
Portugal. Math. (N.S.) Portugaliae Mathematica
Vol. 74, Fasc. 3, 2017, 243–255 6 European Mathematical Society

DOI 10.4171/PM/2005

Commutativity theorems for groups and semigroups
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Abstract. In this note we prove a selection of commutativity theorems for various classes
of semigroups. For instance, if in a separative or completely regular semigroup S we
have xpyp ¼ ypxp and xqyq ¼ yqxq for all x; y a S where p and q are relatively prime,
then S is commutative. In a separative or inverse semigroup S, if there exist three con-
secutive integers i such that ðxyÞ i ¼ xiyi for all x; y a S, then S is commutative. Finally,
if S is a separative or inverse semigroup satisfying ðxyÞ3 ¼ x3y3 for all x; y a S, and if the
cubing map x 7! x3 is injective, then S is commutative.
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1. Introduction

Broadly speaking, a commutativity theorem in group theory is any result conclud-

ing that a group is commutative, i.e. abelian. Perhaps the best known example is

the following standard exercise, usually given to students at the beginning of their

study of group theory:

If G is a group satisfying x2 ¼ 1 for all x a G, then G is commutative.

Commutativity theorems can sometimes be extended to various classes of

semigroups properly containing groups. For instance, a semigroup S is cancella-

tive if it satisfies the conditions xy ¼ xz ) y ¼ z and yx ¼ zx ) y ¼ z for all x,

y, z. Every finite cancellative semigroup is a group; the positive integers under

addition provide an example of a cancellative semigroup which is not a group.
The exercise above extends easily to cancellative semigroups once we reinter-

pret the condition ‘‘x2 ¼ 1’’. Since we do not wish to assume the existence of an

identity element, we replace the condition with ‘‘x3 ¼ x’’, which is clearly equiva-

lent to x2 ¼ 1 in groups and semigroups.



Proposition 1.1. If S is a cancellative semigroup satisfying x3 ¼ x for all x a S,

then S is commutative (and in fact, is a group satisfying x2 ¼ 1 for all x a S).

The parenthetical part of the assertion suggests the proof: if x3 ¼ x, then

x3y ¼ xy and so cancelling gives x2y ¼ y for all x; y a S. Dually, yx2 ¼ y for

all x; y a S. Thus for all x; y a S, x2 ¼ x2y2 ¼ y2. This constant, which we de-

note by 1, is an identity element. Hence x3 ¼ x ¼ x1, and cancelling gives x2 ¼ 1

for all x a S. Therefore S is a group and we have reduced the problem to the

original exercise.

Still using this elementary example to illustrate our point, further extensions

of the result are possible. A semigroup is separative if it satisfies the conditions

xy ¼ xx & yx ¼ yy ) x ¼ y and xy ¼ yy & yx ¼ xx ) x ¼ y ([7], Def. II.6.2,

p. 51). Every cancellative semigroup is evidently separative.

We also need the notion of a semilattice of semigroups. A semilattice is a

partially ordered set ðI ;aÞ such that every two elements x; y a S have a greatest

lower bound, denoted by xby. A semigroup S is a semilattice of semigroups if

there exist a semilattice ðI ;aÞ and a set Y ¼ fSaga A I of pairwise disjoint subse-

migroups SaaS indexed by I such that S ¼
S

a A I Sa, and satisfying this property:

for all a; b a I and for all a a Sa, b a Sb, we have ab a Sabb. (For details, see [7],

Def. II.1.4, p. 27).

For our purposes, the following results are key ([7], Thm. II.6.4, p. 51, [6],

Thm. 3.12, p. 47).

Proposition 1.2. Let S be a semigroup.

(1) S is separative if and only if S is semilattice of cancellative semigroups.

(2) S is commutative and separative if and only if S is a semilattice of commutative

cancellative semigroups.

Now we can extend the original exercise even further.

Corollary 1.3. Let S be a separative semigroup satisfying x3 ¼ x for all x a S.

Then S is commutative, and in fact, is a semilattice of abelian groups satisfying

x2 ¼ 1.

Indeed, by Proposition 1.2(1), S is a semilattice of cancellative semigroups Sa,

a a I , such that each Sa satisfies x
3 ¼ x. By Proposition 1.1, each Sa is an abelian

group satisfying x2 ¼ 1. By Proposition 1.2(2), S is commutative.

We can also view the generalizations of our exercise from a di¤erent perspec-

tive. A semigroup S is regular if for each a a S, there exists b a S such that

aba ¼ a. This is equivalent to asserting that each a a S has an inverse a 0 a S sat-

isfying aa 0a ¼ a and a 0aa 0 ¼ a 0. If each a a S has a unique inverse, then S is said
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to be an inverse semigroup. Equivalently, an inverse semigroup is precisely a reg-

ular semigroup in which all the idempotents commute. A semigroup S such that

each element has a commuting inverse aa 0 ¼ a 0a is said to be completely regular.

Equivalently, a completely regular semigroup is a union of groups. A completely

regular, inverse semigroup is called a Cli¤ord semigroup. A Cli¤ord semigroup

is characterized as a semilattice of groups. (For further details on regular semi-

groups, see, for instance, [3].) Note in particular that every Cli¤ord semigroup is

separative.

This gives us a di¤erent way of viewing our exercise. A semigroup satisfying

x3 ¼ x for all x is completely regular, with the commuting inverse of each x being

given by x 0 ¼ x. It is easy to see that a regular, cancellative semigroup is a group

by essentially the same argument as above: xx 0xy ¼ xy and yxx 0x ¼ yx, so

x 0xy ¼ y and yxx 0 ¼ y for all x; y a S. A semigroup (or more generally, any

magma) with both a left identity element and a right identity element has a (nec-

essarily unique) identity element 1, and we have xx 0 ¼ x 0x ¼ 1 for all x a S. Thus

we have another proof of Proposition 1.2.

In this paper, we will extend three commutativity theorems from group theory

to semigroups. Our first result, which was our original motivation, is based on a

recent preprint of Venkataraman [8]. She proved that in a finite group, if squares

commute with squares and cubes commute with cubes then the group is commu-

tative; she also proposed the problem of extending her result to infinite groups.

More generally, in the same paper, she asked if a group satisfying the conditions

xpyp ¼ ypxp and xqyq ¼ yqxq for all x where p and q are relatively prime is nec-

essarily commutative. Although we did not know it when we began our investiga-

tion, this is apparently a folk result in group theory [9], although we have not been

able to find a reference in the literature. (Note that the proofs given in the cited

website do not generalize directly to semigroups.) In the spirit of our discussion

above, we prove that Venkataraman’s desired result holds more generally.

Theorem 1.4. Let S be a separative or completely regular semigroup such that, for

all x; y a S, xpyp ¼ ypxp and xqyq ¼ yqxq where p and q are relatively prime pos-

itive integers. Then S is commutative.

In Example 2.2, we note that this theorem cannot be extended from completely

regular semigroups to general regular semigroups.

It is easy to see that a group, or more generally a cancellative semigroup, is

commutative if and only if ðxyÞ2 ¼ x2y2 for all x, y. The direct implication is

trivial; for the converse, xyxy ¼ xxyy implies yx ¼ xy after cancellation. In the

same vein is the following well-known exercise ([2], §2.3, Exer. 4):

If G is a group such that ðabÞ i ¼ aibi for three consecutive integers i for all

a; b a G, show that G is abelian.
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The slightly awkward wording (taken verbatim from the aforementioned exer-

cise) allows two interpretations: that the integers i depend on the elements a, b, or

that the same integers i work for all a, b. The proof for groups is essentially the

same in either case, but the former reading gives the stronger result. Our general-

ization is based on that reading.

Theorem 1.5. Let S be a separative semigroup or an inverse semigroup. Suppose

that for each a; b a S, there exist three consecutive nonnegative integers i such that

ðabÞ i ¼ aibi. Then S is commutative.

The theorem cannot be generalized from inverse to other types of regular semi-

groups; see Example 3.2.

Another commutativity theorem for groups was motivated for us by another

known exercise [2], Exer. 24, p. 48:

Let G be a finite group whose order is not divisible by 3. Suppose that

ðabÞ3 ¼ a3b3 for all a; b a G. Prove that G must be abelian.

The finiteness is not essential and the condition can be replaced with the assump-

tion that G is a group with no elements of order 3, that is, G satisfies the condition

x3 ¼ 1 ¼) x ¼ 1 ð1Þ

for all x a G. More generally, a group G satisfying ðabÞ3 ¼ a3b3 for all a; b a G

can be described by a theorem of Alperin [1] as a quotient of a subgroup of a

direct product of abelian groups and groups of exponent 3. The condition (1)

rules out groups of exponent 3, and so G is abelian. The existence of nonabelian

groups of exponent 3, such as the unique one of order 27, shows that some addi-

tional hypothesis like (1) is needed to conclude commutativity.

There are two reasonable reformulations of (1) for semigroups. First, if a

semigroup S satisfies ðabÞ3 ¼ a3b3 for all a; b a S, then this just asserts that the

cubing mapping S ! S; x 7! x3 is an endomorphism. From this point of view,

(1) asserts that in groups, the kernel of this endomorphism is trivial, or equiva-

lently, that the endomorphism is injective. This latter formulation makes sense

in any semigroup S:

x3 ¼ y3 ¼) x ¼ y ð2Þ

for all x a S.

Another reformulation of (1) for groups which works for any semigroup S,

possibly without an identity element, is weaker, but more straightforward:

x4 ¼ x ¼) x2 ¼ x ð3Þ
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for all x a S. To see that this is weaker, suppose (2) holds and x4 ¼ x. Then

ðx2Þ3 ¼ x6 ¼ x3, and so applying (2) yields x2 ¼ x.

Theorem 1.6. Let S be a semigroup satisfying ðxyÞ3 ¼ x3y3 for all x a S.

(1) If S is separative and satisfies (2), then S is commutative.

(2) If S is an inverse semigroup and satisfies (3), then S is commutative.

The hypothesis of part (1) of Theorem 1.6 cannot be weakened to (3); see

Example 4.2 below. Also, neither part of the theorem extends to other types of

regular semigroups; see Example 4.3.

All of our investigations were aided by the automated deduction tool Prover9

created by McCune [4]. Automated theorem provers are especially good at equa-

tional reasoning, being able to derive consequences of equational axioms much

faster and more e‰ciently than humans. Any currently available automated the-

orem prover would have su‰ced for this project, but Prover9 has the advantage

that its input and output are easily readable by mathematicians with no familiarity

with such tools. For example, here are the axioms in an input file for the special

case of Theorem 1.4 where S is a group, p ¼ 2 and q ¼ 3:

% group axioms

(x * y) * z = x * (y * z). % associativity

e * x = x. x * e = x. % identity element

x’ * x = e. x * x’ = e. % inverses

% x^2 y^2 = y^2 x^2

(x * x) * (y * y) = (y * y) * (x * x).

% x^3 y^3 = y^3 x^3

(x * (x * x)) * (y * (y * y)) = (y * (y * y)) * (x * (x * x)).

The goal is just

x * y = y * x. % commutativity

Here each equation is interpreted by Prover9 to be universally quantified in the

variables. Everything written after a % symbol is a comment. Notice that the

association of terms in any equation is made explicit; while there are settings in

Prover9 which allow one to avoid parenthesization of the input, they do not gen-

erally improve readability of proofs.

Since we are working in semigroups, the associative law is part of any input

file, and is heavily used throughout proofs, mostly as a rewrite rule. While this

can lengthen proofs, it actually causes little to no trouble for a human reader,

who can skip many lines where the rule is being applied.
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Running Prover9 with its default settings on the above input gives a proof

in less than half a minute on a not particularly fast computer. The proof has

174 steps. Some of the steps are long and unpleasant; for instance, the longest

one has an equation with 67 symbols in it (variables and occurrences of the

operations � and 0. Here is a more typical one from the proof, split into two

lines:

961 x * (y * (x’ * (y * y))) = y * (y * (x * (y * x’))).

[para(864(a,2),51(a,1,2,2)),rewrite([14(7)])].

The number 961 is a clause identification number which is an internal index that

Prover9 uses to keep track of kept clauses. The part in square brackets is the

justification for clause 961. Here ‘‘para’’ is short for paramodulation, which is

the primary inference used in equational reasoning. Paramodulation refers to the

substitution of one side of an equation into a subterm of another equation. In this

case, clause 864 was plugged into a subterm of clause 51. This was followed by a

rewrite of the resulting clause by clause 14.

It is not terribly enlightening to show the details of this particular step in the

proof nor any other step, because it turns out not to be necessary for transla-

tion into humanly readable form. A proof of 167 steps is, by the standards of

automated theorem provers, not very long, and so it is reasonable to try to ob-

tain a human proof. For familiar associative structures such as groups, lattices,

rings, and so on, this is usually easy, albeit sometimes time-consuming. Given

two equations and being told that under the axioms of group theory, the two yield

a third is usually enough for someone familiar with groups to see how the proof

goes.

In addition, a human reader can take numerous shortcuts. For example, here

is another step in the proof, omitting the justification:

11605 x * (y * (x * y’)) = x * x.

A human reader can immediately see that the proof is essentially finished: cancel x

on each side of the identity and then multiply on the right by y to get commuta-

tivity. Prover9, on the other hand, took 14 additional steps to reach commuta-

tivity. In other words, the ‘‘out of the box’’ proof that Prover9 found was far

from optimal.

Experienced users can tweak Prover9’s many parameters and use various spe-

cialized techniques to find proofs faster, to find shorter proofs, and so on. For

example, changing the term ordering from the default lexicographic path ordering

(LPO) to the Knuth-Bendix ordering gets a di¤erent proof in just 10 seconds and

the new proof is 19 steps shorter than the first one.
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Certainly the most interesting use of Prover9 was in our investigation of

Theorem 1.4. Conditions such as xpyp ¼ ypxp for all x; y where p is an ar-

bitrary but fixed positive integer cannot be directly encoded in Prover9 (or

any other first-order theorem prover) because it has no built-in description of

the integers. Instead, we had to look at several special cases such as the one

above.

It was only after examination of several special cases that we realized that

many of the steps in the proofs were similar. This enabled us to see the pattern

of the proof of Theorem 1.4 for groups. (Recall that at this point, we were not

aware that the theorem was a known folk result.) In particular, the special cases

led us to our formulation of Lemma 2.1 below as containing the essential idea of

the proofs. It was also at this same point in our investigations that we realized the

theorem holds more generally in cancellative, and then separative semigroups.

This motivated us to look at a sampling of other commutativity theorems in vari-

ous classes of semigroups.

After this paper was submitted, we became aware of the recently published

paper of Moghaddam and Padmanabhan [5]. The results contained therein are

di¤erent from ours, but the spirit of the work is exactly the same: by extracting

the essential features of syntactic proofs of commutativity theorems for groups,

they were able to extend them to cancellative semigroups.

2. Proof of Theorem 1.4

The goal of this section is to prove Theorem 1.4. We start with the following key

lemma.

Lemma 2.1. Let S be a cancellative semigroup and suppose that there exists a map

g : S ! S satisfying the following conditions: for all x; y a S,

(a) xgðxÞ ¼ gðxÞx;

(b) gðxÞgðyÞ ¼ gðyÞgðxÞ;

(c) xgðxÞ � ygðyÞ ¼ ygðyÞ � xgðxÞ.

Then the semigroup S is commutative.

Proof. We claim that the following identity holds:

g
�
gðxÞy

�
y ¼ yg

�
gðxÞy

�
: ð4Þ

In fact,
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gðxÞy|fflffl{zfflffl}
u

g
�
gðxÞy

�
|fflfflfflfflffl{zfflfflfflfflffl}

gðuÞ

¼ðaÞ g
�
gðxÞy

�
|fflfflfflfflffl{zfflfflfflfflffl}

gðuÞ

gðxÞy|fflffl{zfflffl}
u

¼ g
�
gðxÞy

�
|fflfflfflfflffl{zfflfflfflfflffl}

gðuÞ

gðxÞ|ffl{zffl}
gðxÞ

y

¼ðbÞ gðxÞ|ffl{zffl}
gðxÞ

g
�
gðxÞy

�
|fflfflfflfflffl{zfflfflfflfflffl}

gðuÞ

y;

which, eliminating gðxÞ by left cancellation, gives (4).

Our next claim is that gðxÞy ¼ ygðxÞ. We start by observing that

ygðyÞ gðxÞy|fflffl{zfflffl}
u

g
�
gðxÞy

�
|fflfflfflfflffl{zfflfflfflfflffl}

gðuÞ

¼ðcÞ gðxÞy|fflffl{zfflffl}
u

g
�
gðxÞy

�
|fflfflfflfflffl{zfflfflfflfflffl}

gðuÞ

ygðyÞ: ð5Þ

Now,

gðxÞy gðyÞg
�
gðxÞy

�
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

gðyÞgðuÞ

y ¼ðbÞ gðxÞy g
�
gðxÞy

�
gðyÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

gðuÞgðyÞ

y

¼ gðxÞyg
�
gðxÞy

�
gðyÞy|fflffl{zfflffl}

¼ðaÞ gðxÞyg
�
gðxÞy

�
ygðyÞ|fflffl{zfflffl}

¼ð5Þ ygðyÞgðxÞyg
�
gðxÞy

�
¼ðbÞ y gðxÞgðyÞ|fflfflfflfflffl{zfflfflfflfflffl} yg

�
gðxÞy

�

¼ð4Þ ygðxÞgðyÞ g
�
gðxÞy

�
y|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl};

yielding

gðxÞy �
�
gðyÞg

�
gðxÞy

�
y
�
¼ ygðxÞ �

�
gðyÞg

�
gðxÞy

�
y
�
;

which, by right cancellation, implies gðxÞy ¼ ygðxÞ, as claimed.

Now the proof that xy ¼ yx is straightforward:

x ygðxÞ|fflffl{zfflffl} gðyÞ ¼ x gðxÞy|fflffl{zfflffl} gðyÞ ¼ðcÞ ygðyÞxgðxÞ ¼ y xgðyÞ|fflffl{zfflffl} gðxÞ ¼ðbÞ yxgðxÞgðyÞ;
and xy ¼ yx follows by right cancellation. This completes the proof of the

lemma. r

The previous lemma opens the gate to the proof of our first main theorem.
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Proof of Theorem 1.4. We may assume without loss of generality that p; q > 1.

Suppose first that S is cancellative. Since p and q are relatively prime, by

Bezout’s identity there exist integers r, s such that prþ qs ¼ 1. Since one of pr

or qs must be negative, we assume without loss of generality that qs < 0; thus

�qs > 0 and x�qs a S for all x a S. Since q > 0, we have s < 0 so that �s > 0;

thus x�s a S for all x a S. As pr > 0 and p > 0, we have r > 0 and xpr; xr a S

for all x a S.

Let gðxÞ ¼ x�qs. We claim that gðxÞ satisfies the three properties (a), (b) and

(c) of the previous lemma. By associativity, we have xgðxÞ ¼ gðxÞx so that (a)

holds. Regarding (b) we have

gðxÞgðyÞ ¼ x�qsy�qs ¼ ðx�sÞqðy�sÞq ¼ ðy�sÞqðx�sÞq ¼ y�qsx�qs ¼ gðyÞgðxÞ:

The second equality holds because by assumption the qth powers commute.

Finally, regarding (c) we have

xgðxÞygðyÞ ¼ xx�qsyy�qs ¼ x1�qsy1�qs ¼ xprypr

¼ ðxrÞpðyrÞp ¼ ðyrÞpðxrÞp ¼ yprxpr

¼ y1�qsx1�qs ¼ yy�qsxx�qs ¼ ygðyÞxgðxÞ:

The fourth equality holds because pth powers commute.

We have proved that S admits a function g : S ! S satisfying the three condi-

tions of the previous lemma. It follows that S is commutative.

Next assume that S is separative. By Proposition 1.2, S is a semilattice of can-

cellative semigroups Sa, each of which satisfies the hypotheses of the theorem. It

follows that each Sa is commutative. By Proposition 1.2 again, S is commutative.

Finally, assume that S is completely regular. If e; f a S are idempotents, then

ef ¼ epf p ¼ f pep ¼ fe. It follows that S is an inverse semigroup. Since S is both

completely regular and inverse, it is a Cli¤ord semigroup, hence is a semilattice of

groups. In particular, S is separative and the desired result follows. r

Example 2.2. Theorem 1.4 does not generalize from completely regular semi-

groups to other types of regular semigroups. For example, let S be the Brandt

semigroup of order 5. Then for every positive integer p > 1 and every x a S,

xp is an idempotent. Thus the hypotheses of the theorem are satisfied since idem-

potents commute in inverse semigroups, but S is not commutative.

3. Proof of Theorems 1.5

We first need a lemma which will prove useful in both this section and the next.

In an inverse semigroup S, we will denote the unique inverse of x a S by x 0.
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Lemma 3.1. Let S be an inverse semigroup. For a a S, suppose there exist in-

tegers, k; l > 1 such that ða 0aÞk ¼ ða 0Þkak and ðaa 0Þl ¼ alða 0Þl. Then a is a com-

pletely regular element, that is, a 0a ¼ aa 0.

Proof. First, since ða 0aÞk ¼ a 0a, we have

ða 0Þkak ¼ a 0a: ð6Þ

Next, recalling that ða 0Þk�1 ¼ ðak�1Þ0 in inverse semigroups, we compute

ða 0Þk�1
ak ¼ ðak�1Þ0ak ¼ ða 0Þk�1

ak�1 � aa 0|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl} a ¼ aa 0 � ða 0Þk�1
ak�1a

¼ aða 0Þkak ¼ð6Þ aa 0a ¼ a;

where we used the fact that idempotents commute in the third equality. Thus

ða 0Þk�1
ak ¼ a: ð7Þ

Next, we have

a 0aa ¼ð7Þ a 0aða 0Þk�1
ak ¼ ða 0Þk�1

ak ¼ð7Þ a;

where we used k > 1 in the second equality. Thus we have

a 0aa ¼ a: ð8Þ

The obvious dual of this argument using ðaa 0Þl ¼ alða 0Þl yields

aa 0a 0 ¼ a 0: ð9Þ

Finally, we compute

aa 0 ¼ð8Þ a 0aaa 0 ¼ aa 0a 0a ¼ð9Þ a 0a;

where we used commuting idempotents in the second equality. This completes the

proof of the lemma. r

Proof of Theorem 1.5. Suppose first that S is cancellative. One of the standard

proofs of Herstein’s exercise ([2], §2.3, Exer. 4) only uses cancellation and so

applies here. Say that the three consecutive nonnegative integers are i, i þ 1,

i þ 2. Then aibiab ¼ ðabÞ iab ¼ ðabÞ iþ1 ¼ aiþ1biþ1. Cancel ai on the left and b

on the right to get bia ¼ abi. Repeating the same argument with i þ 1 in place

of i gives biþ1a ¼ abiþ1. Thus bi � ab ¼ abib ¼ abiþ1 ¼ biþ1a ¼ bi � ba. Cancel-

ling gives ab ¼ ba.

252 F. Araújo and M. Kinyon



Now suppose S is separative. By Proposition 1.2, S is a semilattice of cancel-

lative semigroups Sa. Each Sa satisfies the hypothesis of the theorem, hence is

commutative. By Proposition 1.2, S is commutative.

Now suppose that S is an inverse semigroup satisfying the hypotheses of the

theorem. Then the hypotheses of Lemma 3.1 are satisfied. Thus every element

of S is completely regular, and so S is a Cli¤ord semigroup. In particular, S is

separative and so we conclude that S is commutative. r

Example 3.2. Let S ¼ fe; f g be the 2-element left zero semigroup. Then trivially

ðxyÞk ¼ xkyk for all x; y a S and all positive integers k, but S is not commutative.

Thus Theorem 1.5 does not extend to arbitrary regular semigroups or even com-

pletely regular semigroups.

4. Proof of Theorem 1.6

We start with a lemma of some independent interest.

Lemma 4.1. Let S be a cancellative semigroup satisfying ðxyÞ3 ¼ x3y3 for all

x; y a S. Then for all x; y a S,

x3y ¼ yx3: ð10Þ

Proof. First, cancellation on both sides of ðxyÞ3 ¼ x3y3 gives ðyxÞ2 ¼ x2y2 for all

x; y a S. Using this, we compute ðx � yxÞðx � yxÞ ¼ ðyxÞ2x2 ¼ x2y2x2. Cancelling

on both sides, we obtain

xy2x ¼ yx2y ð11Þ

for all x; y a S. Next, x � y2x2 � x ¼ xðxyÞ2x ¼ð11Þ xy � x2 � xy. Cancelling xy on the

left gives yx3 ¼ x3y for all x a S, as desired. r

Finally, we prove our last main result.

Proof of Theorem 1.6. For part (1), assume first that S is cancellative and satisfies

(2). Then (10) shows that the image C ¼ fx3 j x a Sg of the cubing map S ! S;

x 7! x3 is commutative. The condition (2) asserts that this map is injective, hence

S is isomorphic to C. In particular, S is commutative.

Now assume S is separative. By Proposition 1.2, S is a semilattice of can-

cellative semigroups Sa, each of which satisfies both (2) and ðxyÞ3 ¼ x3y3 for all

x a Sa. By the argument above, each Sa is commutative. Applying Proposition

1.2 again, we have that S is commutative.
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For (2), now let S be an inverse semigroup satisfying both (3) and ðxyÞ3 ¼ x3y3

for all x a S. The hypotheses of Lemma 3.1 are satisfied, so every element of S

is completely regular, that is, S is a Cli¤ord semigroup. Thus S is a semilattice

of groups Sa. Each group Sa satisfies (3) and ðxyÞ3 ¼ x3y3 as well, but in such

groups, (3) and (2) are evidently equivalent. In particular, S is a separative semi-

group satisfying the conditions of part (1), and so S is commutative. r

Example 4.2. The hypothesis of part (1) of Theorem 1.6 cannot be weakened to

(3). Indeed, let S ¼ 1 a

0 b

� ����� a; b a Zþ
� �

with matrix multiplication as the opera-

tion. Then S is a cancellative semigroup without idempotents and thus trivially

satisfies (3). However, S is not commutative.

Example 4.3. Let S be as in Example 3.2 and note once again that ðxyÞ3 ¼ x3y3

is trivially satisfied for all x; y a S. Since S is idempotent, conditions (2) and (3)

both hold. However S is not commutative. Thus neither part of Theorem 1.6

extends to other types of regular semigroups.
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