: Define

£F (A)/- Tr-1/^1/4 s-lim r(7l-1)/2 exp ( - i /Ir + iX (r • ) ) R2 (A + fO)/(r • )

in L2(S
n~^9 and set (3/) (A) =3r(A)/. Then the operator 3:M->

L2 ( (0, oo) : L2 (/Sfn~1) ) gives the generalized Fourier transform associated
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_ ft V'

with H2. Here, X is an approximate solution of equation 2^ /A —-—
Or

= V(x) +JFX|2 , Our choice of X is suggested by this work. And we

can also clarify the relation between our stationary wave operator and

Saito's eigenfunction expansion theory.

The plan of this paper is as follows. In § 1, we construct the

stationary wave operator in a rather abstract way, but differing from

Pinchuk, we do not use Kato-Kuroda's abstract theory. Some calculation

lemmas needed for the application of the abstract theory are proved in

§ 2. Our main theorem appears in § 3. In § 4, we discuss the coincidence

of our stationary wave operator with the one obtained by the eigen-

function expansion theory. We shall give some remarks for the short-

range perturbation of our theory in § 5. In the Appendix, we shall

establish some a-priori estimates which play a crucial role in our context.

§ 1. Construction of the Stationary Wave Operator

In this section we construct the stationary wave operator in a rather

abstract way. The author owes most of the ideas to Ikebe [6].

First we introduce some notations.

Let M be a separable Hilbert space and SC+9 3C_9 M + be Banach

spaces. We assume the following inclusion relations for these spaces:

(1.1) J?+CZ^+C^C^_,

where all inclusions are dense and continuous. And moreover, we

assume that M- is identified with the dual space of M+. We use ( , )

to denote not only the inner product of SC but also the coupling of M+

and c^f_, which will not confuse our argument. C and 1? denote the

totality of complex and real numbers, respectively.

Let us consider two self-adjoint operators H^ and H2 on SC. We

denote the resolvent of Hj as follows (j=l, 2):

(1. 2) Rj(*) = (Hj- *) -1 (zeC-K).

The resolution of the identity for Hj is denoted by £/(A) (j=!92).

In general, B(Jli:<JL^) denotes the totality of bounded linear operators

from a Banach space Jll into a Banach space J12.
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Now, we assume as follows.

(A-l) The limiting absorption principle is guaranteed. That

is, for arbitrary /l>0, £>0, Rj(h±is) eB(Jf+ : c#_), and -when

£ tends to 0, there exists a strong limit s-lim Rj (A ± is) ^=Rj (A ± z'O)
e-*0

e H ( J£+ : JT_) . Moreover for an arbitrary /e <#+, jR, (A ± £0)/ w

aft J(_-valucd strongly continuous function of A

a =1,2).
With the aid of this assumption we define for j=l, 2,

This is a bounded linear operator from M+ into ^f_, and strongly con-

tinuous with respect to A>0.

Our next assumption is:

(A-2) There exist unitary operators U± (A, e) cm JT having the

fo llowing properties ( A , e ]> 0) .

(1) For a^ arbitrary

where D(Hj) denotes the domain of Hj, and * denotes the adjoint

in M.

(2) W^ ̂ yi^

Gfl (A dz f e) = (.Hi - (A ± i e) ) C7± (A, e) ̂  (A ± £ e) ,

G12 (A ± fe) = CHi - (A ± f e) )U±(l, e) ̂ 2 (^ ± *'0 -

For every A>0, £>0, GJk(l±ie)*=B(3C+: JC+)9 and s-lim G / f c(A±fs)
— e"*°

^GyjcCAifc'O) exists in B(M+ : <^T+). Horeover for an arbitrary

+5 GJk(&±iO)f is a strongly continuous function of

Let an interval (<z, 3) be fixed, and choose an arbitrary Borel set e

contained in (a, &), 0<a<&<oo. We define
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(1.4) W/k(e)f= 1 JEj (A)Gj j fc (A±zO)/<iA, for v/e^+.

By our assumption, the integrand is an J/f_-valued strongly continuous

function of A>0. Hence this integral is well-defined, and Wfk(e) is a

bounded linear operator from M + into 3C_. The purpose of this section

is to prove the following theorem.

Theorem 1. (1) Wfk (e), defined above, is actually an operator

-with range in M which can be uniquely extended to a partial isometry

on M -with initial set Ek(e)M and final set E5(e)M. (We use the

same notation for the extended operator.)

(2) (W/jt(e)) * = Wtj(e), where * denotes the adjoint in M.

(3) Wfk (e) intertwines Hj and Hk. That is, for an arbitrary

bounded Borel function a (A) defined on the real line

Wfk (e) = Wfk (e) a (Hk)

holds. In particular, Hl9 restricted to E1(e)M9 and H2, restricted to

C, are unitarily equivalent.

For the proof of this theorem, we state a lemma which is of funda-

mental importance.

Lemma 1.1. Let /(A), g(X) be M ̂ -valued locally bounded

strongly measurable functions defined on (0, oo) , an d e, e be Borel

sets in (a, b) . We put

Then not only $, 0 e Jf_ but also <j),</)^J{, and

(1.5) (<S,0)= f (EjWf(V,g(V)<U
Jer\e'

holds.

Proof. First we consider the case that /(A) ==/, g(k)=g do not

depend on A. In this case, by the well-known Stieltjes inversion formula,

we have for an arbitrary h^M+,
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(0 ,A)= f(£;(A)/,A)rfA

= (Es(e)f,K).

By the fact that M+ is dense in £C9 we have

Similarly 0- f E'J(K)gdl=Ej(e')g ejf, and
Je'

= f
Jer\e'

So, the assertion of Lemma 1.1 holds for constant /(A), £7 (A).

Next we consider the case that /(A), 0(A) are step functions. In

this case there exist a finite number of Borel sets em, en contained in

(0, oo) and a finite number of fm, gn<=M+ such that /(A) =£] ^(A)/*,
m

^7 (A) = 2 %6n (A) ^n, where %6m(A) and %C r i(A) are the characteristic functions
n

of em and ^n, respectively. Then we have

=E f &,
m Jenem

and similarly 0 = ̂ 1 Ej (&' D ̂ ») ^n- Hence 0, 0 e c5T, and

S (^ (« n em)fm, Ej (ef n O ff»)
771,71

= 1] f W
m,n Jefiemne'nen
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= f (^-
JeOe'

= f (£:.(A)/(A),g(A))JA,
Jens'

which proves (1.5) when /"(A) and g (A) are step functions.

Finally we consider the case that /(A), (7 (A) are strongly measurable

functions. In this case there exist sequences of step functions {/m(A)},

{QnW} such that fm (A) -*/(A), 0»(A)-»g(A) in <#+ almost everywhere.

Writing 0m = £jE',(A)/»W<«, 0»= JV, W QnWM, we have 0m^0,

0n-»0 in J?f_. But in view of (1. 5) valid for step functions we have

; (A) (/» (A) -/„ (A) ) , /» (A) -/, (A) ) ̂ A .

So, there exists (p^M such that 0m-^0 in c^f, by Lebesgue's dominated

convergence theorem. But since 0m-*0 in M-. also, we have <^ = 0eJ^,

and <j)m-^(j) in J^. In the same way, we see 0eJ?T, and 0ft-^0 in «^f.

Again in view of (1. 5) valid for step functions we have

,0.)= f (JE;
Jene'

Letting 7^, ?i tend to infinity, we see 0m-^0, 0n— >0 in ^ and /m(A)

in J^+. Hence,

(0,0)= f (^
J^ne'

which completes the proof of Lemma 1. 1. Q.E.D.

Lemma 1. 2. Let f,g^JC+, and e, e' be Borel sets contained in

(a9 b) . We have

and

(1.6) (Wfk(e}f,Wfk(e')g)= \
Je

= (£
holds.
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Proof. Let us define /(A) = Gyfc (A ± *0)/, g(A) = G / f c (A±zO)g. By

the assumption (A-2), /(/I) and g(A) are ^+-valued strongly continuous

functions of A>0. Hence we have by (1. 4) and (1. 5) of Lemma 1. 1,

C, and

(Wfk (*)/, W7* (*') g) - f (E'j W GJk (A ± *())/,
Jene'

Now, using the definition of G y j t (A±z 'e ) and the unitarity of U± (A? £) ?

we have

-^a-*e)]G^W±fe) / ,G / t (A±/e) f l f j

± «) -^-r C^y (* + «) - -^^ (A ~ *e) ] G,K (A ± «)/, ff)

Letting £ tend to 0, we have

(£J (A) Gy, (; ± »0)/, G,. (A ± zO) fif) = (E'k (/I) /, g) .

From this, (1. 6) immediately follows. Q.E.D.

Taking into account that M+ is dense in M, we see by Lemma 1. 2

that W/fc (e) can be uniquely extended to a partial isometry on M with

the initial set JLk(e)M. We use the same notation for this extension.

Lemma 1. 3* Let e be a Borel set contained in (a, b) . We have

'where the adjoint is taken in Jtt.

Proof. In the proof of Lemma 1. 2, we have seen

Gfk (A ± i6) -±r [Rj (A + «) - R, (A - f e

2m
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Since GJ / (A±z£)G^ f c (A±z"e) =7, which follows from (A-2), multiplying

both sides of the above equality by GJy(A±ze) leads to

1

2m

Hence for f, Q^M+, we have

- (/, G*, (A ± f e) -^- [Rk (A + f e) - ^fc (A - f e) ] g
\ 2m

2m

Letting £ tend to 0, we have

(1. 7) (/, E'j (A) Gjk (A ± fO) g) = (£1 (A) Gkj (A ± fO)/, g).

Integrating both sides with respect to A on e yields

from which the assertion of the lemma readily follows. Q.E.D.

In particular, we see by Lemma 1. 3 that the final set of Wfk (e)

equals the initial set of Wfj(e)^ which is just E3

Lemma 1*4,, For an arbitrary bounded Borel function a (A)

defined on the real li?ie, the following formula holds:

a (Hj) Wf, (e) = Wfk (e) a (Ht) .

Proof. Let us show the following equal i ty

(1. 8) E, (e'} Wfk (e) = Wjj, (e) Ek (e'} ,

where e' is an arbitrary Borel set on the real line, and e is a Borel

set in (a, b) . It suffices to show (1. 8) in the case that ef is contained

in (a, b) , because the initial and the final sets of Wfk (e) are Ek (e)
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and EJ (e) SC, respectively.

For arbitrary /, ge $ +9 we set /(A) - Gjk (A ± zO)/, g(Z)=g. By

Lemma 1. 1, the next formula holds for an arbitrary Borel set e' in

(1. 9) (E, (e') Wfk (*)/, ff) = (Wfk (*)/, E, (e') g)

= f (E',-WG
Jer\«'

The right hand side of this equality is rewritten as follows.

f (£$Ol)G, t(Jl±iO)/,flO«tt
JeC\e'

= f (f,E'tWG^(l±iO)g)ctt (by (1.7))
Jene'

= (/,£,(OWr.±X«)fl') (by (1.9))
= (/, £t («') ( W/. (e) ) *g) (by Lemma 1. 3)

Hence we have

(£, («') W^ (e)/, ff) = (Wfk (e} Ek (e')f, g} ,

which proves (1.8).

Approximating a (A) by a sequence of step functions, in view of

(1.8), we can conclude the assertion of the lemma. Q.E.D.

Now, it is easy to see that all the assertions of Theorem 1 hold

in view of Lemmas 1. 2, 1. 3 and 1. 4.

Remarks The above argument is "local" in the sense that it is

restricted to a bounded interval (a9 U) . HowTevers if we define for an

arbitrary /e M +

then Wfk is uniquely extended to a partial isometry on 3C, with the

initial set Ek((Q, oo))JC and the final set £,((0, oo))^, (Wjk)* = Wk
k
J, and
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moreover Wfk intertwines Hj and Hk. Thus, we can obtain a "global"

wave operator.

§ 2. Some Remarks on the Limiting Absorption

Consider the Schrodinger operator H=—A + V(x) in L2(R
n)9 (A

denotes the Laplacian in 1?") . In this section we assume on the potential

the following condition:

(C) There exists a constant d (0<fl<l/2) such that V (x) is

a real Cm -function and

ivhere Dk denotes an arbitrary derivative of k-th order, and

( 2/5 + 1 (if 2/d is an integer)
m = \

{ [2/8] +2 (otherwise).

Here [2/ff] denotes the greatest integer not exceeding 2/d.

We introduce a real C°°-function 0 such that

o

and decompose V(x) as V (x) = Vl ( x) -f V2 (x) , where Vi = </)V9

(1 — 0) V. Then V1 and V2 satisfy the following conditions:

(C-l)7 V,(x) is a real Cm-f unction such that

-*-8 as x->oo

(C-2) ' V2 (x) is a bounded real function -with compact support.

Remark: Our assumption on V(x) is stronger than actually needed.

V(x) can have certain singularities. But for the sake of simplicity, we
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continue our argument under the condition stated above.

Now, the limiting absorption method tells us a way for finding a

solution of the inhomogeneous Schrodinger equation. First we list up

some notations.

denotes the Hilbert space of all measurable functions

/ such that (1+ \x\)pf(x) is square integrable over a domain

GdRn. The norm of L2tj3(G) is denoted by || \\fttG. When

/? — 0 or G = Rn, we often omit the subscript.

xj = xj/r, r=\x\, 0/=1, • • • ,» ) .

OC \~£-l ' ' ' ^n) "

^e (a, 6), £2e (0,1)},

Cje (-&, -a), /C2e (0,1)},

where a, b are arbitrary positive constants such that a

dr

. ,.#„).

grad = grad — x - .
dr

HIOC is all Z/2,ioc functions with L2jioc distribution derivatives up

to the second order, inclusive.

Under our assumption on V(x), H= — J + V(x) is, when restricted

to CS° (J?ra) , essentially self-adjoint. We use the same notation H for its

unique self-adjoint extension. Further, we adopt the following notations.

is the resolution of the identity for H.

S0 is a positive constant such that
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(0<p«7).

The following theorem is due to Ikebe-Saito [7].

Theorem 2. (a) TV?*? following a-priori estimates hold:

-where C is a constant -which does not depend o?j f^L2t^fo}/2 and

tc<=K±.

(b) (Limiting absorption method) u ( K : f ) is continuous in

L2,-(i+So)/2 "with respect to ic^K± and /eL2j(1+£o)/2? and for any

the limit

exists in Z/2j-(i+£0)/2, and the inequalities stated in (a) are satisfied 'with

(c) For awy ^ai'r (/C,/) ejf?± xL2>(1+fio)/25 'where K± is the closure

of K± in C9 there exists a unique solution u = u(lC:f) ^LZ)_(l

of

(#-£>=/, ||5)«||_(1_,.)^1<oo.

The mapping

K±xL2)(l+£o}/2=> (/c,/) !-*«(£:/) eL2j(1+,o)/2

Z5 continuous on K± xL2>(1+fo)/2.

(d) For f9 Q ^ L2)(1+£o)/2 and any Borel set ed (0, oo) 7^

(£ (*)/, g) = -J^ f (U ( A + zO)/- JZ (A - zO)/5 g) ̂ A .
2m J*

The part of H in £((0, ooJ)L2(R
n) is absolutely continuous.

Remarks We say that a function u(x) satisfies the radiation con-

dition if it satisfies the following inequality
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Now, for a real constant KI (tK^K^b, — b<^K1<^ — a)9 we consider

the following non-linear equation

V1(^ + \FX\\
r

where F denotes the gradient on Rn. A successive approximation scheme

for the above equation is

, «o = r<Ti
Jo

r=\x\,j=l,2,-,

where the function 4>j (x, KI) is defined by

o if js<i
f

Jo

where Aj (x, «0 = | (FX(«) (x, *0 |2- | (FX"-1') (x, «,) |2, and p (x) is a

real C°° -function such that

[ 0 \x\<l,
p(x)=\

[ 1 \x\>2.

Here we should remark that without loss of generality we can assume

I/d is not an integer. The following lemma concerning the j-th ap-

proximation can be proved by induction on j.

Lemma 2.1. X<» (*, A;0 = 0 if \x\<l,

(x, Kj | <C (1 + \x\y

, J - V, (x) - | (PX<») (x, ̂  |
dr

-where the constant C does not depend on
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We choose the smallest positive integer j such that 0"+1)5>2 and

difine X(x9 icj =X™ O, icj. Note that X(x9K?) is a real C3-function of

x and K! having the following properties:

(2.1) X(x,Kl)=0 if x\<l,

IC7*) O,

where the constant C does not depend on Kl (tf<£i<^j —

We put v = v ( K : f ) = e i Z ( * ' K l > u ( l C : f ) 9 where /eL2)(3_£o)/2, ^ = ^ + ̂ 2,

tc^K±. Then we can prove the following a-priori estimate concerning

the radiation condition.

Lemma 2, 2* H^vlla-e^^

where the constant C depends neither on f^L2t^-e^/2 nor °n

The proof of this lemma is somewhat long and complicated, so we

shall prove it in the Appendix.

Lemma 2. 3. \\^v\\^2£o,/2>Ep<Cp-^\\f\\(3_€o,/2 (vp>l).

Proof. This lemma follows easily from the following inequalities:

lW!a-3E,)/2,*p= f (l+\x\)1-e'-t"\3)V\ldx
J!^I>P

2s' f (l+\x\y-''\3)v\'dx
J|x|>p

(by Lemma 2. 2) . Q.E.D.

Lemma 2. 4, /c2||t;||(1_£o)/2<C||/||(3_£o)/2 (/ceZ±).

Proof. In Ikebe-Saito ([7], Lemma 2.3), the following inequality

is proved:

(2. 2) ^||«||(i



604 HlROSHI ISOZAKI

Taking into account that X(x9 A^) is a real function, we have for an

arbitrary real constant /?

(2.3) Hl*=lk'̂ ll,= ll«ll,.
In view of Theorem 2 (a) , the right hand side of (2. 2) is estimated

from above as follows:

(2.4) (the right hand side of (2. 2))<C||/||(1+.i)/l

<C||/|| »_«.,„.

By (2. 2) , (2. 3) and (2. 4) , the assertion of the lemma readily follows.

Q.E.D.

Lemma 2.5. /c2||t;||(1_3£o)/2,Sp<Cp-£o||/||(3_eo)/2 (Vp>l).

This lemma is proved in the same way as in Lemma 2. 30

Remarks It is easy to see that in Lemmas 2.3, 2.4 and 2.5, the

constant C does not depend on fCE:K±.

Lemma 2.6. s-lim K2v(iC:f)=0 in L2,(i_3£o)/2.

Proof. By Lemma 2. 5, for an arbitrary £>0, there exists a con-

stant r0>0 such that /C2|H|(i_3£0)/2j£ro<£, where r0 is independent of K^K±.

By Theorem 2, we see that v(fC:f) converges in Z,2jloc, the space of

locally 1/2 functions, when /C tends to ± VT + i'O. Hence \\v(lC:f) \\a-ze Q}/2.Bro

is uniformly bounded in f C ^ K ± . So, letting /C2 be sufficiently small, we

have £2||^(A;:/) ||(1_3£o)/Zjaro<e. These facts yield the lemma. Q.E.D.

Lemma 2.7. When tc = K1-{-iK2 (eX±) tends to ±Jh+iQ,

tendsto (grad + - = - ^ T ^ v / T ^ ) ^ ( ± v / / l + ^ 0 : / ) in
2r

Proof, First we note that u ( K \ f ) tends to «(± VT + ^'O:/) in H" ,̂

which follows from Theorem 2 and the following well-known elliptic

estimate :
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(2.5) £ f \Dau\2dx<;C(p,R)(^ \(H~z)u\2dx + f \u\'dx],
|aj<2 J\x\^p \ J\x\<R J\x\^R /

where z^C, p and .R are arbitrary positive constants such that p<C^> u(x)

is an arbitrary H?QC function and a is a multi-index. From this fact we

can conclude that v ( f c : f ) tends to v(± \/T + zO:/) in HIOC. By Lemma

2. 3, for an arbitrary £>0, there exists a constant r0>0 such that

||<St>||(i_3£o)/2,tfro<C£j where r0>l and is independent of IC^K±, If we

take K sufficiently close to i ^ / A , we have

2r

which follows from the previous fact that v ( f c : f ) tends to v(± VA +/0:/)

in HIM. These two facts yield the lemma. Q.E.D.

Lemma 2. 8a For an arbitrary /eL2j(3_eo)/2, the following facts

hold.

(1) The following inequalities hold:

2r
(2.6)

(2. 7) Igrad t»(VA±«:/) ||(l-.0,/J.,l<C||/| (,_..,/,,

where the constant C does not depend on A <2?zJ e 5wcA that

0<£<1, Im V^^O (Im = imaginary part).

(2) The following two strong limits exist in Z^u-seo)^,

(2.8)
dr 2r

9

r 2r

(2.9) s4i

dr 2r
are strongly continuous for ^>0 in ^^i-seo)^,^.

Proof. Let us first show the assertion (1). We have
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(2. 10) (A + J^llTzV
\ dr 2r

dr 2r

Then we have by Lemma 2. 2 and Lemma 2. 4,

2r

/ -
V A |

which proves (2. 6). Similarly by Lemma 2. 2 we have (2. 7).

Next we show the assertion (2). By Lemma 2. 7, the first term of
/ft -n — \ _\ —

the right hand side of (2. 10) tends to ( —-f T*YA M± VA + *0:/)
\9r 2r /

in L2f(i-zs0)/2,Ei,
 and by Lemma 2. 6, the second term converges to 0 in

^2,(i-3e0)/2 as s->0. This proves (2.8), (2.9) is proved similarly.

To prove (3), we must first note that the mapping A | — » w ( ± VA -f*0:/)

is continuous in HIOC, which follows from (c) of Theorem 2 and the

elliptic estimate (2. 5). From this we can conclude that mapping

A|—»z;(it v/A +z"0:/) is continuous in HIOC. Now, let there be a sequence

Am>0 (m = l, 2, • • • ) such that Am-*A0(>0) as m-*oo. By Lemma 2. 3?

for an arbitrary S>0, there exists a constant r0>0 independent of ATO

(m = 0,1,2, • • • ) such that f—+ ^~"1 =F?/
\9r 2r

<£= By the strong continuity of v(K:f) in HioCJ we have for sufficiently

large m

2r

<e.
9r 2r (l-3£0)/2,Bi,r0
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These two facts prove the strong continuity of ( h
dr 2r

Xv(± VT-f-z'O:/) in L2)(1_S£^/2)El. The strong continuity of grad v(± VT

4-z'O:/) is proved similarly. Q.E.D.

§ 3. Existence and Unitarity of the Stationary Wave Operator

Let H1= — J, -££2 = — ̂ + V(jc), where V(.r) satisfies the condition

(C) stated in § 2. Then we can prove the following theorem.

Theorem 3. When we take U± (A, £) as the operator of multi-

plication by the function exp( — LY(x, Re\/A ±zs) ) , where X is the

function which has been defined in § 2 a^J Re means the real part,

assumptions (A-l) and (A-2) of § 1 are satisfied. Hence there exist

stationary -wave operators lVj> (e) having the following properties:

(1) Wfit(c) is a partial isometry with the initial set Ek(e)Lz(R
n)

and the final set EJ(e)L2(R
n),

(2) (Wfk(e))* = Wirj(c)9 where the adjoint is taken in L2(R
n).

(3) Hj W ^ (e) ID W ?
k (^) Hk (j k = l 2),

where e is a Borel set in (a, V)

Proof. Let 3{ = L2(R
n), ^±=L2j±(1+£o)/2, Jr

+=L1|(,_flo)/l in the

notation of § 1. The assumption (A-l) is guaranteed by Theorem 2.

To see that (A-2) is fulfilled, we rewrite G y f c ( A ± z £ ) . Let us calculate

the commutator [ — A^e~lX~] as follows:

(3. 1) [ - J, e~i2r\ = - (de~ix) - 2 (Ve~ix} - F

\ Qr2 ' r2 / ' " V ' -V— v,^.^—y

9 , 7Z— 1 _ . y

dr \dr 2r

ie~iX grad X- grad

where yi denotes the Laplace-Beltrami operator on the unit sphere.
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Then we have for /e L2 (#"),

(3. 2) G21(A±z's)/= (Ht- (A±»e))Z7±(; i , £)jR,(A±zs)/

= t/±(A, s) {- J- (Aizsn-^CAizW

+ {[ - 4 ̂ ] + VX*) <rix>^ (A ± «)/

-,0

e) 9r J

+ 2iU± (A, s) - -- + -^ T zVl ^ (A ± «s)/
9r \9r 2r /

+ 2iU± (A, s) grad X- grad ^ (A ± ie)f

+ 2U± (A, e) Re & (A ± i
v A

The calculation of G12(Ad=fs)/ can be done in a similar way after com-

puting the commutator [ — J, ei2r]. But in this case we must further

compute [V*, P] . Thus we get the following expression for G12 (A ± xs)/:

(3. 3)

^C7*(A, e)

2x grad X- grad (C7*y,

2t7*(A, e) Re

9r )

19 + n-± ̂  .n (U* ̂  fi) ̂  (A ± .£)

\ or 2r

v A ± z s ± v A
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Now, let us show the following two assertions;

(3. 4) There exists a constant C which does not depend on A, £

(0<<2</l<&, 0<£<1) such that for an arbitrary /e L2, (3-£0)/2,

holds.

(3.5) For /eL2)(3_£ )/2, there exists a strong limit s-limGJk(i±ie)f
e -»0

=GJlf(^±iO)f in L2)(i,£0)/2, and GJk(l±iQ)f is an L2>(1+eo)/2-valued strongly

continuous function of

First we consider G12(A±*s)/. Let us first note that giz<*'*»> is

a continuous function of /Cj with its derivatives. The first term of the

right hand side of (3. 3) is easily seen to satisfy (3. 4) and (3. 5) , where

Gy f c(A±ze)/ is replaced with C/*(A, £)/, for U^(&, e) is just an operator

of multiplication by a function with the absolute value one. Hence we

have

II U* (A, £)/ 1| (1+£o)/2 = II /H (1+5o)/2< H/ll (3_£o)/2 .

By Lebesgue's convergence theorem, t/*(A, e)/->C/!t(A, O)/ in

as e— >0, and [7* (A, O)/ is strongly continuous for A>0 in L2j(1+£o)/2.

In veiw of Theorem 2, jR2(A±z*£) is a bounded operator from L2>(3_£o)/2

into L2>_(1+£o)/2, and by (2. 1) of § 2 we have

d>x , AX i)-1-8 (<y>2So),

9r
-2

where the constant C is independent of A, £ (a<CA<&, 0<C£<1)- Hence

we have the following inequalities for the second and the third terms.

+ AX_\ vl
r /

, £)

e) ̂  (A ± .
^c

Or

<C I I / H <,_.„,„,

where the constant C is independent of A, £ (<z<C^<A 0<£<C1)- Also
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we can easily see by Theorem 2 and Lebesgue's convergence theorem

that the second and the third terms converge in L2j(1+£o)/2 as e-»0, and

the limits are continuous functions of A^>0 in £2j(1+6o)/2.

We have by (2. 1) of § 2, 7X=0 for |x|<l and

<C(l+|.r|)~s where the constant C does not depend on A, £

0<e<l). Hence by Lemma 2.8 we have the following inequalities

concerning the fourth and the fifth terms:

dX I d
dr \dr 2r

X- d(U* (A, e) £2 (A ± ze)/) I 3_£o)/2 .

Also it is easy to see that the fourth and the fifth terms converge in

^2,(i+£0)/2 and the limits are strongly continuous function of A>0 in L2j(1+£o)/2

by Lemma 2. 8.

The sixth term can be treated in the same way by Lemma 2. 4 and

Lemma 2. 6.

Next we consider G21 (A ± zs)/. We have to note that the assertion

of Lemma 2.8 is also true for ^(/liz'e)/ in place of v(lC:f)=eiZ(x'K^

xR2(fC
2)f, because in this case we can take X=Q. So, we can treat

G21(/l±z£)/ in a similar way to G12(A±z"s)/. Hence by Theorem 1 of

§ 1, we can complete the proof. Q.E.D.

§ 4. Eigenfunction Expansions and the

Stationary Wave Operators

In this section, we consider the relation between our stationary wave

operator and the eigenfunction expansion theory developed by Saito

[12].
First we introduce some notations.

3)± = grad +



ON THE LONG-RANGE STATIONARY WAVE OPERATOR 611

Sp={xtER*:\x\=p}.

S71"1: the unit sphere in Rn.

Let us consider H2= — A + V(x), where V(x) satisfies the condition

(C) in § 2. Consider the solution

of (Hz — X)u=f (/eL2}(3_£o)/2, A>0) satisfying the radiation condition

The following Lemma 4. 1 plays a crucial role in the eigenfunction

expansion.

Lemma 4.1. ([11]). Let /eL2j(3._eo)/2. (1) There exists a

sequence {rm} of positive numbers diverging to infinity such that for

-. f Irm°k
r2

m •• f \S)± (eixu (I± *0:/)) 12^5^0,
JSr

where X is the same as in § 2, X=X (x9 ±

(2) There exists a strong limit

s-lim r,<r 1)/2 exp ( T »V -I r. + xX(r., •, ± /A ))(«(* ± *0 : /) ) (r, •
m-»oo

f;x Lz (iS
71"1) , where {rm} z's awy sequence specified in (1) . TAz*5

Z5 independent of the choice of {rm} .

Then, the following definition makes sense.

Definition 4.2. For A>0, and /eL2j(3_£u)/2 let 2r
2± (A) : L2j(3_eo)/2

2(5
n-1) be defined by

s-lim r£-»W» ^ (R2 (A ± iO)/) (rm - ) ,

0±(rm, A) = T J~Zrm + X(rm-9 ± VT), ^^ {^m} w a^y sequence

specified in (1) o/ Lemma 4. 1.
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Now, we can state the result of [12],

Theorem 4. ([12]). (a) For f, 0eL2,(3_,o)/2, A>0, the following

relations hold:

(4. 1) £F2±(A) 6EH(L2,(3_£o)/2: Z,,^-1)),

27TZ
(R2 (A + /O)/- #2 a - iO)/, g) .

(b) Le£ £F2± fe <fe/Zw*i *y (3*±f) W =%2±Wf, and let M = L2

X ((0, oo ) : L2(S
n~1)) be the Hilbert space of all L2(S

n~l) -valued square

integrable functions over (0, oo). We have £F2± eH(L2j (3_£o)/2: «^f) .

Moreover 32± can be uniquely extended to a partial isometry from

M onto M with the initial set E2jac^f (the absolutely continuous sub-

space for H^, which will be denoted by 3?2±. (Jfz± — Lz(R
n)) .

(c) For f9g^E2iacM and any bounded Borel function a (A)

defined on the real line, -we have

(a(H2)f, fir) =

'where by a is meant the operator of multiplication by the function

a (A). (This is a diagonal representation of H2) .

(d) The inversion formula holds for an arbitrary

/= s-lim 32± (A) * (£?2±/) (A) dl.

In the same way, we can define 3i± for H^—A, (In this case we

take J£=0).

Let us take a Borel set e contained in (a, b) (0<^a<^b<^oo) and

let % e(A) be the characteristic function of e. We can define a stationary

wave operator which is "formally" different from Wfk(e) we have

discussed in § 3.

Definition 4. 3. Let fifi (e) be defined by
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-where %e denotes the operator of multiplication by % e(A) in M«

The purpose of this section is to prove the following theorem.

Theorem 5. Wl (e) = J0£ (e) .

Proof. It suffices to show the following equality

(4. 2) (£/ (A) GR (A ± ,0) g, /) = (ff1± (A) </, ff2± (A)/) £!(SB-1}

for arbitrary /, gfeL2 j ( s_e f f l )/2 . Indeed, if (4.2) has been established, we

have only to integrate both sides with respect to A on £. Then we have

Taking into account that Z/2j(3_eo)/2 is dense in <_#, we can conclude that

W£(*)=ff?±x.ffi±.
Now, let us prove (4. 2). Let w = [7* (A, 0)^2 (A ± z'O)/, u = ^ (I ± z'O) g,

te; = J?1(ATiO)^. First we note the following lemma.

Lemma 4. 4. There exists a sequence {rm} tending to oo such

that for m-*oo

r;" f |«(^)|2J5^0, 7-2
ro-

E» f |5)±«|2J5
Jsrm

 Jsrm

r;- f b(^)|2^->0, r-8' f |0±tf|VS-
Jsrm

 JSrm

ri" f |n;(j:)|y5-»0, ^.- f |5),«;|y5
Jsrm

 J«rm

Proof. We have by assumption and Lemma 2. 2

f
JE,

Hence the assertion of the lemma readily follows. Q.E.D.
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Proof of Theorem 5 (continued) .

By Green's formula we have

dS
dr

f {(Av)V-v(Au)}dx = f (— u-v
J\x\<Tm Jsrm\dr

= f {(S)±rv)V
Jsrm

±2zVA f vudS,
Js7m

where {rm} is a sequence specified in Lemma 4. 4. Noting that

by Definition 4. 2 and Lemma 4. 4 we have,

(4.3) -i-lim f {(Av)u-v(Ali)}d
2ni rm-*°° J\x\<rm

Similarly by Green's formula

I {{Aw)u — iv(Au)}dx— I ( - u — w - )dS
J|a:|<rm J STm \ 9?' 9r /

- f
Jsrm

Hence by Lemma 4. 4, we have

(4.4) -i-lim f
2m rm-»oo Ji*!<r

Let us compute the left hand side of (4. 3) and (4. 4) . Introducing the

function

( 1 if NOm
Y — J

1 0 if \x\>rm,

and replacing A by — (.Hi— (A±z'e)) — (A±z's) , we have

(*„ J.R, (A ± f s) (7, C7* (A, e) £2 (A ± is)/)

- (x*R, (A ± *e) g , J (C7 J (A, s) R,
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- (%m#i (A ± x e) g, G12 (A ± is)/) - (%mg, E7* (A, e) £2 (A ± f e)/)

T 2ze (jul?! (A ± xe) g, C7* (A, e) £2 (A ± fe)/).

Letting £ tend to 0, we see R1(h±ie)g->v in H^. and C7J(A,s)

X-R2(A±fs)/-^^ in J/ioc. Hence we have

(4. 5) (%mj^, ^) — (%m^, Aii)

- (%m^i (A ± z'O) g, G12 (A ± iO)/) - (%mg, Z7* (A, 0) ̂ 2 (A ± /O)/).

Similarly,

(4. 6) (%mAw911) ~ (%mw, Au)

= (x»#i (A T f0) g, G12 (A ± fO)/) - (%mg, C7* (A, 0) ,R2 (A ± z'O)/).

Subtracting (4.6) from (4.5), we have

I r i f*
(4.7) I {(Av) u — v(Au)}dx I {(Aw)u — w(Au)}dx

2m J\*\<rm 2ni J\x\<rm

= i

Letting m tend to infinity, by (4. 3) , (4. 4) and (4. 7) , we have

(4. 8) (£/ (A) g, G12 (A ± £0)/) = (ff 1± (A) g, £F2± (A)/) Lt^.

By (1.7) of § 1, the left hand side of (4.8) is equal to (£/(A)

xG2 1(A±zO)g,/), which proves (4.2). Q.E.D.

§ 5. Remarks on the Short-Range Perturbation

In this section we consider the case in which V(x) has a short-

range part. More precisely, we assume the following condition:

(C)x/ V(x)=VL(x)+Vs(x), where VL(x) satisfies the condition

(C) in § 2, and Vs(x) is a bounded real function having the

following decaying order

|-1-8) as |

We denote by H$ the unique self-adjoint extension of — A + VL (x)

+ Vs (x) restricted to C0°° (IT) . Also we set Hj = - J, H2 = - A + VL (x) .
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It seems that the general theory of § 1 cannot be applied directly to

HI and Hz, because Lemma 2. 2, which is crucial to see that the assump-

tion (A-2) is satisfied, cannot be proved without assuming the differ-

entiability on Vs(x). So we construct the stationary wave operator,

which shows the similarity of HI and Hz, using the so called "chain

rule".

First let us prove the following theorem.

Theorem 6« Let e be a Borel set in (ayb) (0<<2<&<oo). There

exist stationary -wave operators W^(e)9 Wf^(e) having the following

properties.

(1) Wjjc (e) is a partial isometry with the initial set Ek (e)

and the final set Ej(e)M (j, k = 2, 3).

(2) (W/js(e)r = WfJ(e) U 4 = 2,3).

(3) HjWfr

Proof. We first note that Theorem 2 is also true for Hz= — A

+ VL(x) + V8(x) (see Ikebe-Saito [7]). Next in § 1 we take the

identity operator as U±(l, e), and £C+ = JK + =Z/2,<i+e0)/2, c#1_=Z/2j_(1+eo)/2.

By direct calculation we have for /^Z/2,(i+e0)/2

G32 (A ± »e)/= (Hs - (A ± is) ) ̂ 2 (A ± ie)/=

G23 (A ± *e)/= (H, - (A ± * e) ) R3 (A ± «)/=/- Fs (a;) ^?3 (A ± ie)/,

By Theorem 2, jR2(^±z£)/, ^3(/Litz£)jf converge in Z/2j_(1+£o)/2 as £ tend

to 0. Taking into account that Vs(x) =O(\x\~1~s), we can see that the

assumption (A-2) of § 1 is satisfied. So, by Theorem 1, we can construct

the stationary wave operators W^(e^)9 W}%(e) having the properties

stated above. Q.E.D.

We have already constructed the stationary wave operators Wfi(e)9

Ww(e) which shows the similarity of ^ and H2 in § 3. Now, define

W3l(e), WSGO by

(5. 1) W£ (f) = W& (e~) W£ (e) ,

(5.2) Wr3(«)=W5(e)WS(e).
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Then it is easy to prove the following theorem, in view of Theorem 3

and Theorem 6.

Theorem 7. Wfl(e), Wf3(V), defined above, have the following

properties.

(1) Wfk(e) is a partial isometry -with the i?iitial set Ek(e)S£

and the final set Ej (e)

(2)

(3)

Next let us outline the idea of Ikebe [5] concerning the short-range

perturbation of the eigenfunction expansion. In § 4, we have already

explained the construction of the operator £F2± (A) e H (Z/2j (3_eo)/2 : Z^ (571"1) )

associated with H2 = — A + VL (X) . But by Theorem 2 and the formula

(4.1)

(32± Wf, £F2± (A) g) ,,<„.,, = -^ (R2 (A + »0)/- R2 ( A - zO)/, flf) ,
-67TZ

which is valid for /, geL2)(3_£o)/2, we can uniquely extend 2r
2±W as a

bounded operator from L2>(i+£o)/2 to Z/gC'S'""1). We use the same notation

for this extension. Since FseH(L2,-(i+£o)/2: -kz,u+e0)/2) » which is easily

seen by the condition (C)x', the following definition makes sense.

Definition 5S 1. S,± (A) - ^2,, (A) (1 - V8R* (A ± £0) ) /or

When we set (£Fa±/) (A) =ff a ± (A)/ for /eL2,o+ffl)/2, £F3± can be

uniquely extended to a partial isometry on J/T with the initial set Es>acM

(the absolutely continuous subspace for H$) and the final set L2((0, oo) ;

Ls^71"1)), where we also use the same notation for the extended

operator. Then we can get the spectral representation associated with

Hz with the aid of 5'3±. See for the details Ikebe [5].

Now, we can define the stationary wave operator by the spectral

representation as in § 4.

Definition 5. 2* Let J2J (e) , J2£ (e) be defined by
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-where by %e is meant the operator of multiplication by the function

x.W.

Then we can prove the following theorem.

Theorem 8. W£ (e) = flg (e) .

Proof. As in the proof of Theorem 5, we have only to prove the

following equality:

(5. 3) (£,' (A) G32 (A ± zO)/, </) - (£F2± (A)/, £F3± (A) g) i2^,}

for /,

By the resolvent equation we have

, 9
2m

*e) (H9 - (A ± ze)) R2 (A ± *e)/, i

ze) F5^2 (^ Tfe) ̂ ?2 (A ± ze)/, gf

Letting £ tend to 0, we see by Theorem 2

(£/ (A)G32(A±zO)/, g) =

- , iO) g
2?rz
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But by (4. 1) of § 4 and Definition 5. 1, the right hand side of this

equality is rewritten as

(£F2± Wf, £F2± (A) g) £l(8..,, - (SF2± (A)/, £?2± (A) VSR, (A ± *0) g) L,(a..,,

= (?2± (A)/, £?2± (A) (1 - Fs£3 (A ± zO

which proves (5.3). Q.E.D.

Since 2r
2± is a unitary operator on E2}ac^f onto L2((0, oo) : L2(S""~1)),

we have

^ (e) ̂  (e) = £F3*±Xe£F2±£?2*± J^i±

By this fact and Theorems 5, 6, 7 and 8, we can easily get the follow-

ing theorem.

Theorem 9. W£ (e) = flg (e) .

Appendix8 An Estimate Concerning the Radiation Condition

In this Appendix we prove Lemma 2. 2.

Let we C50 (IT) and let /= (- J-f V(x) -/c2) u, K<=K±. We put

v = et*u. Then v satisfies the following equation,

(6. 1)

where A denotes the Laplace-Beltrami operator on the unit sphere. We

can rewrite this equation as follows,

(6.2) -^J^ r
2r \ or
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where V(x)=V (x) + J^T1)^"3) .
4r2

Let us put </$(•*:) =a(W)(l+|x|)w-1, where /9 = (1 - 6.) /2 and a (r)

is a C'-function on (0, oo) such that 0<a(r)<l, a'(r)>0 and

0

1 (r>2).

Then we can prove the following identity.

Proposition 1.

r 2

-Re (
J 9r

-Re 2ii f 0 S
J y

9r

Proof. Let us multiply both sides (6. 2) by (/>£)rv, and integrate

by parts and take the real part. Then we can get this identity. (See

for the details Ikebe-Saito [7], Lemma 2.2.) Q.E.D,

Now, we shall estimate the last three terms of the right hand side

of (6. 3) . For this purpose, we introduce other identities.

Proposition 2* For a real C^-f unction A(x) , we have

(6. 4) Re 2i {$Av®^vdx= -Re— -
J /Ci J 9r

-Re-L ^v^^-
K! J 3 dxj
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dr

[<!>Ave-iZfdx
ICi J

Proof, By (6. 2), we have
_

(6.5)
2r

dr2 r2

Multiplying both sides by (pAv and integrating by parts give the follow-

ing identity:

J [<t>Av3)rvdx=-
J dr

(<i)A\$)v\ *dx

dr

9r

{(j>Ave-txfdx

^v 2-i sJjVax,
j dxj

Let us take the real part of this identity. Then (6. 4) follows.

Q.E.D.
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Now, we use the notation [J] for the sum of the any of the follow-

ing integrals:

f 0(\x\2*-2-d)\v\2dx, f
J|x|>l J|*|>

f 0(\x\**~*)\S)v\*dx9 f
Ji*i>i Ji*

f OQxl^-^CDjvfdx,
V J|3?|>1

where O(\x\d) means a function which behaves like \x\d as |x|->oo.

Proposition 3»

(6. 6) Re / f 0 (^L + J^L] vQ^vdx
J \ or* r2 i

„ i tJd*X , AX\ ^ dX= Re_ U -^ + __^W;^_ —
id J \ 9r2 r2 / / 9^-

Proof. Let us note that

Then (6.6) follows from (6.4), if we put A = -
r r

Q.E.D.

Proposition 4«

(6. 7) Re 2f f 0 £
J j

P / f, ^dX= Re— US- —
K! J y 9^

-Re2^f f^J
^! J y 9 :̂̂ dr

K1 J dr
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dX
Proof. Let us multiply both sides of (6. 5) by <p ^ WjV, inte-

grate over jR", and take the real part. We have then

fa ^ T> - f^^dX m 7n~s v ^^dx a~—(6.8) Re IK, \ (j) 2_J WjVWrvdx = Re I 0 2J

J j dxj 3 dr

j j dxj J \ dr2 r2

Integrating by parts and using the relation

(/ /pi (/ xn

dxk oxj \ 2r

we have the following expression for the first term of the right hand

side of (6.8):

(6. 9) Re U H-^
J J dxj oxk

iic L^l^
J j dxj dr

Combining (6. 8) and (6. 9) , we can see that (6. 7) holds. Q.E.D.

Now, we can estimate the right hand side of (6. 3) .

Proposition 5. The follozving inequality holds:

(6. 10)

ivhcre C is a constant -which docs not depend on u^C"(Rn) and

Proof. Let us denote the j-ih term of the right hand side of (6. 3)

by /,,. By Propositions 3 and 4, we have

1 ^2 • I „
l~-l 0

/ui J or
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K̂! J Or

Hence, we have

{ /» o Y"
Re 2* Uv^^

J 9r

,0 2z f , x-, 9-X^ /D 9-XT _ 7 , 1 f f 9-X" i /A 1 2 7 1
+ Re - 01]- — 5)yw-r— v^+— U-T- — \9)v\*dx\.

K! J / 9 :̂.; 9r /cx J 9r J

We denote the right hand side of this equality by [J"] +77. Let us
9J£put ^L = - in (6.4). Then we have
9r

dr or

dr

Hence by Schwarz' inequality, we can estimate [«/] +/7 from above as

follows:

(6. 11) [J] +/T<C(H|J_1

By our assumption we have for

9r r

So, we can estimate the left hand side of (6. 3) from below as follows.

(6.12) •^||^||J..,-C||a)w||J1.1<(the left hand side of (6.3)).
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Further for an arbitrary £>0, the following inequality holds.

(6. 13) /I+

Summing up, we can see by (6. 3) , (6. 12) and (6. 13)

(6. 14) ||^||U2<C(||/||U + Nll^-f \\3)v\\lJ +/6 + 77.

From (6.11) and (6.14), we can get (6.10). Q.E.D,

Proposition 6* The following inequality holds:

(6.15) \\®^.*<C(Ml-i+\\n^>
where v — eixu, weC5°(Hn)5 <zra<^ £&e constant C does not depend upon

Proof. By Sehwarz' inequality, we have by Proposition 5,

II^IIS.*,<C(||tf||5_i+ll/lli+i+l^i'IIJ-./s.*I + *.Il|i'IIS-./0.
Let us recall the inequality in Lemma 2. 4 of § 2, that is,

*,fIMIJ<C||/||J+1.
which can be proved without using Lemma 2. 2. Hence we have

From this, taking R sufficiently large, we have

(6. 16) !|3MU1<C(H|^1+ ||/|||+1+ \\SlvllJ.

By Ikebe-Saito ([7], Lemma 2.1), we have

(6.17) II^H^^CdlvllS-i+ll / l l^) .

Taking into account of (6. 16) and (6. 17) , we can prove (6. 15) .

Q.E.D.

Proof of Lemma 2.2. By Theorem 2 of § 2 H|J-l<

hence we have the following a-priori estimate

(6.18) \\®v\\}.
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for v = eixu9 WEE Go00 (IT) K^K±.

Extension of (6. 18) to the general case can be treated in the same

way as Ikebe-Saito [7] using the fact that the set { (H— /C2) u: u e C? (IT) }

is dense in Z/2>(3-60)/2, so we omit the details. Q.E.D.
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