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§ OB liUroductiou

Let {Q(x)} be a random process with stationary independent incre-

ments. We consider a second order differential operator L defined by

dx .
dx

Let jV(A, /) be the number of eigenvalues not exceeding A for a certain

boundary value problem of the operator L in the interval I. We define

the spectral distribution function of L by

if it exists, where I\ is the length of /.

The operator L has been used as a Schrodinger operator describing a

motion of an electron in a one-dimensional random array of atoms (cf. M.

Lax-J. C. Phillips [1], L M. Lifsic [2]). We are concerned with the study

of asymptotic properties of -ZV(A) at the edges of the support. One in-

terest is in making clear the influences caused by the randomness of

potentials. One of them is the exponential decay of N(X) at the left

edge, which was shown by many authors for various potentials (cf. H. L.

Frisch-S. P. Lloyd [3], M. M. Benderskii-L. A. Pastur [4], [5], T. P. Eggarter

[6] ) . L. A. Pastur [7] is a survey written mainly from mathematical

points of view and gives us good informations about the problems arising
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from random differential equations.

The author, suggested by H. L. Frisch-S. P. Lloyd [3], has succeeded

in developing their results to obtain a sharper estimate of AT(A) at the

left end point. The purpose of the present paper is to give a complete

proof of a formula obtained by H. L. Frisch-S. P. Lloyd [3] for potentials

belonging to a slightly wider class and to obtain the estimate of -W(A)

by analyzing the formula on the pure imaginary axis. In the proof of

the formula, the author was given valuable suggestions from M.

Fukushima-S. Nakao [8]. Further the author would like to remark that

S. Nakao [9] has obtained satisfactory results in several dimensional case

by making use of the result of Donsker-Varadhan on "Wiener sausage".

Now, we explain the content of this paper. In § 1, as a preparation

for the latter sections, we shall prove some properties relating to the

zeros of eigenfunctions of a generalized differential operator

dx

In § 2, we shall prove the ergodic property of the solution of a Ricatti

equation with a random coefficient

where /l^>0 and Q is a process with stationary independent increments

[Theorem 2.5]. With the help of this theorem, the Rice formula and

the Frisch-Lloyd formula will be proved [Corollary 2.6 and 2.8]. In

§ 3, we restrict ourselves to the case when the process Q is increasing

and express the spectra N(X) in a simpler form [Theorem 3.2]. In §4,

applying this form, we shall obtain the main result for the asymptotic

behaviour of N(£) at the origin [Theorem 4.7]. In § 5, we shall give

an expression of the spectral distribution A^(A) of an equation

d dcp _ _ ,
dM dx

where M is an increasing process with stationary independent increments.

In § 6, we shall give a comment on the spectral distribution of an equation

defined on the whole line R1.
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§ 1. On the Behaviour of Zeros of Eigenfunctlons of Generalized

Second Order Differential Equations

First of all, let us introduce necessary notations and terminologies.

Let [<z, 6] be a finite closed interval. We denote /<G V[a, 6], if / consists

of a function f(x) of bounded variation in [a, 6] and two additional

numbers {f(a — 0) ,/(& + 0)}. To any /GE V[_a, 6] , a complex measure df

corresponds in such a way that

[ df= the usual one in (a, 6) ,

1 df(a) =f(a + 0) -f(a - 0) , df(K) =f(b + 0) -f(b - 0) .

We remark here that it is possible to define g(x) =$l(LtX^f(y)dQ(y) <^

V|>,6] for any QeEV[>,6] and /eL'fl dQ\, [>, 6]) if we put gr(a-O)

= 0 and (7(6 + 0) =JCai6D/(y)dQ(y).

Let M. and Q&V[a, 6], Throughout this section we assume that

£^M defines a nonnegative measure and dQ defines a real one. We denote

the right (left) derivative of a function / at x by f+(x) (resp. /" (x) ) .

Put

D[a, 6] = {/eC[<2, 6]; there exists an f^ GE V[a, 6] coinciding with

f+(x) for every x^\_a,b) and the measure df+ —fdQ is absolutely

continuous -with respect to dM and its density belongs to L2(dM,

\a,b-\).}

Dtt.f\a,b']={f<=.D[a,b'\; /(a)cos a+f+(a-Q)sin a = Q, /(6)cos/9

+/+ (6 + 0) sin/3 = 0.}.

It is not difficult to see that any element of D\_a, U\ is absolutely con-

tinuous with respect to the Lebesgue measure in [a, b~\ and has the left

derivative at each point in (a, b~\ . Let L denote an operator defined by

dM

for f£=.D\_a, b~\. Let <pa(x,X) and </)f(x,X) be solutions of the following
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integral equations

(1-1) (pa(x, ;t)=-Sma + (x-a)cosa+ (x~~y}(pa(y,
J[a,x]

-A f (x-y)9a(y,tidM(y),
Jia, <]

0*(*,A) = -sin/9+(;c-i)cos/9 + f Gy-*)0*(
Jc^,&]

-A

It is easy to see that these functions may be determined as the unique

solutions of the following equations respectively

(L(p = Xcp, cp (a) = — sin a, <p+ (a — 0) = cos a,

= -sin ft 0+ (6 + 0) -cos/?.

Here we note the well-known identity between those functions of

Dj>,6].

Lemma 1.1. Let f, g<^D[a,b~\ and let c, d^\_a,b~\. Then we

have

{ {Lf(x} g (x) -f(x) Lg (x) } dM(x)
J[C±0,d±0]

= lf(x) g+ (x) -f+ (x) g (x) ] £• ,

-where [c + 0, rf + 0] = (c, rf], [^ — 0, ^f— 0] = [c, J) ^zw^ 50 on.

The following comparison relation between zeros of solutions will

be very useful 1.

Lemma 1. 2e Let (p, 0 be nontrivial solutions of L(p — X(p, Z/0 = /*</>

/;z (x^x^). Suppose 0(^0 =^(^2) — 0 ^^^ 0 ^^ ^o zeros in (xly x^) .

If &^>jU, then either cp has at least one zero in (jcl9 x2) or <p is a

constant multiple of 0 in (x^x^). Here the latter case occurs only

if X=/J. or dM=0 in (x^ xz} .

Proof. In Lemma 1.1, substituting c—x^ d = xz, f=(p and ^ = 0,

we have

(1-2) W -A) f ^
JCari.^s)
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where we have used the assumption ([i^x^ =^^2) =0. Since 0 has no

zeros in (jtj, x2), we may assume 0(.r)^>0 for any xE^^x^x^. Then

we have

(1-3) 0"O2--0)<0 and 0+(^i + 0)>0.

For at any fixed point x^ it is impossible that 0(.£) and 0±(x) vanish

simultaneously.

Now we consider the two cases separately.

1°) Either X=/JL or dM=0 in (xl9 xz} . Then from (1-2) it follows

that (p(xz}(l)+(xz — 0) =(p(x^^ (X + 0). Noting (1-3), we see that either

<p(xi) = (p(x2} = 0 or (p(xi)tp(x£) <0 holds. Since under the condition

1°) (p and 0 satisfy the same equation, the first case implies that (p is

a constant multiple of 0. In the second case, from the continuity of cp

we see that there exists at least one zero of (p.

2°) ^>/jt and dM=Q in (x^ x^) . Suppose (p has no zeros in (jcl9JCz),

hence assume (p(x)^>0 for any x^(xl9x^). Then from (1-2) we have

which implies (p(xz)<^0. This contradicts the assumption cp(x)^>Q in (x^

Xz) . This proves the lemma.

Since (pa(x,K) is a solution of L(p = h(p7 the set of zeros of ^a(j:, A)

in \_a,b~\ has no accumulating points. Let rn(a, A) be the n-ih zero from

the left end point a of [a, &], where ;z = l, 2, • • • . We denote the support

of dM by FM and put

(1-4) a0 = inf jP^- , £0 = sup JF1^ •

Let <pa(x) be (pa(x, 0) and let {j:1? ••• xnj be the set of zeros of (pa(x)

in [a, a0]. Then it is obvious that every solution (pa(x, A) has the com-

mon zeros {jcl9 jcz, •- xn^.

Proposition 1. 3.

(1) Iffc>/t9 then rn(a, A)^rn(a, //) /or ;/ = !, 2, • • • . Moreover rn+no(a,

X) =rn+no(a, /i) holds for some ?2^>1 z/ and only if there exists a

sequence {ak}l=1 such that
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fa* = r/fc+n,, (a, A) for R\ k = 1, 2, • • • n ,

IF^ n IX ^»] C {a0? 0i, 02, • • • an}.

and theer exists a nontrivial solution <pa of the equation

d(p+ = cpdQ in [a, an~\

cp (a) cos a -f $?+ (a — 0) sin a — 0(1-5)

(2) rn(<2, A) is continuous in /I /or every fixed a.

Proof. First we consider the case n~\. Let £ = rno+i(a, A) and

97 = rno+i (<2,/*). Suppose £>??. In Lemma 1.1, substituting c=a, d — y,

f(x)=(pa(x,X) and Q(X) =<pa(x, j u ) , we have

(1-6) (A-//) <pa(x,
Jl>o.*)

here we have used the facts that (pa(a, A) =cpa(a, jU) — — sina, (pa
+ (a — 0, A)

= ^a
+(a — 0, /O =cosa, <pa(jl,ti) —0 and dM=0 in [a, <z0). Once we have

obtained the identity (1-6), the situation becomes quite similar to the

one of Lemma 1. 2, so we stop going into details.

Next we consider the case ri^>\. It follows from Lemma 1.1 that

rno+n(a,/0<rno+n(a5/&). Suppose rno+n(a, A) =rn^n(a,/i). Put ak =

^no+fcC^/O for k = l, 2, "•n. Unless (pa(x,X) is a constant multiple of

(pa(x, IJL) in (an_ l5 an), rno+n(a, A) <rno+n(a, //). Hence it is necessary that

<pa(x, A) and cpa(x, //) are lineary dependent in (an_i, an) and dM=Q in

(an_i, <zn). Consequently we have r^+n-^a, A) =rno+n_i(a, A). Continu-

ing this argument until n = 1, we may prove (1).

Now let us prove (2). If a=Q (modTr), then ^(a, A) =a for every

A, hence the continuity is trivial. So we may suppose a^O (mod TT) .

First we consider the case when

a, A) <r2(a, A)<-<rn(a,

For brevity we put <pi(x) =(ptt(x,K) and rfe (A) = rfc (a, A) . <^+(.r) is con-

tinuous at each point r fc(/l). This is because we have

Therefore for any fixed sufficiently small £>0, ^ in [rfc (A) — e, rfe
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and q>i in (r f c(A) , r fc(A) +e] have different signs. Since <pM(x} converges

to <p]i(x) uniformly in [<2, b~] as #-»A, there exists (J>0 such that for any

/JL satisfying \JJL- ^|<ff, ^(j:*)^(y*)<0 holds for some .rfc<E [rfc(A) — e,

r/e (/I) ) and yk e (rfc (A) , rfe (A) + £] • Hence (p^ has at least one zero in

\SkW — £, ffc(A) +e] for every #, |/j — A|<fl. Again from the continuity of

<p^ (x) at rfc(/l), we may assume that cp^ (x) does not vanish in [rfc(/l) — e,

?kW + e]. On the other hand, it is easy to see that <^+(<^J«~) also con-

verges uniformly to <^+(resp. <^~). Hence ^^(x) have the same sign as

<p^ (x) for every x^ [rfc(A) — £, rfc(/l) +e] for ^ = 1, 2, •••». Hence rfc(/i)

— r f c( /^)j<£ for every /JL such that |A — ̂ |<ff.

In case rn(7) =6, we have only to extend the measures dQ and dM

to a closed interval including [a, &] in which (pa(x, A) has more than TZ + !

zeros. Then the problem may be reduced to the above case. This com-

pletes the proof of (2).

Since (pa(x,%) and (pa^(x, /I) do not vanish simultaneously, we may

define

Va(x, A)

as a function taking the values in Rluoo.

Lemma 1.4. As far as cpa(x,k) dose not vanish, ive have

(dza(x) =za(xJdx
(1)

(za(a — 0) =cot a ,

(2) z«(x) is continuous at rfc(o:,/I) and

za(rt(a, A) -0) = +00 , ^a(rfr(a, A) +0) = - oo .

Proof. (1) ma)^ be proved by easy calculations. As for (2), we

note that (pa
+(x, A) is continuous at the zeros of (pa(x, yl), which was

proved in the argument in Proposition 1.3. Hence za(x) is continuous

at rfc (oc, A). The last equalities are obvious, so we omit the proof.
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Proposition 1. 5*

(1) // 0^a</?<7r, then rn(a, A)<rBGU)<rn+1(a, A).

(2) tn(a, A) z°5 continuous in ae[0, TT).

(3) rn(7T-0,A)=rn + 1(0,A) for n = I,2, -.

Proof. We restrict a and /9 to [0, TT) in the following argument

and for brevity denote rn(a) = rn(<2, /I). First it should be noted that

in any subinterval of [a, &], (pa(x, A) and <^(.r, A) are linearly independent

if <2=^/?. This is because every solution of L(p = k<p is uniquely determined

by the values {^(^),^±(r)} at arbitrary fixed point c^\ajb'\. Hence

from Lemma 1.2, there exists at least one zero of (pa(xyk) between two

successive zeros of <^(.r, A) and vice versa. Hence in order to prove (1)

it is sufficient to verify ri(oO<ri(/?). If a = 0 and 0</?<7T, then 0 =

f i (<2) <fi (/?) , which proves (1). Suppose 0<<2</?<7T and put ff(.r) =

za(x) — z0(x\ SQ = cot a — cot /?. Then from (1) of Lemma 1. 4 we have

*) - {Za (X) + ̂  (X) } d (X) dx

Hence we see

(1-7) 8 (x) = dQ exp J £(*a (y) + ̂  (y) ) JyJ ,

as long as both cpa(x9K) and cpp(x,K) do not vanish. Since 8Q^>0, we

have by (1 • 7)

(1-8) *«

Suppose rt(a) >ri(/5). Then combining (2) of Lemma 1.4 and (1-8),

we have

^) -o) = +00 ,

which is a contradiction. Consequently, noting ^a and <pff have no common

zeros, we see ri(aXfi(j9). This proves (1).

Let us fix ae[0, TT). Suppose rn(a)<rn(j9) for some /?G (0, TT).

Because (pa(.
x,^) may have as many zeros as we need by extending the

measures d'Q and JAf appropriately, this assumption becomes no restric-

tion. From (1), we have rn(^ + 0)^rn(a). Since <pa(x9 A) is continuous
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in O, a), we have <^a(rn(a + 0), /Q =0. Suppose rn(a + 0) >rn(a).

Then there exists only one zero of (p^(x,X) in (rn(a) , rn(a + 0)), which

is equal to rn(/J). This contradicts the fact rn(a + 0)<rn(/3). Hence

rB(a + 0) = rn(aO- We may prove also rn(a — 0) = rn(a) for «>0. This

proves the continuity of rn(a).

In the inequalit}^

rn(aO<r»G9)<rn+1(a),

for 0<^a<$<7r, letting /?->7T and <z = 0, we have

Since rn(7T — 0) is a zero of ^0(-^>^), we have necessarily rn(n — 0)

^"7.^-1(0). This completes the proof.

Definition 1.6. TTze />a/r (L, -Da,^[a, &]) Z5 5azW ^o Aaz;e the

prope?'ty if FM consists of finite elements and the equation

d(p+ = cpdQ in [a, b~\

cp (a) cos a -h (p+ (a ~ 0) sin a = 0
(1-9) I

(p (b) cos j9 + cp+ (b + 0) sin 0 = 0

^ (p (x) = 0 ybr every x e F^-

a non trivial solution.

Let Jai /s(A) be the Wronskian of ^Pa(j:, A) and (/># (JT, A) , namely

^«,/?U) =(lJ(}+ (a — 0, A) sin a-{-(/jft(a, A) cos a

Proposition 1. 7* (L, Da,$[a,b~Y) has the EQ- property if and only

if ^a,£ — 0. Moreover this is equivalent to that ( p a ( x , X ) =Q, a.e. dM

in [a, &] a;zJ Ja t /9(A) —0 /o?^ 5om^ (or every) L

Proof. In Lemma 1. 1, substituting/^) =(pa(x, ^), (70*0 =<pa(
JC, /j),

= a and d = b, we have

(1-10) /0 f ^ (^,^) ̂  (^,
Jra,&i
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Suppose Ja.0(/l) =0 identically. Then by the definition of Ja>/J, we have

(1-11) ^a(M)cos£ + pa
+(* + 0,A)sin/3 = 0.

Combining (1-10) and (1-11), we have

f (pa (X /O (Pa O, /O dM(x) = 0
JCa,&]

for every /I, /JL. Hence we see (pa(x, /I) =0, a.e. dM in [<z, &] for every L

In particular, putting (p(x) = (pa(x, 0), we see that ^ satisfies (1-9).

Since (p is nontrivia], this is possible only when FM has no accumulating

points in [a, b~\ . Hence FM should be a finite set.

Conversely assume (1 • 9) has a nontrivial solution (p. Then for any

A, we have

d(p+ = <pdQ — lydM .

Noting (p(x) and <pa(x, A) satisfy the same boundary condition at a, we

see that there exists a constant C depending on A such that (pa(x, /I)

) holds for any x^\a,b~\. Then we have

= 0,

which completes the proof.

For simplicity, we denote

(pQ (x) = (pa O, 0) , 00 (x) = fa (x, 0) .

Define

V(x, y) = - — — - {<p, (x) 0o (y) ~ <^o (y) 0o (^) } ,
^«,^(°)

except for the case Jai/3(0) 7^0.

Lemma 1. 8* Suppose Jtti/s(0) =£0. Then <pa(x, A) ^/z<^ ^C^, A)

/5/y M^ integral equations
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„(x, A) =<p*(.x)-l f V(x, y)^(y, A)dM(y )
Jra, a:)

(1-12)
„ O, A) = 0o O) + A F (x, y) fa (x, A) rfM(y).

J (•*",&!

Moreover (pa(x,k) and c/>/?(.r, A) have the estimates

(1 • 13) I <^« (.r, A) | <CC cosh (c (jc — ̂ 7) 7V/+ (jc) ] A|)1/2

100 (^r, A) | <;C cosh (c(b-x}M- (x) | A|)1 / 2 ,

-where M+ (x) = Jr-a>;r)J.M(y), M_ (j:) =J(Jf6]rfM(y) a^^ C is a constant.

Proof. (1 • 12) is easy to verify, so we omit the proof. Noting

we have

for every .r, 3/e[a, &]. Then referring to I. S. Kac-M. G. Krein [10],

we may obtain the inequality (1-13).

Definition 1-9. The pair (L, Datff[a, &]) is said to have the
Ei-property if FM consists of finite elements and the equation

(1-14) d<p^(pdQ in [fl ,f t]

{cp (a) cos a + cp+ (a - 0) sin a} {cp (b) cos ̂  -f- ̂  (b + 0) sin #} = 0

V (a) cos # -f- ̂ + (^7 - 0) sin a} + V (*) cos /? + ̂ + (b + 0) sin /9}

^•UO-0, /or

a solution.

Proposition 1. 10. The entire function Aa<fi has no zeros if and

only if (L, Da<(i[a, bj) has the Er property. Moreover this is equivalent
to that either (pa(x,K) or 00 (.r, A) is equal to zero, a.e. dM i?i [a, b~\

for some (or every} \ and Aa,$ is nontrivial.

Proof. From Q-13), it follows that J t t l /j(A) = — (pa(b, A) cos /? —
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, A) sin /? is an entire function of order at most 1/2. Hence accord-

ing to the Hadamard factorization theorem, Aa<$ has no zeros if and only

if Aa>& is a nonzero constant d. Without loss of generality, we may assume

sin /?=7^=0. Then we have

-~<pa(b, A) cot 0 .

Hence from the identity (1 • 10) , we have

(I- jU) <pa(x, X)<pa(x, fi)dM(x) =d cosec #[>«(*, fj) -(pa(b,
JCa,6]

for every A, /J.. Putting jtt = I, we have

(Im / l ) f \cpa (x, A) i *dM(x) = - d cosec 0 Im <pa (b, A) .
J:*,6]

Hence we see that Im <ptt(b, /O^O or ^0 in <C+ according as d cosec /

or >0. Since ^«(^, A) is an entire function, (pa(b, k) =ph + q for some

real numbers />, q ( c f . B.Ja. Levin [11] p. 230). Consequently we have

I q>a(x9 A) (pa(x, /i) dM(x) = — p8 cosec (j ,
JCo,6]

for every A, /*. From this identity, it follows that for every A

<Pa(x, A) =<pa(x, 0) =^0(^)

for every x^FM holds. It is obvious that by the same argument as

above we have for (/>#

00 (X A) =(fj(i(x, 0) =00(aO

for every ^c e F^. Hence from (1 • 12) it follows that

(1-15) Vo (x) f </,„ (y) ̂ 0 (y) ̂ M(y) = </.„ (x) \ <p« (y)
J[a,^] J[0,JJ]

(1-16) ^o (^) f 0o (y) 2^M(30 = 0o (x) f ^ (30
JC^,&] JC^,&]

hold for every

First we show that FM is a finite set. Assume F^ is infinite. Then

FM has an accumulating point XQ. Without loss of generality we may

assume that XQ is a right accumulating point. Then taking the right

derivatives in (1 • 15) and (1 • 16) we have
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(1-17) ?0
TOo) f 0o(yM(y)^M(y)=</<o+(*o) {

Jla.Zol JO.

(1-18) <pQ
+ (x0) f ^o (y) zdM(y} = 00

+ (x0) f <pQ (y) 0
JOo,&3 J(*0,&3

Noting J«.0(0) =5^=0, we see that (pQ(xQ} and ^0(^o) do not vanish sim-

ultaneously. Hence

f q>*(y
Jro.^3

(y)

We may assume for instance Jna.so^oCyy^jMXsO T^O. In this case, from

(1-15) and (1-17), it follows that (pQ and </>0 are linearly dependent, which

contradicts Ja,^(0)^0. In this way, we may prove that FM is a finite

set.

Let FM= {x^ xz, -- xn}, where a^xl<^x^"<^xn'^b. Put (p^(xk)

— au, 0o (-^jt) =@k and dM(xk)=mk. Then (1-15) and (1-16) turn to

the equations

(1 • 19)

(1-20) a»I]/9/My=/9«
j = f c y=*

Supposing #fc = 0 for some ^^1, we have from (1-19)

/3*SayX = 0.
y=i

Noting ^0(X) and 00(^:) do not vanish simultaneously, we have

which implies Cfy = 0 for every l52/f^£. The parallel argument is pos-

sible also for (3j, hence we may assume that there exists a finite subset

(possibly empty) S of {1,2, ••• n} such that

jSy^O for every j^S

for every j<n\

for every y>^2 ,

where TZj — min *S and 7Z2 — max 5. In this case, the equations (1-19) and

(1 • 20) are valid even if we change n to nz and 1 to nlf Then it is
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easy to prove inductively that

@j/<%j = r for every j^S.

However putting k — 772 — 1 in (1-20), we obtain

Noting artj-1=Q and jS^-i^O, we have

n2

XI W-3$3m3 ~ 0 •

Substituting /fy — 7*0^ into the above identity, we see

However this is possible only when S is empty, which implies ctj = Q9

jSy=7^=0 for every j = l, 2, •••?? . Hence in this case <p(x) = ^«(xsO) satisfies

the equation (1-14).

Next suppose Cfy^O and ft-7^0 for every j — 1, 2, • • •?? . Then as we

have seen in the above discussions, from (1-19) and (1-20) there exists

some constant ? such that

0j = ?aj for every j = l,2, -~n .

Put <p(x) =(fjp(x, 0) — ?<pa(x, 0). Since 0^ and ^a are linearly independ-

ent, (p does not vanish identically. By the definition of (p, (p satisfies the

equation

(1-21) dcp^

However we have assumed AKt $ (A) 7^0, hence (pa(x9 A) and 0^(x, /I) are

linearly independent solutions of (1-21). Therefore there exist some con-

stants p(K) and q(K) such that

<p (x) =p (A) fa Or, A) -

holds for every x<E:\_a>b~\. As has been seen,

holds for every xk^FM. Since afc7^0, we have
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Hence (p (x) —p (A) {(/># Or, A) — ?(pa (x, A) } . Taking XQ e [a, b] such that

5 we have

From (1-13) we see that the right hand side is an entire function of

order at most 1/2. Since />(A) has no zeros, £(A) should be a nonzero

constant. Since />(0) =1, we see />(A) =1 identically. Consequently we

have

\<p (x) = 00 Or, A) ~ r^a O? A)

1^+ (X) = 0^+ (X9 A) - r^a+ (^, A)

for every x^[a,b~] and A. Putting x — 6-4-0, we have

where Cj and C2 are constants independent of A. Choosing /?' such that

Cj cos /?x +C2 sin /?' =0, we consider a boundary value problem

r/(a)cos

Then by the definition of /?', we have ^ f f l / j ' (A) =0 for every A. Hence

applying Proposition 1.7, we see (pa(x, 0) =0, a.e. <^&f in [a, 6], which

contradicts the assumption that (pa(x, 0) has no zeros in FM.

Conversely suppose (L9Daip\_a,b~\) has the ^-property. We may

assume a solution of (1 • 14) satisfies the equation

((p (a) = — sin at, rp^ (a — 0) — cos ot

V (6) cos /9 + (p+ (b - 0) sin /3^0 .

Since d(p+ — (pdQ — X(pdM for every A, we have

<pa(x,Z) =<p(x)

for every x^[a,b~\ and A. Hence we have

•4,0 (A) - -cos /tya(6, A) -sin ^^(6 + 0, A)

= - cos/9^ (6) - sin/ty+ (6 + 0) ,

which proves the proposition.

Tkeoreni 1.11. Suppose that da,0(X) is a nontrivial function pos-
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sessing at least one zero. Let {An| be the set of zeros of Aa^ and

arrange them according to magnitude. Let Nn be the number of zeros

of <pa(x, /ln). Then we have

(1) There exists the minimum A0 of {AJ.

(2) 2V; = ;i + # {*€=[>,&]; ?«(*, Jo) =0}.

Proof. From (1) of Proposition 1.3 it follows that Nn is a non-

decreasing sequence. First we show that Nn is strictly increasing. Sup-

pose Nn = Nn+1 for some n. Then from (1) of Proposition 1.3 it follows

that

However the similar argument as in Proposition 1. 3 is possible also for

</>0, hence we obtain

, An+1);>rfc(a, An) s k = l92,

Consequently we have

Applying (1) of Proposition 1.3, we see that (L, Da,0\_a, 6]) has the

.Eo-property, which contradicts the assumption that AUt& is nontrivial.

Hence Nn should be strictly increasing.

Let us prove the equality

(1-22) NK+1=Nn + l.

First we consider the case $ = 0. Then the boundary condition at b

becomes (p(b) = 0. Let An be any fixed zero of J t t i0(A). We consider the

two cases below:

1°) For any A>An, the number of zeros of (pa(x, A) in [a, 6] remains

unchanged. Then since we have shown that Nn is strictly increasing,

we see that there exists no greater zeros than An-

2°) For some A>An, the number of zeros of (pa(x, A) in [a, b~\ increases.

Let Q and M extend to the right hand side of b so that (pa(x, A) may

have as many zeros in [<2, c\ for some £>& as we need. Let rfc(A) be

the £-th zero of (pa{x, A) in [a, c]. Suppose (pa(xy An) has ^? zeros in [a, 6],

Then we have obviously
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On the other hand, from the assumption

ViOO^rpCU =b

for some A>^n follows. Since we have proved that rp+1(A) is continuous

(see Proposition 1.3), there exists /*>/£„ such that

fp+iO) =b.

Noting (f>a(b, tt) — 0> we see /jI>An+1. Remembering that Nn is increasing,

we have fJL = hn+\, which proves (1-22) in case j8 = 0.

In case /?^0 (modTr), we may reduce the problem to the case @ = Q,

by extending JAf and dQ to [a, xj as follows:

dM=0 in (6,0:1]

where .T^^-TO^^, qo&R1 and 8{Xfi(dx) is the Dirac measure at .r0. Here

three constants should be chosen to satisfy the i

{1 4- ( Xj — .TO) g0} sin/9 = { ( xl — b) + (x0 — x^ qQ} cos/3 .

This is because for X^>XQ, <pa(x, A) satisfies the equation

f
J(6F

Consequently the equality (1-22) has been established. This completes

the proof.

Corollary 1. 12. Under the same condition as Theorem 1.11,

we have

# &', *»<;# =e(A) + # {XZE [a, 6]; ^«(o:, A) =0}

- # {x(E [a, 6]; (pa(x, /io) -0},

It is complicated to count the number of zeros of (pa(x, A0) explicitly.

However, for instance in case dM(x) =dx or dO,(x)^>0, that number
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becomes zero in (a0j &o) .

§ 20 Ergodic Property of the Solution of a Ricatti Equation with.

a Random Coefficient

Let {Q(x) ; X<EL [0, oo)} be a random process with stationary inde-

pendent increments whose characteristic function 0(?) defined by

may be expressed as follows:

where n(dti) is a measure on R1 such that

Under this condition, Q(x) becomes a function of bounded variation in

each finite interval with probability one. Hence we may define the oper-

ator L by

.
dx

Let (p be the solution of the equation

\L(p = Icp

(<p (0) — — sin a, cp~ (0) = cos a .

Put £(x)=q>(x)9 7](x^<p+(x) and CW = (f (^)^(^)). Then

satisfies the following stochastic differential equation

(2-1)
(x) = ~ tf (x) dx-i-? (x) dQ (x) .

Without loss of generality, we may assume that Q(x) is continuous at the

origin almost surely. Hence the initial value of CO) is C (0) — ( ~ sin a,

cosoO .

Now let G be a continuous map from U2\{0} to Uluoo defined by

= — , for C = ( f , 7 ) -
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Since the equation (2-1) is linear, we have immediately the following

Lemma 2. 1. Let C(.r, £f) be the solution of (2-1) with an initial

value Ci (z = l,2). Sw/>/>0«? G(C,)=G(Cz). TA*» G(C(X Ci)) = G(C(.r,

C2)) /or a/zv- x^O.

Let us define a process {z (.r) } by

= (.r)=G(C(.r)).

Since {C(x)} is a strong Markov process on i?2\{0}, from the above

lemma it follows that {z(x}} also becomes a strong Markov process

on Bluoo. The generator A. of the process has the form

r {/(- - «) -/(=) } » (J«) /or
J— ^

s) -/(oo)}.

Let us define a sequence of random times by

Since 2;(x) is continuous al each rn by (2) of Lemma L.4, it is easy to

see that every rn becomes a Markov time.

We prepare some lemmas for our theorem.

Lemma 2. 2. Let n be a measure on R1 such that J"03min(l5 u )

u)<^oa. Then for every fixed /l>0, -we have the estimate

r^ rz-u j i r r
n(du) _^L_=0 |s-^+

J-^-o JZ V -f A I J|«l>|3|1

Proof. First we consider the case z—-> + °°- We divide the above

integral into two parts.

/"*(l r* 9 ii i r* y i / z r*'j ii i r* i
I fj \ I dy i x , x f u dv , fI n(du) I = I n(du) I -^—+ 1

y«+^ J_.,/, 'J, y' + ̂
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J-l Jz

r>_ 2 i /2 /•«, 7 /»_! fs + 2i/2 J-. 1 fO

< »(<&) -±?L+ »(rfiO _^L + _L_ „!»j-oo J« y+A J-~ J* y+/i * 8 +AJ- i
f f-2 l /2 )

= O 2T3/2 + »(<*«)[.
I J — °° J

r%(rf«) rz ^L= r »W rz ^^
Jo y j z _ u ^ + ) Jo ^ y J s _ B V 2 + 3

^L

As for the case z— > — oo, we have only to put n(du) =n( — du) 9

then we have

r°° (j \ rz~u dy r~^ \ r~u ^I n (du) I — ^— = I n (du) I — ^— .J- 'J-2 y+A J-oo } }z y+A

Consequently we may obtain the expected estimate.

Lemma 2. 3. jL#£ ^ be the same measure as in Lemma 2. 2.

C6(H
1) £e ^/ie space of bounded continuous functions on R1 with the

supremum norm. For geC6(H1)> 'we define

Then for given h^C^R1), the following equation is uniquely solvable

in C,(R').

(2-2) g(z)+Ng(z)=h(z).

Proof. First we prove that N is completely continuous in C6(ll
1).

Let 5 be the unit ball in C6(l?
1). Applying Lemma 2.2, we have the

estimate

(2-3) \Ng(z)\<

uniformly with respect to g^B. Putting

f »(d«
J |M|^UI 1 / 2
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d ( z 9 z0\ u) = su
0e-

for z, zQ e J?1, we have the estimates

d(z9z*;u)<2mm{\u\/l, J°°

and

Therefore, owing to the dominated convergence theorem, we have

(2-4) sup\Ng(z)-Ng(z0)\< {" d(z,z»;u)n(du)-»0

as Z-*ZQ. From (2-3) and (2-4) we may conclude that the image N(B~)

is relatively compact in C^jR1), hence A7 is completely continuous. In

order to prove that the equation (2-2) is uniquely solvable, it is sufficient

to show that Ker(/4-AT) =0. For geKer(I-f AT), put

Then we see

(z2 + A) -^ + P {/(« - «) -/(«)> »(d«) = 9(2) + p n (rf«) f "
cfe J— J— J^ y + A

Here we make use of the Markov process {2: (x) } . The Dynkin formula

gives us the identity

(T.) ) ) -/(*) = £2 ( fr* (A/) (
\ JO

for any 2:^=00, where Tfc = min (&, rO. As has been verified in the above

argument, Af(z) =0, for any z=/=oo. Hence we have

/(«)=£(/(* (T t))).

Remembering (2) of Lemma 1.4, we see by letting k to -f °°

This implies Ker(/-j-AT) =0, which completes the proof.
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Lemma 2.4. For any z(=R1(Joo and A>0, E2(ri) ^ finite.

f(z) — Ez(jt^) is a unique solution of the equation

(2-5)
(zs + A) + {f(z - M) _/(«) } „ (du) = -1

dz

/ (+oo)=lim/(z)=0, !/(-oo)|<
2-^+oo

Proof. Let us consider the integral equation

Applying Lemma 2.3, we have a unique solution (/(z) in C&(l?1). Put

Then / satisfies the equation

/ (+oo)=0 , |/(-oo)|<oo.

For 2:^00, the Dynkin formula leads us to

E (f(z(jTfc))) —f(z) = E ( 1 (A/*) (z(x)) dx\.
\ Jo /'

Since, by the definition of A, Af(z) — —1 for any z=/=oo9 we have

Ez (f(z (Tfc) ) ) —f(z) = ~E2 (Tfc).

Letting k to -I- oo and observing zfa-— 0) = + °o, we have

E,(n) =/(z) - E2 (/(+ oo)) =/(z)

for any z=^oo. Applying Proposition 1.5, we have

£.(r,)=lim£,(r1)=/(-oo).
2—>— cu

This completes the proof.

Now we may prove the ergodic property of {z (x)}.

Theorem 2.5. For any fixed A>0, {z(a;)} is ergodic, namely
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for any continuous function (p in U1Joo, the equality

(2-6) liml \l(p(z(x»dx = -±—Ej f ^
' >~ I J« - E M r i \ J°

holds almost surely for any Pz. Moreover the process has a)i invar-

iant measure T(z)dz zvhich may be determined as a unique solution of

the equation

-A{(2
2 + A)TO)} = ["{TCz + iO-T (*)}«(«*«)<2'7) r™*.,

J —

Proof. Since we have observed in (2) of Lemma 1.4 that z(jC^) = 00,

from the strong Markov property of {z(x}} it follows that the sequence

of random variables

is independent and has the same distribution as

with respect to an}^ probability measure Pz. Since we have verified the

fmiteness of E^(TI) in Lemma 2.4, the strong law of large numbers gives

us the identity

I f ' . 1 f r "
lim — 1 (p (z (x) ) dx — lim — I (p(z (x) ) dx
I- 00 I Jo 71-H>no Tn JO

almost surely for P2, which proves the identity (2-6).

Let (/ be a unique solution of the equation

g (z) + ̂  » (du) \"U ^
J-" Jc y" +
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whose existence was assured in Lemma 2. 3. Putting h(z*) — — I dy,

we have

dz

As in the proof of Lemma 2. 4, the Dynkin formula gives the identity

/ fri \
~~ *\ Jo 9^ X) /

Here we define a function S(z) by

dz

then by (2-5) S satisfies the equation

(2 • 8) (z2 + A) S(z) + r n (du) (Z^S(y} dy = l .
J — oo JZ

The following formal calculation may be easily justified through the ap-

proximation of the measure n by those with compact supports.

^-
J- d

- S(z)dz {h(z-2t)-h(z)}n(du)
J

= A(-oo)

where we have used the fact 7z( + oo) =0 and (zz-{-X)S(z) -H >1 as |z| — >oo.

The identity (2-8) implies that the second term vanishes identically, hence

we have

Q /• \

Then it is easy to see that T(z) — — ̂ ~ satisfies (2-7). Thus we obtain
, ,the theorem.

Here we define a spectral distribution function. Let Ar(A, I) be the
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number of eigenvalues not exceeding A for a certain boundary value prob-

lem of L in the interval J.

Corollary 2. 69 (Rice formula) For any ^>0, -we have the iden-

tity

(2 - 9) lim
?-»«> |3|-*co

almost surely for any Pz.

Proof. From Corollary 1.12, we have

where |s(A)|<^2. Hence we obtain by the law of large numbers

l im—

Noting T(z) =S(z)/E00(?i) and 2:25(2:) — >1 as z\ — >oo, we have easily

the identity (2-9).

Definition 2.7. We raZ/ the function lim -^-N (^ [Q, l~\) the spec -
Z->00 /

^raZ distribution function of L a??*:/ denote it by -ZV(A).

Corollary 2.8. (Frisch-Lloyd [3]) Suppose

\ log |W 72 (£?«)
J|tt|>i

Then the function

satisfies the equations

(2-10) \ds2

' p(±oo)=0,
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(2-11) JV(^)=-lRe^.
7T as

where

0(5)

Proof. Since T(z) is integrable, we may take the Fourier transform

of the both sides of (2-7) in the Schwartz distribution sense to obtain

-
as

The identities (p(±oo)=0 and ^(0) =1 follow from the Riemann-

Lebesgue theorem and the definition of T(z) respectively, which proves

(2-10). On the other hand, the assumption for n{dii) implies

I I n (dii)
JM^I \z\ Ji«i^M l/2

CNoting \T(zy\<—y for some constant C, we see by Lemma 2.2

(2-12) J" ljlgJ^B(rf«)

By the definition of A^(/l) and T*(2;), the equality

holds. Applying the Fourier transform to the both sides, we have

p«=-^Ftfu)'~xi/ii"+ r -P1^ r»(rf«) rvco:)^.
X x J-°° Z -f A -'--co ^^

Observing (2-12), we may differentiate the both sides to obtain

n(du)
ds

Since T(x) is real, we have immediately

Re^.
ds

which completes the proof.
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§ 3. Analytic Continuation of <p(s) to the Upper Half Plane When

the Support of n Is Contained in (0, oo)

We assume that the support of n is contained in (0, oo) thereafter,

whence the process {Q(x}} is nondecreasing. Put

V(s) = — f °° (eius -1) n (du) .
is JoIS

Then since V(s) is holomorphic in the upper half plane C+, the Frisch-

Lloyd formula (2-10) may be studied on the pure imaginary axis. On

this axis V(s) is real valued and behaves like the function s~a, which

makes it possible to apply the methods used in the scattering theory.

For this we need the following

Lemma 3. I. Let V(z) be a holomorphic function in C+ satisfy-

ing

(1) I (rei0) dr<^oo9 for each 0<<0<C7T, and
Ji I dz

(2) V(iy) is real valued for every y>0,

(3) sup{|Y(X>!; |z|2>M, 0^arg^7T-0>-»0 as M->oo, for each 0<0

Then for each fixed A^>0, there exist unique linearly independent so-

lutions g ± ( z ) of the equation

dz2

such that

^'^ ^ « ~ ± ^ e x {if
dz ± Z ~ eXPt J«o

as z—»oo in each angle {z\ 0^arg z<^n — 0} , §<^0<ji/2, where we choose

as a branch of (A— Y(s))1/2 the one tending to /11/2 as s-^oo, a^J 2:0

zs an arbitrary point in C+ such that A—

Proof. Since it is not difficult to extend the way of R. Bellman
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[12] (ch. 2, Th. 8, p. 50) to the above complex variable case, we omit

the proof. Q.E.D.

Since in C+ we have

V(z} = ^eiuzdu Tn(dt),

the inequality

{°°n(dt)<oo
Jwdz sin d

follows from !\du$™n(dtXoo. Hence V(z) satisfies the all conditions

of Lemma 3. 1. Put

Theorem 3. 20 Suppose

r°°
I log u n(du) <oo .

Then for each A>0, -we have

(3-2) NU)= - — - ,
7rl/_(0,^)r

^vhere /_ is a unique solution of the equation

(3-3)
/_ (x) ^exp - i (A - U(y) )'̂ y

-f oo. jc0 is any positive number such that A—

Proof. First we prove that the analytic continuation of q>9 which

will be denoted by the same notation, is linearly dependent on g_ of

Lemma 3.1. Since g+ are linearly independent solutions, there exist two

constants a, b such that

Since g+ are bounded on the upper pure imaginary axis, so is (p. More-



ON SPECTRA OF RANDOM HAMILTONIAN 475

over, by the definition of <p, <p must be bounded also on R1. The estimate

(3-1) implies that q> is a holomorphic function in C+ with exponential

type at most /11/2. Hence according to the Phragmen-Lindelof theorem,

(p is bounded in C+. On the other hand, noting that for each fixed

0<0<7T/2, g+(re*6) is of exponential growth and g_ (re10) is of exponen-

tial decay, we may conclude that a is zero, whence we have

(3-4) <p(z)=bg-(z).

(p(z) may be irregular at the origin. However the assumption Jflog u

n(du) <^oo implies

r \U(rets)\dr<ooI
for each 0<^<[7r, whence we may avoid that possibility. In particular,

we have

identity

we have —^-(0 + ) = -y^-(zO + ), which together with (2-11) gives us the
as as

1 p dcp

71 ds

Now put f- (x) — g-(ix). Then from (3-4) and $9(0) =1, we have

d r / • \

/
/f\\ ' 7 /• /f\~\- (0) ^ /_ (0,

By the definition, /_ is a solution of the equation

(3-5) _ (x) ~exp - i (A - C7 (y) y/'dy

exp -

as ^-^-J-CXD. Since U(x) is real valued for each positive number x,

the conjugate function /_ of f- is also a solution of (3-5) with the

conjugate asymptotic behaviour of /_. Hence according to the invariance

of the Wronskian, we have

d-f- (o+)/- (0) -/_(0)4-/- (o +) = 4-f- (*)f- (*) - /- c -A ^7 ^ — \ • / ~s — \ / ^ — N X7^ — \ ' / -j *J — V / *J — ^ S -S — \ S -. ~l

ax ax ax ax
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Consequently we have

—/-(0 + )

7T /_(0) 7Ti/_(0)|2>

which completes the proof.

§ 4. Asymptotic Behaviour of NM at the Origin

In the previous section, our problem was reduced to the analysis of

a familiar equation

(4-1)

Observing U(x) = !^e~xu$u n(dt), we see that U is strictly monotone de-

creasing and t/( + oo)=0. Let x(£) denote a unique solution of U(x)

= L As long as we are concerned with small A>0, there are no problems

whether the solution exists or not for large L Define C by

P (l-UWdy, for x>x(X),
JxQ)

(•x(l)

e-S,t/2 J ( f j ( y ) - t f f l d y , for

Put

T?O (C) = (7rC)1/2^(2) (C) , ^ (C) =

where v — 1/3 and H,w is the Hankel function. Define a Green function

\Qfx\--1 d2U/dx2 _5 (dU/dx)2 5 1
~ 4 (A-t/Gr))2 16(A-t/(^))3 36 C

G (C, 0) = {7?! (C) 5?o ((?) - 7?, (6) 7?o (C) } -
4z

Then the Liuoville transformation of (4-1) by the variable CC^O leads

us to the integral equation

(4-2) g (*) = % (C (*) ) - J"G (C (x-) , C (y) ) g (y) Q (y) (A -

where g (*) = (A - C7(ar) ) 1/4/(^) -

This procedure, which was found out by R. E. Langer, is stated in
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E. C. Titchmarsh [13] (p. 356^) and very effective in studing the be-

haviour of the solution of (4-1) with respect to (x, /I) simultaneously.

For the latter purpose, we give here the asymptotic behaviours of

(4-3)

n
as C"*00- G and —— also have the estimates

(4-4) 9G(C,0) <C( (1 + 0/0"", for C,0>0,
9C

where C is a constant independent of both A and the variable x.

Here we give some lemmas for later use.

Lemma 4. 1.

(1) \imxU (x) = -Iimx2~= (*° n(du) ,
X->ao X->oo dx JO

(2) - /U(x)>; - / - ^•••, and each one is negative monotone
dx dx dx

increasing function.

x

Proof. From the identities

f* oo

xLJ \P£) ~~ I \J- — ̂  ) n \cLuj and — i :,du_
dx

(1) follows immediately. (2) results from the Schwarz inequality. (3)

may be proved by simple computations, whence we omit the proof.
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For further developments we must impose a restriction on U(x),

namely

(4-6) -x—/U(j-)>c>0
dx

holds for every sufficiently large x.

Lemma 4.2. Under the condition (4-6), we have the estimates

for every a^>~L and

(4 - 7) a~l/cx (A) <*x

(4-8) a~lU(x}<^U(ax)<,a~cU(x), for every sufficiently small

and large x, and

(4-9) |COO/0)|~>oo and |C(*(W))| -><x> as /l-»0.

Proof. From Lemma 4.1, we have —x-=—<JJ(x). Putting x =
CLX

dx

we see

Further noting = (x(l)Y\ we have --/x(K) >1/A. This im-
dh dx dh

plies the inequality

log (xU) A (««) = - P^/* («)<*«> P — = loga,

which proves the inequality (4-7). We may show (4-8) similarly.

Since we have for

U(y) -i=- du>-(x(K)) (x(A) -y),
Jy du dx

whence noting (4-7) we obtain

1/2rx
A ) ) I =

J^(

dx

V2

Since ^:(A)->oo as A— >0 and — ̂ (/l)2 - (^c(A)) is bounded from below by
dx
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some positive number as /I— >0, we have | C(^Gz/0)| ->0° as A— >0. The

second one may be proved similarly.

Lemma 4.3. Under the condition (4-6) ive obtain the estimates

(4-10) f"
Jx(

(4-11)

<25 A— >0 /br every sufficiently small a>l.

Put

x(6A)

|Q(y)

f j:0) fj;(aA)

.= IQCv)a-l7(y))1/ f |rfy, /*= IQCv)
Jx(al) Jx

Then we have

Since ^we may treat /! and J4 (resp. J2 and J3) analogously, we prove

only the estimates for Ii and I2.

By the definition of Q, we have

- dx<! r- ^2^/^2 ^+5. r-
1— 4 J*(M) (A - C7 (^) )3/2 16 J*(M) (A - C7 (x) )5/2

+_s r- a-uWfc
36J*(M) CW

which we denote by Ji, «/2 and J8 respectively. Noting the inequality

/I - t/O) = (1/i) C/(a: (W) ) - C7(a:) ̂  (I/ft - 1) U(x) ,

in order to verify that Ji and e/2 tend to zero as A— >0, we have only to

show

From Lemma 4. 1, it follows that
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J2TT/J^2 1 JTJ /Jfd uIdx 1 —dU / dx _,
-dU/dx t/O) U(x)1'2 X

and

r-(dU/dxf,_ f- -<K7Afcc 1 ~dU/dxd

Ji t/O)V2 J» C7(a:) C7(j;) t/C^)1/2

f<C

On the other hand, the identity

J-
3

= _5_f° ° d^/dxdx_ 5 1
36J*(M) CW ^ 36C(^(^A))

and the estimate (4-9) imply <7S— »0 as A— >0. This proves that Jj— »0 as

A-»0.

Put

, , _ 2 dU/dx r U-U(y»t"d'U/dyt
dv

5 U-l/(a:))I/f J-w (dU/dy?

Then Q(x) may be expressed by 5 (.r) as follows:

16 a-

First note the inequality

5 (A - f/(^))3/2 'W (dU/dy

2_
5

1 (dU , ,_dU , nv\
I \ ) \ \^ /x I

\*As \/^J )

2 1 f* a72^, ^2 d2U/dx2

— - — - < - -1 f
, n^ J*
^X ^AJ )

, _ . .
5 dU , n^ J*w Jy2 5 -dU/dx

- —
dx

(4.13) <:~

This together with (4-7) gives us the inequality for x (A) <Lx
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Choose b<^~L so that 8(x)\<^— may hold for every x (A) <C.r<C.r (bX) .
£

Then the main term of Q becomes

Noting for x^

dU

and applying (4-13), we have

dx

r^(

JzM

r \ -1/2

<C ( - x (btf^L (x (bJJ) x
\ dx I

Applying Lemma 4. 1, we see that the last term tends to zero as A-»0,

which implies /2
 = °(1) as ^^0- This completes the proof.

Here we give the estimates of the solution of the equation (4-2).

Lemma 4.4. (The estimate for x>x(/i).) Let g(x) be a solu-

tion of (4 • 2) . Then ive have for x^^

(1)

(2) lff(*)

where A(x) =/" |Q(y) (A — C/(y) ) I/2| £fy awrf C is a constant independent
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of A, x.

Proof. Since we have the estimates (4-3) and (4-4), the expected

estimates may be obtained by ordinary calculations, so we omit the proof.

Put

and let h(x) be a unique solution of the integral equation

(4-14) h (x) = h, (x) - £~G0 (x, y) Q, (y) h (y) ( - C7(y) ) "2 Jy ,

where

u , for y>x.

Lemma 4.5. (TA^ estimate for Q<^x<^3;(X).) Under the condi-

tion (4-6), g(x) has the estimate

(4-15) ig(x)|^Cexp(|C(x)| +CB(x))

for every Q<x<Lx(F) and 0<A^1, moreover h(x, ^) =

^o /i(^) a5 ^^0.

Proof. Let

Then by the definition of g we have for Q<^x<±
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g(x) = (l + a)%(CCr)) + £%(C(.r))

P*(*)

G (C (x) , C (y) ) Q (y) g (y) ( A - U(y) ) "2rfy .
Jx

Put

Then g satisfies the equation

(4-16) p (*)=£„(£(*))

f *(*)

G (C (*) , C (y) ) Q (y) g (y) (A - C7(y) ) ™dy .
Jx

By Lemma 4. 2, we have the estimate

(4 • 17) |a| + |/9| ̂ C(^teu)) - 1) .

Lemma 4. 3 implies A(x(/l)) =o(l) as A— »0, whence by (4-17) we obtain

(4-18) <z = o(l), i9 = o(l) as A^O.

This together with (4-3) gives the estimate

(4-19) &(C(*))|

for 0<A^1 and 0<^^x(A). Put

1 r^
».(o:) = -

Jo;

Then using (4-5) and (4-19), we obtain

(4-20)

which gives the estimate (4-15).

Now we proceed to the proof of the latter half of the lemma. Put

hn (x) = - £°G, (x, y) AB_ t (y) Qo (y) ( - U (y) y/'rfy .

We must show that each kn tends to 7in as A^O. First we see by (4-18)

and (4-3) kQ (x) -+hQ (x) as A— >0. Assume kn-^hn as >l— >0. By the defi-

nition of &n, we have
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where

L = - J^G (C (*), C (y)) kn (y) Q (y) (A - E7(y) )1/2^y,

G (C (a:), C (y)) £n (y) Q (y) U - C7 (y) }l/2dy .

From (4-20) we have the inequality

[7n|<(gg(:c(g*)))n+1 exp( f*(C7Cy)-«1/2dy).
(w +1)! \ Jo /

which together with Lemma 4. 3 gives the estimate

(4-21) /n = o(l) as A->0.

Here remember the definition of Q:

n r ^ - _ A t fU /ds? _5 (dU/dxf , 5 1_ —j- .
4 (A - U(x) )2 16 (A - C7(x) )3 36 C W2 '

In the estimate for Jn, the last term is negligible. For we have

( cx

(
V Jo

exp
o

as A— >0 from Lemmas 4. 2 and 4. 3. Noting the inequality for Q<^y<z

have

(4-12) implies that the right hand side is integrable in each (c, oo),

whence applying the dominated convergence theorem and noting (4-21)

we see that kn+i(x) converges to hn+i(x) as A— »0 for each x^>0. Con-

sequently we see kn-^hn as A— »0 for each ^. On the other hand from

Lemma 4.3 and (4-20) we have the estimate
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for every x^>0 and 0<^<^1. Then it is easy to see that h(x, ̂ ) = X] kn(x)
oo n = 0

tends to h (x) = ]£] hn (x) , which proves the lemma.
n = 0

Define /(x, A) by

4

where g (.r, A) = g (.r). Then as we stated before, f(x,k) satisfies the

equation

dx2" v '

Lemma 4.6. /(O, 0-j-)=^=0 and f(x, 0 + ) satisfies the equation

(4-22) -^-/(j

Proof. Fix <z>0. Let ^(^,/i), 0(^,^1) be the solutions of (4-1)

satisfying the initial conditions

j<? (a, A) = 1 , 0 O, A) = 0 ,

Since from the assumption J + 00log z£ n(dii) <C°°, f/(^:) is integrable in the

neighbourhood of the origin, ^ and 0 are continuous with respect to the

variable (x,X) e [0, oo) X JR1. Note the identity

(4 - 23) /Or, A) =/(a, « ^ (x, A) + - / ( a , A) 0 (^, A)

for any ^:^0, A el?1. Lemma 4.5 implies the existence of f(x, 0 + ) for

any .r>0. Observing 0(^,0)^0, we see by (4-23) that A-f(a,Q + )
dx

also exists. Therefore it is evident from (4 • 23) that f(x, 0 + ) exists

for any x^>Q and has the form:

ax
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This implies that f(x, 0 + ) is a solution of the equation ——5
ax

•/O). By (4-14) /O, 0 + ) has the estimate

(4-24) |/(x,0 + )!<CC7(^)-1/'exp(- \\UWdy}.
\ JO /

Noting the inequality

OW'expf \
\ Jo

we see by Lemma 4. 1 that the right hand side of (4-24) tends to zero

as .a;—* oo, whence we have

(4-25) /(^o + )->0 as

Suppose /(O, 0 + ) =0. Then /(.r, 0 -f) satisfies the equation

" ~dx

Noting Z7(y)>0 and -^-/(O, 0 + )^=0, we have |/(^r, 0 + ) |J> -^-/(O, 0 + )
a^: (2X

for o:>0, which contradicts (4-25). Thus we complete the proof.

With the help of these lemmas we obtain the main

Theorem 4.7. Suppose U(x)=— f °° (\-e~*")n(du) satisfies
x Jo

f U(x
Jo+ U(x)

for every sufficiently large x. Then the spectral distribution

has the asymptotic behaviour:

ar (A)

(4-26)

'where f is a unique solution of the equation

as x-^ + oo 9
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and x(/l) is the inverse function of U(x).

Proof. All we have to do is to find the relation between f(x^ /I)

and/_(.r, /I) of Theorem 3.2. Noting A(x) =0(1) as x— >oo, we have

by Lemma 4. 4,

as .r— >oo. Therefore by the definition of /_ (x, /I) we see

Hence Theorem 3.2 together with Lemma 4.6 gives us

(0,A)|2 7r|/((U)!2

1
exp

r^
-2

JO

as A—»0. This complete the proof.

Corollary 4.8. Suppose Q is a stable process with index a,

namely U(x) =nx~{1~a) (0<#<1). Then -we have the asymptotic

form:

p J: - - X . 1 j - l .

ze;/z^7^

1 l + a
^a;,-2(i-a) and

a-a 2

Proo/. Note 2 f^ ((t /(y)-
Jo

/(*)=2(7r(l + a))

/(0)=7r1/t(l + a)(1- f

/

where J^y is the modified Bessel function, which proves the corollary.
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The above system is a continuous analogue of the one considered by

M. Fukushima [14] and the result gives us some suggestions to a discrete

system.

Corollary 4e 9« Suppose

C°° F+0°
I n (du) + I log u n (du) <oo .

Then

as A—»0, and further we have

cx(
(4-27) 2

Jo

-where n = $™ n (du) ,

Proof. In this case the second condition of Theorem 4.7 is satisfied

automatically in view of Lemma 4.1. The estimate (4-27) may be ver-

ified without difficulty.

Remark. When Q is a Poisson process, we may obtain a more

explicit asymptotic form:

This is a completion of the result of T. P. Eggarter [6] . We remark that

S. Nakao [9] obtained the estimate ll/z log N($ -> — nn by the different

method from ours.

Although it is more desirable to consider this problem for general

additive process, we have not succeeded yet. However we remark that

M. Fukushima and S.Nakao [8] treated the white Gaussian noise potential

and gave a precise formulation of the eigenvalue problem to obtain the

explicit form of
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§ 5a A Remark to the Spectral Distribution Function of a One
Dimensional Hamiltoniaii with a Random Weight

In this section we treat an operator

j j

dM dx

where {M(x)} is a increasing process of stationary independent incre-

ments. We study the spectral distribution function of L. However the

method is similar to the one of § 4, we avoid going into details.

Let 0 be the exponent of the characteristic function of M, namely

and suppose that 0 has the form:

0 (£)=«£+ f"(l -«-«")»(<*«),
JO

where <2^>0 and JS°min(l, u~)n(dzi) <^oo. First we consider the case <2>0.

Define an additive process M0 with the exponent Jo°(l — e~*u)n(dii) by

the equation

M(x) = a

Let ( S ( x ) , V j ( x ) } be the solutions of the equation

(x) = - Jiaf (x) dx-tf (x) dM0

Then Corollary 1. 12 gives us the identity

l, [0, Z]) = # {x^ [0, /]; f (*) -

where |s(A)|^2. Regarding A as Aa and Q as — AM0 in (2-1) of §2,

we may study the spectral distribution of L in the same way as in the

previous section if we perform the analytic continuation of the solution

of the Frisch-Lloyd formula to the lower half plane. Namely we have

(5-1)

where f(x, /I) is a unique solution of the equation
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d2

(5-2) dx"

\ Jo

as x—>oo3 where U(x) = <
x Jo

Letting a->0 in the equation (5-2), we see that the solutions f(x, /[)

converges to the solution of the equation (5-2) regarding a as 0. Hence

it may be concluded that the process {z(x)} is ergodic even in the case

a = Q. Summing up these arguments we obtain

Theorem 5* I0 Suppose U(x) satisfies

(5-3) f U(x)dx<oo.
Jo+

Then the spectral distribution -ZV(A) may be expressed as (5-1) by

the solution of (5-2).

Example 1. a = 0, U(x) =1

Example 20 a = 0, C7(x) =— — (c>0), namely dn(x) =cne~exdx.
--

en

where H^ is the Hankel function of the first kind.

§ 6» A Remark to the Spectral Distribution of Equations

on the Whole Line R1

In the previous section we have considered the case when the equa-

tions are defined on the half line. In this section we remark a relation

between the spectral function on the half line and the one on the whole line.

Let L be one of the operators
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dx d d
dx dM dx

where Q is a function of bounded variation in each finite interval of R1

and M is a nondecreasing function on R1. Put

if they exist. Then we have the following

Theorem 6. 1. Suppose N± (A) exists for each A. Then N(£) also
exists and has the form;

Proof. Let JV0(/, [a, &]) and N^ty, [a, &]) be the number of eigen-

values not exceeding A for the boundary value problem

/(*)=/(*) =0 and ^(fl)=-^(4)=0,
fl̂ ; ao:

respectively. Then these functions satisfy the inequalities

by the results of § 1. Further the mini-max principle gives the inequal-

ities for

, [a, b-] ) <N^ a [a, c] ) + JV. U, [c, b] ) ,

Then the theorem is easily obtained.

Owing to this theorem, we may apply the results of § 4~5 to the



492 SHIN'ICHI KOTANI

spectral distribution of equations on the whole line.
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