On the Classification of Some
 ($n-3$)-Connected ($2 n-1$)-Manifolds

Dedicated to Professor Ryoji Shizuma on his 60-th birthday

By
Hiroyasu Ishimoto*

Introduction

In the preceding paper [4], the author tried to classify ($n-2$)connected $2 n$-manifolds ($n \geqq 4$) with torsion free homology groups up to diffeomorphism $\bmod \theta_{2 n}$ by completely classifying the handlebodies of $\mathscr{H}(2 n+1, k, n+1)(n \geqq 4)$ up to diffeomorphism. As remarked there, the method is also applicable to the case of sufficiently connected odd dimensional manifolds.

In this paper, we try to classify the simply connected $(2 n-1)$-manifolds ($n \geqq 6$) with non-trivial homology groups only in dimensions 0 , $n-2, n+1$, and $2 n-1$, up to diffcomorphism $\bmod \theta_{2 n-1}$ by completely classifying the handlebodies of $\mathscr{H}(2 n, k, n+1)(n \geqq 6)$ up to diffeomorphism. The results arc listed up or given as theorems in the next section. Those contain the results of Tamura [10] as a special case, that is, as the case of type O. To classify the handlebodies of $\mathscr{H}(2 n, k$, $n+1)(n \geqq 6)$ up to diffeomorphism, we use Wall's classification theorem [11], similarly as in [4].

Throughout this paper, notations are due to those of [4], and manifolds are connected, closed, and differentiable.

Results

Let M be a simply connected ($2 n-1$)-manifold ($n \geqq 6$) satisfying the

[^0]hypotheses
$\left(\mathrm{H}_{1}\right) \quad H_{i}(M)=0$ except dimensions $i=0, n-2, n+1$, and $2 n-1$,
$\left(\mathrm{H}_{2}\right) \quad M$ is ($n-2$)-parallelizable. ${ }^{1)}$ (This hypothesis is satisfied if $n=0,1,5$, and $7 \bmod 8$.)
Let $\Phi: H^{n-2}\left(M ; Z_{2}\right) \rightarrow H^{n+1}\left(M ; Z_{2}\right)$ be Adem's secondary cohomology operation associated to $S_{q}^{3} S_{q}^{1}+S_{q}^{2} S_{q}^{2}=0$. We note that there is no indeterminacy by the homological assumption of M. Let $\phi: H^{n-2}(M)$ $\times H^{n-2}(M) \rightarrow Z_{2}$ be a bilinear form defined by $\phi(x, y)=<\Phi x_{2} \cup y_{2}$, $[M]_{2}>$, where the suffixes 2 mean that those are considered in the Z_{2}-coefficient and [M] denotes the fundamental class of $H_{2 n-1}(M)$. It will be clear in $\S 1$ that ϕ is symmetric. So that the type of M is defined as in [4]. That is, M is of type O if $\operatorname{rank} \phi=0$, of type \mathbb{I} if $\phi(x, x) \neq 0$ for some $x \in H^{n-2}(M)$ and $\operatorname{rank} \phi=k\left(k=\operatorname{rank} H^{n-2}(M)\right)$, and of type II if $\phi(x, x)=0$ for any $x \in H^{n-2}(M)$ and $\operatorname{rank} \phi=k$. M is of type $(\mathrm{O}+\mathrm{I})$ if $\phi(x, x) \neq 0$ for some $x \in H^{n-2}(M)$ and $0<\operatorname{rank} \phi<k$, and of type $(\mathrm{O}+\mathrm{II})$ if $\phi(x, x)=0$ for any $x \in H^{n-2}(M)$ and $0<\operatorname{rank} \phi<k$. M belongs to some type and the type is uniquely determined (See Lemma 1.1 of [4].)

Theorem 1. Let M be a simply connected ($2 n-1$)-manifold ($n \geqq 6$) satisfying the hypotheses $\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{2}\right)$. Then, M is represented $\bmod \theta_{2 n-1}$ as shown in the following tables 1,2 , and 3.

In these tables, A_{α}, B_{β} denote the $(n-2)$-sphere bundles over $(n+1)$ spheres with the characteristic elements $\alpha, \beta \in \pi_{n}\left(\mathrm{SO}_{n-1}\right)$ respectively such that $\pi(\alpha)=0, \pi(\beta)=1$ for $\pi: \pi_{n}\left(S O_{n-1}\right) \rightarrow \pi_{n}\left(S^{n-2}\right) \cong Z_{2}(n \geqq 6)$, the homomorphism induced from the projection. $V\binom{\alpha_{1}}{\alpha_{2}}$ is the boundary of $W\binom{\alpha_{1}}{\alpha_{2}}$, where $W\binom{\alpha_{1}}{\alpha_{2}}$ is a handlebody of $\mathscr{H}(2 n, 2, n+1)$ such that the link $f_{1}\left(\partial D_{1}^{n+1} \times o\right) \cup f_{2}\left(\partial D_{2}^{n+1} \times o\right) \subset \partial D^{2 n}$ by the attaching maps f_{1}, f_{2} has the non-zero linking element and the normal bundles of the spheres S_{i}^{n+1}, with hemispheres $D_{i}^{n+1} \times o$ and D_{i}^{n+1} in $D^{2 n}, i=1,2$, have the characteristic elements $\alpha_{1}, \alpha_{2} \in \pi_{n}\left(\mathrm{SO}_{n-1}\right)$ respectively such that $\pi\left(\alpha_{1}\right)$ $=\pi\left(\alpha_{2}\right)=0 . \quad V\binom{\alpha_{1}}{\alpha_{2}}$ never has the homotopy type of the connected sum of the two ($n-2$)-sphere bundles over ($n+1$)-spheres (cf. [4], 88 and $\S 1$).

1) This means that M is parallelizable on its ($n-2$)-skeleton of a triangulation.
$W\binom{\alpha_{1}}{\alpha_{2}}$ is also constructed from ($n-1$)-disk bundles over $(n+1)$ spheres \bar{A}_{i} with the characteristic elements $\alpha_{i}, i=1,2$, by plumbing along $S^{1} \times S^{1}$, where there are imbeddings $f_{i}: S^{1} \times S^{1} \rightarrow S_{i}^{n+1}, i=1,2$, with the trivial normal bundles framed so that those Pontrjagin-Thom maps yield non-trivial elements of $\pi_{n+1}\left(S^{n-1}\right) \cong Z_{2}$, and then by attaching two 2 -cells with thickness $D^{2 n-2}$ and a 3-cell with thickness $D^{2 n-3}$ to the boundary. (See [3] p. 494, p. 506.)

For an integer $m \geqq 0, m A_{\alpha}, m B_{\beta}, m\left(S^{n+1} \times S^{n-2}\right), m V\binom{\alpha_{1}}{\alpha_{2}}$ denote the connected sum of m-copies of $A_{\alpha}, B_{\beta}, S^{n+1} \times S^{n-2}$, and $V\binom{\alpha_{1}}{\alpha_{2}}$ respectively. We put $k=\operatorname{rank} H_{n-2}(M)$. If M is of type $(\mathrm{O}+\mathrm{I}), q=\operatorname{rank} \phi$, $p=k-q$, and we fix the homotopy invariant q. If M is of type II, $k=2 r$. If M is of type $(\mathrm{O}+\mathrm{II}), 2 r=\operatorname{rank} \phi, p=k-2 r$, and we fix the homotopy invariant r. If $\pi_{n}\left(S O_{n-1}\right)$ has several direct summands, for example, if $\alpha_{i}=\alpha_{1}^{i}+\alpha_{2}^{i}, i=1,2$, we denote $V\binom{\alpha_{1}}{\alpha_{2}}$ by $V\left(\begin{array}{cc}\alpha_{1}^{1} & \alpha_{2}^{1} \\ \alpha_{1}^{2} & \alpha_{2}^{2}\end{array}\right)$.

Table $\mathbb{1}$

$n(\geqq 6)$	Type O
$4 t-1$	$\begin{gathered} A_{a} \#(k-1)\left(S^{n+1} \times S^{n-2}\right), \quad a \geqq 0 \\ t=2 \Longrightarrow a: \text { even } \geqq 0 \end{gathered}$
$\begin{gathered} 4 t \\ (t: \text { odd }) \end{gathered}$	$k\left(S^{n+1} \times S^{n-2}\right)$
$\begin{gathered} 4 t \\ (t: \text { even }) \end{gathered}$	$A_{(0, b)} \#(k-1)\left(S^{n+1} \times S^{n-2}\right), \quad b=0,1$
$\begin{gathered} 4 t+1 \\ (t: \text { odd }) \end{gathered}$	$A_{(a, 0)} \#(k-1)\left(S^{n+1} \times S^{n-2}\right), \quad a=0,1$
$\begin{gathered} 4 t+1 \\ (t: \text { even }) \end{gathered}$	$\begin{aligned} & A_{(a, 0, b)^{\#}(k-1)\left(S^{n+1} \times S^{n-2}\right), \quad a, b=0,1}^{A_{(1,0,0)^{\#}} A_{(0,0,1)} \#(k-2)\left(S^{n+1} \times S^{n-2}\right)} \end{aligned}$
$4 t+2(t \geqq 2)$ 6	$\begin{gathered} A_{a} \#(k-1)\left(S^{n+1} \times S^{n-2}\right), \quad a=0,1,2,4 \\ k\left(S^{7} \times S^{4}\right) \end{gathered}$

Table 2

$n(\geqq 6)$	Type I		Type ($\mathrm{O}+\mathrm{I}$)	
$4 t-1$	$t \geqq 3 \Longleftrightarrow$ Nothing		$t \geqq 3 \Longleftrightarrow$ Nothing	
	$t=2 \Longleftrightarrow k B_{c}, c:$ odd >0		$p\left(S^{8} \times S^{5}\right) \# q B_{c}, c:$ odd >0	
$\begin{gathered} 4 t \\ (t: \text { odd }) \end{gathered}$	$k B_{1}$		$p\left(S^{n+1} \times S^{n-2}\right) \# q B_{1}$	
$\begin{gathered} 4 t \\ (t: \text { even }) \end{gathered}$	$\begin{array}{ll} k B_{(1,0)}, & k B_{(1,1)} \\ (k-1) B_{(1,0)} \# B_{(1,1)}, & k \geqq 2 \\ (k-2) B_{(1,0)} \# 2 B_{(1,1)}, & k \geqq 3 \end{array}$		$\begin{array}{ll} p\left(S^{n+1} \times S^{n-2}\right) \# q B_{(1,0)} & \\ p\left(S^{n+1} \times S^{n-2}\right) \# q B_{(1,1)} & \\ p\left(S^{n+1} \times S^{n-2}\right) \#(q-1) B_{(1,0)} \# B_{(1,1)}, & q \geqq 2 \\ p\left(S^{n+1} \times S^{n-2}\right) \#(q-2) B_{(1,0)} \# 2 B_{(1,1)}, & q \geqq 3 \\ A_{(0,1)} \#(p-1)\left(S^{n+1} \times S^{n-2}\right) \# q B_{(1,0)} & \end{array}$	
$\begin{gathered} 4 t+1 \\ (t: \text { odd }) \end{gathered}$	$k B_{(0,1)}$		$p\left(S^{n+1} \times S^{n-2}\right) \# q B_{(0,1)}$	
$\begin{gathered} 4 t+1 \\ (t: \text { even }) \end{gathered}$	$\begin{array}{ll} k B_{(0,1,0)}, \quad k B_{(0,1,1)} & \\ (k-1) B_{(0,1,0)} \# B_{(0,1,1)}, & k \geqq 2 \\ (k-2) B_{(0,1,0)} \# 2 B_{(0,1,1)}, & k \geqq 3 \end{array}$		$\begin{array}{ll} p\left(S^{n+1} \times S^{n-2}\right) \# q B_{(0,1,0)} & \\ p\left(S^{n+1} \times S^{n-2}\right) \# q B_{(0,1,1)} & \\ p\left(S^{n+1} \times S^{n-2}\right) \#(q-1) B_{(0,1,0)}^{\# B_{(0,1,1)},} & q \geqq 2 \\ p\left(S^{n+1} \times S^{n-2}\right) \#(q-2) B_{(0,1,0)}^{\# 2 B_{(0,1,1)},} & q \geqq 3 \\ A_{(0,0,1)} \#(p-1)\left(S^{n+1} \times S^{n-2}\right) \# q B_{(0,1,0)} & \end{array}$	
$4 t+2$	Nothing		Nothing	

Table 3

$n(\geqq 6)$	Type II	Type ($\mathrm{O}+\mathrm{II}$)
$4 t-1$	$V\binom{d}{0} \#(r-1) V\binom{0}{0}, \quad d \geqq 0$	$\begin{array}{ll} A_{a} \#(p-1)\left(S^{n+1} \times S^{n-2}\right) \# r V\binom{0}{0}, & a \geqq 0 \\ p\left(S^{n+1} \times S^{n-2}\right) \# V\binom{d}{0} \#(r-1) V\binom{0}{0}, & d>0 \end{array}$
	$t=2 \Longrightarrow d:$ even $\geqq 0$	$t=2 \longmapsto a, d:$ even, $a \geqq 0, d>0$
$\begin{gathered} 4 t \\ (t: \text { odd }) \end{gathered}$	$r V\binom{0}{0}$	$p\left(S^{n+1} \times S^{n-2}\right) \# r V\binom{0}{0}$
$\begin{gathered} 4 t \\ (t: \text { even }) \end{gathered}$	$V\left(\begin{array}{ll}0 & d \\ 0 & 0\end{array}\right) \#(r-1) V\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right), d=0,1$	$\begin{aligned} & A_{(0, b)} \#(p-1)\left(S^{n+1} \times S^{n-2}\right) \# r V\left(\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right), \quad b=0,1 \\ & p\left(S^{n+1} \times S^{n-2}\right) \# V\left(\begin{array}{ll} 0 & 1 \\ 0 & 0 \end{array}\right) \#(r-1) V\left(\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right) \end{aligned}$
$\begin{gathered} 4 t+1 \\ (t: \text { odd }) \end{gathered}$	$V\left(\begin{array}{ll} d & 0 \\ d & 0 \end{array}\right) \#(r-1) V\left(\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right), d=0,1$	$\begin{aligned} & A_{(a, 0)} \#(p-1)\left(S^{n+1} \times S^{n-2}\right) \# r V\left(\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right), \quad a=0,1 \\ & p\left(S^{n+1} \times S^{n-2}\right) \# V\left(\begin{array}{ll} 1 & 0 \\ 1 & 0 \end{array}\right) \#(r-1) V\left(\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right) \end{aligned}$

$\begin{gathered} 4 t+1 \\ (t: \text { even }) \end{gathered}$	$\begin{aligned} & V\left(\begin{array}{lll} d & 0 & 0 \\ d & 0 & 0 \end{array}\right) \#(r-1) V\left(\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right), \\ & V\left(\begin{array}{lll} 0 & 0 & 1 \\ 0 & 0 & d \end{array}\right) \#(r-1) V\left(\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right), \\ & V\left(\begin{array}{lll} 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}\right) \# V\left(\begin{array}{lll} 0 & 0 & 1 \\ 0 & 0 & d \end{array}\right) \#(r-2) V\left(\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right), \end{aligned}$ where $d=0,1$.	$P\left(S^{n+1} \times S^{n-2}\right) \#$ (Manifolds of type II). $\begin{aligned} & A_{(1,0,0)} \#(p-1)\left(S^{n+1} \times S^{n-2}\right) \# V\left(\begin{array}{lll} 0 & 0 & d \\ 0 & 0 & 0 \end{array}\right) \#(r-1) V\left(\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right), \\ & A_{(0,0,1)} \#(p-1)\left(S^{n+1} \times S^{n-2}\right) \# V\left(\begin{array}{lll} d & 0 & 0 \\ d & 0 & 0 \end{array}\right) \#(r-1) V\left(\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right), \\ & A_{(1,0,1)} \#(p-1)\left(S^{n+1} \times S^{n-2}\right) \# V\left(\begin{array}{lll} d & 0 & 0 \\ d & 0 & 0 \end{array}\right) \#(r-1) V\left(\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right), \end{aligned}$ where $d=0,1$. $A_{(1,0,0)} \# A_{(0,0,1)} \#(p-2)\left(S^{n+1} \times S^{n-2}\right) \# r V\left(\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$
$\begin{aligned} & 4 t+2 \\ & (t \geqq 2) \end{aligned}$	$V\binom{d}{d} \#(r-1) V\binom{0}{0}, \quad d=0,4$ $V\binom{d}{0} \#(r-1) V\binom{0}{0}, \quad d=1,2$	$\begin{array}{ll} p\left(S^{n+1} \times S^{n-2}\right) \# V\binom{d}{d} \#(r-1) V\binom{0}{0}, & d=0,4 \\ p\left(S^{n+1} \times S^{n-2}\right) \# V\binom{d}{0} \#(r-1) V\binom{0}{0}, & d=1,2 \\ A_{a} \#(p-1)\left(S^{n+1} \times S^{n-2}\right) \# r V\binom{0}{0}, & a=1,2,4 \end{array}$
6	$r V\binom{0}{0}$	$p\left(S^{7} \times S^{4}\right) \# r V\binom{0}{0}$

The homotopy groups $\pi_{n}\left(\mathrm{SO}_{n-1}\right)(n \geqq 6)$ are given as follows (Kervaire [5], Paechter [8]) and are identified with those groups under some bases (cf. §2).

$n(\geqq 7)$	$8 s-1$	$8 s$	$8 s+1$	$8 s+2$	$8 s+3$	$8 s+4$	$8 s+5$	$8 s+6$
$\pi_{n}\left(S O_{n-1}\right)$	Z	$Z_{2}+Z_{2}$	$Z_{2}+Z_{2}+Z_{2}$	Z_{8}	Z	Z_{2}	$Z_{2}+Z_{2}$	Z_{8},

The type of a handlebody W of $\mathscr{H}(2 n, k, n+1)(n \geqq 6)$ is defined by the bilinear form λ of the corresponding ($H ; \lambda, \alpha$)-system. (See [4] p. 222.) We have

Theorem 1'. Let $\bar{A}_{\alpha}, \bar{B}_{\beta}$ be the ($n-1$)-disk bundles over $(n+1)$ spheres associated with A_{α}, B_{β} respectively. In the above tables, if we replace $S^{n+1} \times S^{n-2}, A_{\alpha}, B_{\beta}, V\binom{\alpha_{1}}{\alpha_{2}}$, and \# respectively by $S^{n+1} \times D^{n-1}$, $\bar{A}_{\alpha}, \bar{B}_{\beta}, W\binom{\alpha_{1}}{\alpha_{2}}$, and the boundary connected sum operation \mathfrak{q}, then Table 1, Table 2, and Table 3 give the complete classification of handlebodies of $\mathscr{H}(2 n, k, n+1)(n \geqq 6)$ up to diffeomorphism.

Theorem 2. In Theorem 1, the representation of M is unique $\bmod \theta_{2 n-1}$ in each of the following cases when
(i) M is of type O ,
(ii) M is of type $\mathrm{I}, n \neq 8 s$, and $n \neq 8 s+1$,
(iii) M is of type $(\mathrm{O}+\mathrm{I}), n \neq 8 s$, and $n \neq 8 s+1$,
(iv) M is of type II and $n=4 t-1$ or $8 s+4$ or 6 ,
(v) M is of type $(\mathrm{O}+\mathrm{II})$ and $n=4 t-1$ or $8 s+4$ or 6 , and especially, in the above (i)-(v),
(vi) when $n=4 t-1$ or 6 .

Corollary 3. Let $n=4 t-1(t \geqq 2)$ and let M be a simply connected ($2 n-1$)-manifold satisfying $\left(\mathrm{H}_{1}\right)$, and $\left(\mathrm{H}_{2}\right)$ if t is odd. Then M is determined by Adem's secondary cohomology operation $\Phi: H^{n-2}\left(M ; Z_{2}\right)$ $\rightarrow H^{n+1}\left(M ; Z_{2}\right)$ and the Pontrjagin class $P_{t}(M)$ up to diffeomorphism $\bmod \theta_{2 n-1}$.

1. Proofs of the Main Theorems

Let M be a simply connected ($2 n-1$)-manifold ($n \geqq 6$) satisfying the hypotheses $\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{2}\right)$. Then there exists a handlebody W of $\mathscr{H}(2 n, k$, $n+1$), where $k=\operatorname{rank} H_{n-2}(M)$, and a homotopy ($2 n-1$)-sphere Σ such that $M=\partial W \# \Sigma$ (Ishimoto [3], p. 509).

Let $W=D^{2 n} \bigcup\left\{f_{i}\right\}$ be the linking element (Haefliger [2]) defined by $f_{j}\left(S_{j}^{n} \times o\right)$ in $S^{2 n-1}$ $-f_{i}\left(S_{i}^{n} \times o\right)$ if $i \neq j$, and defined by $S_{i}^{\prime n}$ in $S^{2 n-1}-f_{i}\left(S_{i}^{n} \times o\right)$ slightly moved from $f_{i}\left(S_{i}^{n} \times o\right)$ if $i=j$. Let $\varepsilon_{i} \in H^{n-2}\left(\partial W ; Z_{2}\right), i=1,2, \ldots, k$, be the canonical generators which are dual to the homology classes $\left(x_{i} \times S_{i}^{n-2}\right) \in$ $H_{n-2}\left(\partial W ; Z_{2}\right), x_{i} \in \partial D_{i}^{n+1}, S_{i}^{n-2}=\partial D_{i}^{n-1}$, respectively. Then we have the relation $\lambda_{i j}=\left\langle\Phi \varepsilon_{i} \cup \varepsilon_{j},[\partial W]_{2}\right\rangle$ for all i, j, where $[\partial W]_{2}$ denotes the $\bmod 2$ fundamental class of $H_{2 n-1}\left(\partial W ; Z_{2}\right)$ (cf. [4], Lemma 8.2 and Remark 1 of p.251). Let $\lambda: H_{n+1}(W) \times H_{n+1}(W) \rightarrow Z_{2} \cong \pi_{n+1}\left(S^{n-1}\right)$ be the corresponding pairing of W and let $\left\{e_{1}, \ldots, e_{k}\right\}$ be the canonical base of $H_{n+1}(W)$. Then the relation $\lambda\left(e_{i}, e_{j}\right)=S \lambda_{i j}$ holds by Lemma 7 of Wall [11]. So that, we have the following commutative diagram:

where i_{*} is the isomorphism induced from the inclusion map i and D denotes the Poincare duality. (cf. Theorem 8.3 of [4]). Thus, the type of W defined by the bilinear form λ of the corresponding $(H ; \lambda, \alpha)$ system coincides with that of M. Therefore, we have Theorem 1 by the complete classification of the handlebodies of $\mathscr{H}(2 n, k, n+1)(n \geqq 6)$ up to diffeomorphism, which has been performed in the following sections, using Wall's classification theorem [11]. Theorem 1^{\prime} is the collection of the results.

If the membranc W of M is uniquc up to diffeomorphism, then also
M up to diffeomorphism $\bmod \theta_{2 n-1}$. If $W_{i}, i=1,2$, are handlebodies of type O of $\mathscr{H}(2 n, k, n+1)(n \geqq 6)$ and if ∂W_{1} is diffeomorphic to ∂W_{2} $\bmod \theta_{2 n-1}$, then W_{1} is diffeomorphic to W_{2}, similarly as Theorem 9.1 of [4]. So that, if M is of type O, the representation of M in Table 1 is unique $\bmod \theta_{2 n-1}$.

Let ξ be an orientable ($4 t-2$)-plane bundle over the $4 t$-sphere ($t \geqq 2$) with the characteristic element $\gamma \in Z \cong \pi_{4 t-1}\left(\mathrm{SO}_{4 t-2}\right)$. Then, the Pontrjagin class $P_{t}(\xi)$ satisfies the relation $P_{t}(\xi)= \pm\left(c_{1} \gamma\right) \cdot \bar{\mu}$, where

$$
c_{1}= \begin{cases}24 & \text { if } t=2, \\ 2(2 t-1)! & \text { if } t \text { is odd } \geqq 3, \\ (2 t-1)! & \text { if } t \text { is even } \geqq 4,\end{cases}
$$

and $\bar{\mu}$ is the fundamental class of $H^{n+1}\left(S^{n+1} ; Z\right)$. For, since $P_{t}(\xi)$ $=P_{t}(\xi \oplus \varepsilon)= \pm c(S \gamma) \cdot \bar{\mu}$ where c is the number defined in [4] (p.254) or [10] (p.378) and $S: \pi_{n}\left(S O_{n-1}\right) \rightarrow \pi_{n}\left(S O_{n}\right)$ is the suspension homomorphism, the relation is obtained by the fact that $S \gamma= \pm \gamma$ if $t \geqq 3$ and $S \gamma= \pm 2 \gamma$ if $t=2$, which is known from the following exact sequence

where $\pi_{4 t-2}\left(\mathrm{SO}_{4 t-2}\right) \cong Z_{4}$ if $t \geqq 3, \pi_{6}\left(\mathrm{SO}_{6}\right) \cong 0$, and $\partial(1)=2$ if $t \geqq 3$. (See [4] Lemma 2.1.)

Let $n=4 t-1(t \geqq 2)$ and let W be a handlebody of $\mathscr{H}(2 n, k, n+1)$ with the system $(H ; \lambda, \alpha)$. Then, similarly as Lemma 9.2 of [4], we have $\alpha= \pm \frac{1}{c_{1}}<P_{t}(W),>= \pm \frac{1}{c_{1}}<P_{t}(\partial W), i_{*}^{-1}(\quad)>$, where i_{*} is the isomorphism induced from the inclusion map $i: \partial W \Rightarrow W$. If $\partial W_{1} \# \Sigma_{1}$ $=\partial W_{2} \# \sum_{2}$, where $W_{i} \in \mathscr{H}(2 n, k, n+1), i=1,2$, and \sum_{i} are homotopy $(2 n-1)$-spheres, there exists a homeomorphism $g: \partial W_{1} \rightarrow \partial W_{2}$ such that $g^{*}\left(\tau\left(\partial W_{2}\right)\right)=\tau\left(\partial W_{1}\right)$ (Shiraiwa [9]). So that we know the uniqueness of the representation of $M \bmod \theta_{2 n-1}$ when $n=4 t-1(t \geqq 2)$ (cf. Theorem 9.3 of [4]).

This completes the proof of Theorem 2. The corollary is clear from the above.

2. Calculations of ∂ and π

Let $\partial_{n}: \pi_{n+1}\left(S^{n-1}\right)\left(\cong Z_{2}\right) \rightarrow \pi_{n}\left(S O_{n-1}\right)$ be the boundary homomorphism in the homotopy exact sequence of the fibering $S O_{n-1} \rightarrow \mathrm{SO}_{n} \rightarrow \mathrm{~S}^{n-1}$, and let $\pi_{n}: \pi_{n}\left(S O_{n-1}\right) \rightarrow \pi_{n}\left(S^{n-2}\right)\left(\cong Z_{2}\right)$ be the homomorphism induced by the projection of $S O_{n-1}$ to $S^{n-2}=S O_{n-1} / S O_{n-2}$. We note that the suffix " n " of ∂_{n} and π_{n} implies that we consider at $\pi_{n}\left(S O_{n-1}\right)$, though it is irregular use.

The groups $\pi_{n}\left(\mathrm{SO}_{n-1}\right)$, which were calculated by Kervaire [5], are given previously in the table. Using Kervaire [5] and Paechter [8], we can find the bases of the groups $\pi_{n}\left(\mathrm{SO}_{n-1}\right)$ such that the following relations hold under the identification of the groups, where 1 denotes the (standard) generators of the cyclic groups Z_{2}, Z_{3}, and Z.

Lemma 2.1.

(i) $\partial_{4 t-1}=\partial_{4 t}=0$ for $t \geqq 1$.
(ii) $\partial_{4 t+1} \neq 0$ for $t \geqq 1$, more precisely,
$\partial_{8 s+1}(1)=(1,0,0) \in Z_{2}+Z_{2}+Z_{2}$ for $s \geqq 1$,
and $\partial_{8 s+5}(1)=(1,0) \in Z_{2}+Z_{2}$ for $s \geqq 0$.
(iii) $\partial_{4 t+2}(1)=4 \in Z_{8}$ for $t \geqq 2$, and $\partial_{6}=0$.

Lemma 2.2.

(i) $\pi_{4 t-1}=0$ for $t \geqq 3$, and $\pi_{7}(1)=1$
(ii) $\pi_{4 t} \neq 0$ for $t \geqq 1$, more precisely, $\pi_{8 s}(1,0)=1, \pi_{8 s}(0,1)=0$ for $s \geqq 1$,
and $\pi_{8 s+4}(1)=1$ for $s \geqq 0$.
(iii) $\pi_{4 t+1} \neq 0$ for $t \geqq 1$, more precisely,
$\pi_{8 s+1}(1,0,0)=\pi_{8 s+1}(0,0,1)=0, \pi_{8 s+1}(0,1,0)=1$, for $s \geqq 1$,
and $\pi_{8 s+5}(1,0)=0, \pi_{8 s+5}(0,1)=1$ for $s \geqq 0$.
(iv) $\pi_{4 t+2}=0$ for $t \geqq 1$.

Proof. These lemmas are obtained, except precise informations of $\pi_{8 s}, \pi_{4 t+1}$, and $\partial_{4 t+1}$, by the results of Kervaire [5], using the homotopy exact sequence of the fibering $S O_{n-1} \rightarrow S O_{n} \rightarrow S^{n-1}$.

If $n=8 s+4(s \geqq 1)$, the generator of $\pi_{n}\left(\mathrm{SO}_{n-1}\right)$ is unique. If $n=4 t-1$
$(t \geqq 1)$ or $4 t+2(t \geqq 1)$, we need not choose a special generator of π_{n} (SO_{n-1}) since the lemmas remain valid for any choice of the generator of $\pi_{n}\left(\mathrm{SO}_{n-1}\right)$.

Let $n=8 s(s \geqq 2)$. By Kervaire [5], there is the sequence

$$
0 \longrightarrow \pi_{8 s+1}\left(V_{m, m-8 s+i}\right) \xrightarrow{\partial_{*}} \pi_{8 s}\left(\mathrm{SO}_{8 s-i}\right) \longrightarrow \pi_{8 s}\left(\mathrm{SO}_{m}\right) \longrightarrow 0
$$

which is exact and splits for $i \leqq 4, s \geqq 2$, where m is to be large. Since $\pi_{8 s+1}\left(V_{m, m-8 s+4}\right)=0, \pi_{8 s}\left(S O_{8 s-4}\right) \cong \pi_{8 s}\left(S O_{m}\right) \cong Z_{2}$. Let θ_{1} be the generator of $\pi_{8 s}\left(\mathrm{SO}_{8 s-4}\right) \cong Z_{2}$ and ω_{1} be the image of θ_{1} by the suspension homomorphism $\pi_{8 s}\left(\mathrm{SO}_{8 s-4}\right) \rightarrow \pi_{8 s}\left(\mathrm{SO}_{8 s-1}\right)$. Let μ be the generator of $\pi_{8 s+1}$ $\left(V_{m, m-8 s+1}\right) \cong Z_{2}$ given by Paechter [8] and let $\xi=\partial_{*}(\mu)$. Then, $\left\{\xi, \omega_{1}\right\}$ forms a base of $\pi_{8 s}\left(\mathrm{SO}_{8 s-1}\right) \cong Z_{2}+Z_{2}$ for $s \geqq 2$. We adopt this. Thus, $\pi_{8 s}\left(\omega_{1}\right)=0$, and $\pi_{8 s}(\xi) \neq 0$ since $\pi_{8 s} \neq 0$.

Let $n=8$, and let v_{5} be the generator of the 2-primary component of $\pi_{8}\left(S^{5}\right)$. We note that $q_{*}: \pi_{8}\left(\mathrm{SO}_{6}\right) \rightarrow \pi_{8}\left(S^{5}\right)$, the homomorphism induced from the projection $q: S O_{6} \rightarrow S^{5}$, is an isomorphism. It is well known that $\pi_{8}\left(\mathrm{SO}_{7}\right) \cong Z_{2}+Z_{2}$ is generated by the homotopy class $\left(\rho_{7} \eta_{7}\right)$ and $i_{*}\left(q_{*}^{-1} v_{5}\right)$, where $\rho_{7}(c) c^{\prime}=c \cdot c^{\prime} \cdot \bar{c}$ for Cayley numbers $c \in S^{7}, c^{\prime} \in S^{6}, \eta_{7}$ $=E^{5} \eta_{2}\left(\eta_{2}: S^{3} \rightarrow S^{2}\right.$ is the Hopf map), and $i: S O_{6} \rightarrow \mathrm{SO}_{7}$ is the inclusion map. We adopt $\left\{\left(\rho_{7} \circ \eta_{7}\right), i_{*}\left(q_{*}^{-1} v_{5}\right)\right\}$ as the base of $\pi_{8}\left(\mathrm{SO}_{7}\right)$. Then, $\pi_{8}\left(i_{*}\left(q_{*}^{-1} v_{5}\right)\right)=0$, and $\pi_{8}\left(\left(\rho_{7} \circ \eta_{7}\right)\right) \neq 0$ since $\pi_{8} \neq 0$.

Let $n=4 t+1(t \geqq 1)$. Let $\left\{\mu_{1}^{\prime}, \mu_{2}^{\prime}\right\},\left\{\mu_{1}, \mu_{2}\right\}$, and $\mu^{\prime \prime}$ be the generators of $\pi_{8 s+6}\left(V_{m, m-8 s-3}\right) \cong Z_{2}+Z_{2}(s \geqq 1), \pi_{4 t+2}\left(V_{m, m-4 t}\right) \cong Z_{2}+Z_{2}$, and $\pi_{4 t+2}$ $\left(V_{m, m-4 t-1}\right) \cong Z_{2}$ respectively which are given by Paechter [8], and denote, both by μ^{\prime}, the generators of $\pi_{6}\left(V_{m, m-3}\right) \cong Z_{2}$ and $\pi_{8 s+2}\left(V_{m, m-8 s+1}\right) \cong Z_{2}$ ($s \geqq 1$) also given by Paechter [8], where m is sufficiently large and μ_{1}^{\prime}, μ_{1} correspond respectively to the generators $\left(i_{8 s+4,4^{\circ}} h_{8 s+3,8 s+6}\right)(s \geqq 1)$, ($i_{4 t+1,3^{\circ}} h_{4 t, 4 t+2}$) of Paechter [8]. Then, examining those generators, we know that $p_{*}^{\prime}\left(\mu_{1}^{\prime}\right)=0, p_{*}^{\prime}\left(\mu_{2}^{\prime}\right)=\mu_{1}, p_{*}^{\prime}\left(\mu^{\prime}\right)=\mu_{1}, p_{*}\left(\mu_{1}\right)=0$, and $p_{*}\left(\mu_{2}\right)=\mu^{\prime \prime}$, where $p^{\prime}: V_{m, m-4 t+1} \rightarrow V_{m, m-4 t}, p: V_{m, m-4 t} \rightarrow V_{m, m-4 t-1}$ are the projections. In the homotopy exact sequence of the fibering $\mathrm{SO}_{4 t} \rightarrow \mathrm{SO}_{m} \rightarrow V_{m, m-4 t}$, let $\xi_{1}=\partial_{*}\left(\mu_{1}\right)$ and $\xi_{2}=\partial_{*}\left(\mu_{2}\right)$.

If $t=2 s+1(s \geqq 0)$, there are the following exact sequences

$$
0=\pi_{8 s+6}\left(\mathrm{SO}_{m}\right) \longrightarrow \pi_{8 s+6}\left(V_{m, m-8 s-i}\right) \xrightarrow{\partial_{*}} \pi_{8 s+5}\left(\mathrm{SO}_{8 s+i}\right) \longrightarrow \pi_{8 s+5}\left(\mathrm{SO}_{m}\right)=0,
$$

$i=3,4,5$, where m is sufficiently large. We adopt $\left\{\xi_{1}, \xi_{2}\right\}$ as the base of $\pi_{8 s+5}\left(\mathrm{SO}_{8 s+4}\right) \cong Z_{2}+Z_{2}(s \geqq 0)$. Then, we know the precise correspondence of the homomorphisms

$$
\pi_{8 s+5}\left(\mathrm{SO}_{8 s+3}\right) \xrightarrow{i_{4}^{\prime}} \pi_{8 s+5}\left(\mathrm{SO}_{8 s+4}\right) \xrightarrow{i_{*}} \pi_{8 s+5}\left(\mathrm{SO}_{8 s+5}\right)
$$

equivalent to p_{*}^{\prime} and p_{*} respectively, where i^{\prime}, i are inclusion maps.
If $t=2 s(s \geqq 1)$, by Kervaire [5] we have the following sequence which is exact and splits for $s \geqq 2, i \leqq 3$ and $s=1, i \leqq 2$:

$$
0 \longrightarrow \pi_{8 s+2}\left(V_{m, m-8 s+i}\right) \xrightarrow{\partial_{*}} \pi_{8 s+1}\left(\mathrm{SO}_{8 s-i}\right) \longrightarrow \pi_{8 s+1}\left(\mathrm{SO}_{m}\right) \longrightarrow 0,
$$

where m is to be large. Since $\pi_{8 s+2}\left(V_{m, m-8 s+3}\right)=0$ for $s \geqq 1$ and π_{10} $\left(V_{m, m-6}\right)=0$, we know that $\pi_{8 s+1}\left(\mathrm{SO}_{8 s-3}\right) \cong \pi_{8 s+1}\left(\mathrm{SO}_{m}\right) \cong Z_{2}(s \geqq 2)$ and $\pi_{9}\left(\mathrm{SO}_{6}\right) \cong \pi_{9}\left(\mathrm{SO}_{m}\right) \cong Z_{2}$. Denote those generators both by θ_{2} and let $\omega_{2} \in \pi_{8 s+1}\left(\mathrm{SO}_{8 s}\right)(s \geqq 1)$ be the image of θ_{2} by the suspension homomorphism. Then, $\left\{\xi_{1}, \xi_{2}, \omega_{2}\right\}$ forms a base of $\pi_{8 s+1}\left(\mathrm{SO}_{8 s}\right) \cong Z_{2}+Z_{2}+Z_{2}$ for $s \geqq 1$, and we adopt this. So that, by p_{*}^{\prime} and p_{*}, we know the precise correspondence of the homomorphisms

$$
\pi_{8 s+1}\left(\mathrm{SO}_{8 s-1}\right) \xrightarrow{i^{\prime}} \pi_{8 s+1}\left(\mathrm{SO}_{8 s}\right) \xrightarrow{i *} \pi_{8 s+1}\left(\mathrm{SO}_{8 s+1}\right),
$$

where i^{\prime}, i are inclusion maps.
Thus, the precise correspondences of $\partial_{4 t+1}$ and $\pi_{4 t+1}$ is known by the following exact sequences

and this completes the proof.

3. Classification of Handlebodies of Type O

Let W be a handlebody of $\mathscr{H}(2 n, k, n+1), n \geqq 6 . W$ is of type O
if and only if the bilinear form λ of the corresponding $(H ; \lambda, \alpha)$-system is trivial. So that, classifying the handlebodies of type O up to diffeomorphism comes to classifying the homomorphisms $\alpha: H \rightarrow \pi_{n}\left(\mathrm{SO}_{n-1}\right)$ up to equivalence, where H is a free abelian group of rank k and the homomorphisms $\alpha_{i}: H \rightarrow \pi_{n}\left(S O_{n-1}\right), i=1,2$, are equivalent if and only if there exists an isomorphism $h: H \rightarrow H$ such that $\alpha_{1}=\alpha_{2} \circ h$.

Theorem 3.1. The handlebody W of type O of $\mathscr{H}(2 n, k, n+1)$ ($n \geqq 6$) is uniquely represented up to diffeomorphism as follows:
(i) If $n=4 t-1(t \geqq 2)$,

$$
W=\bar{A}_{a} \xi(k-1)\left(S^{n+1} \times D^{n-1}\right),
$$

where $a \in Z \cong \pi_{4 t-1}\left(\mathrm{SO}_{4 t-2}\right), a \geqq 0$, especially $a \in 2 Z, a \geqq 0$, if $t=2$.
(ii) In the case when $n=4 t(t \geqq 2)$, if $n=8 s+4(s \geqq 1)$,

$$
W=k\left(S^{n+1} \times D^{n-1}\right)
$$

and if $n=8 s(s \geqq 1)$,

$$
W=\bar{A}_{(0, b)} \mathfrak{q}(k-1)\left(S^{n+1} \times D^{n-1}\right),
$$

where $(0, b) \in Z_{2}+Z_{2} \cong \pi_{8 s}\left(\mathrm{SO}_{8 s-1}\right)$.
(iii) In the case when $n=4 t+1(t \geqq 2)$, if $n=8 s+5(s \geqq 1)$,

$$
W=\bar{A}_{(a, 0)}{ }^{\natural}(k-1)\left(S^{n+1} \times D^{n-1}\right),
$$

where $(a, 0) \in Z_{2}+Z_{2} \cong \pi_{8 s+5}\left(\mathrm{SO}_{8 s+4}\right)$, and if $n=8 s+1(s \geqq 1)$,

$$
\begin{aligned}
W & =\bar{A}_{(a, 0, b)} \mathfrak{\natural}(k-1)\left(S^{n+1} \times D^{n-1}\right), \\
\text { or } W & =\bar{A}_{(1,0,0)} \natural A_{(0,0,1)} \natural(k-2)\left(S^{n+1} \times D^{n-1}\right),
\end{aligned}
$$

where $(a, 0, b),(1,0,0),(0,0,1) \in Z_{2}+Z_{2}+Z_{2} \cong \pi_{8 s+1}\left(S_{8 s}\right)$.
(iv) In the case when $n=4 t+2(t \geqq 1)$, if $t \geqq 2$,

$$
W=\bar{A}_{a} \vartheta(k-1)\left(S^{n+1} \times D^{n-1}\right),
$$

where $a=0,1,2,4 \in Z_{8} \cong \pi_{4 t+2}\left(\mathrm{SO}_{4 t+1}\right)$, and if $t=1$,

$$
W=k\left(S^{7} \times D^{5}\right) .
$$

Proof. Since $\operatorname{s\pi \alpha }\left(u_{i}\right)=\lambda\left(u_{i}, u_{i}\right)=0$ for each basis element u_{i} of H, $\alpha(H)$ is contained in $\operatorname{Ker} \pi$, where $S: \pi_{n}\left(S^{n-2}\right) \rightarrow \pi_{n+1}\left(S^{n-1}\right)(n \geqq 6)$ is the suspension isomorphism. $\operatorname{Ker} \pi$ is known by Lemma 2.2, and we can simplify and characterize α by replacing the basis of H. Those are similar to that of Theorem 3.1 of [4]. Only a difference is the case when $n=4 t+2(t \geqq 2)$. In this case $\operatorname{Ker} \pi=Z_{8}$. If $\alpha(H) \subset\{0,2,4,6\} \cong Z_{4}$, the case is similar to [4]. If $\alpha(H) \notin\{0,2,4,6\}$, there exists a basis $\left\{u_{1}, \ldots, u_{k}\right\}$ of H such that $\alpha\left(u_{1}\right)=1$ and $\alpha\left(u_{i}\right)=0$ for $i \geqq 2$. So that we have the result.

4. Classification of Handlebodies of Type \mathbb{I}

In this section, we classify the handlebodies of type I of $\mathscr{H}(2 n, k$, $n+1)(n \geqq 6)$ up to diffeomorphism, that is, the ($H ; \lambda, \alpha)$-systems of type I with $\operatorname{rank} H=k$ up to isomorphism. If $(H ; \lambda, \alpha)$ is a system of type I , there is a basis of H which is orthogonal with respect to $\lambda_{\text {. }}$

Theorem 4.1. Let $n=4 t-1(t \geqq 2)$. If $t \geqq 3$, the handlebodies of type I of $\mathscr{H}(2 n, k, n+1)$ do not exist. If $t=2$, i.e. $n=7$, the handlebody W of type I of $\mathscr{H}(2 n, k, n+1)$ is uniquely represented up to diffeomorphism as $W=k \bar{B}_{c}$, where c is a positive odd integer of $\pi_{7}\left(\mathrm{SO}_{6}\right) \cong Z$.

Proof. The proof is quite similar to that of Theorem 4.1 of [4].
Theorem 4.2. If $n=8 s+4(s \geqq 1)$, the handlebody W of type \mathbb{I} of $\mathscr{H}(2 n, k, n+1)$ is unique up to diffeomorphism and is represented as $W=k \bar{B}_{1}$, where $1 \in Z_{2} \cong \pi_{8 s+4}\left(\mathrm{SO}_{8 s+3}\right)$.

Proof. We know that $\alpha\left(v_{i}\right)=1$ for any orthogonal basis $\left\{v_{i}\right\}$ of H since $\lambda\left(v_{i}, v_{i}\right)=s \pi \alpha\left(v_{i}\right)=1$ and $\pi_{8 s+4}$ is an isomorphism by Lemma 2.2. So that, the $(H ; \lambda, \alpha)$-system of type \mathbb{I} is unique up to isomorphism.

Theorem 4.3. If $n=8 s(s \geqq 1)$, the handlebodies of type \mathbb{I} of $\mathscr{H}(2 n$, $k, n+1)$ are uniquely represented up to diffeomorphism as follows:
(i) $k \bar{B}_{(1,0)}$,
(ii) $k \bar{B}_{(1,1)}$,
(iii) $(k-1) \bar{B}_{(1,0)} \ddagger \bar{B}_{(1,1)} \quad(k \geqq 2)$,
(iv) $(k-2) \bar{B}_{(1,0)} \mathfrak{\natural} 2 \bar{B}_{(1,1)} \quad(k \geqq 3)$, where the characteristic elements belong to $\pi_{8 s}\left(\mathrm{SO}_{8 s-1}\right) \cong Z_{2}+Z_{2}$.

Proof. Let W be a handlebody of type I and ($H ; \lambda, \alpha$) the corresponding system. Since $\partial_{4 t}=0$ by Lemma 2.1, $\alpha: H \rightarrow Z_{2}+Z_{2} \cong \pi_{8 s}$ $\left(\mathrm{SO}_{8 s-1}\right)$ is a homomorphism. By Lemma 2.2, $\pi_{8 s}^{-1}(1)$ consists of $(1,0)$ and $(1,1)$. So that, W is diffeomorphic to a boundary connected sum of some copies of $\bar{B}=\bar{B}_{(1,0)}$ and $\bar{B}^{\prime}=\bar{B}_{(1,1)}$. Let $\alpha=\left(\alpha^{(1)}, \alpha^{(2)}\right), \alpha^{(i)}$ $=p_{i} \circ \alpha(i=1,2)$, where p_{i} is the projection of $Z_{2}+Z_{2}$ to the i-th direct summand. Then, using the homomorphism $\alpha^{(1)}, \alpha^{(2)}$, the $(H ; \lambda, \alpha)$ systems are classified up to isomorphism, similarly as in Theorem 4.5 of [4] (We note that Assertion 1, 2, and 3 of Theorem 4.5 of [4] are shown by $\alpha^{(2)}, \alpha^{(3)}$ of $\alpha=\left(\alpha^{(1)}, \alpha^{(2)}, \alpha^{(3)}\right)$.)

Theorem 4.4. If $n=8 s+5(s \geqq 1)$, the handlebody W of type I of $\mathscr{H}(2 n, k, n+1)$ is unique up to diffeomorphism and is represented as $W=k \bar{B}_{(0,1)}$, where $(0,1) \in Z_{2}+Z_{2} \cong \pi_{8 s+5}\left(S_{8 s+4}\right)$.

Proof. Since $\partial_{8 s+5}(1)=(1,0)$ and $\pi_{8 s+5}^{-1}(1)=\{(0,1),(1,1)\}$, the situation is quite similar to that of Theorem 4.4 of [4].

Theorem 4.5. If $n=8 s+1(s \geqq 1)$, the handlebodies of type I of $\mathscr{H}(2 n, k, n+1)$ are uniquely represented up to diffeomorphism as follows:
(i) $k \bar{B}_{(0,1,0)}$,
(ii) $k \bar{B}_{(0,1,1)}$,
(iii) $(k-1) \bar{B}_{(0,1,0)}{ }^{\natural} \bar{B}_{(0,1,1)} \quad(k \geqq 2)$,
(iv) $(k-2) \bar{B}_{(0,1,0)}$ 母 $2 \bar{B}_{(0,1,1)} \quad(k \geqq 3)$, where the characteristic elements belong to $\pi_{8 s+1}\left(\mathrm{SO}_{8 s}\right) \cong Z_{2}+Z_{2}+Z_{2}$.

Proof. By Lemma 2.1 and Lemma 2.2, $\quad \partial_{8 s+1}(1)=(1,0,0) \quad$ and $\pi_{8 s+1}^{-1}(1)=\{(\gamma, 1, \delta) ; \gamma, \delta=0$ or 1$\}$. So that the situation is quite similar to that of Theorem 4.5 of [4].

Theorem 4.6. If $n=4 t+2(t \geqq 1)$, there are no handlebodies of type I of $\mathscr{H}(2 n, k, n+1)$.

Proof. Since $\pi_{4 t+2}=0$ by Lemma 2.2 and $\lambda\left(v_{i}, v_{i}\right)=s \pi \alpha\left(v_{i}\right)=1$ for
any orthogonal basis $\left\{v_{i}\right\}$ of H, there arises a contradiction for any ($H ; \lambda, \alpha$)-system of type \mathbb{I} if $n=4 t+2, t \geqq 1$.

5. Classification of Handlebodies of Type $(\mathbb{O}+\mathbb{I})$

In this section, we classify the handlebodies of type $(\mathrm{O}+1)$ of $\mathscr{H}(2 n, k, n+1)(n \geqq 6)$ up to diffeomorphism, that is ($H ; \lambda, \alpha)$-systems of type $(\mathrm{O}+\mathbb{I})$ with rank $H=k$ up to isomorphism. For a handlebody W of type $(\mathrm{O}+\mathrm{I})$ of $\mathscr{H}(2 n, k, n+1)(n \geqq 6)$ and the corresponding system ($H ; \lambda, \alpha$), $q=\operatorname{rank} \lambda$ and $p=k-q$ are the diffeomorphism invariants of W, more precisely, the homotopy invariants of ∂W. We call rank λ briefly the rank of W.

Theorem 5. H. Let $n=4 t-1(t \geqq 2)$. If $t \geqq 3$, the handlebodies of type $(\mathrm{O}+\mathrm{I})$ of $\mathscr{H}(2 n, k, n+1)$ do not exist. If $t=2$, i.e. $n=7$, the handlebody W of type $(\mathrm{O}+\mathbb{1})$ of $\mathscr{H}(14, k, 8)$ with rank q is uniquely represented up to diffeomorphism as $W=p\left(S^{8} \times D^{6}\right) ท q \bar{B}_{c}, p+q=k$, where c is a positive odd integer of $\pi_{7}\left(\mathrm{SO}_{6}\right) \cong \mathbb{Z}$.

Proof. Since $\pi_{4 t-1}=0(t \geqq 3)$ we have the former half of the theorem, and since $\partial_{4 t-1}=0(t \geqq 1)$ the latter half similarly to Theorem 5.2 of [4].

Theorem 5.2. If $n=8 s+4(s \geqq 1)$, the handlebody W of type $(\mathrm{O}+\mathbb{1})$ of $\mathscr{H}(2 n, k, n+1)$ with rank q is unique up to diffeomorphism and is represented as $W=p\left(\mathrm{~S}^{n+1} \times D^{n-1}\right) q q \bar{B}_{1}, p+q=k$, where 1 is the generator of $\pi_{n}\left(\mathrm{SO}_{n-1}\right) \cong Z_{2}$.

Proof. The handlebody of type O and the handlebody of type \mathbb{I} are unique up to diffeomorphism by Theorem 3.1 and Theorem 4.2. Since W is the sum of such handlebodies, we have the result.

Theorem 5.3. If $n=8 s(s \geqq 1)$, the handlebodies of type $(\mathrm{O}+\mathrm{I})$ of $\mathscr{H}(2 n, k, n+1)$ with rank q are uniquely represented up to diffeomorphism as follows:
(i) $p\left(S^{n+1} \times D^{n-1}\right) \ell q \bar{B}_{(1,0)}$,
(ii) $p\left(S^{n+1} \times D^{n-1}\right) 千 q \bar{B}_{(1,1)}$,

（iv）$p\left(S^{n+1} \times D^{n-1}\right) \mathfrak{4}(q-2) \bar{B}_{(1,0)} \mathfrak{\natural}^{2} \bar{B}_{(1,1)} \quad(q \geqq 3)$ ，
（v） $\bar{A}_{(0,1)}{ }^{\natural}(p-1)\left(S^{n+1} \times D^{n-1}\right)$ 数 $(1,0)$,
where $p+q=k$ and the characteristic elements belong to $\pi_{8 s}\left(\mathrm{SO}_{8 s-1}\right)$ $\cong Z_{2}+Z_{2}$ ．

Proof．The proof is similar to that of Theorem 5.4 of［4］．

Theorem 5．4．If $n=8 s+5(s \geqq 1)$ ，the handlebody W of type $(\mathrm{O}+\mathrm{I})$ of $\mathscr{H}(2 n, k, n+1)$ with rank q is unique up to diffeomorphism and is represented as $W=p\left(S^{n+1} \times D^{n-1}\right) q q \bar{B}_{(0,1)}, p+q=k$ ，where $(0,1) \in Z_{2}+Z_{2}$ $\cong \pi_{8 s+5}\left(\mathrm{SO}_{8 s+4}\right)$ ．

Proof．By Theorem 3.1 and Theorem 4．4，a handlebody of type $(\mathrm{O}+\mathrm{I})$ of $\mathscr{H}(2 n, k, n+1)$ with $\operatorname{rank} q$ has a representation such as $p\left(S^{n+1}\right.$ $\left.\times D^{n-1}\right)$ q $q \bar{B}_{(0,1)}$ or $\bar{A}_{(1,0)}$ Я $(p-1)\left(S^{n+1} \times D^{n-1}\right)$ भ $q \bar{B}_{(0,1)}$ ．Let $\left\{u_{1}, \cdots, u_{p} ; v_{1} \cdots\right.$ ， $\left.v_{q}\right\}, p+q=k$ ，be the admissible basis of H which corresponds to the latter representation．Then，$\alpha\left(u_{1}\right)=(1,0), \alpha\left(u_{i}\right)=(0,0)$ if $i>1, \alpha\left(v_{1}\right)=\cdots$ $=\alpha\left(v_{q}\right)=(0,1)$ ．Replace u_{1} by $u_{1}^{\prime}=u_{1}+2 v_{1}$ ．Then，by Lemma 2．1，$\alpha\left(u_{1}^{\prime}\right)$ $=(0,0)$ ．So that，there exists an admissible basis $\left\{u_{1}^{\prime}, u_{2}, \cdots, u_{p} ; v_{1}, \cdots, v_{q}\right\}$ of H which corresponds to the former representation．This implies that those representations are equivalent．

Theorem 5．5．If $n=8 s+1(s \geqq 1)$ ，the handlebodies of type $(\mathrm{O}+\mathrm{I})$ of $\mathscr{H}(2 n, k, n+1)$ with rank q are uniquely represented up to diffeomor－ phism as follows：
（i）$p\left(S^{n+1} \times D^{n-1}\right) q q \bar{B}_{(0,1,0)}$,
（ii）$p\left(S^{n+1} \times D^{n-1}\right)$ 叹 $\bar{B}_{(0,1,1)}$ ，
（iii）$p\left(S^{n+1} \times D^{n-1}\right)$ দ $(q-1) \bar{B}_{(0,1,0)}{ }^{\natural} \bar{B}_{(0,1,1)} \quad(q \geqq 2)$ ，

（v） $\bar{A}_{(0,0,1)}$ 解 $\left.p-1\right)\left(S^{n+1} \times D^{n-1}\right)$ Я $q \bar{B}_{(0,1,0)}$ ，
where $p+q=k$ and the characteristic elements belong to $\pi_{8 s+1}\left(\mathrm{SO}_{8 s}\right)$ $\cong Z_{2}+Z_{2}+Z_{2}$.

Proof．Since $\partial_{8 s+1}(1)=(1,0,0), \operatorname{Ker} \pi_{8 s+1}$ is generated by $\{(1,0,0)$ ， $(0,0,1)\}$ ，and $\pi_{8 s+1}^{-1}(1)=\{(\gamma, 1, \delta) ; \gamma, \delta=0$ ，or 1$\}$ ，the proof is quite similar to that of Theorem 5.4 of［4］．

Since $\pi_{4 t+2}=0(t \geqq 1)$ we also have
Theorem 5.6. If $n=4 t+2(t \geqq 1)$, there are no handlebodies of type $(\mathrm{O}+\mathrm{I})$ of $\mathscr{H}(2 n, k, n+1)$.

6. Classification of Handlebodies of Type III

In this section, we classify the handlebodies of type II of $\mathscr{H}(2 n, k$, $n+1)(n \geqq 6)$ up to diffeomorphism, that is, the $(H ; \lambda, \alpha)$-systems of type II with $\operatorname{rank} H=k$ up to isomorphism. If $(H ; \lambda, \alpha)$ is a system of type II with $\operatorname{rank} H=k$, then $k=2 r$ and H has a basis symplectic with respect to λ.

Theorem 6.1. If $n=4 t-1(t \geqq 2)$, the handlebody W of type II of $\mathscr{H}(2 n, k, n+1)$ is represented uniquely up to diffeomorphism as

$$
W=W\binom{d}{0} \natural(r-1) W\binom{0}{0}, \quad d \geqq 0,
$$

where $k=2 r$ and $d \in Z \cong \pi_{4 t-1}\left(S_{4 t-2}\right)$, especially $d \in 2 Z$ if $t=2$.
Proof. Since $\partial_{4 t-1}=0(t \geqq 1), \alpha: H \rightarrow \pi_{4 t-1}\left(\mathrm{SO}_{4 t-2}\right) \cong Z(t \geqq 2)$ is a homomorphism, and since $s \pi \alpha\left(e_{i}\right)=s \pi \alpha\left(f_{i}\right)=0$ and $\operatorname{Ker} \pi_{7}=2 Z$, we have the theorem by Lemma 6.1 of [4].

Theorem 6.2. If $n=8 s+4(s \geqq 1)$, the handlebody W of type II of $\mathscr{H}(2 n, k, n+1)$ is unique up to diffeomorphism and is represented as $W=r W\binom{0}{0}, k=2 r$.

Proof. Since $\pi_{8 s+4}: \pi_{8 s+4}\left(\mathrm{SO}_{8 s+3}\right)=Z_{2} \rightarrow \pi_{8 s+4}\left(S^{8 s+2}\right)=Z_{2}, s \geqq 1$, is an isomorphism by Lemma 2.2, $\alpha\left(e_{i}\right)=\alpha\left(f_{j}\right)=0$ for all $i, j=1,2, \cdots, r$. So that we have the theorem.

Theorem 6.3. If $n=8 s(s \geqq 1)$, the handlebody W of type II of $\mathscr{H}(2 n, k, n+1)$ is represented uniquely up to diffeomorphism as

$$
W=W\left(\begin{array}{ll}
0 & d \\
0 & 0
\end{array}\right) \mathfrak{r}(r-1) W\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),
$$

where $k=2 r$ and $(0, d) \in Z_{2}+Z_{2} \cong \pi_{8 s}\left(S O_{8 s-1}\right)$.
Proof. Since $\partial_{4 t}=0(t \geqq 1), \alpha$ is a homomorphism. The image of α is in $\operatorname{Ker} \pi_{8 s}=o+Z_{2} \subset Z_{2}+Z_{2}=\pi_{8 s}\left(\mathrm{SO}_{8 s-1}\right)$. So that we have the theorem by Lemma 6.1 of [4].

Theorem 6.4. If $n=8 s+5(s \geqq 1)$, the handlebody W of type II of $\mathscr{H}(2 n, k, n+1)$ is uniquely represented up to diffeomorphism as

$$
W=W\left(\begin{array}{ll}
d & 0 \\
d & 0
\end{array}\right) \text { ต }(r-1) W\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),
$$

where $k=2 r$ and $(d, 0) \in Z_{2}+Z_{2} \cong \pi_{8 s+5}\left(\mathrm{SO}_{8 s+4}\right)$.
Proof. Since Ker $\pi_{8 s+5}=Z_{2}+0 \subset Z_{2}+Z_{2}=\pi_{8 s+5}\left(\mathrm{SO}_{8 s+4}\right)$ and $\partial_{8 s+5}(1)$ $=(1,0) \in \operatorname{Ker} \pi_{8 s+5}$ by Lemma 2.1 and Lemma 2.2, we know that $\alpha(H)$ $\subset \operatorname{Ker} \pi_{8 s+5}$. So that α is regarded as a quadratic form over Z_{2}, and is classified by the Arf invariant. ${ }^{2)}$

Theorem 6.5. If $n=8 s+1(s \geqq 1)$, the handlebodies of type II of $\mathscr{H}(2 n, k, n+1)$ are uniquely represented up to diffeomorphism as follows:
(i) $W\left(\begin{array}{lll}d & 0 & 0 \\ d & 0 & 0\end{array}\right)$ ต $(r-1) W\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$,
(ii) $W\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & d\end{array}\right) \mathfrak{r}(r-1) W\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$,
(iii) $W\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & d\end{array}\right)$ Ł $W\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$ ท $(r-2) W\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$,
where $k=2 r$, and $(0,0,1),(1,0,0),(0,0, d)$, and $(d, 0,0)$ belong to $Z_{2}+Z_{2}+Z_{2} \cong \pi_{8 s+1}\left(\mathrm{SO}_{8 s}\right)$.

Proof. Since Ker $\pi_{8 s+1}=Z_{2}+o+Z_{2} \subset Z_{2}+Z_{2}+Z_{2}=\pi_{8 s+1}\left(\mathrm{SO}_{8 s}\right)$ and $\partial_{8 s+1}=(1,0,0) \in \operatorname{Ker} \pi_{8 s+1}$, we know that $\alpha(H) \subset \operatorname{Ker} \pi_{8 s+1}$. So that, we have the theorem similarly to Theorem 6.5 of [4].

Theorem 6.6. If $n=4 t+2(t \geqq 1)$, the handlebodies of type II of $\mathscr{H}(2 n, k, n+1)$ are represented uniquely up to diffeomorphism as follows: If $t \geqq 2$,

[^1](i) $W\binom{d}{d} \mathfrak{f}(r-1) W\binom{0}{0}, \quad d=0,4$,
(ii) $W\binom{2}{0}$ 勺 $(r-1) W\binom{0}{0}$,
(iii) $W\binom{1}{0}$ b $(r-1) W\binom{0}{0}$,
and if $t=1$, i.e. $n=6$,
(iv) $r W\binom{0}{0}$,
where $k=2 r$ and the characteristic elements $0,1,2$, and 4 belong to $Z_{8} \cong \pi_{4 t+2}\left(\mathrm{SO}_{4 t+1}\right)$.

Proof. Let $(H ; \lambda, \alpha)$ be a system of type II with rank $H=k=2 r$, and let $\left\{e_{1}, f_{1}, \ldots, e_{r}, f_{r}\right\}$ be a symplectic base of H. If $\left\{\alpha\left(e_{1}\right), \alpha\left(f_{1}\right), \cdots\right.$, $\left.\alpha\left(e_{r}\right), \alpha\left(f_{r}\right)\right\} \subset\{0,2,4,6\} \subset Z_{8}$, then $\alpha(H) \subset\{0,2,4,6\} \cong Z_{4}$ since $\partial_{4 t+2}=4$ $(t \geqq 2)$ by Lemma 2.1. So the situation is quite similar to that of Theorem 6.7 of [4], and we have the results (i), (ii).

If $\alpha(H) \notin\{0,2,4,6\}$, we may assume that $\left\{\alpha\left(e_{i}\right), \alpha\left(f_{i}\right)\right\} \notin\{0,2,4,6\}$, $i=1,2, \cdots, s, s \geqq 1$, and $\left\{\alpha\left(e_{j}\right), \alpha\left(f_{j}\right)\right\} \subset\{0,2,4,6\}, j=s+1, s+2, \cdots, r$. Performing some elementary transformations to $\left\{e_{i}, f_{i}\right\}$, we may assume that $\left(\alpha\left(e_{i}\right), \alpha\left(f_{i}\right)\right)=(1,0), i=1,2, \cdots, s, \quad$ and $\quad\left(\alpha\left(e_{j}\right), \alpha\left(f_{j}\right)\right)=(0,0), \quad$ or $(2,0)$, or $(4,4), j=s+1, s+2, \cdots, r$. But, each pair $\left(\alpha\left(e_{j}\right), \alpha\left(f_{j}\right)\right)=(2,0)$ or $(4,4)$ can be killed using a certain pair $\left(\alpha\left(e_{i}\right), \alpha\left(f_{i}\right)\right)=(1,0)$ by adopting the new basis elements $e_{j}^{\prime}=e_{j}-2 e_{i}, f_{j}^{\prime}=f_{j}$, or $e_{j}^{\prime}=e_{j}-4 e_{i}, f_{j}^{\prime}=f_{j}-4 f_{i}$. So that, there exists a symplectic base $\left\{e_{1}, f_{1}, \cdots, e_{r}, f_{r}\right\}$ of H such that each pair $\left(\alpha\left(e_{i}\right), \alpha\left(f_{i}\right)\right)=(0,0), \quad$ or $(1,0), i=1,2, \cdots, r$. If $\quad\left(\alpha\left(e_{i}\right), \alpha\left(f_{i}\right)\right)=\left(\alpha\left(e_{j}\right)\right.$, $\left.\alpha\left(f_{j}\right)\right)=(1,0), i \neq j$, let $e_{i}^{\prime}=e_{j}+2\left(f_{i}-f_{j}\right), f_{i}^{\prime}=f_{i}-f_{j}, e_{j}^{\prime}=e_{i}-e_{j}+2\left(f_{i}-f_{j}\right)$, and $f_{j}^{\prime}=f_{i}$. Then, we have $\left(\alpha\left(e_{i}\right), \alpha\left(f_{i}\right)\right)=(1,0),\left(\alpha\left(e_{j}\right), \alpha\left(f_{j}\right)\right)=(0,0)$.

Thus, if $\alpha(H) \nsubseteq\{0,2,4,6\}$, there exists a symplectic base $\left\{e_{1}^{\prime}, f_{1}^{\prime}, \cdots, e_{r}^{\prime}\right.$, $\left.f_{r}^{\prime}\right\}$ of H such that $\left(\alpha\left(e_{1}^{\prime}\right), \alpha\left(f_{1}^{\prime}\right)\right)=(1,0)$, and $\left(\alpha\left(e_{2}^{\prime}\right), \alpha\left(f_{2}^{\prime}\right)\right)=\cdots=\left(\alpha\left(e_{r}^{\prime}\right)\right.$, $\left.\alpha\left(f_{r}^{\prime}\right)\right)=(0,0)$. This implies that the corresponding handlebody is diffeomorphic to (iii).

If $t=2$, we have (iv) since $\pi_{6}\left(\mathrm{SO}_{5}\right) \cong 0$. This completes the proof.

7. Classification of Handlebodies of Type $(O+I I)$

In this section, we classify the handlebodies of type $(\mathrm{O}+\mathrm{II})$ of
$\mathscr{H}(2 n, k, n+1)(n \geqq 6)$ up to diffeomorphism, that is, the $(H ; \lambda, \alpha)$-systems of type $(\mathrm{O}+\mathrm{II})$ with $\operatorname{rank} H=k$ up to isomorphism. For a handlebody W of type $(\mathrm{O}+\mathrm{II})$ of $\mathscr{H}(2 n, k, n+1)(n \geqq 6)$ and the corresponding system ($H ; \lambda, \alpha), 2 r=\operatorname{rank} \lambda$ and $p=k-2 r$ are the diffeomorphism invariants of W, more precisely, the homotopy invariants of ∂W. We call rank λ briefly the rank of W.

Theorem 7.1. If $n=4 t-1(t \geqq 2)$, the handlebodies of type ($\mathrm{O}+\mathrm{II}$) of $\mathscr{H}(2 n, k, n+1)$ with rank $2 r$ are uniquely represented up to diffeomorphism as follows:
(i)

$$
\bar{A}_{a} \natural(p-1)\left(S^{n+1} \times D^{n-1}\right) \nvdash r W\binom{0}{0}, \quad a \geqq 0, \quad p+2 r=k,
$$

where $a \in Z \cong \pi_{4 t-1}\left(\mathrm{SO}_{4 t-2}\right)$.
(ii) $p\left(S^{n+1} \times D^{n-1}\right) \natural W\binom{d}{0} \sharp(r-1) W\binom{0}{0}, \quad d>0, \quad p+2 r=k$, where $d \in Z \cong \pi_{4 t-1}\left(\mathrm{SO}_{4 t-2}\right)$.

In (i) and (ii), if $t=2$ then a and d are even.
Proof. Since $\partial_{4 t-1}=0, \pi_{4 t-1}=0(t \geqq 3)$, and $\pi_{7}(1)=1$, the proof is quite similar to that of Theorem 7.2 of [4].

Theorem 7.2. If $n=8 s+4(s \geqq 1)$, the handlebody W of type (O+II) of $\mathscr{H}(2 n, k, n+1)$ with rank $2 r$ is unique up to diffeomorphism and is represented as

$$
W=p\left(S^{n+1} \times D^{n-1}\right) \operatorname{qr} W\binom{0}{0}, \quad p+2 r=k .
$$

Proof. If $n=8 s+4(s \geqq 1)$, the handlebodies of type O and type II are respectively unique up to diffeomorphism by Theorem 3.1 and Theorem 6.2. So that, we have the result.

Theorem 7.3. If $n=8 s(s \geqq 1)$, the handlebodies of type ($\mathrm{O}+\mathrm{II}$) of $\mathscr{H}(2 n, k, n+1)$ with rank $2 r$ are uniquely represented up to diffeomorphism as follows:

$$
\begin{align*}
& \text { (i) } \bar{A}_{(0, b)} \mathfrak{q}(p-1)\left(S^{n+1} \times D^{n-1}\right) \natural r W\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \tag{i}\\
& \text { (ii) } \left.p\left(S^{n+1} \times D^{n-1}\right) \text { घW }\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \text { 的 } r-1\right) W\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),
\end{align*}
$$

where $p+2 r=k$ and $(0, b),(0,1) \in Z_{2}+Z_{2} \cong \pi_{8 s}\left(S_{8 s-1}\right)$.
Proof. By Theorem 3.1 and Theorem 6.3, the handlebody of type $(\mathrm{O}+\mathrm{II})$ with rank $2 r$ has a representation such as

$$
\left.\bar{A}_{(0, b)}\right)^{\natural}(p-1)\left(S^{n+1} \times D^{n-1}\right) \natural W\left(\begin{array}{ll}
0 & d \\
0 & 0
\end{array}\right) \mathfrak{q}(r-1) W\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),
$$

where $(0, b),(0, d) \in Z_{2}+Z_{2} \cong \pi_{8 s}\left(S_{8 s-1}\right)$ and $p+2 r=k$. Since $\partial_{8 s}=0, \alpha$ is a homomorphism, and $\alpha(H) \subset \operatorname{Ker} \pi_{8 s}=\{(0,0),(0,1)\} \cong Z_{2}$ for any $(H ; \lambda, \alpha)$-system of type $(\mathrm{O}+\mathrm{II})$. Let $(H ; \lambda, \alpha)$ be a system of type ($\mathrm{O}+$ II) with rank $2 r$ and let $\left\{u_{1}, \cdots, u_{p} ; e_{1}, f_{1}, \cdots, e_{r}, f_{r}\right\}$ be an admissible base of $H(p+2 r=k)$. If $\alpha\left(u_{1}\right)=\alpha\left(e_{1}\right)=(0,1)$, let $e_{1}^{\prime}=e_{1}+u_{1}$. Then $\alpha\left(e_{1}^{\prime}\right)$ $=(0,0)$. So that, any case can be reduced to one of the following three:
(1) α is the zero homomorphism.
(2) $\alpha\left(u_{1}\right)=(0,1)$ and α takes $(0,0)$ for any other basis elements.
(3) $\alpha\left(e_{1}\right)=(0,1)$ and α takes $(0,0)$ for any other basis elements.

These three are independent. Because, if the case (2) is equivalent to (3), that is, if there are the two admissible bases $\left\{u_{1}, \cdots, u_{p} ; e_{1}, f_{1}, \cdots, e_{r}\right.$, $\left.f_{r}\right\},\left\{u_{1}^{\prime}, \cdots, u_{p}^{\prime} ; e_{1}^{\prime}, f_{1}^{\prime}, \cdots, e_{r}^{\prime}, f_{r}^{\prime}\right\}$ of H satisfying (2), (3) respectively, then, by Lemma 7.1 of [4], there exists an unimodular matrix T such that $\left(u_{1}^{\prime}, \cdots, u_{p}^{\prime} ; e_{1}^{\prime}, f_{1}^{\prime}, \cdots, e_{r}^{\prime}, f_{r}^{\prime}\right)^{t}=T\left(u_{1}, \cdots, u_{p} ; e_{1}, f_{1}, \cdots, e_{r}, f_{r}\right)^{t}$,

$$
\left.T=\left(\begin{array}{cc}
p & 2 r \\
\tilde{M}_{M} & \tilde{O} \\
* & L
\end{array}\right)\right\} \begin{aligned}
& p r
\end{aligned} \quad(\bmod 2),
$$

and L is $\bmod 2$ symplectic. But, since $\alpha^{(2)}\left(u_{i}^{\prime}\right)=t_{i 1}=0(\bmod 2),|M|=0$ (mod 2). This contradicts to $|T|=1$. So that, the $(H ; \lambda, \alpha)$-systems corresponding to the above cases are independent up to isomorphism. This completes the proof.

Let $n=4 t+1(t \geqq 2)$. If $t=2 s+1(s \geqq 1)$, then $\partial_{8 s+5}(1)=(1,0) \in \mathbb{Z}_{2}+Z_{2}$ $\cong \pi_{8 s+5}\left(\mathrm{SO}_{8 s+4}\right)$, $\operatorname{Ker} \pi_{8 s+5} \cong Z_{2}+0$, and so $\alpha(H) \subset \operatorname{Ker} \pi_{8 s+5}$ for any $(H ; \lambda, \alpha)$-system of type $(\mathrm{O}+\mathrm{II})$. So that, the situation is quite similar to that of Theorem 7.3 of [4]. If $t=2 s(s \geqq 1)$, then $\partial_{8 s+1}(1)=(1,0,0)$ $\in Z_{2}+Z_{2}+Z_{2} \cong \pi_{8 s+1}\left(\mathrm{SO}_{8 s}\right), \operatorname{Ker} \pi_{8 s+1}=Z_{2}+o+Z_{2}$, and so $\alpha(H) \subset \operatorname{Ker} \pi_{8 s+1}$
for any $(H ; \lambda, \alpha)$-system of type $(\mathrm{O}+\mathrm{II})$. So that, the situation is quite similar to that of Theorem 7.5 of [4]. Thus, we have the following theorems.

Theorem 7.4. If $n=8 s+5(s \geqq 1)$, the handlebodies of type ($\mathrm{O}+\mathrm{II}$) of $\mathscr{H}(2 n, k, n+1)$ with rank $2 r$ are uniquely represented up to diffeomorphism as follows:
(i) $\bar{A}_{(a, 0)} \mathfrak{b}(p-1)\left(S^{n+1} \times D^{n-1}\right) \operatorname{rrW}\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$,
(ii) $p\left(S^{n+1} \times D^{n-1}\right)$ Ł $W\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)$ b $(r-1) W\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$,
where $p+2 r=k$ and $(a, 0),(1,0)$ belong to $Z_{2}+Z_{2} \cong \pi_{8 s+5}\left(\mathrm{SO}_{8 s+4}\right)$.
Theorem 7.5. If $n=8 s+1(s \geqq 1)$, the handlebodies of type ($\mathrm{O}+\mathrm{II}$) of $\mathscr{H}(2 n, k, n+1)$ with rank $2 r$ are uniquely represented up to diffeomorphism as follows:
(i) $p\left(S^{n+1} \times D^{n-1}\right)$ Ł W_{1}, where W_{1} is a handlebody of type II of $\mathscr{H}(2 n, 2 r, n+1)$,

(iii) $\left.\bar{A}_{(0,0,1)} \natural(p-1)\left(S^{n+1} \times D^{n-1}\right) \natural W\left(\begin{array}{ll}d & 0\end{array}\right) \mathfrak{d} \begin{array}{l}0 \\ d\end{array}\right) \natural(r-1) W\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$,
(iv) $\bar{A}_{(1,0,1)} \mathfrak{q}(p-1)\left(S^{n+1} \times D^{n-1}\right) \natural W\left(\begin{array}{lll}d & 0 & 0 \\ d & 0 & 0\end{array}\right)$ ヶ $(r-1) W\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$,
(v) $\bar{A}_{(1,0,0)}$ घ $_{(0,0,1)^{\natural}}(p-2)\left(S^{n+1} \times D^{n-1}\right) \operatorname{HrW}\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$,
where $p+2 r=k$ and the characteristic elements belong to $Z_{2}+Z_{2}+Z_{2}$ $\cong \pi_{8 s+1}\left(\mathrm{SO}_{8 s}\right)$.

If $n=4 t+2(t \geqq 1)$, the situation is slightly different form that of [4] since $\pi_{4 t+2}\left(\mathrm{SO}_{4 t+1}\right) \cong Z_{8}$.

Theorem 7.6. If $n=4 t+2(t \geqq 1)$, the handlebodies of type ($\mathrm{O}+\mathrm{II}$) of $\mathscr{H}(2 n, k, n+1)$ with rank $2 r$ are uniquely represented $u p$ to diffeomorphism as follows:
(i) $p\left(S^{n+1} \times D^{n-1}\right)$ Ł $W\binom{d}{d}$ Ł $(r-1) W\binom{0}{0}, \quad d=0,4$,
(ii) \bar{A}_{4} घ $(p-1)\left(S^{n+1} \times D^{n-1}\right) \operatorname{qrW}\binom{0}{0}$,
(iii) $p\left(S^{n+1} \times D^{n-1}\right)$ Ł $W\binom{2}{0}$ ต $(r-1) W\binom{0}{0}$,
(iv) $\bar{A}_{2} \mathfrak{L}(p-1)\left(S^{n+1} \times D^{n-1}\right) \operatorname{qr} W\binom{0}{0}$,
(v) $p\left(S^{n+1} \times D^{n-1}\right)$ q $W\binom{1}{0} \natural(r-1) W\binom{0}{0}$,
(vi) $\bar{A}_{1} \boxminus(p-1)\left(S^{n+1} \times D^{n-1}\right) \natural r W\binom{0}{0}$,
where during (i)-(vi), $t \geqq 2, p+2 r=k$, and the characteristic elements belong to $Z_{8} \cong \pi_{4 t+2}\left(\mathrm{SO}_{4 t+1}\right)$, and
(vii) $p\left(S^{7} \times D^{5}\right) \natural r W\binom{0}{0}, \quad p+2 r=k$, if $t=1$ i.e. $n=6$.

Proof. Let $t \geqq 2$. Then $\partial_{4 t+2}(1)=4 \in Z_{8} \cong \pi_{4 t+2}\left(\mathrm{SO}_{4 t+1}\right)$. Let $(H ; \lambda$, α) be a system of type ($\mathrm{O}+\mathrm{II}$) with rank $2 r$. If $\alpha(H) \subset\{0,2,4,6\}$ $\left(\cong Z_{4}\right) \subset Z_{8}$, then the situation is quite similar to that of Theorem 7.7 of [4]. So that, we have the results (i)-(iv). Let $\alpha(H) \notin\{0,2,4,6\}$ and let $\left\{u_{1}, \cdots, u_{p} ; e_{1}, f_{1}, \cdots, e_{r}, f_{r}\right\}$ be an admissible base of H. Then,
(a) $\alpha\left(\left\{u_{1}, \cdots, u_{p}\right\}\right) \nsubseteq\{0,2,4,6\}$,
or (b) $\alpha\left(\left\{e_{1}, f_{1}, \cdots, e_{r}, f_{r}\right\}\right) \nsubseteq\{0,2,4,6\}$.
If (a), we may assume that $\alpha\left(u_{1}\right)=1, \alpha\left(u_{i}\right)=0$ for $i \geqq 2$. If (b), we may assume that $\left(\alpha\left(e_{1}\right), \alpha\left(f_{1}\right)\right)=(1,0)$ and $\left(\alpha\left(e_{j}\right), \alpha\left(f_{j}\right)\right)=(0,0)$ for all $j \geqq 2$, as in the proof of Theorem 6.6.

If (a) and (b), replacing e_{1} by $e_{1}^{\prime}=e_{1}-u_{1}$, there is an admissible base $\left\{u_{1}^{\prime}, \cdots, u_{p}^{\prime} ; e_{1}^{\prime}, f_{1}^{\prime}, \cdots, e_{r}^{\prime}, f_{r}^{\prime}\right\}$ of H such that $\alpha\left(u_{1}^{\prime}\right)=1, \alpha\left(u_{i}^{\prime}\right)=0$ for $i \geqq 2$, and $\left(\alpha\left(e_{j}^{\prime}\right), \alpha\left(f_{j}^{\prime}\right)\right)=(0,0)$ for all j. If (a) and not (b) i.e. $\alpha\left(\left\{e_{1}\right.\right.$, $\left.\left.f_{1}, \cdots, e_{r}, f_{r}\right\}\right) \subset\{0,2,4,6\}$, we may assume that $\alpha\left(u_{1}\right)=1, \alpha\left(u_{i}\right)=0$ for $i \geqq 2$ and $\left(\alpha\left(e_{j}\right), \alpha\left(f_{j}\right)\right)=(0,0)$, or $(2,0)$, or (4,4) for all j by some elementary transformations of symplectic bases. Then, by replacing e_{j} or f_{j} by $e_{j}^{\prime}=e_{j}+l u_{1}$ or $f_{j}^{\prime}=f_{j}+m u_{1}(l, m$: integers $)$, there is also an admissible base $\left\{u_{1}^{\prime}, \cdots, u_{p}^{\prime} ; e_{1}^{\prime}, f_{1}^{\prime}, \cdots, e_{r}^{\prime}, f_{r}^{\prime}\right\}$ of H such that $\alpha\left(u_{1}^{\prime}\right)=1, \alpha\left(u_{i}^{\prime}\right)=0$ for $i \geqq 2$, and $\left(\alpha\left(e_{j}^{\prime}\right), \alpha\left(f_{j}^{\prime}\right)\right)=(0,0)$ for all j. If not (a) but (b), we may assume that $\alpha\left(u_{1}\right)=0$, or 2 , or $4, \alpha\left(u_{i}\right)=0$ for $i \geqq 2$, and $\left(\alpha\left(e_{1}\right), \alpha\left(f_{1}\right)\right)$ $=(1,0),\left(\alpha\left(e_{j}\right), \alpha\left(f_{j}\right)\right)=(0,0)$ for $j \geqq 2$. Then, by replacing u_{1} by u_{1}^{\prime} $=u_{1}+2 l e_{1}(l:$ integer $)$, there is an admissible base $\left\{u_{1}^{\prime}, \cdots, u_{p}^{\prime} ; e_{1}^{\prime}, f_{1}^{\prime}, \cdots\right.$, $\left.e_{r}^{\prime}, f_{r}^{\prime}\right\}$ of H such that $\alpha\left(u_{i}^{\prime}\right)=0$ for all i and $\left(\alpha\left(e_{1}\right), \alpha\left(f_{1}\right)\right)=(1,0)$, $\left(\alpha\left(e_{j}\right), \alpha\left(f_{j}\right)\right)=(0,0)$ for $j \geqq 2$.

Thus, for any $(H ; \lambda, \alpha)$-system of type ($\mathrm{O}+\mathrm{II}$) with rank $2 r$, there is an admissible base $\left\{u_{1}, \cdots, u_{p} ; e_{1}, f_{1}, \cdots, e_{r}, f_{r}\right\}$ of H such that
(1) $\alpha\left(u_{1}\right)=1, \alpha\left(u_{i}\right)=0$ for $i \geqq 2$, and $\left(\alpha\left(e_{j}\right), \alpha\left(f_{j}\right)\right)=(0,0)$ for all j,
or (2) $\alpha\left(u_{i}\right)=0$ for all i, and $\left(\alpha\left(e_{1}\right), \alpha\left(f_{1}\right)\right)=(1,0),\left(\alpha\left(e_{j}\right), \alpha\left(f_{j}\right)\right)=(0,0)$ for $j \geqq 2$.
Now, we can show that the cases (1) and (2) are independent of each other, using Lemma 7.1 of [4] as in the proof of Theorem 7.3. So that, the two $(H ; \lambda, \alpha)$-systems corresponding respectively to the cases (1) and (2) are not isomorphic. Thus, we have the results (v), (vi).

If $t=1$, since $\pi_{6}\left(\mathrm{SO}_{5}\right)=0$, we have the result (vii). This completes the proof.

References

[1] Browder, W., Surgery on simply connected manifolds, Springer-Verlag, 1972.
[2] Haefliger, A., Differentiable links, Topology 1 (1962), 241-244.
[3] Ishimoto, H., Representing handlebodies by plumbing and surgery, Publ. RIMS, Kyoto Univ. 7 (1972), 483-510.
[4] -, On the classification of ($n-2$)-connected $2 n$-manifolds with torsion free homology groups, ibid. 9 (1973), 211-260.
[5] Kervaire, M., Some non-stable homotopy groups of Lie groups, Illinois J. Math., 4 (1960), 161-169.
[6] and Milnor, J., Groups of homotopy spheres, Ann. of Math. 77 (1963), 504-537.
[7] Ôguchi, K., Seminar on Topology A-4, Tokyo, 1962, (in Japanese).
[8] Paechter, G. F., The groups $\pi_{r}\left(V_{n, m}\right)$, I, II, III, Quart. J. Math. Oxford Ser. (2), 7 (1956), 249-268, ibid. 9 (1958), 8-27, ibid. 10 (1959), 17-37.
[9] Shiraiwa, K., A note on tangent bundles, Nagoya Math. J. 29 (1967), 259267.
[10] Tamura, I., On the classification of sufficiently connected manifolds, J. Math. Soc. Japan 20 (1968), 371-389.
[11] Wall, C. T. C., Classification problems in differential topology I, Classification of handlebodies, Topology 2 (1963), 253-261.

[^0]: Communicated by N. Shimada, May 12, 1975.

 * Department of Mathematics, Kanazawa University, Kanazawa, Japan.

[^1]: 2) See, for example, Browder [1] p. 55 .
