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Singularities of the Riemann Functions
of Hyperbolic Mixed Problems

in a Quarter-Space

By

Seiichiro WAKABAYASHI*

1. Introduction

Singularities of Riemann functions of hyperbolic mixed problems

with constant coefficients in a quarter-space have been investigated, for

example, by Duff [3], Deakin [2], Matsumura [5] and others. In his

pioneering work [3], Duff studied the location and structures of singulari-

ties of reflected Riemann functions making use of the stationary phase

method. Deakin [2] treated first order hyperbolic systems by the same

method. However, it seems that it is difficult to apply the stationary

phase method to the study of Riemann functions of more general hyper-

bolic mixed problems. Matsumura [5] gave an inner estimate of the

location of singularities of reflected Riemann functions which correspond

to reflected waves making use of the localization method developed by

Atiyah, Bott and Carding [1] and Hormander [4]. A localization

theorem describing the location of singularities of reflected Riemann func-

tions which correspond to lateral waves was obtained by the author

[8] under some restrictive assumptions.

In this paper we shall deal with hyperbolic mixed problems in a

quarter-space under more general assumptions and prove a localization

theorem describing the location of singularities of reflected Riemann

functions which correspond to reflected waves, lateral waves and boun-

dary waves. Tsuji [7] studied the same problem in the cases where

), Bj(%) are homogeneous and obtained similar results. We originally
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formulated and proved our localization theorem making use of the

representations of reflected Riemann functions given in [5], [8]. How-

ever we can give a simpler proof if we use the representation of re-

flected Riemann functions given in Tsuji [7]. So we shall give our

proof using the representation.

Now let us state our problems, assumptions and main results.

Let RM denote the n-dimensional Euclidean space and Sn its real dual

space and write x' = (x x , . . . , xn _ t), x" = (x2, . . . , xn) for the coordinate

x = (xlf..., *„) in R- and £' = («i,.», ^-J, r = «2,-», O. V = «2,».,
£n-i) for the dual coordinate { = (^,...5^). The variable x1 will play

the role of "time", the variables x 2 , . - -»x« will plaY the role of "space".
We shall also denote by R?. the half-space {x = (x'9 xn) e R" ; xn > 0} .

For differentiation we will use the symbol D = i~1(d/dxl9....> 8/Bxn). Let

P = P(£) be a hyperbolic polynomial of order m of n variables £ with

respect to S = (l, 0,..., 0)eSM in the sense of Girding, i.e. P°(S)=^0

and P(£ + s9)=£0 when f is real and Ims<-y0, where P° denotes the

principal part of P. We consider the mixed initial-boundary value

problem for the hyperbolic operator P(D) in a quarter-space

(1.1)

(1.2) (D*1ii)(0,xlf) = 0, 0^/cgm-l, xB>0,

(1.3)

Here the ^-(D) are boundary operators with constant coefficients. The

number I of boundary conditions will be determined later on. We

assume that the hyperplane xn = Q is non-characteristic for P(D).

Let us denote by Re ,4 be the real hypersurface {£ eS"; P°(£) = 0}

and by r = F(P, $) (aEn) the component of Sn\Re^4 which contains

9. When ^' ESn'1-iyQB'-ir09 we can denote the roots of P(£', X) = 0

with respect to A by At(^')v--9 ^f(£'X ^iCOv-j ^m-/(^')j which are enumer-
ated so that

(1.4)
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Here F0 denotes the set fo'eS11"1; (rf, 0)eF}. The number I in (1.4)

determines that of boundary conditions. Put

(1.5) P+

We now define the Lopatinski determinant for the system {P, Bj} by

(1.6)

We remark that

(1.7)

We state the assumptions that we impose on {P, Bj} :

(A.I)

where the PJ(^) are distinct strictly hyperbolic polynomials with respect

to & and irreducible over the complex number field C.

(A. 2) The system {P, Bj} is ^-well posed, i.e.

for ^'eS"-1 and

where K0(^
;) denotes the principal part of R(£') defined by (2.6) (see

Sakamoto [6]).

Now we can construct the Riemann function G(x, y) for {P, Bj}

which describes the propagation of waves produced by unit impulse

given at position y = (Q, y2,--, jO
eR+ (see [6], [7]). Write

(1.8) G(x9y) = E(x-y)-F(x9 y),

where E(x) is the fundamental solution represented by
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(1.9) E(x)=(2n)-»( expCix-^ + ̂ M^ + ̂ r1^, r,e-y0B-r.
JSn

Then the reflected Riemann function F(x, y) is written in the form

(1.10) F(X,y)=(2jt)-^» EJ-,*

where r\ e — y0$ ~~ ̂  and ??' e — 705' — F0. Here Rjk(£') = (/c, j)»cofactor of

„ F(x9 v) has to be interpreted in the- t_.
2m J P+(C 5 /I)

sense of distribution with respect to (x, j/)eR£xR'|.

Let A*t«')v..,^(O, ««')-., ̂ -,(O be the roots of
Since

(1.11) r«P(t?9tn) - >P°«',Ai) as t

it follows that,

(1.12) ru£(tf')— */#(£') as f

if the />t's are labelled suitably. Then our main result is stated as

follows :

Theorem 1.1. Let %°eSn and jU° be real. Then we have

(1.13)

where p0 is a rational number and L is a positive integer. Here

(1.13) implies that

(1.14)

> F N ( x , y ) as t

in the sense of distribution with respect to (x, j;)eR!(.xR!£. Moreover,

for ^°7^0 we have
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(1.15) \J 5L Osupp FJ(X, y) c: sing supp F(x, y)

and

(1.16) suppF/x, y)c:{(x, )OeR' jxR£;

(x' - /) - i f ' - M,, + xnA^ 0 for all fa, A) e !>>/i0} ,

where F^o^o will be defined by (4.4).

Remark I. The corresponding result for the fundamental solution

E(x) was obtained in [1], i.e.

(1.17) fm-*exp [- itx • £°Mx) - > Ep(x) as * - > oo,

(1.18) ^o(x) = (27r)-4 exp [ix •

where the localization P^0 of P at {° is defined by

(1.19) vmP(v-1^° + ?/) = v^ofa) + 0(vp+1) as v

Remark 2.

(1.20) {(x, j ) eR^xR»; (x'-^-fy'-^. + x^^O for

all fa, A) e />>Mo}

+ x^fli grad ̂ t«0/) + • • • + 0

- ynr\n ̂  0 for all rj e r(P^0, S) n &?. x S)} ,

where ^k(^)? l = ̂  = ru? are tne simple roots of Py(£'5 Af) = 0 for |£'
-^0/ |<e such that AI^O/)=JU°, and 2p, will be defined by (3.5).

Using the representations of reflected Riemann functions given in [8],

we originally obtained

(1.21) suppF/x, jO<=W01+...+0ro=]{(
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[(*' - /) + xJPt grad ,4(£0') + - - - + 0ro grad <(£°'))] • i/'

- jy/,, ̂  0 for all i/ e F^o, 3) n (%, x S)} „

Remark 3, Tsuji [7] also proved (1.13)-(1.15) in the cases where

)9 BJ(£,) are homogeneous.

The remainder of this paper is organized as follows. In §2 we shall

study some properties of the roots A/£'). In §3 the localization of

the Lopatinski determinant will be defined and its properties will be

studied. In §4 we shall prove the localization theorem (Theorem 1.1).

Some examples will be given in §5.

The author would like to express his sincere gratitude to Professor

M. Matsumura for many valuable suggestions.

§2. Algebraic Considerations and Lopatinski Determinant

Put

(2.1) <KO = maxpott)=0«i for t"e3»-\

(2.2) a(O=inf^<r(n for feB*'*,

(2.3) / = {^eS«-1;{1>a(r/)}.

Then it is obvious that

(2.4)

(2.5)

Lemma 2.1 ([6]). R(£') is holomorphic in 3"-l-iy09'-if.

Lemma 2.2 ([6]). Let K be a compact set in S"~l — ir, then
there exists TK>0 such that

(2.6)

whose convergence is uniform in Kx{t>TK}, where

(i) (I/O) are holomorphic in P =
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(ii) Kj(t£
f) = th°-JKj(£

f) for £'ef, teC\{0},

(iii) K0(£')^Q and hQ is an integer.

Put

r(<T) if(2.7)

' suP*0<«').-o^ otherwise,

Then it follows from (A.2) that B'el.

Lemma 23 ([6]). There exists a positive constant y1 such that

(2.9)

r, /or any compact set K in y^' + Z there exist positive con-

stants CK and aK such that

(2.10) \R(&\*cK\tra* for t'e3*-i-iAK9

where AK = {t?9 % eK, t^l}.

Let p(£) be a strictly hyperbolic polynomial with respect to $ and

assume that jp°(0, 1)^0, p(f)^0 for ^e3n-iy0B-ir. We consider the
real roots of p(£'9X) = Q in a neighborhood of <r = £°5 where £°fEEn~1\

{0} is arbitrarily fixed. Put

(2.11) p(£', A; v) = p°«', A) + vjp
1(^/

? A)+.-.+v*Jp*( = v*Xv"1{/, v'U))

where degp = ?n. We can assume without loss of generality that A = 0

is an /-pie root of p°(£°', A) = 0. Therefore we have

(2.12) X^ A; v) = (A' + fll(£'; v)A'-1 + - + aI(«
/; v))««'f A; v)

for |^-{0/|<e and |v|<e,

where the a$\ v) and #(£', A; v) are holomorphic for |£' — £0/ |<e and

|v|<e and a/^/. 0) = 0 and q(?9 A; v)^0 for |f-(S0/|<e, |v|<e and
|A|<s. Then
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(2.13) fl/«';v)=2:4+l.|aiflJtev'«'-50')', M<8, |£'-«°'|<e,

and, therefore,

(2.14) atf

where

(2-15)

Lemma 2.4. Lef T(<f) foe a root of />°(T, <T) = 0 swc/z tfuif T(£°'", 0)

= 5?. Then

1^0', 0)].

Moreover if

(2,11) anW) = const,

where p^o'to) is the localization of p at (£°'9 0) defined by (1.19). There-

fore

(2.18) flnfoO^O /or i/'eS"-1-^'-^-

Proof. (2.16) is obvious. Since p(Q is a strictly hyperbolic poly-

nomial,

If 1=0 is a multiple root of p°(£°', A)=0, - ( ^ 0 ' , 0)=0. This proves

(2.17). Since r<=r(p(/.0,t0), 9), (2.18) can be obtained (see [1]). Q.E.D.

1) Here and in sequal const, denotes a non-zero constant.
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Let C(£';v) be a root of p(£r, 1; v) = 0 such that C(£°'; 0) = 0. Then

we have the following

Lemma 2.5. For any compact set K in 3n~l — iy0&' — iF and any

positive integer N there exists s>0 such that

(2.19) C«0/ + v?7 ';v) = 2:j=i^)v^ + 0(v(N+1)/0

if r j ' e K and |v|<e. I/ / = !, the Cj(rj') are polynomials of rjr, and if

/>!, the CJ(TI') are equal to (polynomial of /?') x CiO?')~"J» where the
HJ are integers. In particular,

(2.20) c1(i/') = {-flu(i/')}1//.

Remark. We can also prove the following assertion: For any

compact set K' in y0$' + F and any positive integer N there exist positive

constants QLN, /?#, c and ;/ such that

(2.21) CK°' + v/7';v)=i;y=1c/>/'

if if eEn~l-iK', |^'|^^|v|"ajv and |v|<e.

(i) If / = !, then C(<T; v)= -^'; v) = - Z

Thus the assertions of Lemma 2.5 are obvious.

(ii) Let us prove Lemma 2.5 when />!. From (2.14) and (2.18)

C(£0/ + v//'; v) can be represented for fixed / /eX by a development in

a Puiseux series of the form

Then we have

2) It is possible to simplify this part, according to the referee's remark: w(ijf\ u) =
^; v) is a root of the equation

On the other hand the bfa'i ^)=flJ-(f° /+^^ /; j"z)^~J are holomorphic in (^', ^)e
JSTxt l^Ks '} and &/3?';0)=0, 1^;^/-1 and 61(7'; 0)^0 for 7}'<=K. Thus we
see that w^'; ^z) is holomorphic in (9', /OelSTx (1^1 < £ /J and tnat C(^0/ +

/z is convergent if (9', y)
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(2.22) Ic/fjOl^dj, 7 = 1,2,....

In fact, from the equation

isj, ..... j,*j-1cJlM...cJ,M

we determine c/(f/')> j = 2, 3,... . Thus we obtain the estimates (2.22).

Moreover we have

where r^= — 1/J + P""2 (g:0), which is used in order to prove (2.21).

Putting

C«0/ + vi/'; v)=Zy=i^M/^ + CJV + 1(/?'; v),

we shall estimate Cjv+iO?'j v) in the remainder of this proof. Write A1

+ fl1(5
0/ + vi/ /;v)A /-1 + -+fl /K

0/ + vi / / ;v) = 0 in the form

(2.23) A^-S^iCL

where ^.7 = l + [(N-j-l)//], 0^;^/-1. Substitution of A = C(£°' + w?';

v) into (2.23) gives
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Thus we have

(2.24) z

Substituting £N+1(r]'; v) = cl(Y\')vlllz(r]'; v) into (2.24), we have

Therefore,

Since the roots of

are 0, e2nki'l-l (l^fcg/-!), we obtain

ICtf + ifo'iv^cM1/ ' or

On the other hand

holds for fixed rj'eK and sufficiently small v. Thus we have

IC#+1(^;v)|gc>|<*+1>/< for rj'eK and |v|<e.

Q.E.D.

By Lemma 2.5 the following lemma can be easily proved.

Lemma 2.6. For any compact set K in 3n~l — iy09
f — IF and any

non-negative integer N there exists e>0 such that if rj'eK and 0

<v<e,

(2.25) v^^(v-^0' + ̂ =Ey=oeX>70v-f/L + 0(v(JV+1)/L)s

where QoC^O^O, L is a positive integer and h^ is a rational number.

Moreover the Qj(rf) are equal to Zfini te sum(polynomml of ^')x
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Hk=icijk(n')~njk and holomorphic in Sn~1-iy0B'-i^. Here {jk}L

£fc^n *s the set of suffixes such that pVk(£°', //) = 0 has a real mul-

tiple root iJLjk with multiplicity ljk and

(2.26) cljk(rir) = [const. P j k ( ^ f f l j k ) (i/)] l ">* ,

(2.27) 1> x 3= n JLir(pJktfo'fiyk), 9) .

Remark. F^F. Moreover L = the L. C. M. of {

§ 3. Localization

Definition 3,1* Let A be an open connected cone in En such that

B + Ac:A and let /(£) be a holomorphic function in Sn — iyQ9 — iA. Then

we say that /^o(?y) is the localization of /(£) at £0 in En if f^(rf) does

not vanish identically and is holomorphic in En — iy0B — iA and

(3.1) v/"/(v-1£0 + ?|) - >/^) as v - > +0 for each fixed

rjeSn — iyQ9 — iA,

where /IA is a rational number and depends on £°.

Remark. U^O^GoCfl')-

Lemma 3.1. Qo('//)^0 /or ly'eS11-1-! '̂-!!.

Proof. Assume that there exists q°' in Sn~ * — iy ̂ 9' — iZ such that

QoO/0/) = 0- Since 2o(^')^05 there exists £0' in ^"^E11"1 such that

K°' + fI°'eS»-1-iy1S'--ii for l^^l and eo(^0' + C°0^0. Thus QoC^0'

+ juC0/)^0 in j"- 6oO?°' + ^£0') is holomorphic in ju, |^|^1, and vanishes
at jM = 0. Therefore there exist e(>0), <5(1^(5>0) such that

for b|=5.

On the other hand, it follows from Lemma 2.6 that

\vhiR(v-^°' + ri0' + rt0f)-Q0(ri0' + [i£0f)\<8 for Q<v<6 and |/x| = 5.

Rouche's theorem implies that vhiR(v~l^Qf + YiQ'+iJL^Q') has zeros within



RIEMANN FUNCTIONS OF HYPERBOLIC MIXED PROBLEMS 429

|/i|<<5, which is a contradiction to K(<T)^0 for £' eSn~i-iy1&
t-iI.

Q.E.D.

Now let us define the principal part of Q0(rjr). Let K be a com-
pact set in Sn~l — iy0$' — iF^,. Then there exists TK>Q such that

(3.2) 6ofaO=*toZy-o6ifoOr"L, GSfoO^o,

whose convergence is uniform in Kx{t>TK}. It is easy to see that

the QoO?') are positively homogeneous and equal to Zfini te sum (poly-

nomial of nf)*Ylrk=iC(ljk(n')~qik-> where

(3.3) c?^0

We can prove the following lemma in the same way as in Lemma 3.1.

Lemma 3.2. Qgfo') ̂  0 for if e Sn~ 1 - iL

Define

/! if g8(-»/')^0 for r i ' e f , ,
(3.4) c70(i/

w) =
o(-i^)=0 ^/i otherwise,

H'e/V>'

(3.5) ^ = {ij'6

Then it follows that r^S

Lemma 3.3.

(3.6) 6ofa') 9*0 /or ly'eS"-1-^^'-!^,

(3-7) G8(^)^0 /or ^eS"-1-!^.

Proof. It is easily shown that

for ^Aiy'eS"-1-!

where /lfc° denotes the branch satisfying lk° = l if k0 is not an integer.

Thus, modifying the proof of Lemma 2.2 in [6], one may prove the

above lemma. Q.E.D,
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We can also prove the following lemma by Seidenberg's lemma.

Lemma 3.4. For any compact set K in y^ + I^ there exist positive

constants aK and CK such that

(3.8) \Qo(*l')\^cK(l + W\ra« for r,' EE"-*-iAK.

Next let us consider the localization of P+({', A) at ({°'f /x°)s where

50/eSll"1\{0} and ji0 is real- We can assume without loss of generality
that the roots with positive imaginary part of P(£', A) = 0 is enumerated

as follows:

(3.9) imo' + tf = tt*0 + ck

(3.10) Ajt(^°' + >?0 = */4(^

(3.11)

where i\' e-S"-1- jy0$'-iF0 and f is large enough, /4(£°'),

+ rl5 are real and the qk are positive rational numbers. The above

enumeration implies that j4(£0/)=/j°, l5^/c:gr0, are real simple roots of

Pj(^°'5^) = 0 and that j4(£0')5 r0 + l^fc^r 0 + r1? are real multiple roots

with multiplicity lk of p°(£0/, jti) = 0. Then we have the following

Lemma 3.5. Let K be a compact set in (Sn~1 — iy0B' — ir^')'xE.

For any non-negative integer N there exists T>0 such that

(3.12) r**

+ ZtiP+*fo',A)r*/t + (Xr<*+1>/*) for (»?', A)eXand t>T,

where ft2 = /-r0-Z?4r
0

2
+1l//;,

(3.13)
/ie P+k(rjf, 1) are polynomials of A whose coefficients are equal to

f in i t e sum(polynomial of ^Oxn^Vo+iC/??')^. Here we ftaue assumed

3) fattoOJr.+isfcsro+rj is cclual to {cu*W)}i***ri defined by (2.26).
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that /4(£°') = M° for I^fc^r 0 + r2 and that i4(£0')^n° for r0 + r2

Proof. From Lemma 2.5 we have

where ck(r\') and the %•(»?') are polynomials of r\', and

where the ckj(r\') are equal to (polynomial of »/') x cfy'Y""1 • Further

we have

where the ^f/y/', A) are polynomials of r\l and A. This completes the

proof. Q. E. D.

Let {sjJi^fc^ro denote the set of suffixes such that £iJ(O are simple

roots of p°t(£', 0) = 0 for |£'-£°'|<e and

Lemma 3.6. For

(3.14)

(3.15)

Moreover, for 1 ^ fc ̂  r0

(3.16) l-grad/4(£0')-,7'-a^°')= const. p^.ifiM, *)•
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Remark,

(3.17) P+tf^fo', A) = n}°=i const, p^^fa', A)SO?').

Proo/. Since /4(£°') = ̂ ° is a real simple root of pfk(^0/
9/z) = 0,

A£(ff°' + i7') is a simple root of pSk(t£°'+ TJ', A) = Q for r large enough.

Thus we have

This implies (3.14). (3.16) is obvious. Q.E.D.

§4B Proof of Theorem 1.1

From the results in §3 we have the following

Lemma 4.1, Lei K be a compact set in (S"~is&)xSy where s is

sufficiently large. Then for any non-negative integer N there exists

T>0 such that

for fa A) in K and ?>T9 where the Ffii, X) are equal to Snnite sum

(polynomial of (17, A)) x Q0(r]f) -"*n?=i A^vofa'' A)~"2 x p^'H3UlLi

{PMP'.PJ )(l/)}'l4k//Jk>4)» Po z"s a rational number, n1? n2 awrf w3 are posi-

tive integers and the n4k are integers.

4) The yV and /, have been defined in §2.
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Proof. The localizations QM\ pSj(«* t/to)(/?', A), P5o(//) and pjk(p-t

p )0?) do not vanish for (/?, A) in (En — is$)xE. From Lemmas 2.5,

2.6, 3.5 and 3.6 the assertions of Lemma 4.1 follows. Q.E. D.

By Seidenberg's lemma we have the following

Lemma 4.2, For any positive integer N there exist positive con-

stants a and c such that

f4T,

/or (77, 1) e (£" — isB) x S and f ^ l , where s is large enough.

Remark. We can also prove the above lemma, making use of (2.21)

without Seidenberg's lemma.

Put

(4.3) f (40,^0, = n l°= , {fa, A) e S»+ » ; fa', A) e ro^o^o,, 3)} ,

(4.4) r^o = (HPjo, 3) x s) n f (jo.,,,0) n (i^- x s2) .

Lemma 4.3. Le/ K be a compact set in Ji(9, 0) + r^0>/lo. Then

there exist positive constants ajR and cjR such that

(4.5) \Fj(r,,V\^ajR(l + \n\ + Wy>~K for fa, A) e S»+1 - iA*

where AR = {t(r\, 1); fa, A)eK, ^1}.

Now we can prove Theorem 1.1. In fact, we have

(4.6) ew\_-it{(x'-y')-^' + Xnn°-yni;?,}V(x, y)

,,,,
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where q=—sB and s is sufficiently large. From Lemmas 4.1 and 4.2
and (4.6) (1.13) easily follows, putting

(4.7) F/x, y) = (2nT(n+

(1.15) follows from the Riemann-Lebesgue theorem. From Lemma 4.3
we have (1.16), applying the Paley- Wiener theorem to (4.7). This com-

pletes the proof of Theorem 1.1.

The following theorem shows that the localization of R0(£
r) at

£0/ coincides with 280?') under some assumptions.

Theorem 4.1. Assume that each p®(£°', ju) = 0 has no real multiple

roots. Then the localization 2oO?') of R(£') at £°' is a hyperbolic poly-

nomial and £«*)' = F(2oO?')» $'). Moreover 280?') ls equal to the localiza-
tion of K0(£') at £0/, if at least one of the following conditions is

satisfied: (i) The system {P( — D), Bj( — D)} satisfies the Lopatinski

condition, (ii) f° 'Gfl£.

Proof. The first assertion is obvious. Since the real roots of

jii) = 0, l:gj^g, are simple, R(t£') can be continued analytically to a

neighborhood of £0/ when t>T. Moreover the $/£') are holomorphic

in the above neighborhood. If $0(£°') does not vanish, then it follows

that the localization Q0fa') of £(£') at £°' is equal to I0(£
0')- Thus it

suffices to show that 280?') i§ equal to the localization of jR0(£') at £°'
when £o(£0/) = 0- Since 50(^

0/ + vi/' + s9')£Q9 applying Weierstrass, pre-
paration theorem, we have

l-i + -'^

for |v|<v0, \s\<s0,

where S0(£°' + vnf', s)^0 for |v|<v0, |s|<s0 and 6J({0') = 0, l^;^/, and
^' is fixed in S""1. Put

rfc°(£°' + vi,')) -

Then the r£(£0/ + vf/') can be expanded in Puiseux series of the form
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Denote by j(k) a number such that d£1 = --=d£ / ( f e )_1=0 and

Then j(k)/nk is an integer. In fact, if j(k)/nk is not an integer, a branch

of rj(£0/ + vfj') has positive imaginary part for some real v. This con-

tradicts the fact that

for Imv = 0 and Ims<0.

Moreover it follows that j(k) = nk and d%nk(rj')>Q for r j ' e Z . In fact,

£0(£
0' + vf?' + sS')^0 for Imv<0 and Ims^O,

and, therefore, Inirg(^°' + v?|/)<0 for Imv<0. Since

(4.8) vft^(v-1^ + ̂  + v-1sS/) = ̂ o(^0/ + ̂ ' + sS')

+ vR1(£°' + vri' + sS')+— for |s|<s0, 0<v<v0 ,

we have

for |s|<s0, 0<v<v0 ,

where S(£°' + v*7'; v, s)^0 for |s|<s0, |v|<v0 and 6/f0'; 0) = 0, l^j

Here we note that the right hand side of (4.8) can be defined for |s|

<s0 and |v|<v0. So we can define vh°R(v~1^°t + rir + v-1s9t) for |s|<s0,

|v|<v0. Then ^(v"1^') does not always coincide with the analytic con-

tinuation to a neighborhood of v"1^0' of the Lopatinski determinant

for the system {P(D), Bj(D)}, but with the Lopatinski determinant

^"(Ivl"1^') for the system {P(-D), Bj(-D)} apart from a constant factor

when -v0<v<0, |^-^°'|<e and £'e3n-1-ry03'- iF*. Now put

s' + !>!({<" + vif'; v)s^1 + ... + fcl(^ + v^; v) = m=i(s + r,(^ + v^; v)).

Then the rfc(^
0/ + v^'; v) can be also expanded in Puiseux series of the

form

Denote by j(k) a number such that dfcl = --- = J fcj ( fc)_1=0 and
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Then J(/c)//i/c=l/2 or ^1. This follows from the fact that

for 0<v<v0 .

Moreover if j(k)lnk=l/2, it follows that Im<4J(fc) = 0.

(i) When the system {P( — D), Bj( — D)} satisfies the Lopatinski con-

dition, i.e.

for

it follows that J(fc)//^l. In fact,

Ivl-^mr^' + viy'; v)^y2 for -v0<v<0.

(ii) When £°'EdZ, it follows that J(fe)/nfc^l. In fact,

R(vl^or + rir + v-1s9r)^0 for 0<Rev<v0 ,

|Imv|^(50Rev and

where <50 is sufficiently small. Putting v = v(l + /<5), where 0<v<v 0 5

we have

iW^

If J(fe)/nk=l/2, then it follows that

(l + ̂ -^o'll^v^^fcj^S' + oCv 1 / 2 )^^ for v small

enough and |<5|^v1/jv,

where N is large enough. This implies that dfcj(fe) = 0, which is a con-

tradiction to <4j(fc)7^0. Thus we have J(fc)/nk^l. When J(fe)/nk^l, it

is easy to see that the localization of jR0(£') at ^0/ ^s tne principal part
Q8(^') of the localization Q0(rj') of K(f) at ^0/. Q.E.D.

§5. Some examples

Let us visualize Theorem 1.1 for some simple examples. suppxEp(x

— y) is an incident bicharacteristic line emanated from a point y = (0,
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y29---> y«)eR+- VJJLo suppvFj(x, >;) is an reflected bicharacteristic line
corresponding to the above incident bicharacteristic line.

Example 5.1. Consider the following hyperbolic polynomial with
respect to S = (l, 0, 0):

(5.1)

The roots of the equation

(5.2)

Assume that the Lopatinski determinant R(£f) for the system {P(D\
#i(/)), B2(D)} satisfies the uniform Lopatinski condition, i.e.

(5.3) *(£') = *o«VO for £ 'e(

For example we may put

(5.4) Bi«)=l, *2«) = f i + f 2 + £3-

Then

(5.5) K«') = 5oK')=-l.

It sufBces to consider the localizations of P at the points £° such that

f? = l, f§>0 and ^eReX. When £}^0, supPjc %(x - 3;) does not
intersect the boundary plane x3 = 0 and, therefore, it is independent of
reflection. In fact, when £3^0, we have

(5.6) (UJUsupp^F/x, 3;)) n R^ = 0.

For €o = (lj £05 ̂ I(lj ^)}j |{o|<ls and 00 = ̂ 0') we obtain

(5.7) rcoiMo=(r(p€0f $) x s) n f (40>0),

where

(5.8)

(5.9)
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Thus \jJ>=QSuppxFj(x, y) is included in the half-line defined by the
equation

(5.10)

*!>(), X3>0.

Here we have assumed that y = (0, 0, y3). This line intersects the hyper-

plane *3 = 0 at (x1,x2) = (y3/|iT«o'), -{^3/MT«0/)). supPjc%(x-j;) is
included in the half-line defined by the equation

(5.11) x1-y3/««0')=-*2/58-3'3/««0')=-X3/A'T«0'), xi>0.

This line also intersects the hyperplane x3=0 at (xlt x2)=(y3ln~[(l;0'),

fO:0')). For «°, ^°) = (1, €§, AtT(l, f§), /ij«°0), |«I<1, and (£°,
°'». I5SI<1, j = l, 2, and «o, ^,0)=^, ^^ ^(1>

, we can calculate in the same way. Next we
consider the case where (£0, Ju°)=(l, ±1,^(1, ±1), (̂1, ±1)). Then

(5.12)

where

(5.13)

(5.14)

(5.15)

Thus we obtain

(5.16) u

This is related to the lateral waves.

Example 5.2. Next consider the following hyperbolic polynomial

with respect to & = (!, 0, 0):

(5.17) P(0=(«- £1/4- £§)(£? -f!-«/4).
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We assume that the uniform Lopatinski condition is satisfied. The com-

plicated cases are that (£°, /i°) = (l, ±2/^5", 2/^5", -2/^/5"). Then we
have

(5.18) r(P{0, 9)={f,eS
3;^1 + ̂ /(2V5")-2^/VT>0 and

(5.19) f(^o) = {feA)€S4 ;^1 + ^2/(2V5") + 2A/V5">0 and

(5.20)

Thus we obtain

(5.21) \j

= (x e R? ; x3 = (Xl + 6 JS't - 2 ̂ /5~y3)l(2 J5~- 3

Example 5.3. Put

(5.22)

(5.23)

Then

(5.24) A±(O = ̂ ±(O = sgn( + ̂ 1)V?F:Il) when

(5.25)

Thus (P(D), B(D)} is <f-well posed. We have

(5.26) J

The interesting cases are that (£°, jU0)=(±l, ±lljl + a2, ±a/J

+ a/Jl + a2). Then
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From Theorem 1.1 we obtain

2w> W = °} '

This is related to the boundary waves.
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