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Abstract. We are concerned with the theory of the existence and uniqueness of flows gen-
erated by divergence free vector fields with compact support. Hence, assuming that the
velocity vector fields are measurable, bounded, and the flows in the Euclidean space are
measure preserving, we show two counterexamples of uniqueness/existence of such flows.
First we consider the autonomous case in dimension 3 and then the non-autonomous one
in dimension 2.
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1. Introduction

We are concerned in this paper with the theory of the existence and uniqueness of

flows generated by compactly supported, divergence free vector fields. Moreover,

we assume that the velocity vector fields are measurable and bounded, without

di¤erentiability regularity, and the flows in the Euclidean space are measure pre-

serving (with respect to Lebesgue measure). Under these conditions we show two

counterexamples of uniqueness/existence for such flows. First we consider the

autonomous case in dimension 3 and then the non-autonomous one in dimen-

sion 2. We stress that, the compactness feature of the vector fields to construct

the counterexamples (flows) has never been considered before.

The fundamental questions about the relation between velocity vector fields

and flows began a long time ago with Lagrange, Euler, Bernoulli, among other

important mathematicians. In the present-day, it seems it was reinitiated by

Nelson [14] and put into more evidence by Aizenman in his celebrated paper [1].

These types of flows, as mentioned above, are encountered in many physical appli-

cations, for instance, related to fluid flow problems.



One usually studies fluid dynamics using the Eulerian approach instead of the

Lagrangean point of view given by the flow. This leaves to time evolution partial

di¤erential equations, in particular linear transport equations, which the unique-

ness of weak solutions, for low regularity of the vector fields (called drift) has

called much attention. In this direction, we briefly recall the approach initiated

in 1989 by DiPerna, Lions [10], where they proved uniqueness of weak solutions

for drift vector fields with Sobolev W 1;1 spatial regularity, applying the nowadays

well known commutators idea. Hence in 2004, Ambrosio [4] supported again

on commutators, but with a di¤erent measure-theoretic framework, extended the

results of DiPerna, Lions for bounded variation drift vector fields. On those two

papers, the uniqueness of the flow was obtained from the uniqueness of the linear

transport equation.

Since Ambrosio’s cited paper [4], there is a great e¤ort to pass beyond BV vec-

tor fields. We remark that, the autonomous case in dimensions 2 is very particular

(because of the Hamiltonian structure), and is completely understood. Indeed, it

is proven in [2] a necessary and su‰cient condition for the uniqueness of bounded

solutions of the linear transport equations, for bounded (divergence free) drifts

a; namely the Lipschitz potential f of a (i.e. a ¼ ðqy f ;�qx f Þ) has to satisfy a

‘‘weak’’ Sard condition. Moreover, it is constructed in [3] (see also Corollary 4.8

and its proof in [2]) a divergence free vector field a with compact support belong-

ing to C0;aðR2;R2Þ for every a < 1, for which the transport equation has more

than one solution. Obviously this also provides a counterexample in dimensions

three and higher (hence giving another proof of Theorem 3). However it is not

known whether the vector field generates more that one regular flow (see definition

below).

The non uniqueness results established here are inspired by the strategies initi-

ated by Aizenman [1], which is to say, to generate more than one flow from the

same velocity vector field using low dimensional sets. Depauw [9] has used the

same strategy as [1] to construct counter-examples of uniqueness for transport

equations, also there exist some indications in that paper on how to modify the

counterexamples accordingly, but they are only sketches, and recall that, for trans-

port equations. On the other hand, the ‘‘donut’’ ideia here is completely new;

further the precise description of the counterexamples of uniqueness/existence of

flows generated by vector fields with compact support is made with details in the

following sections.

Since the uniqueness of the linear transport equations implies uniqueness of the

flow, as by product, our results imply non uniqueness of the transport equations

without the ‘‘weak’’ Sard property (in particular, non uniqueness of renormalized

solutions). One might ask why such results for Lp category for the vector fields

are interesting, once they are very far from the regularity needed for the positive

results. The answer is concerned with the proof of the existence of solutions to
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important physical problems. Indeed, let us briefly discuss the Buckley-Leverett

System, see [5] (an analogous example is the Muskat Problem, see [6], [11]).

Find a pair ðr; vÞ : WT ! R� Rn solution to the Buckley-Leverett system

qtrþ div
�
vgðrÞ

�
¼ 0;

hðrÞv ¼ �‘p; div v ¼ 0;

rð0Þ ¼ r0; vð0Þ ¼ v0;

þDirichlet boundary conditions;

8>>><
>>>:

where WT ¼ ð0;TÞ �W, for any fixed T > 0, and W � Rn is an open bounded

domain. Moreover, g and h are given (locally) Lipschitz functions, such that

hðrÞb h0 > 0. One of the main steps towards the solution of this open problem

is the uniqueness (or renormalization) of the linear transport equations, with

L2ðWT Þ integrability of divergence free drift vector fields. It is not di‰cult to

see that v a L2ðWT Þ, and due to physical applications we suppose r a LlðWTÞ.
Another interesting open problem is the well-posedness of the incompressible

Euler’s equations in dimension 3. Again, it is very important to know whenever

the renormalization property holds for L2 (divergence free) vector fields, see De

Lellis [8], also Lions’ books [12], [13].

1.1. Notation and background. At this point, we fix the notation used through-

out the paper, and recall some well known background.

We denote by div the usual divergence operator. Here j � j stands for the

Lebesgue measure in Rn, ðn ¼ 2; 3Þ. Unless specified the contrary, any measure

framework considered is respect to Lebesgue measure.

Definition 1. A family fftgt AR, ft : Rn ! Rn of measurable maps is called a mea-

sure preserving flow in Rn, when it satisfies:

(1) For each t a R, and every measurable set A � Rn,

jf�1
t ðAÞj ¼ jAj:

The previous equation can be equivalently replaced by

ð
Rn

h
�
ftðxÞ

�
dx ¼

ð
Rn

hðyÞ dy; for every h a L1ðRnÞ:

(2) For each t1; t2 a R, and a.e. x a Rn

fðt1þt2ÞðxÞ ¼ ft1
�
ft2ðxÞ

�
:

Definition 2. Let aðt; xÞ be a measurable vector field from R� Rn to Rn, such

that, jaðt; xÞja aðtÞ for some nonnegative function a a L1
locðRÞ. For each T > 0,
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a mapping f : ½�T ;T � � Rn ! Rn,
�
ftð�ÞCfðt; �Þ

�
, is called a flow generated by

the vector field aðt; xÞ, if for a.e. x a Rn, the map fð�; xÞ is absolutely continuous

in any compact subset of ½�T ;T �, and satisfies

fðt; xÞ ¼ xþ
ð t
0

a
�
s; fðs; xÞ

�
ds: ð1Þ

Moreover, we say that ft is regular if there exist positive constants C, ~CC (inde-

pendent of t), such that, for each Borel set B � Rn

CjBjamftðBÞa ~CCjBj;

where mft is the push-forward of the Lebesgue measure through the flow ft.

One remarks that, a necessary condition for a flow ftð�Þ generated by aðt; �Þ be
measure preserving is: div a ¼ 0 in a suitable sense.

2. The autonomous case

Theorem 3. Part 1: Non uniqueness. There exists a divergence free vector field

a a LlðR3;R3Þ with compact support generating two distinct measure preserving

flows satisfying the group property a.e.. More precisely, it will be shown the exis-

tence of two distinct measurable maps f;c : R� R3 ! R3 satisfying, for every

t a R and a.e. x a R3,

fðt; xÞ ¼ xþ
ð t
0

a
�
fðs; xÞ

�
ds; cðt; xÞ ¼ xþ

ð t
0

a
�
cðs; xÞ

�
ds;

such that fðt; �Þ and cðt; �Þ both preserve the Lebesgue measure for every t a R and

such that, for a.e. x a Rn, for every t1 a R and for every t2 a R except a countable

set (depending on x),

fðt1 þ t2; xÞ ¼ f
�
t1; fðt2; xÞ

�
and cðt1 þ t2; xÞ ¼ c

�
t1;cðt2; xÞ

�
:

Moreover, there exists a nontrivial Ll
�
½0;lÞ � R3

�
weak solution of

qtuþ 3a;‘xu4 ¼ 0 and uð0; �Þ ¼ 0;

which explicitly means that, for every h a Cl
c

�
½0;lÞ � R3

�
ðl
0

ð
R3

uðt; xÞ
�
qthðt; xÞ þ 3aðxÞ;‘xhðt; xÞ4

�
dx dt ¼ 0:
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Part 2: Non existence. There exists a compactly supported, divergence free vector

field ~aa a LlðR3;R3Þ generating no measure preserving flow satisfying the group

property a.e..

The proof of the above result is inspired by [1] and [9]. The core idea is, as

in [1], to construct a bounded divergence free vector field in ½0; 1�2 � ð0; 1� whose
flow at some fixed time (here it will be t ¼ 1) collapses a large enough class of

1-dimensional sets to points: That is, for a:e: x2 a ð0; 1Þ, the x1-fiber ð0; 1Þ �
fx2g � f1g is sent by the flow at time 1 to a point in ð0; 1Þ2 � f0g: This will be

done by following an argument in [9] using 2-dimensional square and rectangle

rotations: making use of such rotations we first exhibit a vector field whose

flow at time t ¼ 1=2 sends, for a:e: x2 a ð0; 1Þ, the x1-fiber ð0; 1Þ � fx2g to a x1-

fiber of length 1=2, then repeating the construction inductively (by scaling the

geometry by a factor 1=2) we finally obtain our desired vector field. Note also

that a di¤erent construction of a vector field with the same properties was done

in [7].

Then, the vector field is extended to R3, so that, it remains bounded, diver-

gence free, and has additionally compact support.

Using the above collapsing property we then construct, proceeding similarly

as in [1], two distinct measure preserving flows f and c in R3 of our vector field

which will be named a. As a direct by-product we show that (as it would trivially

be the case if f and c were smooth) u0ðf�1Þ and u0ðc�1Þ both solve the linear

transport equation with initial data u0 and with drift term a. Choosing u0 appro-

priately these two solutions are distinct which shows non-uniqueness for the trans-

port equation. Finally, by slightly modifying a, we exhibit another vector field

(with the same properties of a) for which there does not exist a measure preserving

flow.

We stress on the fact that, all the bounded vector fields constructed in [1] and

[7], resp. in [9], do not belong to LpðR3Þ, resp. LpðR2Þ, for any p < l (and a for-

tiori are not bounded and with compact support). Indeed, the vector fields [1] and

[7] are identically ð0; 0;�1Þ in ð0; 1Þ2 �
�
ð�l;�1ÞA ð1;lÞ

�
and the vector field

constructed in [9] is periodic (with a square as period).

Remark 4. (i) It is interesting to see that our vector fields a and ~aa constructed

below are moreover piecewise smooth in R3nð½0; 1�2 � f0gÞ (cf. Step 1.2 of the

following proof ).

(ii) Recall (proceeding for example by approximation) that, it always have

existence of a (weak) bounded solution of the transport equation

qtuþ 3a;‘xu4 ¼ 0 and uð0; �Þ ¼ u0ð�Þ

when a and u0 are bounded.
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(iii) As a direct consequence of the a.e. group property (cf. Step 6.3 in the

proof below) we will also show that, for every t a R, fðt; �Þ and cðt; �Þ both are

bijection from an open set of full measure in R3 onto an open set of full measure

in R3 (depending on t) and that,

fðt; �Þ�1 ¼ fð�t; �Þ and cðt; �Þ�1 ¼ cð�t; �Þ:

Proof. The proof is organized as follows. In the first 6 steps we establish the non

uniqueness for the flow. In Step 7 we prove the non uniqueness for the transport

equation. Finally in Step 8 we show the non existence part.

Step 1: Definition of the vector field a and its properties.

Step 1.1. The measurable and bounded vector field aðxÞ ¼ aðx1; x2; x3Þ, with
compact support and divergence free, will be first defined in the upper half space

and then in the lower half space. For its definition we will use two vector fields

exhibited in the appendix.

Define a in fx3b 0g by

aðx1; x2; x3Þ :¼

�
bð1� x3; x1; x2Þ;�1

�
in A1;

ð0; x3 � 1;�x2 � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx3 � 1Þ2 þ ðx2 þ 1Þ2

q in A2;

cðx1 � 1=2; x2 þ 5=2Þ
2

; 1

� �
in A3;

0 in fx3b 0gnðA1AA2AA3Þ;

8>>>>>>>>><
>>>>>>>>>:

Figure 1. A representation of a: The black subset at fx3 ¼ 0g is M0 ¼ M7 while the blue
subsets represent M1; . . . ;M6 and are enumerated counter clockwise starting at M0. For
i ¼ 1; . . . ; 7, Ai is the region delimited by Mi�1 and Mi: A1 ¼ ½0; 1�2 � ð0; 1� and so on until
A7 ¼ ½0; 1�2 � ½�1; 0Þ: The whole donut (without the black subset) is the union of the Ai’s
and is referred to as S: The four green arrows represent roughly the direction a.
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where (cf. Figure 1)

A1 :¼ ½0; 1�2 � ð0; 1�

A2 :¼ fðx1; x2; x3Þ a R3 j 0ax1a 1; 1a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ 1Þ2 þ ðx3 � 1Þ2

q
a 2; x3b 1g

A3 :¼ ½0; 1� � ½�3;�2� � ½0; 1�;

b : ð�l; 1Þ � R2 ! R2 is the 2-dimensional vector field defined in Lemma 10 and

c : R2 ! R2 is the 2-dimensional autonomous vector field defined in Lemma 8 (i).

We next define a in fx3 < 0g as follows:

aðx1; x2; x3Þ

:¼

ð0; 0; 1Þ in A4;

ð0; x3 þ 2;�x2 � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx3 þ 2Þ2 þ ðx2 þ 1Þ2

q in A5;

�cðx1 � 1=2; x2 � 1=2Þ
2

;�1

� �
in A6;

�R3

�
a
�
R3ðxÞ

��
in A7;

0 in fx3 < 0gnðA4AA5AA6AA7Þ;

8>>>>>>>>>>><
>>>>>>>>>>>:

where (cf. Figure 1)

A4 :¼ ½0; 1� � ½�3;�2� � ½�2; 0�

A5 :¼ fðx1; x2; x3Þ a R3 j 0ax1a 1; 1a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ 1Þ2 þ ðx3 þ 2Þ2

q
a 2; x3a�2g

A6 :¼ ½0; 1�2 � ½�2;�1�
A7 :¼ ½0; 1�2 � ½�1; 0Þ

where c is as before the vector field defined in Lemma 8 (i) and where

R3ðx1; x2; x3Þ :¼ ðx1; x2;�x3Þ:

The definition of a in fx3 < 0g might not appear to be the most natural one (one

could have defined it by reflection everywhere in the lower half space e.g.); how-

ever with the definition the ‘‘period’’ of the flow of a will be (contrary to the defi-

nition by reflection) independent of the position (cf. (19)) which will significantly

simplify some technical parts of the present proof.

Step 1.2: Properties of a. Let

S :¼
[7
i¼1

Ai:
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First, since aC 0 outside S and S is a bounded set, the vector field a has compact

support (cf. Figure 1 for a representation of a). Next, since from Lemma 10,

b a Ll
�
½0; 1Þ � R2

�
and since (cf. Lemma 8) c is bounded, we directly get that a

in bounded in R3. Using in particular the definition of the vector fields b and c we

directly get that a is piecewise smooth in R3nð½0; 1�2 � f0gÞ: there exist countably

pairwise disjoint open sets Ui with the following properties:

• a is smooth in every Ui and can be extended in a smooth way to Ui

•
S

i Ui ¼ R3nð½0; 1�2 � f0gÞ

• for every x a R3nð½0; 1�2 � f0gÞ we can find a neighbourhood of x intersecting

only finitely many U 0
i s.

In fact, except for finitely many i’s, the U 0
i s will be of the form Ti � Ii where Ti

is an open isosceles triangle in R2 and Ti is an open interval in R:

We now show that divðaÞ ¼ 0 in R3 in the sense of distributions. First since

bðt; �Þ is divergence free in ð�1=2; 1=2Þ2 for every t a ½0; 1Þ we directly get that

div a ¼ 0 in A1 and in A7. Similarly, since (cf. Lemma 8) c is divergence free

in ð�1=2; 1=2Þ2 we get that div a ¼ 0 in A3 and in A6. Moreover, we trivially

have that div a ¼ 0 in A2, A3 and A5: Next, noting the normal component of

a is continuous across every horizontal component of
S7

i¼1 qAi (of course the nor-

mal component of a is the third component a on such components) we directly

get that div a ¼ 0 in SA
�
ð0; 1Þ2 � f0g

�
: Finally since obviously div a ¼ 0 in

R3nfSA ð0; 1Þ2 � f0gg, and since, using in particular Lemmas 10 and 8 (i), the

normal component of a is zero (and hence continuous) across every not horizontal

part of
S7

i¼1 qAi we get that div a ¼ 0 in R3 as wished.

Step 2: Definition of a measure preserving flow of a up to some positive

and negative stopping times. In this step we prove that, for every x a S,

there exist some finite positive time tþðxÞ and some finite negative time t�ðxÞ
and a measurable map jðt; xÞ defined for t a ½t�ðxÞ; tþðxÞ� with the following

properties:

• Flow of a in S: for every x a S

jðt; xÞ ¼ xþ
ð t
0

a
�
jðs; xÞ

�
ds for t a ½t�ðxÞ; tþðxÞ�; ð2Þ

jðt; xÞ a S for t a
�
t�ðxÞ; tþðxÞ

�
ð3Þ

and

j
�
teðxÞ; x

�
a ½0; 1�2 � f0g: ð4Þ
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• Group property: for every x a S and t1; t2 a R, such that t2 a
�
t�ðxÞ; tþðxÞ

�
and t1 þ t2 a ½t�ðxÞ; tþðxÞ� we have

jðt1 þ t2; xÞ ¼ j
�
t1; jðt2; xÞ

�
ð5Þ

and

te
�
jðt2; xÞ

�
¼ teðxÞ � t2: ð6Þ

• Measure preservation: for every t a R and every measurable set U � S, such

that, t a
�
t�ðxÞ; tþðxÞ

�
for every x a U then

jðt; �ÞjU : U ! jðt;UÞ preserves the measure: ð7Þ

• Local bijectivity: for every t a R, and every set U � S, such that, t a�
t�ðxÞ; tþðxÞ

�
for every x a U then

jðt; �ÞjU : U ! jðt;UÞ is bijective: ð8Þ

In words (cf. (3) and (4)) tþðxÞ, resp. t�ðxÞ, is the smallest positive time, resp. the

biggest negative time, after which the flow jð�; xÞ reaches the plane ½0; 1�2 � f0g
from above, resp. from below. Recall that, if t a

�
t�ðxÞ; tþðxÞ

�
then jðt; xÞ a S

(and hence does not belong to ½0; 1�2 � f0g).
The idea for the construction of j and te is elementary: recalling that S ¼S7

i¼1 Ai we first exhibit, for i ¼ 1; . . . ; 7, times tei : Ai ! R and a flow j in Ai sat-

isfying (2), (5)–(8) (with S replaced by Ai and with te replaced by tei ). See Figure

2 for an illustration of te: Denoting (cf. Figure 1)

M0 ¼ M7 :¼ ½0; 1�2 � f0g; M1 :¼ ½0; 1�2 � f1g; M2 :¼ ½0; 1� � ½�3;�2� � f1g
M3 :¼ ½0; 1� � ½�3;�2� � f0g; M4 :¼ ½0; 1� � ½�3;�2� � f�2g;

M5 :¼ ½0; 1�2 � f�2g; M6 :¼ ½0; 1�2 � f�1g:

we will also have that, for every 1a ia 7,

jðt; xÞ a AinðMi�1AMiÞ for t a
�
t�i ðxÞ; tþi ðxÞ

�
and x a Ai; ð9Þ

j
�
t�i ðxÞ; x

�
a Mi and j

�
tþi ðxÞ; x

�
a Mi�1 for x a Ai: ð10Þ

It will hence be possible to glue the orbits on Ai and obtain our desired flow j

as well as te.

• Flow of a in A1: Define for every x a A1 and every

t a ½x3 � 1; x3� ¼: ½t�1 ðxÞ; tþ1 ðxÞ�
jðt; xÞ :¼

�
wð1�x3Þðt; x1; x2Þ; x3 � t

�
;
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where wð1�x3Þ is the flow of ðt; x1; x2Þ ! bðtþ 1� x3; x1; x2Þ exhibited in

Lemma 11. By the properties of wð�Þ listed in Lemma 11, it is a simple exercise

to check that j satisfies (9), (10) and (2), (5)–(8) with S replaced by A1 and te

replaced by te1 .

• Flow of a in A2. Define for every x a A2, writing x ¼
�
x1; r cosðyÞ � 1;

r sinðyÞ þ 1
�
with r a ½1; 2� and y a ½0; p�, and every

t a ½rðy� pÞ; ry� ¼: ½t�2 ðxÞ; tþ2 ðxÞ�;
jðt; xÞ :¼

�
x1; r cosðy� t=rÞ � 1; r sinðy� t=rÞ þ 1

�
:

It is elementary to check that j satisfies (9), (10) and (2), (5)–(8) with S

replaced by A2 and te replaced by te2 : In particular, note that for every

x a ½0; 1�2 � f1g, then t�2 ðxÞ ¼ �pðx2 þ 1Þ and

j
�
�pðx2 þ 1Þ; x

�
¼ ðx1;�x2 � 2; 1Þ: ð11Þ

• Flow of a in A3: Define for every x a A3 and

t a ½�x3; 1� x3� ¼: ½t�3 ðxÞ; tþ3 ðxÞ�
jðt; xÞ :¼

�
xcðt=2; x1 � 1=2; x2 þ 5=2Þ þ ð1=2;�5=2Þ; x3 þ t

�
where xc is the flow exhibited is Lemma 8. It is easy to check that j sat-

isfies (9), (10) and (2), (5)–(8) with S replaced by A3 and te replaced by te3 .

Figure 2. Definition of teðxÞ.
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In particular note that for every x a ½0; 1� � ½�3;�2� � f1g then t�3 ðxÞ ¼ �1

and

jð�1; xÞ ¼ ð�x1 þ 1;�x2 � 5; 0Þ: ð12Þ

• Flow of a in A4: Define for every x a A4 and

t a ½�x3 � 2;�x3� ¼: ½t�4 ðxÞ; tþ4 ðxÞ�
jðt; xÞ :¼ ðx1; x2; x3 þ tÞ:

Trivially, since a ¼ ð0; 0; 1Þ in A4, j satisfies (9), (10) and (2), (5)–(8) with S

replaced by A4 and te replaced by te4 .

• Flow of a in A5. Define for every x a A5 writing x ¼
�
x1; r cosðyÞ � 1;

r sinðyÞ � 2
�
with r a ½1; 2� and y a ½p; 2p�, and every

t a ½rðy� 2pÞ; rðy� pÞ� ¼: ½t�5 ðxÞ; tþ5 ðxÞ�;
jðt; xÞ :¼

�
x1; r cosðy� t=rÞ � 1; r sinðy� t=rÞ � 2

�
:

As before it is elementary to check that j satisfies (9), (10) and (2), (5)–(8)

with S replaced by A5 and te replaced by te5 : In particular note that for every

x a ½0; 1� � ½�3;�2� � f�2g then t�5 ðxÞ ¼ pðx2 þ 1Þ and

j
�
pðx2 þ 1Þ; x

�
¼ ðx1;�x2 � 2;�2Þ: ð13Þ

• Flow of a in A6: Define for every x a A6 and

t a ½1þ x3; 2þ x3� ¼: ½t�6 ðxÞ; tþ6 ðxÞ�
jðt; xÞ :¼

�
xcð�t=2; x1 � 1=2; x2 � 1=2Þ þ ð1=2; 1=2Þ; x3 � t

�
where xc is the flow exhibited is Lemma 8. It is easy to check that j satisfies

(9), (10) and (2), (5)–(8) with S replaced by A6 and te replaced by te6 . In par-

ticular note that for every x a ½0; 1�2 � f�2g then t�6 ðxÞ ¼ �1 and

jð�1; xÞ ¼ ð1� x1; 1� x2;�1Þ: ð14Þ

• Flow of a in A7: Define for every x a A7 and every

t a ½x3; 1þ x3� ¼: ½t�7 ðxÞ; tþ7 ðxÞ�;
jðt; xÞ :¼ R3

�
j
�
�t;R3ðxÞ

��
: ð15Þ

Since a has been defined by reflection on A7 ¼ R3ðA1Þ, i.e.

aðxÞ ¼ �R3

�
a
�
R3ðxÞ

��
;
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combining Lemma 5 and the flow constructed in A1 we immediately get that

j satisfies (9), (10) and (2), (5)–(8) with S replaced by A7 and te replaced

by te7 .

Then, we naturally define te as follows: For x a Ai, we set (cf. (10)) yþi ðxÞ ¼
j
�
tþi ðxÞ; x

�
a Mi�1 and y�i ðxÞ ¼ j

�
t�i ðxÞ; x

�
a Mi. For every 1a j < i define by

induction

yþj ðxÞ :¼ j
�
tþj
�
yþjþ1ðxÞ

�
; yþjþ1ðxÞ

�
a Mj�1

and similarly for every i < la 7,

y�l ðxÞ :¼ j
�
t�l
�
y�l�1ðxÞ

�
; y�l�1ðxÞ

�
a Ml :

Then define

tþðxÞ :¼ tþi ðxÞ þ
X
1aj<i

tþj
�
yþjþ1ðxÞ

�
and

t�ðxÞ :¼ t�i ðxÞ þ
X
i<la7

t�l
�
y�l�1ðxÞ

�
:

Finally, we obtain our desired jðt; xÞ for x a S and t a ½t�ðxÞ; tþðxÞ� by gluing the

orbits of the previously obtained flows on Ai. Note in particular that (7) is sat-

isfied since a is divergence free. Note also that, since the third component of

jðt; xÞ is x3 � t for x a ½0; 1�2 � ð0; 1� and t a ½x3 � 1; x3�, we directly get from (4)

that

j
�
tþðxÞ � 1; x

�
a ½0; 1�2 � f1g for every x a S: ð16Þ

Step 3: Additional properties of j and te

• Recalling that a is piecewise smooth in R3nð½0; 1�2 � f0gÞ we get in particular

a a BVðSÞ. Hence (cf. [4]), j is the unique measure preserving flow (up to a

null set) of a in S.

• Noting that teAi
is continuous in Ai and does not depend of x1 we deduce that

the same holds for te namely:

te does not depend on x1 an is continuous on S: ð17Þ

Moreover it is easily checked that

jfx a S j tþðxÞ ¼ tgj ¼ 0 for every t a R: ð18Þ
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• For every x a S we claim that

tþðxÞ � t�ðxÞ ¼ 6þ 3p ð19Þ

and is hence independent of x: Indeed using first (6) we get that for every

x a S

tþ
�
j
�
tþðxÞ � 1; x

��
� t�

�
j
�
tþðxÞ � 1; x

��
¼ tþðxÞ � t�ðxÞ;

hence, using (16), it is su‰cient to prove to claim for x a ½0; 1�2 � f1g ¼ M1:

Then note that x a M1 is sent by j to ½0; 1�2 � f0g after a time t ¼ 1, hence

tþðxÞ ¼ 1: Next, using (11), x is sent by j to ðx1;�x2 � 2; 1Þ a M2 after

a time t ¼ �pðx2 þ 1Þ. By (12) j sends then ðx1;�x2 � 2; 1Þ to ð1� x1;

x2 � 3; 0Þ a M3 after a time �1. Trivially ð1� x1; x2 � 3; 0Þ is sent by j to

ð1� x1; x2 � 3;�2Þ a M4 after a time t ¼ �2: Using (13) j sends ð1� x1;

x2 � 3;�2Þ to ð1� x1; 1� x2;�2Þ a M5 after a t ¼ �pð2� x2Þ: From (14)

j sends ð1� x1; 1� x2;�2Þ to ðx1; x2;�1Þ a M6 after a time t ¼ �1 and

finally ðx1; x2;�1Þ is sent by j in ½0; 1�2 � f0g ¼ M7 after a time t ¼ �1: So

at the end

t�ðxÞ ¼ �pðx2 þ 1Þ � 1� 3� pð2� x2Þ � 1� 1 ¼ �5� 3p

and therefore

tþðxÞ � t�ðxÞ ¼ 6þ 3p

as claimed. Note that in particular it has been shown that for every

x a M1

j
�
t�ðxÞ þ 1; x

�
¼ ðx1; x2;�1Þ: ð20Þ

• Periodicity of j: We claim that, for every x a S,

j
�
tþðxÞ; x

�
¼ j

�
t�ðxÞ; x

�
a ½0; 1�2 � f0g: ð21Þ

As before, using (5) and (6) we get that

j
�
tþðxÞ; x

�
¼ j

�
1; j
�
tþðxÞ � 1; x

��
;

j
�
t�ðxÞ; x

�
¼ j

�
t�ðxÞ � tþðxÞ þ 1; j

�
tþðxÞ � 1; x

��
and

1 ¼ tþ
�
j
�
tþðxÞ � 1; x

��
and t�ðxÞ � tþðxÞ þ 1 ¼ t�

�
j
�
tþðxÞ � 1; x

��
:
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Hence from (16), it is enough to prove (21) when x a ½0; 1�2 � f1g: For such x

we have j
�
tþðxÞ; x

�
¼ jð1; xÞ. Using (5), (20) and (15) we hence get, by def-

inition of j in A7 (cf. Step 2)

j
�
t�ðxÞ; x

�
¼ j

�
�1; j

�
t�ðxÞ þ 1; x

��
¼ jð�1; x1; x2;�1Þ

¼ jð1; x1; x2; 1Þ ¼ j
�
tþðxÞ; x

�
as claimed.

• Collapsing of x1-fibers: We claim that

j
�
1; ð0; 1Þ � fx2g � f1g

�
is a singleton in ð0; 1Þ2 � f0g ð22Þ

for every x2 a ð0; 1ÞnZ where

Z :¼ j

2 i

���� 0a ja 2 i; ib 1

� �
:

It means that, except for countably many x2 a ð0; 1Þ, jð1; �Þ collapses the fiber
ð0; 1Þ � fx2g � f1g into a point in ð0; 1Þ2 � f0g. Indeed, by definition of j in

½0; 1�2 � ð0; 1� we have that

j
�
1; ð0; 1Þ � fx2g � f1g

�
¼
�
wð0Þ
�
1; ð0; 1Þ � fx2g

�
; 0
�

and we deduce the claim from (22) (cf. Figure 3 for an illustration of the

action of jð1; �Þ).

Figure 3. The action of the flow j generated by a: the image of every rectangle i (at x3 ¼ 1)
is sent by jð1=2; �Þ to the corresponding square (at x3 ¼ 1=2). Similarly, jð1=2; �Þ sends in
particular every rectangle 4:i at its corresponding square at height 1=4.
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Step 4: A measure preserving map induced by j: We claim that, the map

h : S ! S defined by

hðxÞ :¼ j
�
1� tþðxÞ;m

�
j
�
tþðxÞ � 1; x

���
is well defined and measure preserving on S, where

mðy1; y2; y3Þ :¼ ð1� y1; y2; y3Þ

and satisfies

h � h ¼ id on S: ð23Þ

In words the map h does the following: it first sends x to the set ½0; 1�2 � f1g
by j

�
tþðxÞ � 1; �

�
(cf. (16)). It then does a reflection with respect to the set

fx1 ¼ 1=2g and then sends back the resulting point by j
�
1� tþðxÞ; �

�
. First using

(17) and (6) we get that

tþ
�
m
�
j
�
tþðxÞ � 1; x

���
¼ tþ

�
j
�
tþðxÞ � 1; x

��
¼ 1

and

t�
�
m
�
j
�
tþðxÞ � 1; x

���
¼ t�

�
j
�
tþðxÞ � 1; x

��
¼ t�ðxÞ � tþðxÞ þ 1

and hence

1� tþðxÞ a
�
t�
�
m
�
j
�
tþðxÞ � 1; x

���
; tþ
�
m
�
j
�
tþðxÞ � 1; x

����
implying (cf. (3)) that hðxÞ is well define and belongs to S: Using again (6) and

(17) we get that

tþ
�
hðxÞ

�
¼ tþ

�
j
�
1� tþðxÞ;m

�
j
�
tþðxÞ � 1; x

����
¼ tþ

�
m
�
j
�
tþðxÞ � 1; x

���
� 1þ tþðxÞ ¼ tþ

�
j
�
tþðxÞ � 1; x

��
� 1þ tþðxÞ

¼ tþðxÞ: ð24Þ

Hence, using (5) and (24), we get, since trivially m �m ¼ id,

h
�
hðxÞ

�
¼ j

�
1� tþðxÞ;m

�
j
�
tþðxÞ � 1; j

�
1� tþðxÞ;m

�
j
�
tþðxÞ � 1; x

�����
¼ j

�
1� tþðxÞ;m

�
m
�
j
�
tþðxÞ � 1; x

����
¼ j

�
1� tþðxÞ; j

�
tþðxÞ � 1; x

��
¼ x;

showing (23). It remains to show that h is measure preserving on S: For that,

since (cf. (23)) h is a bijection from S to S, it is enough to prove that, for every
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1a ia 7, and every x a Ai,

hðxÞ ¼
�
l ðiÞx3

ðx1; x2Þ; x3
�

ð25Þ

for some measure preserving map l
ðiÞ
x3 in R2.

• We first prove (25) for A1: Recalling that, for x a A1 and t a ½x3 � 1; x3�,
jðt; xÞ ¼

�
wð1�x3Þðt; x1; x2Þ; x3 � t

�
, where wðaÞðt; �Þ is measure preserving in

½0; 1�2 and that tþðxÞ ¼ x3, we get

hðxÞ ¼ j
�
1� x3;m

�
jðx3 � 1; xÞ

��
¼ j

�
1� x3;m

�
wð1�x3Þðx3 � 1; x1; x2Þ; 1

��
¼
�
wð0Þ
�
1� x3;m

�
wð1�x3Þðx3 � 1; x1; x2Þ

��
; x3
�
;

where, by abuse of notations, m stands for mðx1; x2Þ ¼ ð1� x1; x2Þ in second

line of the previous equation. This shows the claim.

• Since a does not depend on x1 in A2 we directly get (cf. the formula for j

is Step 2) that

hðxÞ ¼ mðxÞ ¼ ð1� x1; x2; x3Þ for x a A2

showing trivially the claim for A2.

• For x a A3 since jð1� x3; xÞ a M2 � A2 we have (cf. the previous point) that

h
�
jð1� x3; xÞ

�
¼ m

�
jð1� x3; xÞ

�
: Hence, using (5), (6) and (17),

hðxÞ ¼ j
�
1� tþðxÞ;m

�
j
�
tþðxÞ � 1; x

���
¼ j

�
x3 � 1þ 1� x3 þ 1� tþðxÞ;m

�
j
�
x3 � 1þ tþðxÞ � 1þ 1� x3; x

���
¼ j

�
x3 � 1; j

�
1� x3 þ 1� tþðxÞ;
m
�
j
�
x3 � 1þ tþðxÞ � 1; jð1� x3; xÞ

����
¼ j

�
x3 � 1; h

�
jð1� x3; xÞ

��
¼ j

�
x3 � 1;m

�
jð1� x3; xÞ

��
:

Hence, by definition of j in A3 (cf. Step 2) and the fact that xcða; �Þ and m are

measure preserving in R2, we obtain (25) for A3.

• For x a A4AA5 a simple calculation gives

hðxÞ ¼ ð1� x1; x2; x3Þ;

which yields trivially the claim.

• Next for x a A6 proceeding similarly as for A3 we get that

hðxÞ ¼ j
�
x3 þ 2;m

�
jð�2� x3; xÞ

��
and thus by definition of j in A6 we get (25) as for A3.
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• Finally for x a A7 proceeding as for x a A3 we get that

hðxÞ ¼ j
�
1� x3;m

�
jðx3 � 1; xÞ

��
and hence by definition of j in A7 we deduce, as for A1, the claim.

Step 5: Construction of two distinct flows for a. With the help of j we

now construct two measure preserving distinct flows f and c of a where we

recall that, for every x a S, jð�; xÞ is a measure preserving flow of a defined on

½t�ðxÞ; tþðxÞ�. Using crucially the collapsing of fibers discussed in Step 3 we will

show how to extend jð�; xÞ outside ½t�ðxÞ; tþðxÞ� in two distinct ways. Let (see

(19)), for every x a S,

T :¼ 6þ 3p ¼ tþðxÞ � t�ðxÞ;

which can be seen as the period of the orbit jð�; xÞ recalling (cf. (21))

j
�
tþðxÞ; x

�
¼ j

�
t�ðxÞ; x

�
:

We first define f by ‘‘periodicity’’:

fðt; xÞ :¼ x for t a R and x a R3nS
jðt� kT ; xÞ for t a R and x a S

�

where k a Z is the unique integer such that

t� kT a
�
t�ðxÞ; tþðxÞ

	
:

The definition of c is more involved, and the authors wish here to express

their gratitude to Evgeny Panov [15] due to important corrections and also good

suggestions. First we define the set W � S by

W :¼


x a S : j

�
tþðxÞ � 1; x

�
a ð0; 1Þ � Z � f1g

�
:

Equivalently W is the set of points x in S whose orbit j
�
½t�ðxÞ; tþðxÞ�; x

�
goes

throw the set ð0; 1Þ � Z � f1g. Since Z is countable and j is measure preserving

we get that jW j ¼ 0: Next for every x a SnW we claim that

j
�
tþðxÞ; x

�
¼ j

�
tþðxÞ; hðxÞ

�
; ð26Þ

where h is the measure preserving map defined in Step 4. Indeed, using (5), (16)

and (22),
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j
�
tþðxÞ; hðxÞ

�
¼ j

�
tþðxÞ; j

�
1� tþðxÞ;m

�
j
�
tþðxÞ � 1; x

����
¼ j

�
1;m

�
j
�
tþðxÞ � 1; x

���
¼ j

�
1; j
�
tþðxÞ � 1; x

��
¼ j

�
tþðxÞ; x

�
:

We now define c as follows:

cðt; xÞ :¼
x for t a R and x a R3nS
jðt� kT ; xÞ for t a R and x a W

j
�
t� kT ; hkðxÞ

�
for t a R and x a SnW

8><
>:

where k ¼ kðt; xÞ a Z is the unique integer such that t� kT a
�
t�ðxÞ; tþðxÞ

	
.

Observe that hkðxÞ ¼ x for even k, and hkðxÞ ¼ hðxÞ for odd k. Let t1; t2 a R,

t2 � tþðxÞ B fnT : n a Zg, x a SnW . Denoting k2 ¼ kðt2; xÞ, k1 ¼ kðt1; yÞ, where
y ¼ cðt2; xÞ, we have

t2 ¼ k2T þ s2; t1 ¼ k1T þ s1;

where

s2 a
�
t�ðxÞ; tþðxÞ

	
; s1 a

�
t�ðyÞ; tþðyÞ

	
¼
�
t�ðxÞ � s2; t

þðxÞ � s2
	
:

Therefore, t1 þ t2 ¼ ðk1 þ k2ÞT þ s1 þ s2, s1 þ s2 a
�
t�ðxÞ; tþðxÞ

	
and in particu-

lar kðt1 þ t2; xÞ ¼ k1 þ k2. This implies that

cðt1 þ t2; xÞ ¼ f
�
t1 þ t2; h

k1þk2ðxÞ
�
¼ f

�
t1; f

�
t2; h

k1þk2ðxÞ
��

¼ f
�
t1; h

k1
�
f
�
t2; h

k2ðxÞ
���

¼ c
�
t1;cðt2; xÞ

�
:

Note that the previous definition makes sense since (cf. (24))

te
�
hðxÞ

�
¼ teðxÞ:

See Figure 4 for an illustration of the orbits of f and c: The green closed

curbed represents the image of

ffðt; xÞ : t a ½t�ðxÞ � kT ; tþðxÞ � kT �g for any k a Z

where T ¼ tþðxÞ � t�ðxÞ is the ‘‘period’’ of the curb; the orange closed curbed

represents the image of

fcðt; xÞ : t a ½t�ðxÞ � kT ; tþðxÞ � kT �g for each k a Z odd

(for k even, it coincides with the green curbed).

138 O. Kneuss and W. Neves



Step 6: Properties of f are c.

Step 6.1: f and c are flows of a: First from (21) we deduce that for every

x a S the map fð�; xÞ is continuous in R: Hence, recalling (2), we directly get

that

fðt; xÞ ¼ xþ
ð t
0

a
�
fðs; xÞ

�
ds for every x a R3 and t a R: ð27Þ

Similarly using (21), (6), (5) and (26) we get that, cð�; xÞ is continuous in R:

Hence, again by (2), we deduce that

cðt; xÞ ¼ xþ
ð t
0

a
�
cðs; xÞ

�
ds for every x a R3 and t a R: ð28Þ

Step 6.2: f and c satisfy the group property a.e. in R3. Using (5) and the defi-

nition of f and j we easily get that for every x a S, for every t1 a R and for every

t2 a RnftþðxÞ þ nT : n a Zg,

f
�
t1; fðt2; xÞ

�
¼ fðt1 þ t2; xÞ and c

�
t1;cðt2; xÞ

�
¼ cðt1 þ t2; xÞ: ð29Þ

Obviously (29) is satisfied for every x B SA ð½0; 1�2 � f0gÞ and every t1; t2 a R

since in that case fð�; xÞ ¼ cð�; xÞ ¼ x: At the end we have showed that for a.e.

x a R3, for every t1 a R and for every t2 a R except an at most countable set

(depending of x) (29) is satisfied.

Figure 4. The two distinct flows f and c starting at a point x a W .
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Step 6.3: fðt; �Þ and cðt; �Þ are bijections a.e. in R3. For every tA 0 define

Qt :¼ fx a S j tþðxÞ a tþ ZTg:

and

Q0 :¼ ½0; 1�2 � f0g:

From (18), we directly get that jQtj ¼ 0: As a direct consequence of the group

property established in Step 6.2, we deduce that, for every t a R, fðt; �Þ, cðt; �Þ
are both bijections from R3nðQtAQ0Þ onto R3nðQ�tAQ0Þ with

fðt; �Þ�1 ¼ fð�t; �Þ and cðt; �Þ�1 ¼ cð�t; �Þ in R3nðQ�tAQ0Þ:

Note that using (3), (4) and (26) we get from the definition of f and c that

Qt ¼ fx a S j fðt; xÞ a ½0; 1�2 � f0gg ¼ fx a S jcðt; xÞ a ½0; 1�2 � f0gg:

Step 6.4: fðt; �Þ and cðt; �Þ preserve the Lebesgue measure. We claim that for

every t a R, fðt; �Þ and cðt; �Þ both preserve the Lebesgue measure in R3. We start

with f: As f is a bijection (cf. Step 6.3) from R3nðQtAQ0Þ onto R3nðQ�tAQ0Þ
and jQtAQ0j ¼ 0, it is enough to show that for any x a R3nðQtAQ0Þ there exists
a neighbourhood U of x such that fðt; �ÞjU : U ! fðt;UÞ preserves the mea-

sure. We can assume that x a S otherwise the claim is trivial since fðt; �Þ is the

identity on R3nðSAQt AQ0Þ. Then since x B Qt we have by definition that t B
tþðxÞ þ ZT . Hence by continuity of te (cf. (17)) there exist a neighbourhood U

of x in S and k a Z such that

t� kT a
�
t�ðyÞ; tþðyÞ

�
for every y in U :

Since then by definition of f we have, for every y a U ,

fðt; yÞ ¼ jðt� kT ; yÞ

we conclude by (7) that fðt; �ÞjU : U ! fðt;UÞ preserves the measure.

We now deal with c: Exactly as before it is enough to prove, for any

x a SnðQtAQ0Þ, the existence of the neighbourhood U of x in S such that

cðt; �ÞjU : U ! cðt;UÞ preserves the measure. Again exactly as before we can

find a neighbourhood U of x in S and k a Z such that

t� kT a
�
t�ðyÞ; tþðyÞ

�
for every y in U :
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If k is even, we are done using (7) since then, by definition of c, for every y a U ,

cðt; yÞ ¼ jðt; yÞ:

We can therefore assume that k is odd. In this case, by definition of c, we have,

for every y a UnW

cðt; yÞ ¼ j
�
t� kT ; hðyÞ

�
:

Since h and jðt� kT ; �Þ are measure preserving we get that, using (24), the

map y ! j
�
t� kT ; hðyÞ

�
preserves the measure in U : Since c and y !

j
�
t� kT ; hðyÞ

�
only di¤er on the null set W we get that cðt; �Þ preserves as well

the measure in U :

Step 6.5: f and c di¤er on a set of positive Lebesgue measure. By definition

of j in A2 (cf. Step 2) we easily see that, for every x a A2B fx2a�1g and

t a ½0; p�,

jðt; xÞ a A2

and the first component of jðt; xÞ is simply x1.

Moreover for every x a A2 recall that (cf. Step 4) hðxÞ ¼ ð1� x1; x2; x3Þ:
Hence, by definition, for every x a ðA2B fx2a�1gÞnW and t a ½T ;T þ p�, as
t� T a

�
t�ðxÞ; tþðxÞ

	
we have

fðt; xÞ ¼ jðt� T ; xÞ and cðt; xÞ ¼ j
�
t� T ; hðxÞ

�
and therefore

f1ðt; xÞ ¼ x1 and 1� x1 ¼ c1ðt; xÞ: ð30Þ

Since jW j ¼ 0 the previous equation shows in particular that f and c di¤er on a

set with positive Lebesgue measure in R4.

Combining Steps 6.1, 6.2 and 6.3 and 6.5 we have proved the existence of two

distinct measure preserving flows of a satisfying the group property a.e..

Step 7: Non uniqueness for the transport equation. Let u0 a Cl
c ðR3Þ. We claim

that v;w a Ll
�
½0;lÞ � R3

�
defined by

vðt; xÞ :¼ u0
�
fð�t; xÞ

�
and wðt; xÞ :¼ u0

�
cð�t; xÞ

�
both solve

qtuþ 3a;‘xu4 ¼ 0 and uð0; �Þ ¼ u0ð�Þ;
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in the weak sense. We will only prove it for v the proof for w being exactly

identical. We have to prove that for every h a Cl
c

�
½0;lÞ � R3

�
ðl
0

ð
R3

�vðt; xÞ
�
qthðt; xÞ þ 3a;‘xhðt; xÞ4

�
dx dt ¼

ð
R3

u0ðxÞhð0; xÞ dx:

Now since fðt; �Þ preserves the Lebesgue measure (cf. Step 6.4) and since (cf. (27)),

for a.e. x a R3 the map

t ! fðt; xÞ

is Lipschitz on R with derivative a
�
fðt; xÞ

�
, we get, for h a Cl

c

�
½0;lÞ � R3

�
,

ðl
0

ð
R3

�vðt; xÞ
�
qthðt; xÞ þ 3a;‘xhðt; xÞ4

�
dx dt

¼
ðl
0

ð
R3

�u0ðxÞ
�
qth
�
t;
�
fðt; xÞ

��
þ
�
a
�
fðt; xÞ

�
;‘xh

�
t; fðt; xÞ

��
dx dt

¼
ð
R3

ðl
0

�u0ðxÞ
�
qth
�
t;
�
fðt; xÞ

��
þ
�
a
�
fðt; xÞ

�
;‘xh

�
t; fðt; xÞ

��
dt dx

¼
ð
R3

ðl
0

�u0ðxÞ
d

dt

�
h
�
t; fðt; xÞ

��
dt dx

¼
ð
R3

u0ðxÞhð0; xÞ dx

which proves the claim. Finally choose u0 as a smooth function with compact

support such that u0ðxÞ ¼ x1 in S: Then using (30) we get that v� w is di¤erent

from 0 on a set of positive Lebesgue measure set and solves (3), which proves the

second part of the theorem and concludes the proof.

Step 8: Non existence of a flow. First we define our vector field ~aa as

follows:

~aa ¼ a in R3nA7

ð0; 0;�1Þ in A7:

�

Proceeding as in Step 1.2, we see that ~aa is measurable bounded, has compact

support and is divergence free in R3: Moreover it is piecewise smooth in

R3nf½0; 1�2 � f0gg. We now establish that no map j : R� R3 ! R3 satisfies

jðt; xÞ ¼ xþ
ð t
0

~aa
�
jðs; xÞ

�
ds for a:e: x a R3 and for every t a R; ð31Þ
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satisfies the group property a.e. and is such that

jðt; �Þ is measure preserving for every t a R:

We proceed by contradiction and assume that such a j exists. First, since ~aa
is piecewise smooth in R3nð½0; 1�2 � f0gÞ and thus in particular ~aa belongs to

BV
�
½0; 1�2 � ð0; 1�

�
, we have (cf. [4]) that j is uniquely determined (up to a null

set) in ½0; 1�2 � ð0; 1�. Hence since a ¼ ~aa in A1 ¼ ½0; 1�2 � ð0; 1� we get (cf. Step 2)

that, necessarily, for a.e. x a A1

jðt; xÞ ¼
�
xð1�x3Þðt; x1; x2Þ; x3 � t

�
for t a ½x3 � 1; x3�: ð32Þ

Next, since a ¼ ð0; 0;�1Þ in ½0; 1�2 � ½�1; 0Þ ¼ A7, we obviously get that, for every

x a A7

jðt; xÞ ¼ x� tð0; 0; 1Þ for t a ½x3; 1þ x3�: ð33Þ

Also, since the third component in identically �1 in A1AA7, we trivially obtain

that

j3ðt; xÞ ¼ x3 � t for every x a ½0; 1�2 � ½�1; 1� and t a ½x3 � 1; x3 þ 1�: ð34Þ

Now by the group property, we get that for a.e. x a A7 and t a ½0; 1�

j
�
t; jðx3 � 1; xÞ

�
¼ jðtþ x3 � 1; xÞ: ð35Þ

Combining (35), (34) and (32), we get that, for a.e. x a A7 and t a ½0; 1�

jðtþ x3 � 1; xÞ ¼ j
�
t; ðy1; y2; 1Þ

�
¼
�
xð0Þðt; y1; y2Þ; t

�
for some ðy1; y2Þ a ½0; 1�2: By continuity of jð�; xÞ, combining the previous equa-

tion and (33) we must have

xð0Þð1; y1; y2Þ ¼ ðx1; x2Þ:

Hence, for a.e. ðx1; x2Þ a
�
ð0; 1ÞnZ

�2
, by (48) and (49), y2 is the unique number

in ð0; 1ÞnZ such that gðy2Þ ¼ ðx1; x2Þ while y1 a ð0; 1Þ can be chosen arbitrarily.

Summarizing, we obtained that, for a.e.

x a
�
ð0; 1ÞnZ

�2 � ½�1; 0Þ;

j
�
t; ðx1; x2; x3Þ

�
has necessarily the following form

jðt; xÞ ¼
x� tð0; 0; 1Þ for t a ½x3; 1þ x3��
wð0Þð1þ x3 � t; y1; y2Þ; x3 � t

�
; for t a ½x3 � 1; x3�

�
ð36Þ
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for some y1 ¼ y1ðx1; x2Þ a ð0; 1Þ and where y2 ¼ y2ðx1; x2Þ a ð0; 1ÞnZ is the

unique real number such that

gðy2Þ ¼ ðx1; x2Þ:

We now claim that ��j��3=2;
�
ð0; 1ÞnZ

�2 � ½�1;�1=2�
�� ¼ 0 ð37Þ

which implies that jð�3=2; �Þ is not measure preserving whence a contradiction.

From the special structure of the third component of j (cf. (34)) (37) will be

proved once showed that, for every x3 a ½�1;�1=2� the set

Mx3 :¼

�

j1ð�3=2; x1; x2; x3Þ; j2ð�3=2; x1; x2; x3Þ
�
: ðx1; x2Þ a

�
ð0; 1ÞnZ

�2g
is a two dimensional null set. First note that, using (36),

Mx3 ¼
[

ðx1;x2Þ A ðð0;1ÞnZÞ2



wð0Þð�x3 � 1=2Þ

�
y1ðx1; x2Þ; y2ðx1; x2Þ

��
:

Since wð0Þðl; �Þ is measure preserving it is enough to show that[
ðx1;x2Þ A ðð0;1ÞnZÞ2


�
y1ðx1; x2Þ; y2ðx1; x2Þ

��

is a two dimensional null set. The latter is obvious since ðx1; x2Þ ! y2ðx1; x2Þ is
one-to-one. 9

In the previous proof we used the following elementary lemma whose proof

is omitted.

Lemma 5. Let a : fx3 > 0g ! R3 be bounded and measurable. Extend a to

fx3 < 0g by

aðxÞ :¼ �R3

�
a
�
R3ðxÞ

��
¼
�
�a1ðx1; x2;�x3Þ;�a2ðx1; x2;�x3Þ; a3ðx1; x2;�x3Þ

�
;

where R3ðx1; x2; x3Þ :¼ ðx1; x2;�x3Þ: Suppose that for some x a fx3 > 0g there

exists a map jð�; xÞ a fx3b 0g defined on ½t1; t2� with t1 < t2 satisfying

jðt; xÞ ¼ xþ
ð t
0

a
�
jðs; xÞ

�
ds for every t a ½t1; t2�: ð38Þ

Then for y :¼ R3ðxÞ a fx3 < 0g the map

jðt; yÞ :¼ R3

�
j
�
�t;R3ðyÞ

��
t a ½�t2;�t1�
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satisfies

jðt; yÞ ¼ yþ
ð t
0

a
�
jðs; yÞ

�
ds for every t a ½�t2;�t1�:

3. The non autonomous case

We now establish the two dimensional (non autonomous) version of Theorem 3.

Theorem 6. Part 1: Non uniqueness. There exists a compactly supported vector

field a a LlðR� R2;R2Þ, such that, aðt; �Þ is divergence free in R2 for a.e. t a R

generating two distinct measure preserving flows satisfying the group property.

More precisely, it will be shown the existence of two distinct maps f;c : R� R�
R2 ! R2 satisfying, for every t a R, every aA 1 and every x a R2,

fðt; a; xÞ ¼ xþ
ð t
0

a
�
sþ a; fðs; a; xÞ

�
ds;

cðt; a; xÞ ¼ xþ
ð t
0

a
�
sþ a;cðs; a; xÞ

�
ds;

such that fðt; a; �Þ and cðt; a; �Þ both preserve the Lebesgue measure for every aA 1

and t a R and such that, for every t1; t2; a a R with aA 1 and t2 þ aA 1,

f
�
t1; aþ t2; fðt2; a; xÞ

�
¼ fðt1 þ t2; a; xÞ and

c
�
t1; aþ t2;cðt2; a; xÞ

�
¼ cðt1 þ t2; a; xÞ:

Moreover, there exists a nontrivial Ll
�
½0;lÞ � R2

�
weak solution of

qtuþ 3a;‘xu4 ¼ 0 and uð0; �Þ ¼ 0;

which explicitly means that, for every h a Cl
c

�
½0;lÞ � R2

�
ðl
0

ð
R3

uðt; xÞ
�
qthðt; xÞ þ 3aðt; xÞ;‘xhðt; xÞ4

�
dx dt ¼ 0: ð39Þ

Part 2: Non existence. There exists a divergence free vector field ~aa a LlðR� R2;

R2Þ with compact support generating no measure preserving flow satisfying the

group property.

Remark 7. (i) Note that the bounded vector field constructed in [9] (for which the

transport equation has two solutions) is periodic in x and hence it does not belong

to LpðR� R2Þ for any p < l.

(ii) The Remark 4 is also valid for the above theorem.
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Proof. The proof is very similar (and in fact easier) to the one of Theorem 3.

Oversimplifying, the x3 variable in Theorem 3 will play the role of the time in

the present proof.

Step 1. We first define aðt; xÞ ¼ bðt; xÞ for t < 1 and x a R2 where b is the

vector field constructed in Lemma 10. Finally, for t > 1 and x a R2 we let

aðt; xÞ :¼ �að2� t; xÞ:

By a direct application of Lemma 10 we deduce that (in the sense of distri-

butions)

divx aðt; �Þ ¼ 0 for every tA 1:

Moreover we observe that a a LlðR� R2;R2Þ and that supp a � ½0; 2� � ½0; 1�2:

Step 2: A first flow of a. First for every a < 1 and x a R2 define

fðt; a; xÞ :¼ wðaÞðt; xÞ if ta 1� a

wðaÞð2� 2a� t; xÞ if tb 1� a

�

where wðaÞ is the flow of ðt; xÞ ! bðtþ a; xÞ exhibited in Lemma 11. For a > 1

define for x a R2 and t a R

fðt; a; xÞ :¼ fð�t; 2� a; xÞ:

From Lemma 11 and the fact that aðt; xÞ ¼ �að2� t; xÞ we easily deduce the fol-

lowing properties:

• Flow of a: for every aA 1, x a R2 and t a R

fðt; a; xÞ ¼ xþ
ð t
0

a
�
sþ a; fðt; a; xÞ

�
ds: ð40Þ

• For every aA 1 and tþ aA 1, fðt; a; �Þ is a bijection from R2 to R2 preserving

the measure.

• For every aA 1 and t1; t2 a R with aþ t2A 1 we have

f
�
t1; aþ t2; fðt2; a; xÞ

�
¼ fðt1 þ t2; a; xÞ: ð41Þ

• Collapsing of the fibers:

f
�
1; 0; ð0; 1Þ � fx2g

�
is a singleton ð42Þ
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for every x2 a ð0; 1ÞnZ where

Z ¼ f j2�i j 0a ja 2 i; ib 1g:

Step 3: A di¤erent flow for a. First, for a < 1 we define, for x a R2

cðt; a; xÞ :¼
fðt; a; xÞ if ta 1� a

fðt; a; xÞ if tb 1� a and x B Aa

f
�
t; a; f

�
a; 0;m

�
fða; 0; �Þ�1ðxÞ

���
if tb 1� a and x a Aa

8><
>:

where mðx1; x2Þ ¼ ð1� x1; x2Þ and

Aa :¼ ffða; 0; �Þg


ð0; 1Þ �

�
ð0; 1ÞnZ

��
:

For a > 1 we define, for every t a R and x a R2,

cðt; a; xÞ :¼ c
�
�t; 2� a;m�ð2� a; xÞ

�
;

where

m�ða; xÞ :¼ f
�
a; 0;m

�
fð�a; a; xÞ

��
; for a < 1:

First, we deduce from (41) that, for every aA 1 and every y a R2

f
�
1� a; a; fða; 0; yÞ

�
¼ fð1; 0; yÞ:

Hence, combining the last equation with (42), we get that, for every aA 1 and

x a Aa,

cð1� a; a; xÞ ¼ fð1� a; a; xÞ:

Hence, from (40), we get that for every aA 1, x a R2 and t a R

cðt; a; xÞ ¼ xþ
ð t
0

a
�
sþ a;cðt; a; xÞ

�
ds:

Moreover since, m and fðt; a; �Þ are measure preserving and bijections from R2

onto R2 for every aA 1 and tþ aA 1 we get that the same is true for cðt; a; �Þ.
Finally from (41) we easily that c also satisfies the group property: namely aA 1

and t1; t2 a R with aþ t2A 1 we have

c
�
t1; aþ t2;cðt2; a; xÞ

�
¼ cðt1 þ t2; a; xÞ:
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Also, for every tb 2, x1 a ð0; 1Þnf1=2g and x2 a ð0; 1ÞnZ we have, since aðt; �ÞC 0

for t < 0,

fðt; 0; xÞ ¼ ðx1; x2ÞA ð1� x1; x2Þ ¼ cðt; 0; xÞ: ð43Þ

From Steps 2 and 3 we have indeed found two distinct flows of a which are mea-

sure preserving and satisfying the group property.

Step 4: Non uniqueness for the transport equation. For u0 a Cl
c ðR2Þ define

v;w a Ll
�
½0;lÞ � R2

�
by

vðt; �Þ :¼ u0
��
fðt; 0; �Þ

��1�
and wðt; �Þ :¼ u0

��
cðt; 0; �Þ

��1�
:

Proceeding exactly as in Step 7 of the previous proof we have that v and w both

solve

qu

qt
þ 3a;‘xu4 ¼ 0 and uð0; �Þ ¼ u0;

in the weak sense. Choose u0 a Cl
c ðR2Þ such that u0ðxÞ ¼ x1 in ð0; 1Þ2 and let

u :¼ v� w a Ll
�
½0;lÞ � R2

�
: Then u is not identically zero (cf. (43)) and satis-

fies (39) which proves the second part of the theorem and concludes the proof.

Step 5: Non existence of a flow. Define ~aa : R� R2 ! R2 by

~aaðt; �Þ :¼ aðt; �Þ for t < 1

0 for tb 1:

�

From the properties of a (cf. Step 1) we directly get that ~aa is bounded, measurable,

divergence free and has compact support. Proceeding exactly as in Step 8 of the

proof of Theorem 3 we show that there does not exist a measure preserving flow of

~aa satisfying the group property. This proves the last part of the theorem and con-

cludes the proof.

4. Appendix

In the proofs of the previous two theorems we have used the following three

lemmas inspired by [9].

The first one exhibits two divergence free vector fields in R2 whose resulting

measure preserving flow is a ‘‘square’’ rotation, respectively a ‘‘rectangle’’ rota-

tion, and are the basic bricks to construct the vector field a and ~aa of Theorems 3

and 6.
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Lemma 8. (1) Define c a LlðR2;R2Þ by

cðxÞ :¼
ð0; 8x1Þ if jx2j < jx1j < 1=2;

ð�8x2; 0Þ if jx1j < jx2j < 1=2;

0 elsewhere:

8<
:

Then div c ¼ 0 in R2 in the sense of distributions and the normal component of c is 0

across qð�1=2; 1=2Þ2. Additionally there exists xc : R� R2 ! R2 with the follow-

ing properties:

(i) for every x a R2 and every t a R

xcðt; xÞ ¼ xþ
ð t
0

c
�
xcðs; xÞ

�
ds:

(ii) for every x a R2 and every t1; t2 a R

xcðt1 þ t2; xÞ ¼ xc
�
t1; x

cðt2; xÞ
�
:

(iii) for every t a R, xcðt; �Þ is a bijection from R2 onto R2 preserving the

Lebesgue measure.

(iv) xcðt; �Þ is a ‘‘square’’ rotation in ð�1=2; 1=2Þ2 of angle 2pt ( for t ¼ k=4,

k a Z), and the identity outside ð�1=2; 1=2Þ2. In particular

xcð1=4; xÞ ¼ ð�x2; x1Þ for ðx1; x2Þ a ð�1=2; 1=2Þ2;
x elsewhere:

�

(2) Define d a LlðR2;R2Þ by

dðxÞ :¼
ð0; 4x1Þ if j2x2j < jx1j < 1=2;

ð�16x2; 0Þ if jx1j < j2x2j < 1=2;

0 elsewhere:

8<
:

Then div d ¼ 0 in R2 in the sense of distributions and the normal component of d is

0 across q½ð�1=2; 1=2Þ � ð�1=4; 1=4Þ�. Additionally there exists xd : R� R2 ! R2

satisfying the previous points (i)–(iii) with c replaced by d. Moreover xdðt; �Þ is

s a ‘‘rectangle’’ rotation in ð�1=2; 1=2Þ � ð�1=4; 1=4Þ of angle 2pt ( for t ¼ k=4,

k a Z), and the identity outside ð�1=2; 1=2Þ � ð�1=4; 1=4Þ. In particular

xdð1=4; xÞ ¼ ð�2x2; x1=2Þ for ðx1; x2Þ a ð�1=2; 1=2Þ � ð�1=4; 1=4Þ;
x elsewhere:

�

Remark 9. Note that there exist infinitely many flows of c (and d); indeed, for

example for c, one can stay any amount of time once reached the ‘‘diagonals’’
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fðx1; x2Þ j 0 < jx1j ¼ jx2j < 1g (where c is identically zero). However, since c and

d belong to BVðR2Þ note that xc, resp xd , is (up to a null set in R� R2) the unique

measure preserving flow of c, resp d (cf. [4]).

Proof.

Step 1: Proof of (1). First we obviously have div c ¼ 0 in the four triangles

f�x2 < x1 < x2; 0 < x2 < 1=2g; f�x2 < x1 < x2;�1=2 < x2 < 0g
f�x1 < x2 < x1; 0 < x1 < 1=2g and f�x1 < x2 < x1;�1=2 < x1 < 0g:

See Figure 5 for a sketch of c. Moreover since the normal component of c is

0 across the boundary of each of those four triangles (which contains qð�1=2;

1=2Þ2) we immediately get that, in the sense of distributions, div c ¼ 0 in R2:

Let rðxÞ :¼ maxðjx1j; jx2jÞ. For x a fr < 1=2g ¼ ð�1=2; 1=2Þ2 we write x ¼
rðxÞyðxÞ where y belongs to the boundary of fr < 1g identified with R=8Z:

Then defining xc : R� R2 ! R2 by

xcðt; xÞ ¼ x if x a R2nð�1=2; 1=2Þ2

and

xcðt; xÞ ¼ xcðt; r; yÞ ¼ ðr; yþ 4tÞ; for x a ð�1=2; 1=2Þ2;

it is easily seen that xc satisfies all the claimed properties of the lemma. In par-

ticular note that xcð1; xÞ ¼ x hence t ¼ 1 corresponds to a rotation of 2p which

implies that xcðt; �Þ is indeed a square rotation of 2pt; moreover noting that a

‘‘square’’ rotation of angle p=2 is the usual rotation of angle p=2 (observe that

this property is only true for integer multiples of p=2) we get that xcð1=4; xÞ ¼
ð�x2; x1Þ in ð�1=2; 1=2Þ2 (and the identity outside ð�1=2; 1=2Þ2).

Step 2: Proof of (2). The assertions concerning the vector field d are proven

exactly as the ones for c: Letting p : R2 ! R2 defined by pðx1; x2Þ :¼ ðx1; 2x2Þ,

Figure 5. The vector fields c and d
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note that

dðxÞ ¼ p�1
�
c
�
pðxÞ

��
for every x a R2:

Hence it is elementary to see that

xdðt; xÞ :¼ p�1
�
xc
�
t; pðxÞ

��
¼ ðxcÞ1

�
t; ðx1; 2x2Þ

�
;
ðxcÞ2

�
t; ðx1; 2x2Þ

�
2

 !

satisfies all the wished properties. 9

Lemma 10. Let c and d be as in Lemma 8. Define b ¼ bðt; xÞ a Ll
�
ð�l; 1Þ �

R2;R2
�
as follows. First let bðt; xÞC 0 for x B ½0; 1�2 and t a ½0; 1Þ and for x a R2

and t < 0. Then define it on ½0; 1=2Þ � ½0; 1�2 by

bðt; xÞ :¼
dðx1 � 1=2; x2 � 1=4Þ for 0a t < 1=4 and x a ½0; 1� � ½0; 1=2�;
dðx1 � 1=2; x2 � 3=4Þ for 0a t < 1=4 and x a ½0; 1� � ½1=2; 1�;
�cðx1 � 1=2; x2 � 1=2Þ for 1=4a t < 1=2 and x a ½0; 1� � ½0; 1�:

8><
>:

Define it finally in ½1=2; 1Þ � ½0; 1�2 by inductively scaling the geometry by a factor

1=2 (but leaving its range unchanged ) in the following way: For every ib 1 decom-

pose ½0; 1�2 into 4 i diadic (closed ) squares (of size 1=2 i) denoted by C i
j , 1a ja 4 i,

and denote their left lower vertices by l ij . Let also

ti :¼
Xi

l¼1

2�l :

Then for every ib 1 define b in ½ti; tiþ1Þ � R2 by

bðt; xÞ :¼
b
�
2 iðt� ti; x� l ij Þ

�
for t a ½ti; tiþ1Þ and x a Ci

j ; 1a ja 4 i;

0 for t a ½ti; tiþ1Þ and x B ½0; 1�2:

(

Then b a Ll
�
ð�l; 1Þ � R2;R2

�
and for every t < 1 divx

�
bðt; �Þ

�
¼ 0 in R2 in the

sense of distributions. Moreover, for every t < 1 the normal component of bðt; �Þ is
zero across q½0; 1�2.

Proof. First it is clear that b is measurable and bounded in ð�l; 1Þ � R2 once

observed that, for every ib 1 and 1a ja 4 i,

kbkLlð½ti ; tiþ1Þ�C i
j
Þ ¼ kbk

Llð½0;1=2Þ�½0;1�2Þ:

Since, from Lemma 8, we know that div c ¼ 0 in ð�1=2; 1=2Þ2 and that its four

normal components are 0 across qð�1=2; 1=2Þ2 and, similarly for d on the bound-
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ary of ð�1=2; 1=2Þ � ð�1=4; 1=4Þ, we directly deduce from the definition of b that,

for every t < 1, the normal component of bðt; �Þ is zero across q½0; 1�2 and that

divx bðt; �Þ ¼ 0 in R2: 9

Lemma 11. Let b : ð�l; 1Þ � R2 ! ½0; 1�2 be the vector field defined in the previ-

ous lemma. Then, for every z < 1, there exists a measurable map wðzÞ : ð�l;

1� z� � R2 ! ½0; 1�2 satisfying the following properties:

• Flow of b shifted by z: for every x a R2 then

wðzÞðt; xÞ ¼ xþ
ð t
0

b
�
sþ z; wðzÞðs; xÞ

�
ds for every t a ð�l; 1� z�: ð44Þ

• For every t a ð�l; 1� zÞ, wðzÞðt; �Þ is a bijection from R2 onto R2 preserving

the measure.

• Group property: for every x a R2, z < 1 and every t1, t2 with t2 þ z < 1 and

t1 þ t2 þ za 1

wðzþt2Þ
�
t1; w

ðzÞðt2; xÞ
�
¼ wðzÞðt1 þ t2; xÞ: ð45Þ

Moreover the following properties are fulfilled for wð0Þ:

• Explicit formula for t ¼ 1=2: For every x a ð0; 1Þ2:

wð0Þ
�
1=2; ðx1; x2Þ

�
¼ ðx1=2þ b2x2c=2; 2x2 � b2x2cÞ if x2A 1=2;

ðx2;�x1 þ 1Þ if x2 ¼ 1=2

�
ð46Þ

where b�c stands for the usual integer part.

• Collapsing property at time 1:

wð0Þ
�
1; ð0; 1Þ � fx2g

�
is a singleton ð47Þ

for every x2 a ð0; 1ÞnZ where

Z :¼ j

2 i

���� 0a ja 2 i; ib 1

� �
:

• Defining g : ð0; 1ÞnZ ! ð0; 1Þ2 by

gðx2Þ :¼ wð0Þ
�
1; ð0; 1Þ � fx2g

�
we have that

g is a bijection from ð0; 1ÞnZ onto
�
ð0; 1ÞnZ

�2
: ð48Þ
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Moreover

wð0Þ
�
1; ðx1; x2Þ

�
a
�
Z � ð0; 1Þ

�
A
�
ð0; 1Þ � Z

�
ð49Þ

for every x1 a ð0; 1Þ and every x2 a Z: Furthermore g and wð0Þð1; �Þ preserve the

measure.

Proof.

Step 1. We first exhibit wð0Þ. First for x B ½0; 1�2 and ta 1 and for x a R2 and

ta 0 we obviously let wð0Þðt; xÞ ¼ x. For x a ½0; 1�2 and t a ½0; 1� we proceed as

follows: We first define wð0Þðt; xÞ for t a ½0; 1=4� as:

wð0Þðt; xÞ :¼
xd
�
t; x� ð1=2; 1=4Þ

�
þ ð1=2; 1=4Þ for x a ½0; 1� � ½0; 1=2�

xd
�
t; x� ð1=2; 3=4Þ

�
þ ð1=2; 3=4Þ for x a ½0; 1� � ½1=2; 1�:

(

We then define it for t a ½1=4; 1=2� in the following way:

wð0Þðt; xÞ ¼ xc
�
�ðt� 1=4Þ; wð0Þð1=4; xÞ

�
:

We next define it for t a ½t1; t2� ¼ ½1=2; 1=2þ 1=4� as follows: define y1 :¼
wð0Þðt1; xÞ and let 1a ja 4 be such that y1 a C1

j and define

wð0Þðt; xÞ :¼ 1

2
wð0Þ
�
2ðt� t1; y1 � l1j Þ

�
þ l1j : ð50Þ

We then define it by induction for t a ½ti; tiþ1�, ib 2 as follows: Denote yi :¼
wð0Þðti; xÞ and let 1a ja 4 i be such that yi a Ci

j : We then let

wð0Þðt; xÞ :¼ 1

2 i
wð0Þ
�
2 iðt� ti; yi � l ij Þ

�
þ l ij : ð51Þ

Finally we extend wð0Þðt; xÞ to t ¼ 1 by continuity. We define wðzÞ similarly. It is

then a simple exercise to check that the first four properties listed in the statement

of the lemma are verified.

Step 2. We prove (46). First, from Lemma 8, wð0Þð1=2; �Þ consists of a

rectangle rotation of angle þp=2 in the rectangles ð0; 1Þ � ð0; 1=2Þ and ð0; 1Þ �
ð1=2; 1Þ followed by a square rotation of angle �p=2 in the square ð0; 1Þ2 (see Fig-
ure 6). The rectangle rotation in ð0; 1Þ � ð0; 1=2Þ, resp. the rectangle rotation in

ð0; 1Þ � ð1=2; 1Þ, is the map, using Lemma 8 (ii),

v1ðx1; x2Þ :¼ xdð1=2; x1 � 1=2; x2 � 1=4Þ þ ð1=2; 1=4Þ ¼ ð�2x2 þ 1; x1=2Þ;
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resp.,

v2ðx1; x2Þ :¼ xdð1=2; x1 � 1=2; x2 � 3=4Þ þ ð1=2; 3=4Þ ¼ ð�2x2 þ 2; x1=2þ 1=2Þ:

Moreover the square rotation (by the same argument) is easily seen to be the map

hðx1; x2Þ :¼ ðx2;�x1 þ 1Þ:

Hence we get

wð0Þ
�
1=2; ðx1; x2Þ

�
¼ h

�
v1ðx1; x2Þ

�
¼ ðx1=2; 2x2Þ for ðx1; x2Þ a ð0; 1Þ � ð0; 1=2Þ

h
�
v2ðx1; x2Þ

�
¼ ðx1=2þ 1=2; 2x2 � 1Þ for ðx1; x2Þ a ð0; 1Þ � ð1=2; 1Þ;

(

showing the first equation in (46). When x2 ¼ 1=2 both rectangle rotations act

trivially (ðx1; 1=2Þ is sent to ðx1; 1=2Þ) while the square rotation sends ðx1; 1=2Þ to
ð1=2;�x1 � 1Þ which shows the second equation in (46).

Step 3. We now prove (47). From (46) we have in particular that for every

x2 a ð0; 1Þnf1=2g, the fiber ð0; 1Þ � fx2g is send by wð0Þð1=2; �Þ to the fiber of

length 1=2 �
m1ðx2Þ; 1=2þm1ðx2Þ

�
� fn1ðx2Þg

where m1ðx2Þ :¼ 1=2b2x2c a f0; 1=2g and n1ðx2Þ :¼ 2x2 � b2x2c. Trivially n1ðx2Þ
does not belong Z whenever x2 does not belong to Z where we recall that

Z ¼ j

2 i

���� 0a ja 2 i; ib 1

� �
:

Next, using (50), a direct calculation gives that, for every x2 a ð0; 1Þnf1=4; 1=2;
3=4g, wð0Þðt2; �Þ sends ð0; 1Þ � fx2g to the fiber of length 1=4�

m2ðx2Þ; 1=4þm2ðx2Þ
�
� fn2ðx2Þg

Figure 6. The action of xð0Þð1=2; �Þ
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where m2ðx2Þ a f0; 1=4; 1=2; 3=4g and where

n2ðx2Þ a ð0; 1ÞnZ whenever x2 a ð0; 1ÞnZ:

Proceeding by induction, we obtain that, for every ib 2 and for every x2 a
ð0; 1ÞnZ,

wð0Þ
�
ti; ð0; 1Þ � fx2g

�
¼
�
miðx2Þ; 2�i þmiðx2Þ

�
� fniðx2Þg

for some miðx2Þ a f j2�i j 0a j < 2 ig and niðx2Þ a ð0; 1ÞnZ: Letting i going to l
we eventually obtain (22).

Step 4. First thanks to (47) g is well defined. Writing every x2 a ð0; 1Þ in base

four, i.e.

x2 ¼ 0; a1a2 . . .

with ai a f0; 1; 2; 3g and

x2 ¼
Xl
i¼1

ai4
�i

we get that

Z ¼ fx2 a ð0; 1Þ : bI such that ai ¼ 0 for every ib I or ai ¼ 3 for every ib I :g

Writing gðx2Þ ¼
�
g1ðx2Þ; g2ðx2Þ

�
is base 2 i.e.

g jðx2Þ ¼ 0; b j
1b

j
2 . . .

with b
j
i a f0; 1g and

g jðx2Þ ¼
Xl
i¼1

b
j
i 2

�i

we easily get by induction (see Figure 6 for i ¼ 1) that the b
j
i obey the following

rule

b1
i ¼ 0 if ai a f0; 1g

1 if ai a f2; 3g

�
and b2

i ¼ 0 if ai a f0; 2g
1 if ai a f1; 3g:

�

From these two formulas we get at once that g is one-to-one on ð0; 1ÞnZ. More-

over, noting that

Z ¼ fy a ð0; 1Þ : bI such that bi ¼ 0 for every ib I or bi ¼ 1 for every ib Ig
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we get that, by the characterization of Z (in base 2 and 4) and by the formula

for g,

g
�
ð0; 1ÞnZ

�
¼
�
ð0; 1ÞnZ

�2
proving (48).

Next noting that wð0Þð1=2; �Þ is the identity on q½0; 1�2 and sends (using (46))

ð0; 1Þ � f1=4; 1=2; 3=4g to
�
ð0; 1Þ � f1=2g

�
A
�
f1=2g � ð0; 1Þ

�
we easily get (49) proceeding by induction.

We finally establish the claim concerning the preservation of the measure.

First, by definition of g, wð0Þð1; �Þ preserves the measure (from ð0; 1Þ2 to ð0; 1Þ2)
if and only if g preserves the measure (from ð0; 1Þ to ð0; 1Þ2). Then we get that

wð0Þð1; �Þ is measure preserving as the pointwise limit of the measure preserving

maps wð0Þð1� 1=n; �Þ. One other direct way to prove the claim is to notice that

(using the formula for g) for every ib 1 and every 0a k < 4 i the ‘‘interval’’

fx2 a ð0; 1ÞnZ : k=4 i < x2 < ðk þ 1Þ=4 i of length 4�i is sent by g to the ‘‘square’’�
ðlx2 ; lx2 þ 2�iÞnZ

�
�
�
ðmx2 ;mx2 þ 2�iÞnZ

�
of area 4�i for some lx2 ;mx2 a Z; hence by bijectivity of g we get that g is measure

preserving. 9
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