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On the Cohomology of the Classifying Spaces

of PSU(4>n+%) and

By

Akira KONO* and Mamoru MIMURA**

§0. Introduction

The quotients of SU(m) and S0(2m) by their centers JTm =

and r2 = ± \ are denoted by

PC/(m) and PO(2m) respectively.

The purpose of this paper is to determine the module structure of the

cohomology mod 2 of the classifying spaces BPU(4n + 2) and BPO(4n + 2).

The method is first to determine the E2-term °f tne Eilenberg-Moore

spectral sequence by constructing an injective resolution for H*(G; Z2),

(G = SU(4n + 2)ir2, PO(4n + 2)). Then by making use of naturality of

the Eilenberg-Moore spectral sequence we show that the spectral se-

quence with Z2-coefficient collapses for these G.

Our results are

Theorem. As a module

H*(BPU(4n + 2); Z2)^Z2[a2, a3, x'8H.8, yQfilR,

r
where l^l^2n and R is an ideal generated by a3y(I)9 y(I)2 + ]£

Theorem. As a module

; Z2) s
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where 1^/^2/t and R is an ideal generated by a2y'(I), y'(I}2 + Zx4il+4. ..

fl?+1...x4,+4 and

In the above theorems / runs over all sequences of integers (/!,..., /,)
satisfying lgr^2« and l^z 1 <"-< / r ^2w. (For details see §5.)

The paper is organized as follows:
In the first section we show that there exists a sort of "stability"

in #*(5G;Z2). §2 is used to calculate JH*(C7(n)/rp; Zp). In §3 we
determine the £2-term °f tne Eilenberg-Moore spectral sequence, Cotor
n*(G',z2)(z29Z2)9 for G = PO(4n + 2), PU(4n + 2). In the next section,
§4, we show that the Eilenberg-Moore spectral sequence (with Z2-coef-

ficient) collapses for these G. § 5 is devoted to showing that the elements

flj's in the above theorems, namely Theorems 4.9 and 4.12, are in the
trangression image. In the last section, the generators x8/ + 8 and x4l+4

in Theorems 4.9 and 4.12 are shown to be represented by certain
exterior power representations.

Throughout the paper the map BH-+BG induced from a homomor-

phism H-+G of groups is denoted by the same symbol.
The authors would like to thank N. Shimada for his kind advices.

§1. Quotients of SU(n) and SO(n)

Notation. J«=( Q "°0 i )EU(n) the identity matrix,

C(n) = {aJM;|a| = l and oceC},

rm = {wln ; w
m = 1 and w e C} c C(n) .

Then C(n) (resp. Fm) is the center of the unitary group U(ri) (resp.

SU(n)). In particular we have the inclusions

f / 1 0
T2= ± --. \\cSO(2n)cSU(2ri).

( \ 0 I

Hereafter we use the following

Notation.
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G/(m) = SC/(m)/r/ for a subgroup Ft of the center Fm,

Gm(m) = PU(m) = PSU(m) s

Denote by n the natural projections S(7(m)->G/(m) and SO(2n)

Consider the /c-fold diagonal map:

Ak: SU(ri) >(SU(n))k

Ak: S0(n) > (S0(n))k > SO(nfe),

where Ak is the diagonal embedding:

A 0

0 ' A

For the identity matrix 7n then we have

A k( In) = Ink and A k( — 7rt) = — Ink.

So for even n there exist maps G(ri)-*G(nk) and P0(n)-+P0(nk) such

that the following diagrams commute:

SU(n) -4±> SU(nk) SO(n) > SO(nk)

1" 1' 1" I"

We denote them by the same symbol:

Ak: G(n) >G(nk), Ak: P0(n) > PO(nfe).

Notation.

, k) = SU(nk)/AkSU(n)9

R(n, k) = SO(nk)IAkSO(n).
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So we have fiberings:

(1.1) SU(n) -^-> SU(nk) -*-* C(n, k) .

(1.2) S0(n) -^ S0(nk) -£-> R(n, k) ,

Remark 1.3.

(1) C(n, k) is homeomorphic to Gz(nfc)/dfeGf(n) for l\n.

(2) R(2n, k) is homeomorphic to PO(2nk)/AkPO(2n) .

Now recall from [4] and [5] the following

Proposition 1.4.

(1)

where degu2i-i = 2i—l and u2i-i is universally transgressive with
T(w2i-i) = ci the i~th universal Chern class.

(2) H*(SO(n)-9Z2)*A(vl9...9vm-l)9

where deg^_1 = i — 1 and v^^ is universally transgressive with r(ut-_1) =

wt the i-th universal Stief el-Whitney class.

Then

Proposition 1.5. (1) For any integer k>Q and any prime p with

(k, p) = l, we have

H*(C(n9 k); Zp)^

where degx2i+i = 2i+l and

(2) For any odd integer k>Q we have

H*(R(n, k); Z2)^A(zn ..... znk.J

where degz{=i and p*zi = vi.
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Proof. (1) The map Ak: SU(n)-^SU(nk) induces a map Ak: BSU(n)

-*BSU(nk) which gives the /ofold Whitney sum of complex vector bun-

dles. Thus

(1.6) ^*(cd= X Cj1...c ifc = feCj + (decomposables).
ii+—+ik=i

For the Serre cohomology spectral sequence with Z^-coefficient {£*'*}

of the fibering

SU(nk) - > C(n, k) - > BSU(n),

we have

£f»* = Zp[c2,...9 Cn]<gM(l*3v.., M 2 nfc- l )

and E*-*=*9r(H*(C(n9k);Zpy).

Then it follows from Proposition 1.4 and (1.6) that

d2i(l®u2i-i) = kci<S)l for 2^i^n

and all other differentials are trivial. So we get

&r(H*(C(n, k)i Zpy)^E*'*^E^

Since (fc, /?)=!, (1.6) implies that Af\ H*(SU(nk); Zp)-^H*(SL/(n); Zp)

is epimorphic, and hence SU(n) is totally non-homologous to zero in

the fibering (1.1). Thus p*: H*(C(n, fe); Zp)-> H*(SU(nk)', Zp) is mono-

morphic.

(2) is proved quite similarly. Q.E.D.

Theorem 1.7. (1) Lef p be a prime, k an integer with (k, p) = l

and l\n. Then A%: H^BG^nk); Zp)->H'(BG,(n); Zp) is isomorphic for

i^2n and monomorphic for i^2n + l.

(2) Let k be an odd integer. Then Af: Hi(BPO(2kn)\ Z2)->Hi(BPO(2n);

Z2) is isomorphic for i^n—1 and monomorphic for i^n.

Proof. Proposition 1.5 applied with the Serre exact sequence (Prop-

osition 5 of [12]) for the fiberings

C(n, k) - > BGfa) - » BGt(nk)
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R(2n, k) - > BPO(2n) — > BPO(2nk)

gives the results. Q.E.D.

Notation. For each rational number k, define vp(k) to be the

exponent of p when fe is expressed as a product of powers of distinct

primes.

Corollary 1.8. (1) // vp(ri) = vp(m\ then as algebras there hold

H*(BG{ri); ZJ*H*(BGt(m)', Zp) /or *£2min(w, n).

(2) // v2(m) = v2(n), £/7eft «s algebras there hold

H*(BPO(2n) ; Z2) ̂  H*(BPO(2m) ; Z2) /or * ̂  min (m, n).

In the below we denote by </> the diagonal map in //*(G; Zp)

induced from the multiplication on a group G. Put <? = 07®J?)°$, where

»/: H*(G; Zp)-> £ /f f(G; Zp) is the natural projection.
i>0

Now we recall from [3] and [5] the following facts:

Proposition 1.9. Let n = prri with (p,n') = i and l\n. Then

= 2 and

Proposition 1.9'. 77iere exist generators yeHi(G(4n + 2)-9 Z2)

(1) H*(G(4/i + 2); Z2)^^l(3;, j;2, ^,...,^^3),

(2) «y) = 0, ^4,+ 1) = 0 /or lgj^2W 5

^(x4j.+3) = x4j.+ 1®j;2 for l^j^2n,

(3) Sq2kx2i.i = (k, i-fc-l)x2 i+2k_1 .

Remark 1.9". ^(x4J+3 + decomp.) ^0.

Proposition 1.10. T/iere ex/sf generators yeHi(PO(4n + 2):> Z2) and
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); Z2), 2^i^4n + l, such that

(1)

(2)

(3) Sqizk = (k-jJ)zj+k.

Notation. PS(X; p) = the Poincare series of ^ over Zp9 i.e.,

Using this expression we obtain from Propositions 1.5, 1.9 and 1.10:

PS(Gl(n): p)-PS(C(n, k): p) = PS(Gl(nk): p) for (k, />) = !,

PS(PO(2ri)i 2)-PS(R(n, k): 2) = PS(PO(2nk): 2).

Thus we have

Proposition 1.11. (1) 77ie cohomology Serre spectral sequence with

Z ̂ coefficient for the fiber ing Gj(n)-» Gj(«k)-> C(/i, k) collapses if (/<, p) =

1.

(2) The cohomology Serre spectral sequence with Z2-coefficient for the

fibering PO(2n)~+PO(2nk)-»R(2n, k) collapses.

Tslow we choose generators in f/*(G(4» + 2); Z2) and H*(PO(4n + 2);

Z2) appropriately.

Lemma 1.12. In Proposition 1.9' we may choose generators y,

x2£+i, 2^/^4« + l, c»/ /f*(G(4n + 2); Z2) 6y wsmgf f/ie correspondent

generators in #*(G(4n-2); Z2) and m H*(C(4«-2, 2n+l) ; Z2) as
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Proof. This is clear from Proposition 1.11. Q.E.D,

Similarly

Lemma 1.13. In Proposition 1.10 we may choose generators y,

Zj, 2gi^4n + l, of H*(P0(4n + 2); Z2) by using the correspondent gen-

erators in H*(PO(4n-2); Z2) and in H*(R(4n-2, 2n + l); Z2) as follows:

Proposition 1.14. (1) //i #*(C(4w-2, 2/1 + 1); Z2)s4(3c8lI-3, *8r t_ l9

*s« + i> *8« + 3>- . . ) there hold Sq4x8n_3 = x8n+i and 5g43c8n_1 = 3c8,I+3.

(2) In H*(*(4/i-2, 2/1+1); Z2)sJ(z4B.2,z4ll.1,z4lI,z4ll + 1,...) there hold

Proo/. (1) and (2) follow from (3) of Proposition 1.9' and (3) of

Proposition 1.10 respectively. Q.E.D,

Remark. See [9] for the results of the symplectic case.

§2. Quotients of U(n)

In this section let p be a prime and n an integer such that (n, p) =

1. Then obviously

(2.1) H*(BPU(n); ZJ £ H*(BSt/(n); Zp) .

The following are easily obtained:

(2.2) H*(BC(n); Zp)sZp[«] wi/A dega=2.

Z2[f] wif/i degt=l /or p = 2
(2.3)

' ZPM®/1(A) with deg/i=2, degA=l,

/i /of p: otW,
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where d is the Bockstein operator.

Consider the cohomology Serre spectral sequence with Zp-coefficient

associated with the fibering:

(2.4) BC(n) -iL, BU(n) » BPU(n),

where V is induced from the natural inclusion C(n) c U(n). The map

i'* is epimorphic since the spectral sequence collapses by (2.2) and

by the fact that H3(BPl/(n); Zp} = H*(BSU(n)\ Zp) = 0. Let j:Fpc:C(n)

be the inclusion. Then

f ZP[JJL] for p: odd
(2.5) Im;*g

lZ2[f*] for p = 2.

Putting i = i'oj and choosing /*(or f) suitably we get

.i /or p:
(2.6)

t2 for p = 2.

Let {£***} be the cohomology Serre spectral sequence with Zp-

coefficient associated with the fibering U(n) —^> U(n)/Fp - > BFp. Since

the generators in fl*(C7(n); Zp) ^ A(ul9 t/3,...9 M 2 n - i ) are universally
transgressive, they are transgressive with respect to this fibering. In

particular we have

where T is the transgression.

Therefore £?-b = 0 if a ̂ 2, and hence

r A(X)®A(u3, w 5 , . . . ,w 2 M_ 1 ) /or p: odd
(2.7) £3 = ^00 =

, u5,..., w2n-i) /or p = 2e

Proposition 2.8. H*(U(n)/rp; Z} is p-torsion free and hence it

is torsion free.

Proof is left to the reader.

It follows from this proposition
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Theorem 2.9. Let (n, p) = l. Then

H*(V(n)irp; Zp) s A& n'3,..., u'2n^)

such thai

(1) 1 and u'2i-i are universally transgressive (and hence they are

primitive),

(2) degl=l and degu'2i-l=2i-l ,

(3) 7c*(w2i-i) = M2i-i for ^e projection n: U(n)-+U(ri)/rp.

Proof. (1) and (2) follow from (2.7) and the Borel's theorem

(Theorem 13.1 of [4]). (3) is clear, since n*(u'2i-i)^ 0 by (2.7) and since

^*(w 2 i- 1 ) are universally transgressive. Q. E. D.

§3. The E2-term of the Eilenberg-Moore Spectral Sequence

Put A = H*(G(4n + 2); Z2) for simplicity and regard A as a coalgebra

over Z2, where the coalgebra structure $ is given by Proposition 1.9'.

Let L be a Z2-submodule of A+= £ H''(G(4n + 2); Z2) generated
j>0

by {y, y2, ^4j+i s ^f+s), l^z ,7^2«. Let s:L-*sL be the suspension.

We express the corresponding elements as sL={a2, a3, a4J+29 b4i+4},

Let t\ L-*A be the inclusion and 9: A-*L the projection

such that 0oc = lL. Define B:A-^sL by 5 = so0 and ?: sL-*A by 7 =

^s"1. Consider the tensor algebra T(sL). Denote by / the ideal of

T(sL) generated by Im((9®9)o$)oKerg. Put X = T(sL)/L Then X^

Z2[a2, a3, a4j+2, b4i+4], l^i,j^2n.

The map 5=(9®9)°<^°? on sL can be extended over X, since 3(/)c

/. Further, d satisfies d°d = Q on X. So Z is a differential algebra.

Now we construct the twisted tensor product X = A®X with respect

to B following Brown (cf. [7], [8] or [13]). Then X=A®X is a dif-
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ferential ,4-comodule with the differential operator r /=l®3-f(l ®i/0°
(1®0®1)°^®1, where cj) is the diagonal structure in A and if/ is the

multiplication in X. More concretely,

dx4j+l=a4J+29 igj^2n,

Now we define weight in X as follows:

A: y y X4j+i

weight 0 0 0 1

The weight of a monomial is a sum of the weight of each element.

Put Fi = {x\ weight x^i}. Then

2y

where the induced differential operator rf0 is given by

Thus E0X is acyclic and hence X is acyclic. Namely X = A®X is

an injective resolution for A over Z2. Therefore by definition

H*(X: 3) = CotoH(Z2, Z2).

As described above the differential operator d in X — Z2\_a2, a3, a4j+29

b4i+4~] is given by

3^ = 0 for i = 2, 3, 4/ + 2

For simplicity we put P = Z2[04y+2; Igj" <^2w] and Q =
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^/<jj2w]. Let C be a submodule of X generated by

f = 0orl}. Then as a module

We remark that as a chain complex, X may be thought of as a tensor

product of (Z2[a2]®Q) with a trivial differential operator dQ and
(Z2[03]®P®C) with a differential operator d1 such that

dl(a4j+2) = 0 and di(b4i+4) = a3a4i+2. Therefore

H(X: d)^H(Z2[a2}®Q'. dQ)®H(Z2[_a^®P®C: d,)

For feP®C there hold dl(f)=a3f for some feP®C. Then we

define 31:P®C-»P®C by djf)^ d^ .
&3

Lemma 3.1B The chain complex (P®C: d^ is acyclic.

Proof. Consider the Koszul resolution of the exterior algebra
Q.E.D.

Proposition 3.2. Let /eZ2[03]®P®C. Then dJ=Q iff there exists

an element g eZ2[a3]®P®C such that d1(g) = a3f, or else /=1®1®L

Proof. Sufficiency is clear, since X is a polynomial algebra.
(Necessity) It suffices to prove necessity for an element /eZ2®

P®C^P®C. Suppose d1(f) = 0. Then 03/=0, and hence /=0. So
by definition 31(/) = 0, from which we deduce that /=1®1®1 or
else by Lemma 3.1 that there is an element geP®C such that

d^g^f. Thus aj^dilg). Q.E.D.

Let / = (/!,..., ir) be a sequence of integers satisfying

(3.3) l^r^2n and I£i1< — <

We put y(I) = -t-cl(b4il+4...b4ir+4).

It follows from Proposition 3.2 that a system of generators of
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Kerd over Z2[a2, a3, a4j + 2, 641+4] is {1, y(t)}9 where I runs over all
sequences satisfying (3.3).

Theorem 3.4. For A = H*(G(4n + 2)'9 Z2)

Z2)^Z2[a2, fl3, x'8/+8,

w/zere X8H-8 = {&4H-4} for l^l^2n and I runs over all sequences satis-
r

fying (3.3). Further R is the ideal generated by a3y(I), y(I)2 + £ *'8i1+8

"•^4ij+2'"x8ir+8 and y(I)y(J)+ Z//X^)5 where f is a polynomial of
s°

Remark 3.5. y({i}) = a4i+2. For / = (i'lv.., fr), (r^2), X-0 can be de-

fined inductively. Put I/ = (i1,..., iV-i). Suppose that X-O = { - 3(64i +4«3

•••^-1+4)} is defined. Then X^) = X^'» Q = {(b4il+4f...b4ir_l + 4)a4ir+2 +
y(nb4ir+4}=<y(I'\ a^ a4ir+2>9 the Massey product.

Remark 3.6. The relation y(I)y(J) + 2fty(Ii) can be obtained by
calculation on the cochains, since {1, y(I)} is a system of generators

over Z2[02, a3J x'sl+s].

Now we consider the case A = H*(PO(4n-^-2); Z2). By a similar

argument to the before we have Z = Z2{«2, a2/H.1? fo2£+2}/,R, igi3 j^2n9

where R is the ideal generated by [a2fc+i, b2k+2^ + ̂ 4k+ia2^ l ^ f c^ f t and
[r, s] for other pairs of generators (r, s) ([x, y] = xj; + j;x). We define

weight in X = v4©Z, the twisted tensor product with respect to 9:

z2i+i

b2i+2

weight 0 0

Put Fi = {x\ weight x^i} as before. Then

, b2i+2]9



704 AKIRA KONO AND MAMORU MIMURA

where the induced differential operator is given by dQy = a2, d0z2j =

a2j+i and d0z2i+1 = b2i+2. It shows that E0X and hence X is acyclic.

The differential operator d in X is given by ddj = Q for any j and

clb2i+2 = a2i+1a2. By a similar, although a little bit complicated, cal-

culation to the before, we obtain the following.

For a sequence of integers I = (il9..., ir) satisfying (3.3) we put

Theorem 3 J. For A = H*(PO(4n + 2); Z2)

Cotor4(Z2, Z2)sZ2[>2> xi/+4, /

for n + l^l

^2n and I runs over all sequences satisfying (3.3). Further R is

the ideal generated by a2y'(l\ /(/)2+ E x'4il+4 — aZij+]i "-xf
4ir+4 and

Remark 3M, ^/({0) = fl2i+i3 F°r / = 0'i?...3 ?V), j'W can al§° be de-
fined inductively, i.e.,

/(/)=</(/'), fl2,«2ir+i>, where / = (/', ir).

The following results can easily be obtained.

Proposition 3.9.

(1) Color «tw2»+1^z^(Z2,Z2)sZ2[c1,...,c2ll + 1],

wftft degq = 2i.

(2) Cotor^^2«+1^-^)(Z2, Z2)sZ2[a2, c2,..., c2 n + 1]9

w/r/i dega'2=2 anrf degc; = 2i,

(3) Cotor«^(*«+2)'^)(Z2> Z2)sZ2[w2, w3!..., vv4n+2] ,

vvf f fc degw £ =f .

(4)
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(5) CotorH '<«'<2»+1> iZ*>(Z2 , Z2)^Z2[<72,a'3, q'2,-, q'2n+1] ,

with dega'—i and degg; = 4i.

(6) Gotor*'^*"*2*2'^, Z2)^Z2[c2,..., c2n+1],

with degq = 2f.

§4. Collapsing of the Eilenberg-Moore Spectral Sequence

Let G be a topological group. In 1959 Eilenberg-Moore constructed

a new type of spectral sequence {Er(G), dr] such that

(I)

(2)

Furthermore, this spectral sequence satisfies naturality for a homomor-

phism /: G-»G'. We denote by /*: Er(G')-+Er(G) the induced homomor-

phism.

In this section we will show that the Eilenberg-Moore spectral

sequence collapses for various (G, p). In particular, we will show that

for G = G(4/t + 2) and PO(4/i + 2) the Eilenberg-Moore spectral sequence

with Z2-coefficient collapses.

The following directly follows from Theorem 2.9:

Proposition 4.1. Lei (//, p)=l. Then the Eilenberg-Moore spectral

sequence collapses for (G, p) = (U(n)/rp, p).

By Kono [9] /f*(P5p(2n-fl); Z2) is transgressively generated and

hence we have

Proposition 4.2. The Eilenberg-Moore spectral sequence collapses

for (G}p)

The following result will be used below. The proof is easy and

left to the reader.

Proposition 43. (1) The Eilenberg-Moore spectral sequence col-
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lapses for G = U(2n + 1)/F2, S0(4n + 2), U(2n + 1), PSp(2n + 1), SU(4n + 2)

and Sp(2n + l).

(2) T7ze elements ct and wt in Proposition 3.9 represent ct and wi

respectively. The elements q\ and c\ do q't and c\ in H*(BG; Z2)

such that 7c*(c0 = C| + (decomp.) and n*(q'1) = qi + (dGComp.\ where n is

the covering homomorphism.

For simplicity we use the following

Notation.

Case I.

Consider the commutative diagram

U(2n+l) — i— >

i-
l)/r2 -U PO(4n

where 7r is the projection and fs are the standard maps (cf. §6).

Lemma 4.4. The elements a'2 eCotoH2(Z2, Z2) and

(Z2? Z2) are permanent cycles and i*(a2) = a'2.

Proof. Recall H*(BZ2i Z2)^Z2[r]. In the commutative diagram
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BZ2

BU(2n + 1) - > BSO(4n + 2)

B(U(2n+ 1)/Z2) - > BPO(4n

the elements a2 and a'2 represent the trangression images of t, and hence

they are permanent cycles. For dimensional reason we have i*(a2) = a'2.

Q.E.D.

The following relations among the elements in Theorem 3.7 and Pro-

position 3.9 are easily checked to be true:

(4.5.1) n*(x'4i) = w%i + Wi9 where Wt is a sum of monomials containing

elements of lower degree,

(4.5.2) * *(w2f) = ct + (decomp.), (see § 6) ,

(4.5.3) TE*(C{) = ct + (decomp.) ,

(4.5.4) 7rs(fl2) =

Therefore

(4.6) is(x'4i) = cf + ji, where yt is a sum of monomials containing

elements of lower degree.

Let Er(l) be the Eilenberg-Moore spectral sequence with ^-coef-

ficient for PO(4n + 2) and {Er(2), dr} be the cartesian product of the

Eilenberg-Moore spectral sequences of U(2n + l)/r2 and SO(4n + 2), i.e.,

£r(2) = Cotor^2(Z2, Z2)xCotor^KZ2, Z2) and dr = 0

for all r^2. Then the map / * X T T * induces a homomorphism between

the spectral sequences:

for

Lemma 47. f* xn*: E2(l)-+E2(2) is injective.
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Proof. Let /j be a sum of monomials containing a2 and /2 a sum

of those not containing a2. Suppose (/'* xn*)(fi +/2) = 0 from which

rc*(/i+/2) = n*(/2) = 0 and hence /2 = 0 by (4.5.1). Meanwhile (i*xn*)

(/1+/2) = 0 implies ^(/i+/2) = 0, which implies f*(/1) = 0, and hence fl

= 0 by (4.6). Thus i*xn* is injective. Q.E.D.

Thus we have shown

Theorem 4.8. The Eilenberg-Moore spectral sequence with Z2-

coefficient collapses for G = PO(4n

In fact, Lemma 4.7 indicates that all differentials in Er(l) are trivial.

An immediate corollary is

Theorem 4.9. As a module

where l^l^2n, I runs over all sequences satisfying (3.3) and R is the

ideal generated by a2y'(I), y'(I)2+ ^x4il + 4.,.a^ij+l...x4ir+4 and

CaseTT. H*(G(4« + 2); Z2).

Consider the commutative diagram

527

I-
PSp(2n+l) -i-

where n is the projection and fs are the standard maps.

Lemma 4.4'. The elements afeCotorB4(Z2, Z2) and aj e CotorS2(Z2,

Z2) are permanent cycles and j*(flj) = flj /or z" = 2, 3.

Proof is similar to that of Lemma 4.4.

The following relations among the elements in Theorem 3.4 and

Proposition 3.9 are easily checked to be true:
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(4.10.1)

(4.10.2)

where VL is a sum of monomials containing elements of lower degree,

(4.10.3) 7is(a,) = 7r*(aO = 0 for i = 2, 3,

(4.11)

Lemma 4.7'. Let /e Color B"(Z2, Z2) such that deg/ is odd. Then

*'(/)=0 ijf/=0.

Proof i^(xr ) = a'2 +O

where Qt is a sum of monomials containing elements of lower degree.

So the elements /*(x'8/+8), l rg/^2n, i*a3 and i*a2 are algebraically inde-

pendent. Q. E. D.

Theorem 4.10. The Eilenberg-Moore spectral sequence with Z2-

coefficient collapses for G = G(4« + 2).

Proof. Recall that a2 and a3 are permanent cycles. All generators

of Cotor B4(Z2, Z2) except a3 are of even degree. So dr(a) is of odd

degree for <xe{y(I)9 x'8l+s}. By naturality isdr(a) = dl.i
s(a) = 0. Hence by

Lemma 4.7' dr(a) = 0. Thus all generators survive into £„. Q.E.D.

Immediate corollaries are

Theorem 4.11. As a module

)l Z2) = Z2[a2, a3, x82+8,

w/iere x /
8I+8 = {fo|I+4} /or l ^ Z g 2 n and I runs over aH sequences

satisfying (3.3) and ^ is the ideal generated by a3y(I), y(I)2 + Zx8ll + 8

Theorem 4.12. v4s a module

H*(BPU(4n + 2); Z2) s Z2[a2, a3, x'8J+8,
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with the same I, I and R as in Theorem 4.11.

§5. Some Generators in H*(BG(4n + 2); Z2) and H*(BPO(4n + 2); Z2)

Let G be a compact, connected Lie group and H its closed subgroup.

Let EG and EH be the total spaces of the universal G- and ff-bundles

respectively. Then the following diagram is commutative:

H - > EH - > BHi' i i
G - > EG - > BG

\p i
> BH - >BG

Then naturality of the transgression implies

Lemma 5.1. Let k be a commutative field,

(1) // x e H*(GJH ; k) is transgressive with respect to the bottom fiber-

ing, then p*(x)e/f*(G; k) is universally transgressive.

(2) // xe/f*(G;/c) is universally transgressive, so is j*(x)e Jf*(H; k).

(3) Suppose Hl(G/Hi fc) = 0 for i<n. Let xeH^G^k) and i<n-l.

If j*(x) is universally transgressive, so is x.

Recall the following:

(5.2) G(2) = SO(3),

(5.3) H*(SO(3); Z2) = Z2[a]/(a4) where a is universally transgressive,

Now we prove

Proposition 5.4 The elements a and x4j+l of H*(G(4n + 2); Z2)9

^j^2n, are all universally transgressive.

Proof. Proof is induction on n. The case « = 0 is clear from

(5.2) and (5.3). Suppose as the inductive hypothesis that the elements

a and x4j-+lJ l^j^2n — 1, are universally transgressive in H*(G(4n — 2);



COHOMOLOGY OF THE CLASSIFYING SPACES 711

Z2). It follows from Proposition 1.5 and (2), (3) of Lemma 5.1 that

the elements a and x4j+i, i^j-^In — 1, are universally transgressive.

Clearly the element x8 n_3 is transgressive with respect to the fibering

C(4n-2, 2w + l)^J5G(4n-2)->BG((4n-2)(2n + l)), and hence so is 3c8n+1,

since xSn+l = Sq4xSn_3 by Proposition 1.14. Thus by (1) of Lemma 5.1

the elements :xgK_3 and x8n+1 are universally transgressive. Q.E.D.

It follows from (2.2) and (2.3) that #*(£G(2); Z2) ̂  H*(BSO(3) ;

Z2)^Z2[a2,
 a^ where a2 = i(a) and a3 = i(a2) with degaf = f. As /dfn + 1 :

Hf(BG(4n + 2);Z2)->Hf(BG(2);Z2) is isomorphic for i^4 by (1) of

Theorem 1.7, we denote by a2 — i(a) and 03 = T(«2) the generators of

2)^Z2 for i = 2, 3.

Lemma 5.5. Sqla3 = 0 and Sq2a3 = a2a3 in H*(5G(4/i + 2); Z2).

Proof. We obtain the above formula by virtue of the Wu formula,

since at is the inverse image of A%n+1 of the i-th Stiefel- Whitney class.

Q.E.D.

Proposition 5.6. There exist elements a4j+2, l^j^2w, in H*(BG(4n +

2); Z2) such that

(1)

(2) a4j + 2 = T(A-4j. + 0 mod (decomp. ),

(3)

Proof. Proof is induction on n. The case n = Q is clear from (2.2)

and (2.3). Suppose that the assertion is true for jBG(4n — 2). By Theo-

rem 1.7 the homomorphism A%n+E is injective for deg^Sn — 4e + l with

e=±l . Put 0i = ^2n-i°^2n+i( f l i) f°r ^8/i — 6. Then ai satisfies the
properties (1), (2), (3) by the inductive hypothesis. For the transgression

T of the fibering

(5.7) C(4n - 2, 2n + 1) - > BG(4n - 2) - > 5G((4n - 2)(2n + 1))

we put a8 / l_2 = ̂ |n_1T(x8,l.3). The element xsn.1 eH*(G(4n + 2); Z2)

is not universally transgressive, since it is not primitive by Proposition
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1.9'. So the corresponding element x^^t of H*(C(4n — 2, 2n-fl); Z2)

is not transgressive in the fibering (5.7). That is, in the cohomology

Serre spectral sequence {£*>*, dr} with Z2-coefficient of (5.7) we have

<23(l®X8W-i) = 03®*8»-3> from which we get a3T(5c8w_3) = 0. Applying
^*n-i we obtain a3a8n_2 = 0. Thus the element a8 n_2 satisfies (1), (2),

(3). Next, we put

Then

= 0.

So the element a8n+2 satisfies (1), (2), (3). Q.E.D.

Quite similarly one can prove

Proposition 5JL There exist elements a2, a2j+l, i^j^2n, in H*

(BPO(4n + 2)i Z2) such that

(1) dega2 = 2,

(2) a2 = t(y)> a

(3) a2a2j+1=Q.

Remark 5.9. The elements at in Theorems 4.9, 4.11 and 4.12 are

thus the transgression images of some generators in H*(G(4/i + 2); Z2)3

H*(PI7(4n + 2);Z2) or H*(PO(4n+2); Z2). The relations among them

are given in Propositions 5.6 and 5.8.

§6. Exterior Power Representations

To begin with we recall the definition of the exterior power rep-

resentation (p. 90 of [14]).

Let G be a group and k a commutative field. Denote by GL(n, k)

the general linear group. Let A = (aij): G-»GL(rc5 k) be a matrix rep-
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reservation. For a pair of sequences of r integers / = (f l v . . , ir) and

J = (Ji,--Jr) such that

we define

au(x) = det / ailh(x) for * e G •

Definition 6.1. Let I rg r^ / t . We define a representation A(r\x):

(p), fc) by

where / and J run over all sequences satisfying (*). We call A(r) the

exterior power representation of degree r of G.

If G is a topological group and fc = R or C and if A: G-»GL(/7, fc)

is continuous, so is A(r\ namely, A(r> is a representation of G.

When G is a compact group and fc = C(resp. R), we may suppose

A<r> : G - > [/((;!)) (resp. A<'> : G - > 0((»)))

by making use of the G-invariant Hermitian (resp. Riemannian) metric
(see [2]).

Proposition 6.2. Let G be a subgroup of GL(n, k). Let A: G->

GL(n, k) be an inclusion. For GBX = ( ""Q "•. _ i ) we have A(r\x) =

Proof. By definition

r (-iy if /=J
fl/jW={

I 0 if I^J . Q.E.D.
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In the below we regard the identity map A: G=U(ri)->U(ri) (or

the inclusion A: SU(ri)-*U(n)) as an n-dimensional complex representation.

Corollary 6.3. Let n be even. Then there exists a map I (2> such

that the right diagram commutes:

SU(n)

G(«) •

Let tk be a generator of H2(BT"; Z) corresponding to the torus

[ [ ' - . O l
1 ~iO

Tl = , k

\ 0

e
I

Then according to Borel-Hirzebruch (p. 492 of [6]) the total Chern

class c(A(2)) of the second exterior power representation /l(2) is given by

(6.4) c(A<2>) = n (l + f, + 0)Gfl*(Btf(n); Z).
l^£<j^ i i

Remark 6,5. *! + — + *„ = () if G = SU(n).

Let a£, 1^ / rgw, be indeterminates with dega£ = l. Express

(1 + a£ + aj) = J8i + • • • + pn + (higher terms) ,

where ^fc is a homogeneous term of degree k. Denoting by ak the

k-th elementary symmetric function, we have pk = akcrk((xl9...9 an) + (decomp.)

for some integer ak.

Lemma 6e60 // n is odd, at is odd for 2^i^n.

(A proof will be given at the end of the section.)

Let i: Sp(ri)-*SU(2ri) be the usual inclusion map defined by
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where a/js pitj e C.
Let ss be a generator of H2(BTn\Z) corresponding to the torus

' i I 0\

\ 0 I /
Then

(6.7) **(*2i- l) = Si an& I*(*2i) = ~" Si •

Consider the composite of the maps

BSp(n) -U BSU(2n) A ( 2 ) > Bl7((i")).

Proposition 6.8. The mod 2 reduction of /*c(/l(2)) zs gffuen

Proo/.

1 + fi + O) by (6.4)

(1+ *, + *,)4 by (6.7)
w

= n (i+4+^). Q.E.D.
l ^ i<J^ / l

Next we consider the commutative diagram:

BSp(2n+ 1) —i

(6.9)

For the mod 2 reduction of the Chern class c4l-eH8l"(J3l/((4/I
2

+2)); Z2)
we put

iH-2); Z2),

Then by the commutativity of the diagram (6.9)
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Apply Lemma 6.6 and we obtain

Denoting by #,- the mod 2 reduction of the z-th symplectic Pontrjagin

class, we have

where P is a sum of monomials containing g/G"<0-

On the other hand, since /*: HM(BSC7(4n + 2); Z2)-»Hw(BSX2rc + l);

Z2) is trivial for m^O (mod 4), we have

hence

Thus we have shown

Theorem 6.10. There exist non-decomposable elements x8i+se

H8i+8(BG(4n + 2);Z2),l^i^2n, such that i*n*(x8i+8) = q?+1+P, where

P is a sum of monomials containing qj(j<i+i).

Now we turn to the orthogonal case.

Let A: S0(ri)-+O(ri) be the natural inclusion and regard it as a real

representation. As before we consider its exterior power representation

>: SO(n)-»0((J)). The total Stiefel- Whitney class is then given as

where tt is a generator of H1(B(Z2)
n', Z2) corresponding to

</ __
£t2— >

'

I

1 \

|

° % l ]

. p 1- 1
5 £ — ± A v r-CJ \n(~n(v\t C-V^2/ *-U\Jl) .
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Remark, t1 + — + tn = Q.

Let i: l/(n)-»SO(2n) be the inclusion defined by the correspondence

^lt+fb ~c
b\ Let st be a generator of Hl(B(Zn

2}\ Z2) cor-

responding to

d(Z2)"c U(n).

i I

Then

(6.11) i*(*2i-i) = i*('2i) = *i.

Let wt- be the Stiefel-Whitney class. Then

^^,.0=0,

i*(w2i) = ch ^ie mod 2 reduction of the f-th Chern class.

Consider the following commutative diagram

BU(2n+l) — i—> BSO(4n + 2) _J^

where n is the natural projection and 1(2) the one induced from
Then

f*7r*l(2>*(i w^ = i*(w(A<2>)) with / = (4"2
+2)3

i=0

where w(A(2))= Jl (1 + ̂  + ^).
l ^ i < J ^ 4 n + 2

So by Lemma 4.6 we have

£ Wf)= ]-] (1+S4 + S4)B

i=0
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Thus by a similar argument to the unitary case we have

Theorem 6B128 There exist non-decomposable elements x4j-+4e

H4j+\BPO(4n + 2); Z2), Ig;g2w, such that i*n*x4j+^ = cj+l + P, where

P is a sum of monomials containing ck(k<j+l).

First we consider the case G = G(4n + 2). The projection n: SU(4n +

2) -> G(4n + 2) induces TT* : Cotor B<(Z2, Z2) -> Cotor B3(^29 Z2) on the

£2-level of the Eilenberg-Moore spectral sequence. By naturality we have

which survives in the JE00(Sl7(4n + 2))-term, since E2(SU(4n + 2)^

Eao(SU(4n + 2))*&rH*(BSU(4n + 2)',Z2) by Proposition 4.3. On the other

hand, since gj+i = *'*c2i+2> ^ f°H°ws from Theorem 6.10 that for TT*:
); Z2) we have

where P' is a sum of monomials containing C j ( j < i + l ) .

Thus we obtain

Theorem 6,13. The element x'Si+8 e Cotor B4(Z2, Z2) survives in the

Eao(G(4n + 2)-term and represents xsi+8eH*(BG(4n + 2); Z2).

Similarly,

Theorem 6.13'. The element x'4 i+4.e Cotor AA (Z2, Z2) survives in

the Eao(PO(4n + 2))-term and represents x4i+4€H*(BPO(4n + 2); Z2).

Proo/ o/ Lemma 6.6. Let m be an odd integer We regard the

identity map A: l/(m)-»l/(m) as an m-dimensional complex representation as

before. Let tk be a generator of H2(BTm; Z) corresponding to the torus

r / 1
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Then by (6.4) the total Chern class of the exterior representation of

degree 2 of A is given by

c(A<2>) = n (l + f; + 0)eH*(£t/(m); Z).

We will show that the integer ak is odd by taking a£ = f£ and ft = Cj(A(2)),

the i-th Chern class of A ( 2>.
Let $fe be the Adams operation on representations and chq the

Chern character. Denote by A2 the tensor product A® A.

Lemma 6.14. (1) c

(2) <£2(A) = A 2 -2A< 2 >.

(3) c/zq(A2) = 2mchq( A) 4- (decoinp.) .

(4) Le* m>3. For q = A or

(decomP-) •

Proof. (1), (2), (3) follow directly from the definition (also see [1]).

(4) follows from the Newton formula. Q.E.D.

By this lemma we have

= -y{2(«-2i-1)c/z,(A)} + (decomp.)

= (n - 2i~1)chi(X) + (decomp.) .

Now by (4) we obtain

C.(A(2)) = (n - 2<- !)q(A) + (decomp.)

= (n-2i-1)(7i(ti,..., O + (decomp.),

where (/1-2'-1) is odd if i^2. Q.E.D.
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