Wave Front Sets and Singular Supports of Convolutions

by

Gunter BENGEL*

§1. Introduction

In the theory of convolution equations one uses the equation (1.1)co sing supp (T*S) = co sing supp T * co sing supp S where T and S are distributions with compact support, sing supp means the singular support and co means the convex hull. However this is only true under additional conditions, e.g. if supp T or supp S consists of a finite number of points [4] or if T is the characteristic function of a compact convex polyhedron [1], but if T is the characteristic function of a ball there is a distribution $S \in \mathcal{E}'(\mathbb{R}^n)$ such that (1.1) does not hold [1]. This occurs also if T is the characteristic function of a convex compact set with smooth boundary [2]. We will give a necessary condition on T such that (1.1) holds for any $S \in \mathcal{E}'(\mathbb{R}^n)$, from which follows that (1.1) does not hold for some S if T is the characteristic function of a compact set with smooth boundary (not necessarily convex). A counterexample shows that our condition is not sufficient. Details will appear elsewhere.

§ 2. Convolutions and wave front sets

We need the notion of the wave front set of a distribution introduced by Hörmander [5]; for details we refer to this paper.

Definition 2.1. $WF(T) = \bigcap \{\gamma(A); AT \in \mathscr{C}^{\infty}(\mathbb{R}^n)\}$ where A runs over all properly supported pseudodifferential operators of order O

Received September 13, 1976.

^{*} Mathematisches Institut der Universitaet, Roxeler Strasse 64, 44 Muenster, W. Germany.

and $\gamma(A)$ denotes the characteristic set of A.

WF(T) is a closed conical set in $\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\})$ whose projection on the first coordinate is the singular support of T. It can be calculated by Fourier transform in the following way.

Proposition 2.2. $(x, \xi) \notin WF(T)$ iff there is a function $\varphi \in \mathcal{D}(\mathbb{R}^n)$ with $\varphi(x) \neq 0$ such that for any integer N there exists a constant C_N with

$$\hat{\varphi T}(\eta) \leq C_N (1+|\eta|)^{-N}$$

for any η in a conic neighborhood of ξ .

Examples: 1) Let \mathcal{Q} be an open set with smooth boundary, T the characteristic function of \mathcal{Q} . The singular support of T is $\partial \mathcal{Q}$, and one sees easily that the fibre of WF(T) over x consists of the vectors tn, n the normal to $\partial \mathcal{Q}$ at x and $t \neq 0$ real.

2) Let T be the distribution defined by

$$T(\varphi) = \lim_{y_1 \to 0^+} \int \frac{\varphi(x_1, \cdots, x_n)}{x_1 + iy_1} dx_1 \cdots dx_n \quad \varphi \in \mathcal{D}(\mathbb{R}^n)$$

We have $WF(T) = \{(x, \xi); x_1=0, \xi=t(1, 0\cdots 0), t>0\}.$

The first example can be calculated by means of deriving T in directions tangential to $\partial \Omega$ at x and applying the definition, the second follows from Proposition 2.2. It follows also from [3]. With these preparations it is now easy to prove

Proposition 2.3. Let T,S be distributions with compact support then we have for the convolution T*S

(2.1)
$$WF(T*S) \subset \{(x+y, \hat{\varsigma}) \in \mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\});$$
$$(x, \hat{\varsigma}) \in WF(T), (y, \hat{\varsigma}) \in WF(S)\}.$$

This is a consequence of Theorem 2.5.14 [5], but can also be proved directly in a simple way by using Proposition 2.2 and a suitable partition

of unity.

From this we deduce now our necessary condition

Proposition 2.4. Let T be a distribution with compact support such that the equation $(1 \cdot 1)$ holds for any distribution S with compact support, then the fibre of WF(T) over every extreme point x of cosing supp T has to be all of $\mathbb{R}^n \setminus \{0\}$.

If there is a $\xi \in \mathbb{R}^n \setminus \{0\}$ with $(x, \xi) \notin WF(T)$, we can suppose $\xi = (1, 0 \cdots 0)$. Take S to be equal to ψS_1 where S_1 is the distribution from Example 2 and $\psi \in \mathcal{D}(\mathbb{R}^n)$, $\psi(0) \neq 0$. The inclusion (2.1) shows that $(x, \eta) \notin WF(T*S)$ for all $\eta \in \mathbb{R}^n \setminus \{0\}$ so $x \notin \text{sing supp } T*S$.

Corollary 2.5. If T is the characteristic function of an open bounded set with smooth boundary then there is a distribution $S \in \mathcal{E}'(\mathbb{R}^n)$ such that (1.1) does not hold.

Corollary 2.6. Let T, S be distributions with compact support for which (1.1) holds, then for every extreme point $z \in co$ sing supp (T*S), there are extreme points $x \in co$ sing supp T, $y \in co$ sing supp S and $\xi \in \mathbb{R}^n \setminus \{0\}$ such that $(x, \xi) \in WF(T)$, $(y, \xi) \in WF(S)$.

§ 3. A counterexample

Let $\{\eta_k\}$ be a sequence of points which is dense in the unit sphere of \mathbb{R}^n , $t_j = \exp 2j$, $E = \{\eta \in \mathbb{R}^n; |\eta| = \exp(2j+1), j=1, 2\cdots\}$ and $\xi_j^k = t_j \eta_k$. Theorem 5.2 of [4] shows that there is a continuous function f_k with support in the unit ball such that sing $\operatorname{supp} f_k = \{0\}$ and $|\xi_j^k| \hat{f}_k(\xi_j^k)$ does not converge to 0 when $j \to \infty$ but

$$\sup\{|\hat{f}_k(\zeta)||\xi|^N; \xi \in E, \zeta \in \mathbb{C}^n, |\zeta - \xi| \leq m \log|\xi|\} < \infty$$

so that f_k is not slowly decreasing. By a Baire category argument one shows that there is a continuous function f with compact support, sing supp $f = \{0\}$ such that $|\xi_j^k| \hat{f}(\xi_j^k)$ does not converge to 0 for $j \to \infty$, which means that $(0, \eta_k) \in WF(f)$ for all k, and such that \hat{f} is not slowly

GUNTER BENGEL

decreasing. Since wave front sets are closed $WF(f) = \{(0, \xi); \xi \in \mathbb{R}^n \setminus \{0\}\}$ and since \hat{f} is not slowly decreasing, there is a distribution S with compact support, $S \notin \mathcal{D}(\mathbb{R}^n)$ such that $f * S \in \mathcal{D}(\mathbb{R}^n)$.

References

- Berenstein, C. A. and Dostal, M. A., Some Remarks on convolution equations, Ann. Inst. Fourier 23 (1973), 55-86.
- [2] Berenstein, C. A. and Dostal, M. A., A lower estimate for exponential sums, Bull. Amer. Math. Soc. 80 (1974), 687-691.
- [3] Bony, J. M., These proceedings.
- [4] Hörmander, L., Supports and singular supports of convolutions, Acta Math. 110 (1963), 279-302.
- [5] Hörmander, L., Fourier integral operators I, Acta Math. 127 (1971), 79-183.