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Abstract. In this paper, we present two algorithms based on the Froidure–Pin Algorithm
for computing the structure of a finite semigroup from a generating set. As was the case
with the original algorithm of Froidure and Pin, the algorithms presented here produce
the left and right Cayley graphs, a confluent terminating rewriting system, and a reduced
word of the rewriting system for every element of the semigroup.

If U is any semigroup, and A is a subset of U , then we denote by 3A4 the least sub-
semigroup of U containing A. If B is any other subset of U , then, roughly speaking, the
first algorithm we present describes how to use any information about 3A4, that has been
found using the Froidure–Pin Algorithm, to compute the semigroup 3AAB4. More pre-
cisely, we describe the data structure for a finite semigroup S given by Froidure and Pin,
and how to obtain such a data structure for 3AAB4 from that for 3A4. The second algo-
rithm is a lock-free concurrent version of the Froidure–Pin Algorithm.
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1. Introduction

A semigroup is just a set U together with an associative binary operation. If A is a

subset of a semigroup U , then we denote by 3A4 the smallest subsemigroup of U

containing A, and refer to A as the generators of 3A4. If A and B are subsets of U ,

then we write 3A;B4 rather than 3AAB4. The question of determining the struc-

ture of the semigroup 3A4 given the set of generators A has a relatively long his-

tory; see the introductions of [2] or [4] for more details.

In [4] the authors present an algorithm for computing a finite semigroup; we

refer to this as the Froidure–Pin Algorithm. More precisely, given a set A of gen-

erators belonging to a larger semigroup U , the Froidure–Pin Algorithm simulta-

neously enumerates the elements, produces the left and right Cayley graphs, a con-



fluent terminating rewriting system, and a reduced word of the rewriting system

for every element of 3A4. The Froidure–Pin Algorithm is perhaps the first algo-

rithm for computing an arbitrary finite semigroup and is still one of the most pow-

erful, at least for certain types of semigroup. Earlier algorithms, such as those in

[8], [9], often only applied to specific semigroups, such as those of transformations

or Boolean matrices. In contrast, the Froidure–Pin Algorithm can be applied to

any semigroup where it is possible to multiply and test equality of the elements.

Green’s relations are one of the most fundamental aspects of the structure of a

semigroup, from both a theoretical and a practical perspective; see [7] or [18] for

more details. The Green’s structure of a semigroup underlies almost every other

structural feature. As such determining the Green’s relations of a finite semigroup

is a necessary first step in most further algorithms. Computing Green’s relations

is equivalent to determining strongly connected components in the left and right

Cayley graphs of a semigroup, for which there are several well-known algorithms,

such as Tarjan’s or Gabow’s. Hence the problem of determining the Green’s rela-

tions of a semigroup represented by a generating set can be reduced to the prob-

lem of finding the Cayley graphs. Thus the performance of algorithms for finding

Cayley graphs has a critical influence on the majority of further algorithms for

finite semigroups.

The Froidure–Pin Algorithm involves determining all of the elements of the

semigroup 3A4 and storing them in the memory of the computer. In certain cir-

cumstances, it is possible to fully determine the structure of 3A4 without enumer-

ating and storing all of its elements. One such example is the Schreier–Sims Algo-

rithm for permutation groups; see [6], [15], [16]. In [2], based on [8], [9], [10], the

Schreier–Sims Algorithm is utilised to compute any subsemigroup 3A4 of a regu-

lar semigroup U . Of course, this method is most e‰cient when trying to compute

a semigroup containing relatively large, in some sense, subgroups. In other cases,

it is not possible to avoid enumerating and storing all of the elements of 3A4.
For example, if a semigroup S is J-trivial, then the algorithms from [2] enumerate

all of the elements of S by multiplying all the elements by all the generators, with

the additional overheads that the approach in [2] entails. For semigroups of this

type, the algorithms in [2] perform significantly worse than the Froidure–Pin

Algorithm.

In this paper, we present two algorithms based on the Froidure–Pin Algorithm

from [4]. The first algorithm (Algorithm 4.3 (Closure)) can be used to extend the

output of the Froidure–Pin Algorithm for a given semigroup 3A4, to compute a

supersemigroup 3A;B4 without recomputing 3A4. This algorithm might be useful

for several purposes, such as for example: in combination with Tietze transforma-

tions to change generators or relations in a presentation for 3A4; finding small

or irredundant generating sets for 3A4; computing the maximal subsemigroups

of certain semigroups [1].

174 J. Jonušas, J. D. Mitchell and M. Pfei¤er



The second algorithm (Algorithm 5.6 (ConcurrentFroidurePin)) is a lock-free

concurrent version of the Froidure–Pin Algorithm. Since computer processors

are no longer getting faster, only more numerous, the latter provides a means for

fully utilising contemporary machines for computing finite semigroups.

If S is a semigroup generated by a set A, then the time and space complexity of

the Froduire–Pin Algorithm is OðjSj jAjÞ. Hence for example, in the case of trans-

formation semigroups of degree n, the worst case complexity is at least OðnnÞ. The

algorithms presented here do not improve on the underlying complexity of the

Froduire–Pin Algorithm but o¤er practical improvements on the runtime.

Both algorithms are implemented in the Cþþ library libsemigroups [11],

which can be used in both GAP [12] and Python [3].

The paper is organised as follows. Some relevant background material relating

to semigroups is given in Section 2. In Section 3 we describe the Froidure–Pin

Algorithm and prove that it is valid. While there is much overlap between Section

3 and [4], this section is necessary to prove the validity of Algorithms 4.3 and 5.6,

and because some details are omitted from [4]. Additionally, our approach is

somewhat di¤erent to that of Froidure and Pin’s in [4]. The first of our algo-

rithms, for computing 3A;B4 given 3A4, is described in Section 4, and the lock-

free concurrent version of the Froidure–Pin algorithm is described in Section 5.

Sections 4 and 5 both contain empirical information about the performance of

the implementation our algorithms in libsemigroups [11], and our implementation

of Froidure and Pin’s original algorithm in libsemigroups. The performance of

libsemigroups is roughly the same as that of Pin’s implementation in Semigroupe

2.01 [14].

2. Preliminaries

In this section, we recall some standard notions from the theory of semigroups; for

further details see [7].

If f : X ! Y is a function, then domð f Þ ¼ X and imð f Þ ¼ f ðXÞ ¼ f f ðxÞ :
x a Xg. If S is a semigroup and T is a subset of S, then T is a subsemigroup if

ab a T for all a; b a T . A semigroup S is a monoid if it has an identity element,

i.e. an element 1S a S such that 1Ss ¼ s1S ¼ s for all s a S.

If A is a subset of a semigroup S, then we denote by 3A4 the smallest subsemi-

group of S containing A, and refer to A as the generators or generating set of 3A4.
If A is a generating set for a semigroup S, then the right Cayley graph of a semi-

group S with respect to A is the digraph with vertex set S and an edge from s to sa

for all s a S and a a A. The left Cayley graph of S is defined analogously.

A congruence r on a semigroup S is an equivalence relation on S which is in-

variant under the multiplication of S. More precisely, if ðx; yÞ a r, then ðxs; ysÞ;
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ðsx; syÞ a r for all s a S. A homomorphism from a semigroup S to a semigroup T

is just a function f : S ! T such that f ðxyÞ ¼ f ðxÞ f ðyÞ for all x; y a S. If r is a

congruence on a semigroup S, then the quotient S=r of S by r is the semigroup

consisting of the equivalence classes fs=r : s a Sg of r with the operation

x=ry=r ¼ ðxyÞ=r

for all x; y a S. If f : S ! T is a homomorphism of semigroups, then the kernel

of f is

kerð f Þ ¼ fðx; yÞ a S � S : f ðxÞ ¼ f ðyÞg;

and this is a congruence. There is a natural isomorphism between S=kerð f Þ and
imð f Þ which is a subsemigroup of T .

An alphabet is just a finite set A whose elements we refer to as letters. A word

is just a finite sequence w ¼ ða1; . . . ; anÞ of letters a1; . . . ; an in an alphabet A.

For convenience, we will write a1 . . . an instead of ða1; . . . ; anÞ. The length of a

word w ¼ a1 . . . an a A� is n and is denoted jwj. A non-empty subword of a word

a1 . . . an is a word of the form aiaiþ1 . . . aj where 1a ia ja n.

The free semigroup over the alphabet A is the set of all words over A with

operation the concatenation of words; we denote the free semigroup on A by Aþ.
The free semigroup Aþ has the property that every function f : A ! S, where S

is a semigroup, can be uniquely extended to a homomorphism n : Aþ ! S de-

fined by nða1 . . . anÞ ¼ f ða1Þ f ða2Þ . . . f ðanÞ for all a1 . . . an a Aþ. We denote the

monoid obtained from Aþ by adjoining the empty word by A�; which is called

the free monoid.

Suppose that < is a well-ordering of A. Then < induces a well-ordering on A�,
also denoted by <, where u < v if juj < jvj or there exist p; u 0; v 0 a A� and a; b a A,

a < b, such that u ¼ pau 0 and v ¼ pbv 0. We refer to < as the short-lex order on

A�. Let S be a semigroup and let A � S. Then there exists a unique homomor-

phism n : Aþ ! S that extends the inclusion function from A into S. The word

u a Aþ such that

u ¼ minfv a Aþ : nðuÞ ¼ nðvÞg;

with respect to the short-lex order on Aþ, is referred to as a reduced word for S.

For every word w a Aþ, there is a unique reduced word for S, which we denote

by w.

We require the following results relating to words and the short-lex order <.

Proposition 2.1 (cf. Proposition 2.1 in [4]). Let A be any alphabet, let u; v; x; y a
A�, and let a; b a A. Then the following hold:
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(a) if u < v, then au < av and ua < va;

(b) if uaa vb, then ua v;

(c) if ua v, then xuyaxvy.

Proposition 2.2 (cf. Proposition 2.1 in [17]). If S is a semigroup, A � S, and

w a Aþ is reduced for S, then every non-empty subword of w is reduced.

Throughout this paper, we refer to the semigroup U as the universe, and we

let S be a subsemigroup of U represented by a finite set A of generators. The

algorithms described herein require that we can:

• compute the product of two elements in U ; and

• test the equality of elements in U .

In each of the main algorithms presented in this paper, rather than obtaining

the actual elements of the subsemigroup S we obtain reduced words representing

the elements of S. This is solely for the simplicity of the exposition in this paper,

and is equivalent to using the actual elements of S by the following proposition.

Proposition 2.3 (cf. Proposition 2.3 in [4]). If S is a semigroup, A � S, n : Aþ ! S

is the unique homomorphism extending the inclusion of A into S, then the set R ¼
fw : w a A�g with the operation defined by u � v ¼ uv is a semigroup isomorphic

to S.

3. The Froidure–Pin Algorithm

In this section we describe a version of the Froidure–Pin Algorithm from [4] and

prove that it is valid.

Throughout this section, let U be any semigroup, let S be a subsemigroup of U

generated by A � U where 1U a A, and let n : Aþ ! S be the unique homomor-

phism extending the inclusion function of A into S. Since nðaÞ ¼ a for all a a A,

we can compute nðsÞ for any s a Aþ by computing products of elements in S.

We require functions f ; l : Aþ ! A and p; s : Aþ ! A� defined as follows:

• if w a Aþ and w ¼ au for some a a A and u a A�, then f ðwÞ ¼ a and

sðwÞ ¼ u, i.e. f ðwÞ is the first letter of w and sðwÞ is the su‰x of w with length

jwj � 1;

• if w a Aþ and w ¼ vb for some b a A and v a A�, then lðwÞ ¼ b and

pðwÞ ¼ v, i.e. lðwÞ is the last letter of w and pðwÞ is the prefix of w with length

jwj � 1.

Note that if w a A, then both pðwÞ and sðwÞ equal the empty word.

177Two variants of the Froidure–Pin Algorithm for finite semigroups



Next, we give formal definition of the input and output of the version of the

Froidure–Pin Algorithm described in this section. A less formal discussion of

the definition can be found below.

Definition 3.1. The input of our version of the Froidure–Pin Algorithm is a

snapshot of S which is a tuple ðA;Y ;K ;B; fÞ where:
(a) A ¼ fa1; . . . ; arg is a finite collection of generators for S where a1 < � � � < ar

for some r a N;

(b) A � Y ¼ fy1; . . . ; yNg is a collection of reduced words for S, y1 < y2 < � � �<
yN , and if x a Aþ is reduced, then either x a Y or x > yN , for some N a N;

(c) K a N and 1aKa jY j þ 1;

(d) either B ¼ j or B ¼ fa1; . . . ; asg for some 1a sa r; and

(e) if Ka jSj, then f is a function from

ðA� fy1; . . . ; yLgÞA ðfy1; . . . ; yK�1g � AÞA ðfyKg � BÞ

to Y such that n
�
fðu; vÞ

�
¼ nðuvÞ for all u; v a domðfÞ and either L ¼ K � 1

or L < K � 1 and L is the largest value such that jyLj < jyK�1j.

Note that by part (e) of Definition 3.1, fðu; vÞa uv for all u; v a domðfÞ since
fðu; vÞ a Y is reduced and both uv and fðu; vÞ represent the same element of S.

If in parts (c) and (e) of Definition 3.1, L ¼ K � 1 and B ¼ A, respectively, then

the snapshot ðA;Y ;K ;B; fÞ could be written as the snapshot ðA;Y ;K þ 1; j; fÞ
instead. We allow both formulations so that Algorithm 3.1 (Update) is more

straightforward.

Roughly speaking, in Definition 3.1, part (b) say that Y consists of all the re-

duced words for S which are less than or equal to yN . The set Y consists of those

elements of S that have been found so far in our enumeration. The K in part (c)

is the index of the next element in Y that will be multiplied on the right by some

of the generators A. More precisely, yK will be multiplied by the least element in

AnB where B is given in part (d). The function f in part (e) represents a subgraph

of the right and left Cayley graphs of S with respect to A. More specifically, if

BAA, then K is the index of the first element in Y where not all of the right mul-

tiples yKa where a a A are yet known. Similarly, L is the index of the last element

in Y where all of the left multiples of yL are known. Condition (e) indicates that if

any right multiples of a reduced word w for S are known, then the left multiples of

all reduced words of length at most jwj � 1 are also known. The condition also

allows the left multiples of all reduced words of length jwj to be known.

The output of our version of the Froidure–Pin Algorithm is another snapshot

of the above type where: the output value of K is at least the input value; the out-
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put value of Y contains the input value as a subset; and the output function f is

an extension of the input function. In this way, we say that the output snapshot

extends the input data structure. In other words, if Ka jSj or Y AS, then the

output snapshot contains more edges in the right Cayley graph than the input

snapshot, and may contain more elements of S, and more edges in the left Cayley

graph.

The parameters jY j and K quantify the state of the Froidure–Pin Algorithm,

in the sense that the minimum values are jY j ¼ jAj and K ¼ 1, and the snapshot

is complete when K ¼ jSj þ 1 ¼ jY j þ 1, which means that Y ¼ S and all of the

edeges of the left and right Cayley graphs of S are known. We say that a snapshot

of S is incomplete if it is not complete. If desirable the Froidure–Pin Algorithm

can be halted before the output snapshot is complete (when Ka jSj), and subse-

quently continued and halted, any number of times. Such an approach might be

desirable, for example, when testing if u a U belongs to S, we need only run the

Froidure–Pin Algorithm until u is found, and not until K ¼ jSj þ 1 unless u B S.

The minimal snapshot required by the Froidure–Pin Algorithm for S ¼ 3A4
is:

ðA;A; 1; j; jÞ; ð3:2Þ

where the only known elements are the generators, and no left nor right multiples

of any elements are known.

If ðA;Y ;K ;B; fÞ is a snapshot of the semigroup S, then jY j is referred to as its

size, its elements are the elements of Y , and x a S belongs to the snapshot if the

reduced word corresponding to x belongs to Y , i.e. x ¼ nðwÞ for some w a Y .

Algorithm 3.1 (Update) is an essential step in the Algorithm 3.2 (Froidure–Pin)

and we will reuse (Update) in Algorithm 4.3 (Closure). Roughly speaking, Update

adds the first unknown right multiple to an incomplete snapshot. In Update a mul-

tiplication is only performed if it is not possible to deduce the value from existing

products in the input snapshot. Deducing the value of a right multiple is a con-
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stant time operation, whereas performing the multiplication almost always has

higher complexity. For example, matrix multiplication is at least quadratic in the

number of rows. This is the part of the Froidure–Pin Algorithm that is respon-

sible for its relatively good performance.

Recall that since nðaÞ ¼ a for all a a A and n is a homomorphism, the value of

nðwÞ a S can be determined for any w a Aþ by computing products in S. In prac-

tice, we perform the single multiplication nðyKÞnðaÞ ¼ nðyKaÞ.

Lemma 3.3. If ðA;Y ;K ;B; fÞ is a snapshot of a semigroup S, BAA, and a is the

least generator in AnB, then Algorithm 3.1 (Update) returns a snapshot of S contain-

ing yKa.

Proof. There are three cases to consider:

(a) sðyKÞa is not reduced

(b) nðyKaÞ ¼ nðyiÞ for some iaN

(c) neither (a) nor (b) holds.

If (a) or (b) holds, then the only component of the snapshot that is modified is f,

and so we must verify that f is well-defined, and satisfies Definition 3.1(e). In the

case when (c) holds, we also need to show that Definition 3.1(b) holds.

(a). In this case, f
�
sðyKÞ; a

�
a Y is defined because sðyKÞ a Y and sðyKÞ < yK .

Hence there exists iaN such that f
�
sðyKÞ; a

�
¼ yi. Since pðyiÞlðyiÞ ¼ yi <

sðyKÞa, by Proposition 2.1(b), pðyiÞa sðyKÞ and sðyKÞ < yK since jsðyKÞj < jyK j.
Hence f

�
f ðyKÞ; pðyiÞ

�
is defined and

f
�
f ðyKÞ; pðyiÞ

�
a f ðyKÞpðyiÞ < f ðyKÞsðyKÞ ¼ yK :

By the definition of f and since n is a homomorphism,

nðyKaÞ ¼ n
�
f ðyKÞsðyKÞa

�
¼ n

�
f ðyKÞ

�
n
�
sðyKÞa

�
¼ n

�
f ðyKÞ

�
n
�
f
�
sðyKÞ; a

��
¼ n

�
f ðyKÞ

�
nðyiÞ ¼ n

�
f ðyKÞyi

�
¼ n

�
f ðyKÞpðyiÞ

�
n
�
lðyiÞ

�
¼ n

�
f
�
f ðyKÞ; pðyiÞ

��
n
�
lðyiÞ

�
¼ n

�
f
�
f ðyKÞ; pðyiÞ

�
lðyiÞ

�
¼ n

�
f
�
f
�
f ðyKÞ; pðyiÞ

�
; lðyiÞ

��
:

Hence if fðyK ; aÞ :¼ f
�
f
�
f ðyKÞ; pðyiÞ

�
; lðyiÞ

�
, then f continues to satisfy Defini-

tion 3.1(e).

(b). By the assumption of this case, n
�
fðyK ; aÞ

�
¼ nðyiÞ ¼ nðyKaÞ, and Defini-

tion 3.1(e) continues to hold.

(c). In this case, yKa is reduced, and yKa B Y . Hence yKa > maxY by Defi-

nition 3.1(b), and so Y A fyjY jþ1g where yjY jþ1 ¼ yKa satisfies the first part
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of Definition 3.1(b). If w a Aþ is reduced and w < yKa ¼ yjY jþ1, then w ¼
pðwÞlðwÞ < yKa and so either pðwÞ < yK or lðwÞ < a by Proposition 2.1. In both

cases,
�
pðwÞ; lðwÞ

�
a domðfÞ, and so w ¼ f

�
pðwÞ; lðwÞ

�
a Y and so Definition

3.1(b) holds.

By the assumption of this case nðyKaÞA nðyiÞ for any yi a Y , and so, in par-

ticular, yKa B Y . On the other hand, yKaa yKa and yKa < yKa implies yKa a Y

from the previous paragraph. Hence yKa ¼ yKa is reduced. Finally, n
�
fðyK ; aÞ

�
¼ nðyjY jþ1Þ ¼ nðyKaÞ by definition and so Definition 3.1(e) holds. r

Next we state the Froidure–Pin Algorithm, a proof that the algorithm is valid

follows from Lemmas 3.3 and 3.4.

Note that both the input, and output, of Algorithm 3.2 (FroidurePin) has fourth

component equal to j, and as such it would appear to be unnecessary. However,

it is used in the definition of a snapshot so that we can succinctly describe the

output of Closure. FroidurePin could be modified to return a snapshot where the

fourth component was not empty, but for the sake of relative simplicity we opted

not to allow this.

Lemma 3.4. If ðA;Y ;K ; j; fÞ is a snapshot of a semigroup S and M a N, then

Algorithm 3.2 (FroidurePin) returns a snapshot for S with at least minfM; jSjg
elements.

Proof. We may suppose that Ka jY j and jY j < M, since otherwise FroidurePin

does nothing.

By Lemma 3.3, after applying Update to the input snapshot and every a a A, in

line 6, ðA;Y ;K ;A; fÞ is a snapshot of S containing yKA. At this point, if Ka jY j
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and jyKþ1j ¼ jyK j, then we continue the while-loop starting in line 3. When we

arrive in line 8 one of the following holds: K > jY j, jY jbM, or jyK j > c ¼
jyK�1j.

If the condition in line 8 is not satisfied, then the condition in line 3 is false be-

cause jY jbM. Hence the condition in line 3 is also false, and so ðA;Y ;K ;A; fÞ
is returned in this case. Since Algorithmn 3.1 (Update) returns a snapshot,

ðA;Y ;K ;A; fÞ could only fail to be a snapshot because the value of K was in-

creased. In other words, the tuple ðA;Y ;K ;A; fÞ satisfies Definition 3.1 (a) to (d)

and n
�
fðu; vÞ

�
¼ nðuvÞ for all ðu; vÞ a domðfÞ. Since the condition in line 8 is not

satisfied, jyK j ¼ jyK�1j ¼ c, and so ðA;Y ;K ;A; fÞ continues to satisfy Definition

3.1(e), which is hence a snapshot of S, as required.

If the condition in line 8 is satisfied, then either K > jY j; or Ka jY j and
jyK j > jyK�1j ¼ c. In either case, the tuple ðA;Y ;K ;B; fÞ satisfies Definition

3.1(a) to (d), but may fail to satisfy part (e), since f may not be defined on

A� fyLþ1; . . . ; yK�1g, where L a N is the maximum value such that jyLj < jyK�1j
(as defined in line 9). The only component of ðA;Y ;K ;B; fÞ that is modified

within the if-clause is f. Hence by the end of the if-clause ðA;Y ;K ;B; fÞ is a snap-

shot for S, provided that fða; yiÞ is well-defined for all i a fLþ 1; . . . ;K � 1g and

n
�
fða; yiÞ

�
¼ nðayiÞ for all a a A.

Let i a fLþ 1; . . . ;K � 1g. Since jpðyiÞj ¼ jyij � 1 and jyij ¼ jyK�1j,
f
�
a; pðyiÞ

�
is defined and

��f�a; pðyiÞ���a japðyiÞj ¼ jyK�1j, because f
�
a; pðyiÞ

�
a

apðyiÞ. Since yK�1 is the largest reduced word of length jyK�1j, there exists j < K

such that fða; pðyiÞ
�
¼ yj. By definition, ðyj; xÞ a domðfÞ for all x a A. In par-

ticular, f
�
yj; lðyiÞ

�
¼ f

�
f
�
a; pðyiÞ

�
; lðyiÞ

�
is defined, and so the assignment in line

12 is valid.

Let a a A and i a fLþ 1; . . . ;K � 1g be arbitrary. Then

n
�
fða; yiÞ

�
¼ n

�
f
�
f
�
a; pðyiÞ

�
; lðyiÞ

��
¼ n

�
f
�
a; pðyiÞ

�
lðyiÞ

�
¼ n

�
f
�
a; pðyiÞ

��
n
�
lðyiÞ

�
¼ n

�
apðyiÞ

�
n
�
lðyiÞ

�
¼ n

�
apðyiÞlðyiÞ

�
¼ nðayiÞ;

as required.

Finally, the algorithm halts if jK j > jY j in which case the snapshot contains jSj
elements, or if jY jbM. In either case, jY jbminfM; jSjg, as required. r

Corollary 3.5. If ðA;Y ;K ; j; fÞ is a snapshot of a semigroup S and M a N is

such that Mb jSj, then Algorithm 3.2 (FroidurePin) returns ðA;R; jSj þ 1; j; fÞ
where R is the set of all reduced words for elements of S and domðfÞ ¼ ðA� RÞA
ðR� AÞ.
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Proof. Suppose that the snapshot returned by FroidurePin is ðA;Y ; jSj þ 1; j; fÞ.
Under the assumptions of the statement, the last iteration of while-loop start-

ing in line 3 terminates when K ¼ jY j þ 1. Hence the condition of the if-clause in

line 8 is satisfied, and so domðfÞ ¼ ðA� YÞA ðY � AÞ.
Assume that there exists a reduced word w a Aþ such that w B Y . Then

we may assume without loss of generality that w is the minimum such reduced

word. Hence pðwÞ is a reduced word and pðwÞ < w and so pðwÞ a Y . But then

fðpðwÞ; lðwÞ
�
is defined, and so w ¼ fðpðwÞ; lðwÞ

�
a Y , a contradiction. Hence

Y ¼ R. r

4. The closure of a semigroup and some elements

In this section we give the first of the two new algorithms in this paper. Given a

snapshot of a semigroup S ¼ 3A4aU and some additional generators X � U ,

this algorithm returns a snapshot for T ¼ 3A;X4. If n : ðAAXÞþ ! T is the

unique homomorphism extending the inclusion map from AAX into T , then n

restricted to Aþ is the unique homomorphism extending the inclusion map from

A into S. Hence we only require the notation n : ðAAXÞþ ! T .

The purpose of Algorithm 4.3 (Closure) is to avoid multiplying elements in the

existing snapshot for S, by the generators A, in the creation of the snapshot for T

wherever such products are already known. The principal complication is that the

introduction of new generators can change the reduced word representing a given

element s of S. The new generating set AAX may allow s to be written as a

shorter word than was previously possible with A. Suppose that fy1; . . . ; yKS
g is

the set of those elements in the original snapshot for S whose right multiples by

the old generating set were known. Closure terminates when the right multiplies

by all the generators, old and new, of every element in fy1; . . . ; yKS
g are known.

In short Closure is a version of FroidurePin where each of KSjAj products can be

found in constant time. This works particularly well when the addition of new

generators does not increase the size of the semigroups substantially, or when the

complexity of multiplication is very high.

We prove that Closure is valid in Lemma 4.1.

Lemma 4.1. If ðA;Y ;KS; j; fSÞ is a snapshot of a semigroup SaU and X � U,

then Algorithm 4.3 (Closure) returns a snapshot of T ¼ 3X ;A4 that contains

fy1; . . . ; yKS
gX, and hence also contains Y .

Proof. At the start of Closure, ðAAX ;Z;KT ;B; fT Þ is initialised as ðAAX ;

AAX ; 1; j; jÞ, which is the minimal snapshot of T by (3.2).

Additionally, l : A ! Z satisfies the following two conditions:
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(a) domðlÞ ¼ fy a Y : bz a Z; nðyÞ ¼ nðzÞg; and
(b) n

�
lðyÞ

�
¼ nðyÞ for all y a domðlÞ.

If Y ¼ domðlÞ, then the minimal snapshot of T is returned, and there nothing

to prove. So, suppose that Y AdomðlÞ. We proved in Lemma 3.3, that Algo-

rithm 3.1 (Update) returns a snapshot of T , given a snapshot of T . The data struc-

ture ðAAX ;Z;KT ;B; fT Þ is otherwise only modified within the while-loop start-

ing on line 6, in the case that there exists yi a Y such that nðzKT
Þ ¼ nðyiÞ and

i < KS. Hence it su‰ces to verify that after performing the steps in the if-clause

starting in line 8 the tuple ðAAX ;Z;KT ;B; fT Þ is still a snapshot of T . In order

to do this, we use the properties of l given above. Hence we must also check that

l continues to satisfy conditions (a) and (b) whenever it is modified (i.e. in lines 13

and 20).
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Suppose that l satisfies conditions (a) and (b) above, and that there exists

yi a Y such that nðzKT
Þ ¼ nðyiÞ and i < KS and that a a A. Since i < KS,

fSðyi; aÞ is defined for all a a A.

If fSðyi; aÞ a domðlÞ, then in line 11 we define fT ðzKT
; aÞ ¼ l

�
fSðyi; aÞ

�
. In

this case, ðAAX ;Z;KT ;B; fT Þ satisfies Definition 3.1(a) to (d) trivially and

n
�
fTðzKT

; aÞ
�
¼ n

�
l
�
fSðyi; aÞ

��
¼ n

�
fSðyi; aÞ

�
¼ nðyiaÞ ¼ nðzKT

aÞ:

and so Definition 3.1(e) holds.

If fSðyi; aÞ B domðlÞ, then we define fT ðzKT
; aÞ ¼ zKT

a. Since n
�
fT ðzKT

; aÞ
�
¼

nðzKT
aÞ by definition, it su‰ces to show that zKT

a is a reduced word for T . Sup-

pose, seeking a contradiction, that u a ðAAXÞþ is reduced, nðuÞ ¼ nðyiaÞ, and
u < zKT

a. Then either pðuÞ < zKT
or pðuÞ ¼ zKT

and lðuÞ < a by Propostion

2.1(b). In either case, fT
�
pðuÞ; lðuÞ

�
¼ u is defined and so u a Z. Thus

n
�
fSðyi; aÞ

�
¼ nðyiaÞ ¼ nðuÞ and so fSðyi; aÞ a domðlÞ by (a), which contradicts

the assumption of this case. Hence zKT
a is reduced. We must verify conditions

(a) and (b) on l after defining l
�
fSðyi; aÞ

�
¼ zKT

a a Z in line 13. Condition (a)

holds, since we extended both Z and domðlÞ by a single value. Since

n
�
l
�
fSðyi; aÞ

��
¼ nðzKT

aÞ ¼ nðzKT
ÞnðaÞ ¼ nðyiÞnðaÞ ¼ nðyiaÞ ¼ n

�
fSðyi; aÞ

�
condition (b) also holds.

The only other part of the algorithm where l is modified is line 20. Sup-

pose that a ¼ min
�
ðAAXÞnB

�
as defined in line 17. If fTðzKT

; aÞ ¼ zKa and

nðzKT
Þ ¼ nðyiÞ for some yi a Y , then zKa a Z is reduced. In this case, we define

lðyiÞ ¼ zKT
a. Conditions (a) and (b) hold by the above argument.

We have shown that within the while-loop starting on line 6, the tuple ðAAX ;

Z;KT ;B; fT Þ satisfies Definition 3.1(a) to (d). Additionally, we have shown that

conditions (a) and (b) hold for l.

The remainder of the proof follows by the argument given in the proof of

Lemma 3.4. r

4.1. Experimental results. In this section we compare the performance of Algo-

rithm 3.2 (FroidurePin) and Algorithm 4.3 (Closure). Further details about the

computations performed, including code that can be used to reproduce the data,

in this section can be found in [13].

We note that in the implementation of Closure in libsemigroups [11], the snap-

shot of S ¼ 3A4 is modified in-place to produce the data structure for T ¼ 3A;X4,
and that none of the elements of S need to be copied or moved in memory during

Closure.

Figure 1, 2, 3, and 4 we plot a comparison of FroidurePin and Closure for 300

examples of randomly generated semigroups. For a particular choice of A and X ,

three computations were run:
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(1) a snapshot for 3A4 was enumerated using FroidurePin until it contained j3A4j
elements; we denote the time taken for this step by t1.

(2) Closure was performed on the snapshot obtained from (1) and the generators

X . We denote the size of the snapshot obtained in this way by M and the time

taken for this step by t2.

(3) A snapshot for 3A;X4 was enumerated using FroidurePin until it contained M

(from (2)) elements. We denote the time taken for this step by t3.

A point on the x-axis of any graph in this section correspond to a single choice

of A and X . The points on the x-axes are sorted in increasing order according

to the M=3A4. In other words, M=3A4 indicates the proportion of new elements

generated in Closure. The y-axis corresponds to time divided by t3 from (3). The

triangles correspond to the mean value of t2=t3 taken over 3 separate runs, and the

crosses similarly correspond to ðt1 þ t2Þ=t3.
The values of A and X in Figure 1 were chosen as follows:

• the collection A was chosen to have size between 2 and 30 elements

(uniformly at random) and to consist of 6� 6 Boolean matrices, which

were chosen uniformly at random from the space of all such Boolean

matrices.

Figure 1. A and X consist of 6� 6 Boolean matrices, jAj a f2; . . . ; 30g, jX j ¼ 1, M is the
size of the snapshot for 3A;X4 returned by Algorithm 4.3 (Closure).
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• the collection X was taken to consist of a single 6� 6 Boolean matrices, again

chosen uniformly at random.

The values of A and X in Figure 2 were chosen in a similar fashion from the space

of all transformations of degree 7, where jAj a f2; . . . ; 8g and X was chosen so

that jX j ¼ 1. In Figures 3 and 4, A and X were chosen in the same way as collec-

tions of Boolean matrices, and transformations, with jAj; jX j a f2; . . . ; 30g, and
jAj; jX j a f2; . . . ; 8g, respectively. The semigroups in Figures 1, 2, 3, and 4 range

in size from 1767 to 681973, with time to run FroidurePin and Closure roughly in

the range 10 to 1500 milliseconds, particular values chosen for A and X can be

found in the table below. We rejected those choices of A and X where the time

t1 to enumerate 3A4 using FroidurePin was less than 10 milliseconds, to reduce

the influence of random noise in the resulting data.

The range of values for jAj, the dimensions of these matrices, and degrees of

these transformations were chosen so that the resulting semigroups were not too

large or small, and it was possible to run FroidurePin on these semigroups in a rea-

sonable amount of time.

It is not surprising to observe that when M=3A4 is large that there is little ben-

efit, or even a penalty, for running Closure. This due to the fact that the run time

t1 of FroidurePin on 3A4 is small in comparison to t2 and t3. In this case, in Closure

Figure 2. A and X consist of transformations of degree 7, jAj a f2; . . . ; 8g, jX j ¼ 1, M is
the size of the snapshot for 3A;X4 returned by Algorithm 4.3 (Closure).
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Figure 3. A and X consist of 6� 6 Boolean matrices, jAj; jX j a f2; . . . ; 30g, M is the size
of the snapshot for 3A;X4 returned by Algorithm 4.3 (Closure).

Figure 4. A and X consist of transformations of degree 7, jAj; jX j a f2; . . . ; 8g, M is the
size of the snapshot for 3A;X4 returned by Algorithm 4.3 (Closure).
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applied to 3A4 and X , only a relatively small proportion of multiplications can be

deduced, and so Closure is essentially doing the same computation as FroidurePin,

but with an additional overhead. It does appear from these examples, that Closure

is beneficial when M=3A4a 2.

5. A lock-free concurrent version of the Froidure–Pin Algorithm

In this section we describe a version of the Froidure–Pin Algorithm that can be

applied concurrently in multiple distinct processes. Roughly speaking, the idea is

to split a snapshot of a semigroup S into fragments where an algorithm similar

to Algorithm 3.2 (FroidurePin) can be applied to each fragment independently.

Similar to the Froidure–Pin Algorithm the value of a right multiple of an element

with a generator is deduced whenever possible. If such a right multiple cannot be

deduced, then it is stored in a queue until all fragments are synchronised. The

original Froidure–Pin Algorithm already o¤ers a natural point for this synchroni-

sation to occur, when the right multiples of all words of a given length have been

determined. In the concurrent algorithm, the fragments are synchronised at ex-

actly this point. In this way, the concurrent algorithm has two phases: the first

when right multiples are determined, and the second when the fragments are

synchronised. Some of the deductions of products that are made by the original

Froidure–Pin Algorithm cannot be made in our concurrent version. This happens

if the information required to make a deduction is, or will be, contained in a dif-

ferent fragment. In order to avoid locking, a fragment does not have access to any

information in other fragments during the first phase. In the second phase, each

fragment F can only access the words queued by all fragments for F . While this

means that the concurrent algorithm potentially performs more actual multiplica-

tions of elements than the original, in Section 5.1 we will see that these numbers of

multiplications are almost the same. Of course, we could have allowed the frag-

ments to communicate during the first phase but in our experiments this was

significantly slower. The evidence presented in Section 5.1 supports this, the time

spent waiting for other fragments to provide information outweighs the benefit of

being able to deduce a relatively small additional number of products.

Throughout this section, we again let U be any semigroup, let S be a

subsemigroup of U generated by A � U , and let n : Aþ ! S be the unique homo-

morphism extending the inclusion map. We also define f ; l : Aþ ! A and

p; s : Aþ ! A� to be the functions defined at the start of Section 3.

The following is the precise definition of a fragment required for our concur-

rent algorithm.

Definition 5.1. A fragment for S is a tuple ðA;Y ;K ; fÞ where:
(a) A ¼ fa1; . . . ; arg is a finite collection of generators for S where a1 < � � � < ar;
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(b) Y ¼ fy1; . . . ; yNg is a collection of reduced words for S and y1 < y2 < � � � <
yN ;

(c) 1aKa jY j þ 1 and if K ¼ 1, then Y ¼ A, or if K > 1, then yK�1 ¼
maxfyi a Y : jyij ¼ jyK�1jg;

(d) if R � Aþ is the set of all reduced words for elements of S, then

f : ðA� fy1; . . . ; yLgÞA ðfy1; . . . ; yK�1g � AÞ ! R

where n
�
fðu; vÞ

�
¼ nðuvÞ for all u; v a domðfÞ and either:

(i) L ¼ K � 1; or

(ii) L < K � 1 and L is the largest value such that jyLj < jyK�1j.

Note that in part (c) the condition that yK�1 ¼ maxfyi a Y : jyij ¼ jyK�1jg
implies that either yK does not exist or jyK j > jyK�1j. We refer to the size, ele-

ments, extension, and so on of a fragment for a semigroup S, in the same way as

we did for the snapshots of S.

We suppose throughout this section that however f in Definition 5.1 is actually

implemented, it supports concurrent reads of any particular value fðx; yÞ when

ðx; yÞ a domðfÞ and that it is possible to define fðx; yÞ for any ðx; yÞ B domðfÞ
concurrent with any read of fðx 0; y 0Þ for ðx 0; y 0Þ a domðfÞ. Of course, the di‰-

culty is that we do not necessarily know whether ðx; yÞ belongs to domðfÞ or not.
If one process is defining fðx; yÞ and another is trying to read fðx; yÞ, it is not pos-
sible to determine whether ðx; yÞ belongs to domðfÞ without locking, which we

want to avoid. We avoid this in Algorithm 5.6 (ConcurrentFroidurePin) because f

is defined for those ðw; aÞ and ða;wÞ where a a A and w is a reduced word whose

length is strictly less than the minimum length of a word some of whose right mul-

tiples are not known.

The implementation in libsemigroups [11] represents f as a pair of Cþþ
Standard Template Library vectors, which support this behaviour provided that

no reallocation occurs when we are defining fðx; yÞ for ðx; yÞ B domðfÞ. In Con-

currentFroidurePin, all of the reduced words w a Aþ of a given length are produced

before any value of fðw; aÞ or fða;wÞ is defined, and so we can allocate enough

memory to accommodate these definitions and thereby guarantee that it is safe to

read and write values of fðx; yÞ concurrently.
If ðA;A; 1; j; jÞ is a minimal snapshot for S, we refer to the collection of

fragments

ðA; fa a A : bðaÞ ¼ jg; 1; jÞ j a f1; . . . ; kg

as a minimal collection of fragments for S.

The next lemma describes when some fragments for S can be assembled into a

snapshot of S.
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Lemma 5.2. Suppose that ðA;Y1;K1; f1Þ; . . . ; ðA;Yk;Kk; fkÞ is a collection of

fragments for S which is either minimal or Yi ¼ fyi;1; . . . ; yi;Ni
g and the following

hold:

(i) Yi BYj ¼ j for all i, j, iA j;

(ii) for all reduced w a Aþ either

w a
[k
i¼1

Yi or w > max
[k
i¼1

Yi;

(iii) if Kj > 1, then jyj;Kj�1j ¼ maxfjyj : y a Yj ; jyja cg where c ¼ maxfjyi;Ki�1j :
1a ia k;Ki > 1g

(iv) domðfiÞ ¼ ðA� fyi;1; . . . ; yi;Ki�1gÞA ðfyi;1; . . . ; yi;Ki�1g � AÞ for all i; and
(v) imðfiÞ �

Sk
j¼1 Yj for all i.

If Y ¼
Sk

i¼1 Yi ¼ fy1; . . . ; yNg, y1 < � � � < yN, K a N is such that yK�1 ¼
maxfy a Y : jyj ¼ cg, and f ¼

Sk
i¼1 fi , then ðA;Y ;K ; j; fÞ is a snapshot of S.

Proof. If the collection of fragments is minimal, then clearly the union, as defined

in the statement, is a minimal snapshot for S.

Suppose that the collection of fragments is not minimal. It follows that there

exists i a f1; . . . ; kg such that Ki > 1, and so the value c in part (iii) is well-defined.

It is clear that Definition 3.1(a) to (d) are satisfied. It therefore su‰ces to show

that part (e) of Definition 3.1 holds. Part (i) of the assumption of this lemma

implies that f is well-defined. It su‰ces to verify that

domðfÞ ¼ ðA� fy1; . . . ; yK�1gÞA ðfy1; . . . ; yK�1g � AÞ;
imðfÞ � Y ; and n

�
fðu; vÞ

�
¼ nðuvÞ

for all u; v a domðfÞ. That imðfÞ � Y follows from (v). If ðu; vÞ a domðfÞ, then
ðu; vÞ a domðfiÞ for some i, and so n

�
fðu; vÞ

�
¼ n

�
fiðu; vÞ

�
¼ nðuvÞ.

Let ða; yiÞ a A� fy1; . . . ; yK�1g. Then yi a Yj for some j and so yi ¼ yj; t for

some t. But jyj; tj ¼ jyija jyj;Kj�1j by the definition of K and part (iii) of the

assumption of this lemma. Hence either jyj; tj < jyj;Kj�1j and so yj; t < yj;Kj�1, or

jyj; tj ¼ jyj;Kj�1j and, by Definition 5.1(c), yj; t < yj;Kj�1. In either case, taKj � 1,

and so ða; yiÞ ¼ ða; yj; tÞ a domðfjÞ � domðfÞ. If ðyi; aÞ a fy1; . . . ; yK�1g � A,

then ðyi; aÞ a domðfÞ by a similar argument.

If ða; yiÞ a domðfÞ, then ða; yiÞ a domðfjÞ for some j. Hence yi a fyj;1; . . . ;
yj;Kj�1g. It follows that, since yK�1 ¼ maxfy a Y : jyj ¼ cg, yK�1b yj;Kj�1b

yi, and so ða; yiÞ a A� fy1; . . . ; yK�1g. If ðyi; aÞ a domðfÞ, then ðyi; aÞ a
fyi;1; . . . ; yi;Ki�1g � A by a similar argument. Therefore domðfÞ ¼ ðA� fy1; . . . ;
yK�1gÞA ðfy1; . . . ; yK�1g � AÞ, as required. r
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In Algorithm 5.4 (ApplyGenerators), and more generally in our concurrent ver-

sion of the Froidure–Pin Algorithm, we require a method for assigning reduced

words w a Aþ that do not belong to any existing fragment for S, to a particular

fragment for S. If we want to distribute S into k fragments, then we let b : R :¼
fw a Aþ : w is reduced for Sg ! f1; . . . ; kg be any function. Preferably so that

our algorithms are more e‰cient, b should have the property that jb�1ðiÞj is ap-
proximately equal to jRj=k for all i. For example, we might take a hash func-

tion for nðwÞ modulo k, as the value of bðwÞ. If the number of fragments k ¼ 1

or bðwÞ is constant for all reduced words w for S, then ConcurrentFroidurePin is

just FroidurePin with some extra overheads.

Lemma 5.3. Algorithm 5.4 (ApplyGenerators) can be performed concurrently on

each fragment ðA;Yj;Kj; j; fjÞ of its input.

Proof. Every value assigned to fj in ApplyGenerators equals a value for f defined

in Update. It is possible that some assignments made in Update for f cannot be

made for fj in ApplyGenerators. In particular, in Update if sðyj;Kj
Þa is not reduced,

then fj
�
sðyj;Kj

Þ; a
�
is always defined in Update but is only defined in some cases in

ApplyGenerators. Hence that fj is well-defined follows by the proof of Lemma 3.3.

The values fi
�
sðyj;Kj

Þ; a
�
, fm

�
f ðyj;Kj

Þ; pðyÞ
�
, and fn

�
w; lðyÞ

�
are read in Apply-

Generators and may belong to other fragments. But jsðyj;Kj
Þj; jpðyÞj < c and

fn
�
w; lðyÞ

�
is only used if n ¼ j or jwj < c. The only value which is written in

ApplyGenerators is fjðyj;Kj
; aÞ, and jyj;Kj

j ¼ c. It follows that ApplyGenerators
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only reads values of fdðu; aÞ or fdða; uÞ when dA j and juj < c, while the algo-

rithm only writes to values of fjðu; aÞ when juj ¼ c. Therefore there are no con-

current reads and writes in ApplyGenerators. r

Note that after applying ApplyGenerators, the tuple ðA;Yj ;Kj; fjÞ is no longer a

fragment because Definition 5.1(d) may not be satisfied.

The next algorithm, Algorithm 5.5 (ProcessQueues), performs the synchronisa-

tion step alluded to at the start of this section. We prove the validity of Process-

Queues in Lemma 5.4.

Lemma 5.4. Algorithm 5.5 (ProcessQueues) returns a fragment for S satisfying

Definition 5.1(d)(ii) and it can be performed concurrently on each j a f1; . . . ; kg.

Proof. If ProcessQueues is run concurrently in k processes, for distinct values of j,

then each process only writes to fj and only reads from Q1A � � �AQk. Hence

ProcessQueues can be performed concurrently.

Parts (a) of Definition 5.1 holds trivially. For part (b), it su‰ces to note that

wa added in line 6, is a reduced word, since we loop over the elements in

Q1A � � �AQk in short-lex order.

For part (c), we must show that 1aKj a jYjj þ 1 and that yj;Kj�1 is the maxi-

mum word in Yj of length jyj;Kj�1j. Since Kj is not modified by ProcessQueues the

first condition holds. ApplyGenerators must have returned to obtain the input for

ProcessQueues, which implies that yj;Kj�1 is the maximum word in Yj of length

jyj;Kj�1j before ProcessQueues is called. ProcessQueues only adds words to Yj of

length cþ 1 > jyj;Kj�1j and so yj;Kj�1 is the maximum word in Yj, and part (c)

holds.

For part (d), suppose that w a Y1A � � �AYk and a a A are such that fjðw; aÞ
is defined in ApplyGenerators or ProcessQueues. In either case, fjðw; aÞ a Y and

since we have shown that every element in Y is reduced, fjðw; aÞ must be also.
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The input of ApplyGenerators satisfies Lemma 5.3, in particular part (iv), which

states that before applying ApplyGenerators

domðfjÞ ¼ ðA� fy a Yj : jyj < cgÞA ðfy a Yj : jyj < cg � AÞ:

If a a A and w a Yn such that jwj ¼ c and bðwaÞ ¼ j, then either ApplyGenerators

defines some fjðw; aÞ or ð j;waÞ is placed in Qn. In the latter case, fjðw; aÞ is

defined in ProcessQueues. Hence when ProcessQueues returns

domðfjÞ ¼ ðA� fyj;1; . . . ; yj;LgÞA ðfyj;1; . . . ; yj;Kj�1g � AÞ

where L < Kj � 1 and L is the largest value such that jyLj < jyKj�1j. That

n
�
fðu; vÞ

�
¼ nðuvÞ for all u; v a domðfÞ follows by the argument in the proof of

Lemma 3.3. r

We have all of the ingredients to state the concurrent version of Froidure–Pin,

the validity of which is proven in Lemma 5.5.

Lemma 5.5. If ðA;Y ;K ; j; fÞ is a snapshot for a semigroup S and M a N, then

Algorithm 5.6 (ConcurrentFroidurePin) returns a snapshot of S that extends

ðA;Y ;K ; j; fÞ has at least minfM; jSjg elements.

Proof. By Lemma 5.3 and 5.4, when line 8 is reached, every tuple ðA;Yj ;Kj; fjÞ is
a fragment for S, and the loops applying ApplyGenerators and ProcessQueues can

be performed concurrently.
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We will show that by the end of the for-loop started in line 8, ðA;Y1;K1;

f1Þ; . . . ; ðA;Yk;Kk; fkÞ is a collection of fragments satisfying the conditions of

Lemma 5.2, and that the steps within the for-loop can be executed concurrently

for each fragment. That the values assigned to fj are valid follows by the argu-

ment in the proof of Lemma 3.4. Suppose that j a f1; . . . ; kg is given. When

the for-loop started in line 8 is complete, ðA;Yj;Kj; fjÞ clearly satisfies Definition

5.1(a) to (c), since fj is the only component which is modified inside the for-loop.

Hence it su‰ces to verify Definition 5.1(d). That n
�
fjðu; vÞ

�
¼ nðuvÞ for all

u; v a domðfjÞ follows again by the same argument as in Lemma 3.4.

By Lemma 5.4, before fj is modified in this loop it satisfies Definition 5.1(d)(ii),

i.e.

domðfjÞ ¼ ðA� fyj;1; . . . ; yj;LgÞA ðfyj;1; . . . ; yj;Kj�1g � AÞ

where L < Kj � 1 is the largest value such that jyLj < jyKj�1j. After the for-loop

starting in line 10,

domðfjÞ ¼ ðA� fyj;1; . . . ; yj;Kj�1gÞA ðfyj;1; . . . ; yj;Kj�1g � AÞ: ð5:6Þ

In other words, Definition 5.1(d)(i) holds, and so ðA;Yj;Kj; fjÞ is a fragment.

It is clear that the collection of fragments contains at least minfM; jSjg ele-

ments. Next, we show that the for-loop started in line 8 can be executed concur-

rently. Since jpðyj; iÞj < jyj; ij ¼ c and so fm
�
a; pðyj; iÞ

�
is defined before line 8.

Furthermore,
��fm�a; pðyj; iÞ���a jyj; ij ¼ c and by, (5.6), fnðw; bÞ is defined for all re-

duced w of length at most c and for all b a A. In other words, fn
�
fm

�
a; pðyj; iÞ

�
;

lðyj; iÞ
�
is defined before line 8.

It remains to show that the collection of fragments satisfies the conditions in

Lemma 5.2. For Lemma 5.2(i), a reduced word y belongs to Yj if and only if

bðyÞ ¼ j, and hence Yi BYj ¼ j if iA j. To show that Lemma 5.2(ii) holds, it

su‰ces to show that
Sk

i¼1 Yi ¼ fw a Aþ : jwja jyN j;w is reducedg. Suppose that

w a Aþ is reduced and jwja jyN j. Then jpðwÞj < jyN j and so pðwÞ a fyj;1; . . . ;
yj;Kj�1g for some j. Hence

�
pðwÞ; lðwÞ

�
a domðfjÞ and so w ¼ fj

�
pðwÞ; lðwÞ

�
aSk

i¼1 Yi. Within ConcurrentFroidurePin the values of Kj are only modified in the

calls to ApplyGenerators. Every call to ApplyGenerators increases Kj so that either

jyj;Kj�1j ¼ cþ 1, or there are no words of length cþ 1 in the jth fragment. In

other words, Lemma 5.3(iii) holds. We showed in (5.6) that Lemma 5.2(iv) holds

and Lemma 5.2(v) holds trivially. r

5.1. Experimental results. In this section we compare the original version of

Algorithm 3.2 (FroidurePin) as implemented in libsemigroups [11], and the con-

current version in Algorithm 5.6 (ConcurrentFroidurePin). The implementation of

ConcurrentFroidurePin in libsemigroups [11] uses thread based parallelism using

Cþþ11 Standard Template Library thread objects.
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We start by comparing the number of products of elements in S that are actu-

ally computed in FroidurePin and ConcurrentFroidurePin. In [4], Theorem 3.2, it is

shown that the number of such products in FroidurePin is jSj þ jRj � jAj � 1 where

R is the set of relations for S generated by FroidurePin. One of the main advan-

tages of the Froidure–Pin Algorithm, concurrent or not, is that it avoids multiply-

ing elements of S as far as possible by reusing information learned about S at an

earlier stage of the algorithm. This is particularly important when the complexity

of multiplying elements in S is high. ConcurrentFroidurePin also avoids multiply-

ing elements of S, but is more limited in its reuse of previously obtained informa-

tion. The number of products of elements S depends on the number of fragments

k used by ConcurrentFroidurePin and the function b : A� ! f1; . . . ; kg. The full

transformation monoid Tn of degree n a N consists of all functions from f1; . . . ; ng
to f1; . . . ; ng under composition of functions. It is generated by the following

transformations:

1 2 3 � � � n� 1 n

2 3 4 � � � n 1

� �
;

1 2 3 � � � n� 1 n

2 1 3 � � � n� 1 n

� �
;

1 2 3 � � � n� 1 n

1 2 3 � � � n� 1 1

� �
:

We compare the number of products of elements of S in FroidurePin and Concur-

rentFroidurePin for each of k ¼ 1; 2; 4; . . . ; 32 fragments and for the full transfor-

mation monoid of degree n ¼ 3; . . . ; 8; see Figure 1. The number of products

in FroidurePin is a lower bound for the number in ConcurrentFroidurePin, and we

would not expect ConcurrentFroidurePin to achieve this bound. However, from

n 3 4 5 6 7 8

jTnj ¼ nn 27 256 3125 46656 823543 16777216

FroidurePin 40 340 3877 54592 926136 18285899

ConcurrentFroidurePin (1 fragments) 45 405 4535 66293 1048758 20235231

ConcurrentFroidurePin (2 fragments) 45 415 4586 67835 1106562 22763829

ConcurrentFroidurePin (4 fragments) 47 406 4587 67682 1153668 23093948

ConcurrentFroidurePin (8 fragments) 46 405 4589 67433 1155484 23411798

ConcurrentFroidurePin (16 fragments) 46 402 4596 67578 1153832 23616000

ConcurrentFroidurePin (32 fragments) 46 404 4563 67755 1152818 23566915

Table 1. Comparison of the number of products of elements in Algorithms 3.2 (FroidurePin)
and 5.6 (ConcurrentFroidurePin) applied to the full transformation monoid Tn.
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the table in Figure 1 it can be observed that the number of products in Concurrent-

FroidurePin is of the same order of magnitude as that in ConcurrentFroidurePin.

In [4], it was noted that there are 678223072849 entries in the multiplication table

for T7 but only slightly less than a million products are required in FroidurePin;

we note that only slightly more than a million products are required in Concurrent-

FroidurePin.

In Figures 5 and 6 we plot the performance of ConcurrentFroidurePin against

the number of fragments it uses for a variety of examples of semigroups S. As

would be expected, if the semigroup S is relatively small, then there is no advan-

tage to using ConcurrentFroidurePin; see Figure 5. However, if the semigroup S is

relatively large, then we see an improvement in the runtime of ConcurrentFroidure-

Pin against FroidurePin; see Figure 6 and 7. Note that the monoid of reflexive

5� 5 Boolean matrices has 1414 generators.

All of the computations in this section were run on a Intel Xeon CPU E5-2640

v4 2.40GHz, 20 physical cores, and 128GB of DDR4 memory.

Figure 5. Run times for Algorithm 5.6 (ConcurrentFroidurePin) against number of
fragments.
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Figure 6. Run times for Algorithm 5.6 (ConcurrentFroidurePin) against number of
fragments.

Figure 7. Run times for Algorithm 5.6 against number of fragments.
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