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Pseudoconvex Domains on a Kahler Manifold
with Positive Holomorphic Bisectional Curvature1'

By

Osamu SUZUKI*

§ 1. Introduction

Let M be an ^-dimensional complex manifold with a real analytic

kahler metric. Throughout this paper, a kahler manifold is assumed to

have a real analytic kahler metric without mentioning it. A relatively

compact domain D in M is called a pseudoconvex (resp. strongly pseudo-

convex) domain if there exist a neighborhood U of p and a pseudoconvex

(resp. strongly pseudoconvex) function (p on U satisfying Df] U= {(p<$\

for each boundary point p^dD. We write simply s-pseudoconvex do-

mains (resp. functions) for strongly pseudoconvex domains (resp. functions).

Note that pseudoconvex domains are not always Stein manifolds.

The purpose of the present paper is to show the following theorem:

Main Theorem. If M admits a kahler metric 'with positive holo-

morphic bisectional curvature {see, Definition (2 •?)), then pseudocon-

vex domains are always holomorphically convex.

For the definition of holomorphic bisectional curvature and its basic

properties, see S. I. Goldberg and S. Kobayashi [2].

Since the holomorphic bisectional curvature of the Fubini-Study met-

ric of the complex projective space Pn is positive and Pn admits no ex-

ceptional sets in the sense of H. Grauert [5], we find that pseudoconvex

domains in Pn are always Stein manifolds, which implies the result of

Communicated by S. Nakano, November 20, 1975.
* University of Nihon, Tokyo.
1} The author was a visiting member at the Research Institute for Mathematical Science,

Kyoto University during a part of the period of preparation of this work.
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R. Fujita [1] and A. Takeuchi [8].

We shall prove our Main Theorem by using the variations of arc

lengths which are well known in Riemannian Geometry (see, Lemma (2, 3)

in § 2) and by using a nice property of real analytic kahler metrics which

is essentially due to A. Takeuchi (see, Lemma (2,10) in §2).

For a point p&D, we set

d(p) = mfd(p, q) and cp(p} = -log d(p) .
q<=dD

The essential step in the proof of Main Theorem is the following

Lemma (for the proof, see § 4) :

Key Lemma. Let D be an s-pseudoconvex domain whose bound-

ary is a real submanifold in M. Suppose that the holomorphic bisec-

tional curvature is bounded below by a positive constant p. Then there

exists a positive constant <J* such that

W(<p)^p/8 for P^DS,,

where W((p) means the infimum of the eigenvalues of the Hessian of

(p on A* and Ds= {p^D: d(p)<d}.

By this Lemma we prove our Main Theorem in § 5.

The author understands from Professor K. Saito that Professor G.

Elencwajg has announced a similar result at A. M. S. Summer Institute

1975 (Williamstown). The present work was done independently of this.

The author would like to express his hearty thanks to Professors

S. Nakano, H. Komatsu, S. litaka, A. Takeuchi and K. Saito and Mr.

H. Omoto and Mr. T. Sasaki during the preparation of the present paper.

§ 2. Variations of Arc Lengths and Real Analytic

Kahler Metrics

First we consider a Riemannian manifold M. We follow notations

in S. Kobayashi and K. Nomizu [7]. For vectors X, Y we denote their

symetric inner product by g (X, Y). Connections, covariant differentiations

and Riemannian curvature tensor are assumed to be induced from the

inner product g in a canonical manner. To state the theorem of Synge,
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we prepare more notations: Let N and P be two submanifolds in M and

let p and q be two points in N and P respectively. Also suppose that

a geodesic curve ff between p and q is given. A C°°-mapping 0 from a

rectangle [ — £,£] X [a, /?] to M is called a variation of (7 between N

and P, if the following condition is satisfied: For any fixed £ GE [ — £, £],

</>(?» f) gives a parametrization of an arc Q between AT and P and espe-

cially when $ = 0, 0(0, £) gives a parametrization of (7. We want to

know the values of the first and the second derivatives of arc length

of Q at $ = 0. By D(?) we denote the arc length Q:

= f
Ja

where \\<p (?, £) || is the length of the tangent vector (p (?, t) of Q at

(f,0- We set

X=0*(A) and Y=0*(A),

where Dl — d/dt and D2 = d/d£. Let {£/} be a local coordinate covering

on some neighborhood of 0" whose local coordinates are denoted by xl
9

x2, •••9x
m. Suppose that Y is expressed as

y=£;y*JLo0 on U.
f=A dxl *

We define P r
D.~Y (z = l,2) by

(2-D ^ = 2 + W V 0
fc=i 9^ 9xfc i , j , fc=i Qt dxk

(2-2) F,2^f]^-^o0+ f] 9(^°
2 *-i 9f 9xfc i./TS'-i 9f

where r\s is defined by

r (9/9**)

Now Synge's formula is stated as follows:

Lemma (2-3). (The first and the second variations of arc

lengths) Suppose that ||0(0, £)|| = 1 for each t. Then we obtain

(i) D'(0):
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(ii) Z>"(0)=

- f
Ja

, Y) c0 (o, o <;* + grCF*, y, x>0 (o, *) 15 ,

where Y=Y-g(y,

For the proof of this Lemma, see D. Gromoll, W. Klingenberg and

W. Meyer [6, Satz, p. 122].

In what follows we restrict ourselves to kahler manifolds. Let M

be a kahler manifold whose metric is denoted by

(2-4) ds2 = 2^g^dza'dz^ .

As stated in Introduction, we assume that ga$ (a, (3 = 1,2, • • • ,?z) are real

analytic functions. In a canonical manner, M may be considered as a

Riemannian manifold by the following metric:

By definition, we see that

0«* = 0*0 = 0, Qa& = Qaff and ga0 = g^a-

When we say connections or Riemannian curvature tensors, we mean

ones which are induced from the above metric by the canonical way.

By J we denote the complex structure of M.

We set

and

dz" 2 \dxa Qy

We infer that

r/ d \ d , T( d \ 9J - = - and J - = —
\dxa> dya \dya>

In terms of holomorphic coordinates z1, z2, -~9z
n, connections and some

of Riemannian curvature tensors can be expressed as follows (see, S.

Kobayashi and K. Nomizu [7, II, P. 157]):
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(2-5) n? = ±gtt*,

where \ga*\ denotes the inverse matrix of \ga$\. We see that

(2 • 6) Ka0r$ = Kr$ap — — Ka$ir = — Kpar$ , Ka$r$ =

Definition (2-7). (1) The metric (2-4) is said to have positive

holomorphic bisectional (resp. positive sectional) curvature if there exists

a positive constant p for every point p in M such that the following

inequality holds for every pair of vectors X,

(2-8) g(R(Y,X)X,Y)+g(R(Z,X)X,Z)

^pl{g(X,X)-g(Y, Y) -g(X, Y)2} + {g(X,X) -g(Z, Z) -

where Z=J(Y),

(resp. g(R(Y,X)X, Y)^p{g(X,X) -g(Y,Y) -g(X, Y)2}).

We prepare two lemmas on real analytic kahler metrics. The first

lemma is a slight generalization of Lemma 2 in A. Takeuchi [9, p. 333] .

By using this lemma we prove the second lemma, which will be used in

the proof of Key Lemma.

Lemma (2»9). For any point p^M and for any positive con-

stant C0 -with C0>1, there exist a neighborhood V(p) and a positive

constant 5* such that for any point q^V(p) and for any geodesic

o" through q, there exists a system of local coordinates z\zz, '-,zn on

Bd*(q), where Bs(q) = {p<=M: d(p, #)<5} and lBs*(q) denotes the clo-

sure of Bs«(q), satisfying the following conditions:

(1) o" is expressed as follows: Im £1==0, z2 = zs = ••• =zn = Q,

(2) 2ga,--5a,- + 2 2Ka-0rS(fyzrz8+-~on £,*(<?),

(3) 2gl-l = l on <J ,

(4) ||2flrttj,||<Co and Ilig^lKQ on B~^q)9

where \\f\\ is defined as follozvs: For a real analytic function f with
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/= £ «*„., <„;„/, /. (2')*

%ve define

n/ii=SK«. /.(«*)*• («•>'•-(z-y-i.

The proof is almost the same as that of Lemma 2 in A. Takeuchi [9].

By this Lemma, we prove the following Lemma:

Lemma (2«10). (i) For any point p and for any positive con-

stant C0 with C0>1, there exist positive numbers 8, 8Q and a neigh-

borhood V(p) such that for any point q^ V(p) and for any geodesic 6

through q, there exist a local coordinate neighborhood U(p) and a

system of local coordinates z1^2, •••Jz
n on U(q) with following prop-

erties :

(0) Be (q) C t/V2 (*: q) C Us, (z: q) C U(q),

where Ua(z: q) = {(z\ z\ -,«•): \sf\<ff, \z*\<ff, •-, \z»\<ff\,

(1) 6~ is expressed as Im z1 = Q, z2 = z*= -• =zn = Q,

(2) 2gaf = 8a$ + 2 2Ka^ (0) x*if + - - - on USo (z: q),

(3) 2ff l fi = l on ff,

(4) ||2g^i|<C0 and ||tff^||<C0 on U8.(z:q).

(ii) For any relatively compact domain D in M and for any

positive constant CQ 'with C0>1, there exist positive constants d, dQ
(1\

SQ^\ •••,(?ow) such that for any point p^D and for any geodesic 0"

through p, there exist dQ
w and a local coordinate neighborhood USo&

(z\q) satisfying (0)~(4) in (i) with respect to a certain system of

local coordinates zl,z2, --,zn.

Proof of (i). We choose a system of local coordinates Wi, zv2,

• • • , zvn at p and by ga^ we denote the metric tensor with respect to

these local coordinates. By A. Takeuchi [7, p. 329] we can find a

neighborhood V(p) and a system of real analytic functions ^(w) (j,8

= 1,2, •••,») on V(p) such that

a a r S = S T S o n
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Take an arbitrary point q in V(p). We set iVi(q) =C* for z = l, 2, ••- , ?z.

We define a system of local coordinates Zi',zz', "-,z^ by

Now setting

yi /oca) z/ti*/**...* '*» (ry — l 2
Z-J Pii.iz.—.in^1 ** *"* ' \U' — •*•> ^>

we can determine {jS ,̂....̂ } uniquely so that they satisfy the condition

(2). Moreover, after A. Takeuchi, we may assume that ul9 uz, • • • 9 u n give

local coordinates on B$* (#) (see, Lemma 1 in A. Takeuchi [9] ) .

Now we choose a constant d0' so that USo'(u: g) dBs*(q). We denote

the supremum of such 50
/ by 8Q'(q). Then letting <J0"

 = inf?eF(p)^o/(^r) » we

see that 50
//>0. Next we choose an arbitrary geodesic ff through q.

We choose a unitary matrix \<Xt.j\ and a system of local coordinates u/,

Ut', ~',un' with

n
ui = I] at, jUj (i = 1, 2, • • • , n)

y=i

such that the tangent vector of (T at it/ =0, uz' = 0, • • • , M/ = 0 is normalized

as follows:

(0)=1 and - L ( 0 ) = 0 (f = 2,-,»),

where 5 denotes the length of (T. We infer that U9^/n (u
f : q) C B5* (g)

Owing to the real analyticity of the metric tensor, (7 can be expressed

as

Replacing 5 by z1:=s+ V — 1^ in ^t' and using the implicit function theo-

rem, we obtain

(2-11) *' = ?(«,')•

Set

zl = ?(«,'), «• = «.',-, *• = «.'.

Then we get again a new system of local coordinates on B^(q) satisfying
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(1)~(3) (see, section 5 in A. Takeuchi [9]). With referrence to the

univalency of (2-11) and du^/dzl((f) =1, we see that USo (z : q) C Bs* (q) ,

where 80 = 8Q"/4:n. Then there exists a constant 8 such that Bs (g) dUSo/2

(z\q). We denote the supremum of such 8 by (J(g). Then we see that

<y=infaeF(p)<y(g) is positive. So we see that zl,z2, ~-,zn satisfy (0)~(3).

Finally making V(p) smaller, we can staisfy (0) ~ (4) . This completes

the proof.

Proof of (ii). For each p^D we choose V(p) and ff(/>), 0o(£) by

using (i). We can cover D by {V(A)> (i = l, 2, — , 2V). Letting <?0
(i)

= ffo(fr) (i = l, 2, -, AT) and <? = min ff(fr), we see that 8, <V1}, <V2), • • - , ft™

satisfy the condition in (ii).

In terms of the real coordinates a;1, y1, • • • , xn, yn, we denote connection

coefficient T^J.* by

_ vn Tit J I vn T-'w+fc v
7J — 2^ ^ i,n+j——r + 2j ^ <.n + /^~T »
^/ fc=l 9^fc fc = l 9yfc

3 \ n /3 n /3
/ \ _ V-1 y-rfc C/ , V1 TfTl+fc C/

7) — 2_i ̂  n+*,y— ̂  + 2j 1 n+i,j—~^yox 3f *=

^ \ n

Because the connection is induced by the metric, we see that

for z,j, £ = 1, 2, •••,2^z. Also we have

and

By these relations, we obtain

Recall that o~ is a geodesic. Then with reference to (1) in (i),

(2-12)
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Lemma (2-10), we see that

(2-13) r(T = 0 and /7iTI+1 = 0 on ff (j = l,2, • • - ,2;z) ,

and that

=1 and

We prepare two propositions which will be used in the proof of

Key Lemma (see, § 4) :

Proposition (2-15). Let D be a relatively compact domain and

let C0 be a positive constant with C0^>1. Suppose that for a point

p^D, a geodesic o~ through p is given. We choose local coordinates

as in (ii), Lemma (2-10). Moreover •, suppose that (/): R-^-M is a

mapping defined by z1=^t, z2 = Q, • • • , zn = 0. Then we have

(1)

(2) g ., o0 = 2 Im XI71T (0) .^2 + O (*3) ,

(3)

sir/ (o) -^ + o oo ,
(4) ^ (2-13)

Re XT1T(0) -0 a»d Im X"TlT(0) =0 .

These follow from

> 9 +

and

i V~\ "D r-fjfsfc C/ ,

The terms O(t*) and O(tz) can be estimated in the following
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Proposition (2*16K Let $ be the mapping given in Proposition

(2-15) and let SQ = imui=lt2i...tN dQ
(i\ Then we have

(1) Suppose that g(d/dx\ 9/9^0 °(t> = tm-G(t), where G(t) is a real

analytic function. Then we obtain

\G(t)\<2CQ8,-m for t with $(t) ^Bs(p),

(2) Suppose that g(d/dx\ d/dyj) °(/) = tm-G' (t), where G' (t) is a real

analytic function. Then we obtain

\Gf (t)\<2CA~m for t with

(3) Suppose that d/dt(gd/dx\ 9/%0 o<f> = tm-G" (t), where G" (t) is

a real analytic function. Then we obtain

(m+1) for t with

(4) Suppose that rk
itj°<t> = tm -G" (£) , where G* (t) is a real analytic

function. Then we obtain

\Gm(t)\<,nC(m)C*d,-(m+l} for t with <t>(t) SEB8(t),

where C(m) =4m+2-3-(m-1\

Let

Then owing to (4) in Lemma (2-10), we find

i«W. C*1)'1- " (2"y-!<C,| (z1/*,*)1'- (2n/(?o(<));-| on Ut.n (zip}.

By using (0) in (ii) in Lemma (2 • 10) and the definition of 50, we obtain

the above estimates.

§ 3. Some Propositions Concerning Pseudoconvexity

In this section we summarize some propositions concerning pseudo-

convex functions and pseudoconvex domains. Let z1, z2, ••• , zn be a system

of local coordinates on some neighborhood of p and let L be a complex

line through p which is parametrized as

L: z1 = a1^9 z
2 = a2Z, • • • , zn = anl ,

where \a,\2+ \a2\
2+ - + \an\

z = l .
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A function <p is called a pseudoconvex function on Z), if for any

point p&D and for any complex line L,

9 (0) <-L f 2 V (reie} dd where A -
2;r Jo

In what follows we write

,
2n Jo

When (p is a function of C2-class, we find that

where

.
9/191

Hence if <£> is a pseudoconvex function of C2-class, we see that A(p>Q

holds everywhere. More generally a necessary and sufficient condition

that (p is a pseudoconvex (resp. s-pseudoconvex) function is that

(3-1) W (?(/»)) =4 inf lim inf ^-'^

is non-negative (resp. positive) at every point p in D.

The following theorem is well known (for example, see H. Grauert

W):

Theorem (3»2). If D is a relatively compact s-pseudoconvex

domain, then D is holomorphically convex.

Let D be an 5-pseudoconvex domain whose boundary is a real sub-

manifold in M. Take a point pEiD near the boundary. Then we may

assume that there exist a boundary point q and a geodesic o~ between p

and q which attains d(p)=d(p,q). So there exist a local coordinate

neighborhood UBo of p and a system of local coordinates z1, z2, • • • , zn which

satisfies (0)~(4) in (i) in Lemma (2-10).

Then we can prove the following Proposition, which will be used

in § 4. For the proof, see A. Takeuchi [9, Lemma 3, p. 338] :
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Proposition (3-3). There exist a holomorphic function ff(z2,

zn) on Uso and a divisor S through q,

such that

= (f> and

Now we consider a general pseudoconvex domain D. Let pQ be a

boundary point and let Ufa) be a Stein neighborhood. Then D f| Ufa)

is also a Stein manifold. Hence there exists a sequence of domains in

£>f! Ufa), 4, C/ = l, 2, — ) with the following property: (1) J,C4+i, U7=i4
= Ufa) ft -D and (2) 4? ig an ^-pseudoconvex domain whose boundary is

a real submanifold in D P) Ufa) .

We infer the following Proposition:

Proposition (3-4). For any point p0^dD and for any neighborhood

Ufa) there exists a relatively compact neighborhood Vfa) in Ufa)

satisfying

d(p)= inf dfaq) for

For the proof, see H. Grauert [3, Hilfsatz 9, p. 69].

Take an arbitrary point p in Vfa). Then there exists an integer

z'o such that p^Ai for £>z"0. We set

(3 - 5) d, (p) - inf dfa q) and ^ (p) = - log d, (p) for p <= 4 .

Then we see that

di(p)<di+l(p) and

and that

i(P) and

We note that if ^ is a pseudoconvex function (resp. W((pi)^>c^>0) for

z'S^z'o, then ^? is also a pseudoconvex function (resp.

§ 4. Proof of Key Lemma

We shall prove our Key Lemma stated in Introduction. Let D be
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an s-pseudoconvex domain whose boundary is a real submanifold in M. Take

a positive constant C0 with C0>1. By (ii) in Lemma (2-10), we can

find positive constants 8, d0
(1\ <V2), • • - , SQ

(N). As in Proposition (2-16), we

define $0. Choosing <5" ($'<<?) very small, we may assume that the

following condition is satisfied: For any point p£=.Ds>, there exist

a point q^dD and a geodesic tf between p and q satisfying d(p)

Now we take a point p in Ds,. Then we can find q and (7 as above.

By (ii) in Lemma (2-10), we choose a system of local coordinates z1, z2,--,

zn. Letting d(p) =/, we see that 1<^S. To get the estimate W((p) on

ZV, we construct another simple variation of 6. Let N be a complex

line through p and its holomorphic parametrization is given as follows:

(4-1) N:zl = a^, z2 = a2l,-,z
n = anl,

where \a,\z -^ |a2|2+ - + \an\
2 = l .

We write A ^ f - h v 7 — 1^.

Choose a divisor S: {z1 = /3(z2, zs, '~,zn)} through q as in Proposition

(3-3). By the choice of the coordinates, we find z*(q) =1 and

(4-2) Z = Re/9(0,0, -, 0) and 0-Im/9(0,0, -,0).

Consider a holomorphic variation (/? of (T between N and S, 0:JD

X [0, Z] — >M as follows, where D is a small disk :

(4-3)v y

PfaJL, 0*1, •

where we say a holomorphic variation </; of 6 if </» is a holomorphic

mapping for every fixed t. Then the real representation of (/;(?, y, t) is

given as follows:

(4.4)

f = 2, 3,-
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First we show

(4-5) ]]<KO, 0 , 0 1 1 = 1 -

In fact, by (4-2) and (4-4) we see that 0(0, 0, t) = 8/&c1o0(0, 0, 0-

And by (2-13), we prove the assertion.

Next we set

) and Z=0*(A),

where D^d/dt, D2 = d/d? and D, = d/d^. Then X, Y and Z can be

expressed as follows:

(4-6) X= j - ARe (aj) + A Re 01 JL
I I I > ax

(4.7, y

, * 9

Z= Ifl- A) (_lmai) + A 9R^l_9_+ Ifl-
IV / > / v ' I QT, \dxl \\

, t dim 0\ d , >. 9
dy

Because ^ is a. holomorphic variation, we find that

(4-8) Z=J(Y).

Now we set

#*(?,?)= r^(f,^OI|A and
Jo

We shall calulate

IrPW^(oso) = U+ (oso).
\9£ 9? /

For this we first calculate 92?F/9£2 (0, 0) by using

rPW 1 /r5D*\2 1 /#2D*\
g-JL(OQ)=

 x (gfl_) (0,0)- — f01^ 1(0,0).
9f2 (D*)2V 9f I D*\ d£* >

Referring to (4-5), we can compute dD*/d£(Q, 0) by Lemma (2-3) and

we obtain
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^n*
^(0,0)=g(F,X) 00(0, 0 ,*)IS.

Putting X and Y into ff(X, Y) by (4-6) and (4-7) and using (2-14),

we get

g (X, F) o0 (0, 0, 0 = (l - y)Re a, + -j- ̂ ||̂  (0)

, T c0(0, 0 , 0

p(JL,JL)o0(0, 0,0-
l

By (1), (2) in Proposition (2-15) and (2-6), we see that

(£ = 2,3,

(£=2, 3,- »,»).

Moreover, by (4) in the same Proposition, we find Xtfn(O) =0. There-

fore we get

'0 ' f )=: iS-Gi and

for i = 2, 3, • • - ,

Hence by (1), (2) in Proposition (2-16), we have

|G,|<2C0<?0-
8 and |Gn+,|^2C0<V"8 (i = 2,3, -, »).

So we obtain

(4-9) (0, 0) = (0, 0) - Re

where

Also 92D*/9^2(0, 0) can be computed by (ii) in Lemma (2-3) as

follows:

(4 • 10) -^ (0,0)= ( \g (Pfll Y, 7ttt Y) - g (R(Y, X) X, Y )} o0 (0, 0, 0 dt
9 Jo
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The first term in the left side can be computed as follows: From (2-1)

we infer that

, 0, 0 = FBl{ Yo<KO, 0,*)}.

By using X°(f>(0, 0, 0 =d/dx1°ip(0, 0, t~), we see that

Yo0(0, 0, f) = - If] Re «ifir (JL ^) <>0 (0, 0, 0
U-a Vg^:1 9j:V

Im «ifir ( ® -JL) o0 (0, 0, 0 I^o0 (0, 0,
l 1

£j Re o^o0 (0, 0, f) + f] Im aJ-°<!, (0, 0, «) .
= =

Also by (4-4) and (2-14), we have

,0, *))=&,! and

(i = l 2 • • • ri)

3,0,0 =0 (j=l,2,~-,2ri).

Hence defining C7* and V1 (£ = 1,2, •••,») by

O7^) <>0(0, 0,0 = g (7'-Ao0(0, 0,0 + g V'JLo^O, 0,0,

we obtain

+ ] Re 0./V0 (0, 0, 0 + 1] Im flfTU+f^ (0, 0, 0
t=2 i=2

U* = ; Re ajT-Jjo 0 (0, 0, 0 + 2 Im aiA*.n+i°0 (0, 0, 0
i=2 i=2
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V1 = J - 1 Im a, + 1 *̂|4 + S Re a<n?° 0 (0, 0, *)
I / Z 9f ) i = 2

+ Simairr,;
1

+to0 (0,0,0,
i=2

F* = I] Re atFir^ (0, 0, *) + S Im a«/*Jtti°0 (0, 0, *)
i=2 i=2

(* = 2, 3,. ..,»).

By (3) in Proposition (2-15) and (2-12), we see that

rn1^ (o, o, o = 2 im xlllf (0) • * + o (O ,

ni'+,o0 (0, 0,0 = 2 Re JTnn (0) • * + O (i2) .

Moreover, by (4) in Proposition (2-16) and (2-6), we see that Xim(O)

= 0. Hence we obtain

9f

y« = y€«.f (f=2, 3,- - - , » ) ,

Uf = U^-t (* = l,2,-,»),

where Vj'2', F/1' and C7,0) are real analytic functions of*. By (3), (4)

in Proposition (2-16), we see that

(« - 1) C(2) C0
2<V~S ,

-2 (»=2,3, -,»),

50-
2 (f = 2,3, -,»).

In the same manner as in A. Takeuchi [9, p. 343], we have

|^(0,0,.-.,0) = -2fifi,I(9) for f = 2, 3,-.., ».
9z*

Therefore, by (4) in (ii), Lemma (2-10), we obtain

(4-11) ^(0) -Im*
9?

9Re/9 (O)-Im^ <l+(»-l)C,.
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Hence we obtain

f V (TDl Y, 7Dl Y) o0 (0, 0, 0 «» = 4- (^r- (°) - Im

Jo I \ dS

where |/f(Q|<-MC2) and Af(2) is a constant which depends only on C0

and 50.

Next we compute the third term in the left side of (4-10). By

(2-2) and (4-7) and by using d/9£(**o0) =Yi and

Pi)2Y* can be expressed as follows:

where

,̂  (0,0,0

fy o0 (0,0,0
(* = 2, 3,- -,»).

. y o 0 (0,0,0

Byrj fio0(0,0,0)=0 and r*.,n+1° 0(0, 0,0) =0 for j = l, 2,— , 2n (see, (3),

(4) in Proposition (2 -15) and also (2-6) and (2-12)), we have

g(rD,Y, X) o0(0, 0, 0 |{ = j (0 ) + ] Re af Re ayn/°0(0, 0, Z)
9fz «.^=2

+ f] Re a, Im ayrU+/°0 (0, 0, /)

+ ] Im a, Im flyrUi,»+/°0(0, 0, 0 +£T (Z)

where \H'(l)\<^M™ and M(s) is a positive constant which depends only

on C0 and SQ. This follows from (1), (2) and (4) in Proposition (2-16)

and (4-11).

Hence we obtain
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i \ os i d

] tn a. Re fl,ri+,,,o 0(0, 0, Q + \ Im alImflyri+«,.+,o0(0, 0, Z)

where \H" (F)\ <[Af(4) and Af(4) is a constant which depends only on CQ

and SQ.

In the same manner as above, we compute 9*F/9?f (0, 0) as follows

p(°'°) =^(^)2(°»°)-^-^?(°'°)'
where

_(0, 0) = Si^^P+Ima, + J(Q •/'
9??

and

(-Imfl|)(-Imay)r},,o0(0,0,0

(Re ^) (-Im fly)ri+,,y°0(0, 0, /)
=2

(Re a,) (Re ay)rUi,«+^0(0, 0, /)

where |J(/)1^M(5> and | J' (l)\ ^M(6> and M(6), M(8> are positive constants

which depend only on C0 and <J0.
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Therefore by using (4-11) and | (9 Re ft/dift +Im a,\

again, we obtain

, co,o)}

Re a{ Re
= 2

+ ] Re a{ Im ay(rU1-/-/'i+*.y) °0(°. 0, 0«.y=2

+ 2 Im a, Re a/(ri+i,y-/'},.+^ °0(0, 0, /)
i ,y=2

i- 2 Im a* Im aj(ri+t,,+
i,^=2

+ 1 f V (R(Y, X) X,Y)+g (R (Z, X) X, Z) } o0 (0, 0, t) dt
I Jo

+ Af ( / ) • / ,

where | M (T) \ <LM(1) and M (7) is a positive constant which depends only

on CQ and 50.

Because /9 is a holomorphic function, we see that

91 9^ 9^ 9f

Also by (2-12), we have

r!f,+ri+ifll,.,=o and ri+*,/-A«+y=°-
Hence all the terms except the last two ones cancel out. Thus we

obtain
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Lemma (4-12). There exists a positive constant M(1) -which

depends only on CQ and d0 such that

W (0, 0) = \ \\g (R (Y, X) X, Y) + g (R (Z, X) X, Z) } o0 (0, 0, *) dt
I Jo

where \F(l~)\^

By (2-8) and (4-8), we have

(4-13) [l{g(R(Y,X)X,Y)+g(R(Z,X)X,Z)}o<i,(0,0,t')dt
Jo

, Z) -g(X, Z)2} o

The integrands in the left side can be estimated as follows: By g(X,X)

= 1, we have

{g (X, X) g (Y, Y) - g (X, Y)2} o0 (0, 0, 0

where |^T(^)| ̂ Af(8) and Af(3) is a positive constant which depends only

on C0 and d0. In the same manner, we have

{g (X, X) g (Z, Z) - g (X, Z)2} °0 (0, 0, *)

where | JJ7 (^)| ̂ A/(9) and Af(9) is a positive constant which depends only

C0 and 50. By

the right side of (4-13) can be bounded below by the following:
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4

where \H" (T)\ <JM(10) and M(10> is a positive constant which depends only

on C0 and dQ.

Finally we obtain

(4-14) JP(0,0)>-£.
4

where |-ff//r/(/)| ^Af* and Af* is a positive constant which depends only

on CQ and 8Q.

By (4-14) we prove our Key Lemma. We choose 5* by the follow-

ing condition:

Take an arbitrary point p GE D9*. Then as we stanted in the beginning of

this section, we can find a point q^dD such that d(p)=d(p,q) and a

geodesic between p and q, which is denoted by ff. We choose a system

of local coordinates z1, z2, --,zn on U0ow(z:p) as in (ii) in Lemma (2-10)

and a divisor S through q as in Proposition (3 • 3) . And for any complex

line A7, we construct a holomorphic variation 0 of ff as (4-3). Then

for any point r^N, we see that

r) and d(p)=D*(f).

By the choice of 5*,

In view of 0>(r) = — log <f (r) and ?F(r) = — log D* (r), we have

^(r)^r(r) and <p(p)=¥(p).

Therefore by (3-5), we have

which proves by (3 • 1) that

W(<f>(p»^p/8 for

This completes the proof.
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§ 5. Proof of Main Theorem

Finally we prove our Main Theorem. Let D be a general pseudo-

convex domain on M and let C0 be a positive constant with C0>1. Take

an arbitrary point pEzdD and a geodesic through p. Then by (i) in

Lemma (2 • 10) we can choose neighborhoods, V(p) and U3o (p) . Making

V(p) smaller, we may assume that Proposition (3-4) holds for V(p)

and U$0(p} . By using (i) in Lemma (2-10) again, we choose V(p) and

Us0(P} f°r every p&D, where we assume that especially when p^dD,

V(p) satisfies the above condition. Then there exist {pi} i — 1,2, • • • , JV

such that \jf=iV(pt) Z) D . Then setting 5 = min€=i>2,...,^
a) where SM is chosen

as (Jin (i) in Lemma (2-10) at pt, we see that d, dQ
(1\ (V2), --,dQ

(m satisfy

(ii) in Lemma (2-10), where SQ
M is chosen as 8Q in (i) at pi. Here we

may assume that there exists a subset {pj}j=i,2,-,r such that every pj is

contained in dD and lJfj=iV(pj) IDdD. By M* we denote the positive

constant which is determined by C0 and dQ in (4-14). We define 5* by

<y*=min(p/8M*,<r),

where (?' is defined by the same condition as in the beginning of § 4.

Making <?* smaller, we may assume that D5*C \Ji=iV(p^). Choosing a

point p^Ds*. We assume P^V(pi). As in §3, we choose a sequence

of domains {^} of Us^(Z;p) {}D. Then there exists an integer jQ such

that p^Aj for j^jo. As (3-5) we define ds(i^) and <£/(r) for r^AJQ.

By the choice of 5*, we see that rf/(r)<ff* for re 4o HA*. So by Key

Lemma, ^ve find that

As in the end of §3, we see that <pt(p)><pi+i(p) for i^>j0 and ^/ (/>)

Therefore we obtain

wrhich implies

W(p(p»^p/8 for

Then By Theorem (3-2), we prove Main Theorem.
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