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Global Solutions to the Initial Value Problem
for the Nonlinear Boltzmann Equation

By

Takaaki NlSHIDA* and Kazuo IMAI*

Abstract

The nonlinear Boltzmann equation in the rarefied gas dynamics is investigated for
the gas molecules with the cut-off hard potential in the sense of Grad. The solution
to the initial value problem is proved to exist uniquely in the large in time and to
have the decay order of (l + £)~8/4 as £-> + oo for the small initial data in the space
Hitir\L*(x\ Lz(v)}. The decay order is improved to (l+*)~5/* by the additional
assumptions on the initial data.

§ 1, Introduction

The nonlinear Boltzmann equation in the rarefied gas dynamics for

the gas molecules with the cut-off hard potential in the sense of Grad

is given around the absolute Maxwellian state M== (27r) ~3/2 exp(— \v\2/2)

by the following: (cf. [2], [3])

(1.1) df(t, x, v

n

(1 - 2) /(O, x, v) =/0 (x, v) in x e Rs, v e Rs.

Here the operator L acting only on v is linear and nonpositive, i.e.,

(L/,/)<0 for/eD(L) and

L/=0 iff

and it is decomposed as follows:

(1-3) Lf=-v(v)f+Kf in
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where y(v) is a monotone function in \v\ and

(1-4) 0<v0<v(w)<Vi(l+iu|) , and

(1-5) K is a compact selfadjoint operator on Lz(v).

The operator vF (/, (7) depends on 77 and is bilinear in /, g, and the

further properties are stated later.

The initial value problem (1 -1) (1 • 2) is considered by Grad [3] ,

[4] locally in time, and by Ukai [12] in the large in time for the small

initial data which are periodic in x^ whose solution decays exponentially

in t. Here we consider the pure initial value problem (1 -1) (1 • 2) and

prove that the solution exists uniquely in the large in time for the initial

data fo(a:9 v) e HZ]^Ll(x ; Z/2(z;)) with the small norm in these spaces

and that it decays with the order of (l + £)~s/4 as t-* + oo, where

(1-6) HI>m={/=/(^)

(1-7) Hl is the Sobolev space of L2-functions in x with the l-th L2-

derivatives, and

(1-8) Lp(x;Lz(v')) is the ZAspace in x with the value in L?(v) and

The additional conditions on the initial data such that

xf*(x, v) eZ/(>;;L2(V)) and l/ofo v)</jj(v')d

improve the decay order to (lH-£)~5/4 as £-> + oo. In order to get the

existence theorem and asymptotic decay of solutions, we use the argu-

ments in [3], [12] cited above and those in [1] where the linearized

Boltzmann equation is discussed about the fluid dynamical approximation,

and those in [5], where the decay of solutions in the whole space as

£_» j_ oo is considered for the Broadwell model of Boltzmann equation.
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§ 2. Linearized Boltzmann Equation

We summarize here some known results about the linearized

Boltzmann equation,

(2 - 1) d f ( t , x, v) /dt + v df/dx = Lf .

It is considered in the Fourier transform in x\

(2 - 2) d?(t, k, v) /dt =-&. vf+ Lf^Bf

in *>0, k<=R\ v^R\

Let k^R3 be a fixed parameter and consider the following operators in

L\v).

(2-3) Bt=-ik-v-y(v)+K,

(2-4) At=-ik-v-»(v),

where

Since K is a compact operator, Bk is considered as the compact per-

turbation from Ak.

Proposition 1. Bk generates the strongly continuous contraction

semigroup etBk on L2 (v} .

Proof. See [1], [9].

Definition, tf (B^) , (je (J5fc) and ffd (Bk) denote the spectrum, essential

spectrum in the sense of Browder [11] and the set of isolated eigenvalues

with finite multiplicity, respectively.

Proposition 2. ffe (BJ C ffe (Ak) U U

for

Proof. See [1], [8].

It is wellknown (cf. [2]) that Oe(T(50) ^=o"(L) is an eigenvalue

with multiplicity 5 and its eigenspace is spanned by {(/)j}5
J=1, and that
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the other eigenvalue of BQ (if exist) are on the negative real axis such

that 0>>U>A2>---->-y0.

Now let us parametize k = tca) where K e R1, a) e S2.

Proposition 3. There exists <J>0, &>0 such that for \k\<8

Gd (BO fl {Re A> - &} =

where the perturbed eigenvalues aj(K) of 0 are smooth in /c,

have the expansion

MI (K) = ajtl (tic) + aJ)Z (i/c) 2 + a/,. (/A;)

where

corresponding eigenf unctions are smooth in K and have the ex-

pansion

jtl (a)) (z/c) 4- ej,2 (fl)) (f A;) 2 + • • • ,

Proof. In particular for the hard sphere molecule, the expansions

for ay(&) and ej(k) converge in A;, |/c|<5 and they are analytic in K

there, (cf. [7], [8]) For the general cut-off hardpotential, see [1],

Proposition 4.

( i ) For any fixed /?O0,

sup

(ii) For a^y fixed jS<v0, fl»y

sup

(iii) For a^y jfcrefl7 jS<y0, ^A^r^ ar^ «o eigenvalues of Bk in

{Re A> -^} /or /flrg» |i|. And for \k\ <Vr< + oo, there exists c = c(r)

such that
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O n {Re A>-£}d{|I

Proof. See [12]. (iii) follows from (i) and (ii).

If we note that the set 6d(Bk) in Re /I >— $(> — V0) is continuous

in /cei?1 and so it is in k^R* by using the rotation in v for jBfc, it

follows from propositions 3 and 4 that for any k, \k\^>d^>Q there exists

such that

(2-5) <T< (BO C {Re *<-&}.

Theorem 1. TAere *rwte <J>0, ft>0, ft>0 s«c/i that the fol-

io-wing (i) and (ii) <zr£ valid for any f

(i) For awy A, \k\<d,

1 r-Pi + ir(2-6) ets*/=iim^L
r^+»2?rz J-«i-«r

J=l

-where a,j(K) and es(K) (j=l, 2, • • - , 5) are ^/ie eigenvalues and the

corresponding eigenf unctions of Bk in proposition 3.

(ii) For

(2-7) e**¥= lim-A_ f *""IVxU--BO-1/a;i.
r-»+oo 2m J-02-ir

Proof. If we note that proposition 4 implies ||(A —B0~!/l|-»0 as

|ImA|->oo for ReA>-/9(>-Vo), [1] gives (i) and (2-5) gives (ii).

Remark The first terms on the right hand side in (2-6) and (2-7)

can be rewriten in the form (cf. [12]);

1 f*-0j+ir
lim I e (^ — Bk) ~ ̂

r-»+*>2ni J-0j-ir
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where \\Z (/3,-, t) \\<c independent of t. C/=l, 2)

§ 3. Decay of Solutions for the Linearized Boltzmaim Equation

Definition. H= {f(x, v) e L2 (x, v) , O, v) e Re} dL2 (x ; L2 (v) ) ,

tk-*f(x,v)dx for feH\
)

Definition. Boltzmann semigroup (cf . [1] ) .

etBf = (2ff) ~3/2 f «'*••«"•»/(*, tO ̂  /or f(x,

Theorem 2. TAe solution of the linearized Boltzmann equation

(2 • 1) with the initial f(x, v) has the following decay estimate for

1 = 0,1,2,-.

(i) Let f (x, v) e Ht f] V (x • L2 (v) ) . 77ze«

(3-1) ||«w/||,<c (fl/ll, + ||/|U,(a!i,(.,,)/(H-0V4.

(ii) ZTZ addition to the condition of (i) Z^ xf(x^v) e L1 (a: ; L2 (t;) )

and

^</JjWf(x,v)dxdv = 0 for ./=1,2, • • - , 5. TAra

(3 - 2) |kw/ !«<£: (11/11, + || /|U,(« x.(,» + lk/IUito L.(.») / (1 + 0 5/4-

(iii) Let f^ HI, \\f(k, v) \\L*w^c for any k^Rs and

\<l>3 Wf(x9 v)dv = 0 for a.a.x e R\ j = 1, 2, • • •, 5. TAe»

(3 • 3) \\S*f\\<c (11/11, + sup||/(&, • ) || LiW) / (1 + 0 5/4.
&

It is shown in [10] that the decay of solution to (2-1) as t-* -i- oo
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without the decay order for the hard sphere molecule.

Proof. Let us estimate

\\**f iir = Ja+ \k\r\\j

= f + r =
J\fc\^S J|fc|>5

By Theorem 1 (ii) and the remark to it,

I^Je-W f (1+ \k\r\\f (k, v) f
J\k\>8

For \k\<:d we decompose / as follows;

1= f <^2 + /3
JW^ff

where I2 and J3 correspond to the first term and the second term in the

right hand side of (2-6) for etBfcf respectively. Therefore using again

the remark to Theorem 1 we have

*< f c*e-" (1 + \k\r\\f(k, v)
J|*IS»

< f S(l+\k\r^<riW(.e
J|fc|<5 j = L

<c2sup||M-)lli*W f
I*IS» Jl*l*IS»

Thus we have for j80 = min{j8i, jS2}

3/2 -
(ii) and (iii) are proved analogously, (cf. [5]). Q.E.D.

§ 4. Existence and Decay of Solutions for the Nonlinear
Boltzmanii Equation

Jn order to get the existence and the decay estimate of the solu-

tions to the Cauchy problem (1 -1) (1 • 2) we follow the line of [3] and



236 TAKAAKI NISHIDA AND KAZUO IMAI

[12], when the space of functions Ht)m for /, m>3 is used. (cf. (1-6))

Theorem 3. Let /, w>3

(i) Let the initial data fQ(x,v) ^Hi}mr]L1(x; L2(v)) and put

There exists a constant EQ^>0 such that for any initial data with E±

<E0 the solution f(f) of (1-1) (1-2) exists uniquely in the large in

time and has the decay estimate,

(ii) In addition let the initials satisfy xfa (x, v) e L1 (x ; L2 (zi) ) and

J JV/ (f )/. (x, v) dxdv = 0,j=l,2,-,5.

Put £2 = £, +

Then the decay estimate of the solution of (i) improves to

Proof. In order to obtain the solution of (1 • 1) , (1 • 2) we introduce

the iteration

(4-1) /"(*) =*'*/«+ fV-)a

Jo

/'(*)=o

in Hi}mdHi where etB is the linear solution operator in Theorem 2.

To prove the convergence of this iteration globally in time, we use

the integral equation

(4 - 2)

where v^ (^) = v (v) Q (t, x, v) is assumed to satisfy the conditions of

Theorem 2, (iii), and follow Grad's and Ukai's arguments ([3], [12]).

We use the operators etAf=e~tv(:o}f(x — tv,v) and a version of (4-2)
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(4-3) f(f)=e'Afa

to estimate (4-2) in Hljm. Using the property of K ([2], [3]) (4-3)
has the next estimates for /? = 3/4, 5/4

(4-4) l/IIUl>a<c(|/,||,,.+ |||ff||U''0+ I/I/)

(4-5) lll/!IU'''<c(||/,||,,, + |||flr||Ul''+|||/||U1''-1), J>1,

where c means some positive constant and

/^ sup (1 + 011/CO I k / ,t^o

1^ sup (i + oil /COII. .
t^Q

Iterating these inequalities j=Q9 1, 2---ra, we obtain

(4 • 6) I /|||/'m<C (|| /,||,,, + I flrfU1- + HI /I/) .

To estimate l/lil^1 we consider (4-2) in HI. By the aid of the inequality

(4-7)
^ ' "

^: independent of £,

Theorem 2 gives

(4-8) |||/|IU'<c(£+lfl'llfo-+ sup

where E = El9E2 for # = 3/4,5/4 respectively. From (4-6) and (4-8)
it follows that

(4-9) |||/|IU''"<«£+*(||fffe-+ sup

a,6: positive constants.

Now we can set g(i) =T(h(f)9 h (*)), AeHZ f W . By virtue of [3] it
has the estimates

(4-10) |||r(A,A)||fo-<<:(|||A|IUI'»)f,

(4-11) sup (l + Owll(v/T(A,A))A||£1(.)<CSup (1 + *)'>/'(*, A) lU^x,,,
fcefi8 e^o
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Hence we obtain

(4-12) \\\f\Ll'm<iE + bc(\\\h\\\ff
l'mr.

This inequality shows that there exists a constant EQ such that for any

E<^EQ the iteration (4-1) converges to the global solution in H^m.

Q.E.D.

Remark 1. While typing this work we received an abstract of

Prof. Ukai that contains the existence theorem of the global solutions

for the Cauchy problem of the nonlinear Boltzmann equation for the

hard sphere molecule with the small initial data having no fluid part.

Remark 2. We can get the global solution of (1 • 1) , (1 • 2) with-

out the restriction /0 e L1 (x ; L2 (v) ) . To prove this remark, we have

only to note the facts

and (4-7) for @ = Q. Then the inequality (4-12) will become

Hence the iteration (4-1) gives the bounded (in t) solution in Hi}m,

I, m>3.

Moreover if we note that in this case the ^-derivatives of the solu-

tion have the decay order as

41/•!!»,»

2,3

WO <g||/t|l«.»

'(1 + 01,3

we can get the decay of the solution f(t) in the norm of H0)Z by the

aid of the Nirenberg's inequality(*};

In fact we know that by the Lebesgue's theorem

-»0 as *-»TOO

and we have for the nonlinear part

<*> L. Nirenberg, On elliptic partial differential equations, Annali Scuola Norm. Sup.
Pisa, 13 (1959) 115-162.
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r u*<'->
Jo

r
Jo
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