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Abstract. We present a class of adaptive multilevel trust-region methods for the e‰cient
solution of optimization problems governed by time-dependent nonlinear partial di¤eren-
tial equations with control constraints. The algorithm is based on the ideas of the adaptive
multilevel inexact SQP-method from [26], [27]. It is in particular well suited for problems
with time-dependent PDE constraints. Instead of the quasi-normal step in a classical SQP
method which results in solving the linearized PDE su‰ciently well, in this algorithm a
(nonlinear) solver is applied to the current discretization of the PDE. Moreover, di¤erent
discretizations and solvers for the PDE and the adjoint PDE may be applied. The resulting
inexactness of the reduced gradient in the current discretization is controlled within the
algorithm. Thus, highly e‰cient PDE solvers can be coupled with the proposed optimi-
zation framework. The algorithm starts with a coarse discretization of the underlying
optimization problem and provides during the optimization process implementable criteria
for an adaptive refinement strategy of the current discretization based on error estimators.
We prove global convergence to a stationary point of the infinite-dimensional problem.
Moreover, we illustrate how the adaptive refinement strategy of the algorithm can be
implemented by using a posteriori error estimators for the state and the adjoint equation.
Numerical results for a semilinear parabolic PDE-constrained problem with pointwise con-
trol constraints are presented.
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1. Introduction

In this paper we introduce and analyze a class of adaptive multilevel trust-region

methods for the e‰cient solution of optimization problems governed by time-

dependent nonlinear partial di¤erential equations (PDEs) with control constraints.

The resulting method can be considered as an inexact trust-region method applied



to the reduced problem, where the state is eliminated by using the discretized state

equation on the current grid. One can alternatively also intepret the method as a

generalized composite step SQP method, where instead of the quasi-normal step of

a classical composite step trust-region SQP method which results from solving the

linearized PDE su‰ciently well, a (nonlinear) solver is applied to the current dis-

cretization of the PDE. The algorithm is based on ideas of the adaptive multilevel

inexact SQP-method from [26], [27]. It is inspired by and particularly shaped for

optimization problems governed by parabolic PDEs, since solving a linearized

parabolic PDE or the nonlinear parabolic PDE itself numerically with linear im-

plicit methods in time, as e.g. Rosenbrock schemes, on a given spatial discretization

has about the same computational costs. The adaptive multilevel trust-region

method is designed to combine e‰cient optimization techniques and fast PDE

solvers with error estimators in a rigorous way. Therefore, it o¤ers the possibility

to use di¤erent solvers for the state PDE and the adjoint PDE. The occuring in-

exactness in the reduced gradient on a fixed discretization level is controlled and

modern adaptive discretization techniques for PDEs based on a posteriori error

estimators are integrated in this framework. The algorithm starts with a coarse

discretization of the underlying optimization problem and provides during the

optimization process implementable criteria for an adaptive refinement strategy

of the current discretization based on error estimators. This o¤ers the possibility

to perform most of the optimization iterations and PDE solves on coarse meshes.

Moreover, the optimization problem is always well represented and the infinite-

dimensional problem is approached during the optimization in an e‰cient way.

We consider PDE-constrained optimization problems of the form

min
y AY ;u AU

f ðy; uÞ s:t: Cðy; uÞ ¼ 0; u a Uad; ð1Þ

where U is the control space, Uad � U a closed and convex subset representing

the set of admissible controls, Y is the state space, f : Y �U ! R is the objective

function. The state equation C : Y �U ! L, Cðy; uÞ ¼ 0 comprises a (system

of ) partial di¤erential equation(s) with appropriate initial and/or boundary condi-

tions in a variational formulation with V as the set of test functions. V � denotes

the dual space of V and, thus, we have L ¼ V �. We assume that U are Hilbert

spaces and that Y and V are reflexive Banach spaces. Moreover, we will require

that f and C are continuously Fréchet di¤erentiable on a subset of Y �U .

As an example we will consider in Section 5 a semilinear parabolic boundary

control problem of the form

min f ðy; uÞ s:t: yt þ Lyþ dðyÞ ¼ 0; on ð0;TÞ �W;

yn þ bðyÞ ¼ u; on ð0;TÞ � qW;

yð0; �Þ ¼ y0 on W;

aa ua b on ð0;TÞ � qW;

ð2Þ
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where W � Rn is a bounded Lipschitz domain, T > 0, yn denotes the outer normal

derivative, u : ð0;TÞ � qW ! R is the control and y0 : W ! R are given initial

data. b and d are monotone increasing C2-functions. L denotes for each time t

a second order elliptic operator

Ly :¼ �
Xn
i; j

�
aijðt; xÞyxi

�
xj
þ
Xn
i¼1

biðt; xÞyxi þ c0ðt; xÞy;

i.e., there exists a constant y > 0 such that

Xn
i; j¼1

aijðt; xÞxixj b ykxk2 for a:a: ðt; xÞ a ð0;TÞ �W and all x a Rn;

see for example [10], [15], [20], [23].

The proposed adaptive multilevel trust-region algorithm for (1) generates a

hierarchy of finite-dimensional approximations

min
yh AYh;uh AUh

f ðyh; uhÞ s:t: Chðyh; uhÞ ¼ 0; uh a U h
ad; ð3Þ

which result from conformal discretizations of (1) on adaptively refined meshes.

Our assumptions on the discretization will be made precise in Section 2.

Multilevel optimization techniques for optimal control problems governed

by (nonlinear) PDEs are an active research area. There is a variety of literature

for optimization problems governed by elliptic PDEs as outlined in [26], [27].

However, only a few publications are concerned with multilevel adaptive solution

techniques for optimal control problems governed by (nonlinear) parabolic PDEs.

[3], [21] derive error estimates for adaptive mesh refinements and show possibilities

for derivative evaluations of the reduced cost functional. The algorithms from [3],

[21] for adaptive mesh refinement solve the optimization problem on the current

grid and then refine the mesh.

In [12], [13], [18] multilevel trust-region methods are proposed that focus on the

e‰cient use of a hierarchy of discretizations to solve an optimization problem on

the finest grid, but the coupling with adaptive mesh refinement is not considered.

In [17] truncated Newton methods with inexact function and gradient eval-

uations have been studied, but the combination with error estimators was not

considered. A general algorithmic framework for dealing with approximate func-

tion and gradient evaluations in steepest descent algorithms for optimal control

problems has been proposed in [22]. In this approach the accuracy control mech-

anism requires an error estimator for the function and gradient value depending

on a scalar mesh parameter and is quite di¤erent from the method proposed in

this work.
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The rigorous coupling of error estimators with e‰cient optimization methods

in a multilevel optimization framework for parabolic PDE constrained optimi-

zation problems (with control constraints) was to the best of our knowledge not

considered so far.

In this paper we develop an implementable adaptive refinement strategy based

on error estimators and combine it with an e‰cient inexact trust-region method.

The possibility to use di¤erent solvers for the PDE and the adjoint PDE is given.

The resulting adaptive multilevel trust-region method generates a hierarchy of

adaptive discretizations (3), controls the inexactness of the reduced gradient on

the current discretization and refines the grid – if necessary – adaptively in an

appropriate way based on error estimators, e.g. [1], [2], [8], [9], [21], [24], to ensure

convergence to a solution of the original problem (1). We will prove global con-

vergence under standard assumptions to a first-order optimal point of the infinite-

dimensional problem (1). Moreover, we illustrate how the adaptive refinement

strategy of the algorithm can be implemented by using a posteriori error estima-

tors for the state and the adjoint equation.

The presented method has several advantages. The multilevel approach carries

out most optimization iterations on coarse meshes. The accuracy of the opti-

mization result is controlled and the mesh adaptation is tailored to the needs of the

optimization method. This o¤ers the possibility to obtain optimization results of

high accuracy by an e¤ort of a few simulation runs on the finest grid.

This paper is organized as follows. In Section 2 we formulate our general

assumptions that take the nature of nonlinear PDE constraints into account and

can easily be verified e.g. for semilinear parabolic problems as well as the Navier–

Stokes equations. We derive optimality conditions and formulate our assump-

tions on the discretization. In Section 3 we develop step by step the adaptive

multilevel trust-region method. The convergence analysis is carried out in Section

4. In Section 5 the assumptions are verified for a semilinear parabolic boundary

control problem and numerical results are presented.

Notations. For a Gâteaux- or Fréchet-di¤erentiable operator C : Y �U ! V �,
we denote by Cyðy; uÞ a LðY ;V �Þ and Cuðy; uÞ a LðU ;V �Þ the partial deriva-

tive with respect to y and u, respectively. If f : Y �U ! R is Gâteaux- or

Fréchet-di¤erentiable and U is a Hilbert space then we denote by the gradient

‘u f ðy; uÞ a U the Riesz representation of fuðy; uÞ a U �.

2. Optimality conditions and discretization

We make the following assumptions, which can conveniently be verified, e.g., for

semilinear parabolic problems or the unsteady Navier–Stokes equations in 2D and

takes care of the fact that for nonlinear problems often additional regularity of

40 S. Ulbrich and J. C. Ziems



the state is necessary to obtain di¤erentiability properties of the control to state

mapping u a Uad 7! y ¼ SðuÞ a Y .

Assumption 2.1. U is a Hilbert space, Y, V are reflexive Banach spaces, Uad � U

is closed and convex. Moreover, there exists a Banach space Y þ ,! Y and a convex

closed subset D :¼ DY �DU � Y þ �U with Uad � DU such that the following

holds.

A1 f : Y �U ! R is continuously Fréchet di¤erentiable and the derivative is

Hölder continuous on bounded subsets of Y þ �U.

A2 There exists a unique solution operator u a DU 7! SðuÞ a DY � Y þ for

Cðy; uÞ ¼ 0 that is bounded on bounded sets in ðDU ; k�kUÞ. Moreover,

u a ðDU ; k�kU Þ 7! SðuÞ a Y is continuous.

A3 C : Yþ �U ! V � is continuously Fréchet di¤erentiable. Moreover, also

C : ðDY ; k�kY Þ �U ! V � is continuously Fréchet di¤erentiable. The partial

derivative CyðxÞ a LðYþ;V �Þ admits for all x a D an extension CyðxÞ a
LðY ;V �Þ that has a bounded inverse CyðxÞ�1 a LðV �;YÞ. Moreover, ðy; uÞ a
ðDY ; k�kY Þ �U 7! Cxðy; uÞ a LðY �U ;V �Þ is Hölder continuous on bounded

subsets of Y þ �U.

By applying the generalization [11], Thm. 3.1 of the implicit function theorem

we obtain the di¤erentiability of the control-to-state map and of the reduced

objective funtional.

Proposition 2.2. Let Assumption 2.1 hold. Then the mapping u a ðDU ; k�kUÞ 7!
SðuÞ a Y is continuously Fréchet di¤erentiable with derivative

S 0ðuÞ ¼ �Cy

�
SðuÞ; u

��1
Cu

�
SðuÞ; u

�
ð4Þ

that is Hölder continuous on bounded subsets of ðDU ; k�kU Þ. Moreover, also the

reduced objective functional

u a ðDU ; k�kU Þ 7! f̂f ðuÞ :¼ f
�
SðuÞ; u

�
is continuously Fréchet di¤erentiable with derivative

f̂f 0ðuÞ ¼ fy
�
SðuÞ; u

�
S 0ðuÞ þ fu

�
SðuÞ; u

�
a U � ð5Þ

that is Hölder continuous on bounded subsets of ðDU ; k�kU Þ. Finally, the solution

operator

ðy; uÞ a ðDY ; k�kY Þ � ðDU ; k�kU Þ 7! Slyðy; uÞ :¼ Cyðy; uÞ��
fyðy; uÞ a V

of the adjoint equation lyðy; u; lÞ ¼ 0 is continuous.
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Proof. The Fréchet di¤erentiability of u a ðDU ; k�kU Þ 7! SðuÞ a Y and (4) fol-

low from [11], Thm. 3.1 by setting Y1 ¼ Y2 :¼ Y , Z ¼ Z0 :¼ V � and by using

ðDU ; k�kU Þ instead of U . The continuity of S 0ðuÞ and boundedness on bounded

subsets follows from (4) by A1–A3. The continuity of SlyðuÞ is also a consequence

of A1–A3. Hence, S is Lipschitz continuous on bounded subsets and from A1–

A3 and (4) it follows that S 0 is Hölder continuous on bounded subsets.

The continuous Fréchet di¤erentiability of u a ðDU ; k�kU Þ 7! f̂f ðuÞ ¼ f
�
SðuÞ; u

�
is now a consequence of A1 and the chain rule. f̂f 0ðuÞ a U � follows by (4), A1

and A3. Moreover, the Hölder continuity on bounded subsets is a consequence

of the Hölder continuity of S 0. r

We introduce the Lagrangian function

l : Y �U � V ! R; lðy; u; lÞ ¼ f ðy; uÞ þ 3l;Cðy; uÞ4V ;V � : ð6Þ

By using Proposition 2.2, di¤erentiating f̂f ðuÞ ¼ f
�
SðuÞ; u

�
¼ l
�
SðuÞ; u; l

�
with

respect to u and choosing l a V as the unique solution of the adjoint equation

ly
�
SðuÞ; u; l

�
¼ 0; i:e:; Cy

�
SðuÞ; u

��
l ¼ � fy

�
SðuÞ; u

�
;

which has a unique solution by A2 and A3, we still obtain the classical adjoint

representation

f̂f 0ðuÞ ¼ lu
�
SðuÞ; u; l

�
; where ly

�
SðuÞ; u; l

�
¼ 0: ð7Þ

We conclude that under Assumption 2.1 the problem (1) can equivelantly be

written as the reduced problem

min
u AU

f̂f ðuÞ :¼ f
�
SðuÞ; u

�
sunject to u a Uad: ð8Þ

Moreover, the reduced objective function u a ðDU ; k�kUÞ 7! f
�
SðuÞ; u

�
is contin-

uously Fréchet di¤erentiability and its derivative can be computed by the adjoint

formula (7).

2.1. Optimality conditions. Let ðy; uÞ a Y �Uad be a locally optimal solution

of problem (1). Then y ¼ SðuÞ a DY � Y þ by A2 and u is a local solution of

the reduced problem (8). Hence, Proposition 2.2 yields with the Riesz representa-

tion ‘f̂f ðuÞ a U of f̂f 0ðuÞ a U �Þ that for the local solution u of (8) the optimality

condition

u a Uad;
�
‘f̂f ðuÞ; u� u

�
U
b 0 Eu a Uad
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holds. Since Uad � U is closed and convex, it is well known that this variational

inequality is equivalent to

PUad

�
u� ‘f̂f ðuÞ

�
¼ 0;

where PUad
: U ! Uad � u denotes the projection onto the closed and convex set

Uad i.e.

PUad
ðuÞ a Uad; PUad

ðuÞ ¼ arg min
w AUad

kw� ukU Eu a U ;

see, e.g., [15], [23]. Using (7) we conclude that under Assumption 2.1 in a local

solution ðy; uÞ of (1) the following first-order necessary optimality conditions hold:

There exists an adjoint state l a V such that

Cðy; uÞ ¼ 0 ðstate equationÞ;

lyðy; u; lÞ ¼ 0 ðadjoint equationÞ;

PUad

�
u� ‘ulðy; u; lÞ

�
¼ 0 ðstationarityÞ;

ð9Þ

where ‘ulðy; u; lÞ a U denotes the Riesz representation of the control gradient

luðy; u; lÞ of the Lagrangian, cf. [15], [23]. We will call
��PUad

�
u� ‘ulðy; u; lÞ

���
U

criticality measure.

2.2. Discretized problem. To allow for a wide variatey of possible PDE solvers

within the proposed optimization method, we assume the following framework.

We assume that there is a suitable solver for the state equation Cðy; uÞ ¼ 0

available, which generates for simplicity a conformal discretization. More pre-

cisely, for a given mesh Th corresponding to a state space Yh � Y and Uh � U

it generates for given uh a Uh a unique solution yh a Yh of a discretized state

equation Chðyh; uhÞ ¼ 0 leading to a discrete solution operator Sh : uh a Uh 7!
yh a Yh. By h 0 < h we indicate that the mesh Th 0 is a refinement of Th in the

sense that Y h � Y h 0
and U h � U h 0

. Moreover, we denote by hk & 0 that Thk is

a sequence of refined meshes, such that 1) the maximal diameter of mesh cells

tends to zero, 2) dY ðy;Yhk Þ þ dUðu;UhkÞ ! 0 for all ðy; uÞ a Y �U , 3) specific

requirements of the solver are satisfied, e.g. ratio between time step and spacial

mesh size and regularity properties of the meshes. Here, dY and dU denote the

distance with respect to k�kY and k�kU , respectively. Finally, let Uh
ad � Uh be an

approximation of Uad with dU ðu;U hk
ad Þ ! 0 for all u a Uad as hk & 0. A possible

choice is Uh
ad ¼ UadBUh. This leads for a mesh Th to the corresponding dis-
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cretized problem (3). The reduced objective function for (3) is given by f̂f hðuhÞ ¼
f
�
ShðuhÞ; uh

�
and the equivalent reduced problem by

min
uh AUh

f̂f hðuhÞ :¼ f
�
ShðuhÞ; uh

�
s:t: u a U h

ad: ð10Þ

We do not necessarily require that the exact gradient ‘f̂f hðuhÞ a Uh is com-

puted by using the discrete adjoint. Instead, we assume that for given ðyh; uhÞ a
Yh �Uh there is an appropriate conformal solver available for the adjoint PDE

lyðyh; uh; lÞ ¼ 0 leading to a discrete solution operator ðyh; uhÞ a Yh �Uh 7! lh

¼ Sh
ly
ðyh; uhÞ a Vh, where Vh � V . As above, we assume that hk & 0 implies

dV ðl;Vhk Þ ¼ 0 for all l a V . For uh a Uh we approximate now ‘f̂f hðuhÞ a Uh

(and thus ‘f̂f hðuhÞ a U) by

ĝgh :¼ ‘uh lðyh; uh; lhÞ a Uh; lh ¼ Sh
ly
ðyh; uhÞ;

where ‘uh lðyh; uh; lhÞ a Uh is the Riesz representation of luðyh; uh; lhÞ a U � � U �
h .

We make the following assumptions on the discrete solution operators that are

analogous to Assumption 2.1.

Assumption 2.3. Let Assumption 2.1 hold and let TH be an initial grid. Then

for each refined mesh Th, haH (see above), let Uh � U, Yh � Y þ, U h
ad � DU,

Vh � V. Moreover, the following holds.

D1 There exists a unique continuously di¤erentiable solution operator uh a
UhBDU 7! ShðuhÞ a YhBDY � Y þ for Chðyh; uhÞ ¼ 0 that is bounded on

bounded sets of ðDU ; k�kUh
Þ uniformly in haH. Moreover, uh a UhBDU 7!

ðShÞ0ðuhÞ a LðUh;YhÞ is Hölder continuous on bounded subset of ðDU ; k�kUh
Þ

uniformly in haH.

D2 The discrete solution operator ðyh; uhÞ a ðYhBDY Þ� ðUhBDU Þ 7! Sh
ly
ðyh; uhÞ

a Vh of the adjoint PDE lyðyh; uh; lÞ ¼ 0 is continuous.

D3 For any sequence hk & 0 of mesh refinements of the initial mesh h0 ¼ H and

any bounded sequence ðyh
k ; u

h
kÞ a ðYhk BDY ÞB ðUhk BDU Þ and vhk a Uhk the

discrete approximations converge, i.e.,

lim
k!l

kShkðuh
kÞ � Sðuh

kÞkY ! 0;

lim
k!l

kðShkÞ0ðuh
kÞ � S 0ðuh

kÞkLðU ;YÞ ! 0;

lim
k!l

kShk
ly
ðyh

k ; u
h
kÞ � Slyðyh

k ; u
h
kÞkV ! 0;

lim
k!l

kP
U

hk
ad

ðvhkÞ � PUad
ðvhkÞkU ! 0; Uhk

ad � U
hkþ1

ad � Uad Ek:
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D4 For the state solver Sh and the adjoint solver Sh
ly
reliable a posteriori estimators

hhk
y and hhk

l are available, i.e. there exist constants cy; cl > 0 such that for all

hk & 0 and ðyh
k ; u

h
kÞ as in D3 it holds

��C�Shkðuh
kÞ; uh

k

���
V � a cyh

hk
y

�
Shk ðuh

kÞ
�
! 0;��ly�yh

k ; u
h
k ;S

hk
ly
ðyh

k ; u
h
kÞ
���

Y � a clh
hk
l

�
Shk
ly
ðyh

k ; u
h
kÞ; yh

k ; u
h
k

�
! 0;

or alternatively

D4 0 Instead of the a posteriori estimators for the residuals there are reliable a

posteriori estimators hhk
y and hhk

l available for the error in state and adjoint,

more precisely,

kShkðuh
kÞ � Sðuh

kÞkY a cyh
hk
y

�
Shk ðuh

kÞ
�
! 0;

kShk
ly
ðyh

k ; u
h
kÞ � Slyðyh

k ; u
h
kÞkV a clh

hk
l

�
Shk
ly
ðyh

k ; u
h
kÞ; yh

k ; u
h
k

�
! 0:

For our numerical results we will work with an a posteriori error estimator

proposed in [8], but any reliable a posteriori error estimator could be used, see

for example [1], [2], [9], [24].

Proposition 2.4. Under Assumptions 2.1 and 2.3 the discrete reduced objective

function f̂f h : UhBDU ! R is continuously di¤erentiable and the derivative is

Hölder continuous on bounded subsets of ðDU ; k�kUh
Þ uniformly in haH.

Proof. By Assumptions 2.1 and D1 this follows analogously as at the end of the

proof of Proposition 2.2. r

3. An adaptive multilevel trust-region algorithm

3.1. Main components of the adaptive multilevel trust-region algorithm. In

this section we derive and motivate the adaptive multilevel trust-region method.

3.1.1. Basic concept. Consider the reduced problem (8). Let uk a Uad be a cur-

rent iterate. A trust-region type method for (8) computes a step sk by (approxi-

mately) solving the trust-region problem

min
s AU

q̂qkðsÞ :¼
�
‘f̂f ðukÞ; s

�
U
þ 1

2
3s; ĤHks4U ;U � s:t: uk þ s a Uad; kskU aDk; ð11Þ
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where Dk > 0 is a trust-region radius and ĤHk a LðU ;U �Þ is an approximation of

the reduced Hessian f̂f 00ðukÞ (if it exists). The step is now evaluated by using the

decrease ratio

rk :¼
aredkðskÞ
predkðskÞ

with actual reduction and predicetd reduction

aredkðskÞ :¼ f̂f ðukÞ � f̂f ðuk þ skÞ; predkðskÞ :¼ qkð0Þ � qkðskÞ:

If rk is large enough, the step is accepted, i.e., ukþ1 :¼ uk þ sk, Dkþ1bDk and

otherwise rejected, i.e., ukþ1 :¼ uk, Dkþ1 < Dk. See below for the precise update

mechanism.

By using (7), we have

q̂qkðsÞ ¼ ðĝgk; sÞU þ 1

2
3s; ĤHks4U ;U � ;

where

ĝgk ¼ ‘ulðyk; uk; lkÞ; yk ¼ SðukÞ; lk ¼ Slyðyk; ukÞ:

Let now Th0 be an initial mesh that is adaptively refined during the optimi-

zation and let hk with hk a hk�1a � � �a h0 be the current grid and uh
k a Uhk the

current control. We approximate now the trust-region problem (11) by using the

solvers Shk and Shk
ly

for the state equation and the adjoint equation on the current

mesh. This leads to the approximation of (11)

min
s AUhk

q̂qh
kðsÞ :¼ ðĝgh

k ; s4U þ 1

2
3s; ĤHks4U ;U � s:t: uh

k þ s a U hk
ad ; kskU aDk; ð12Þ

where

ĝgh
k :¼ ‘uhk lðyh

k ; u
h
k ; l

h
kÞ a Uhk ; yh

k ¼ Shkðuh
kÞ; lh

k ¼ Shk
ly
ðyh

k ; u
h
kÞ: ð13Þ

The basic idea is now to apply a trust-region method on the current mesh hk
until error control criteria based on error estimators indicate that the mesh should

be refined in order to approach the solution of (8) e‰ciently. Then the mesh is

refined accordingly and the trust region method is continued on the new mesh.

To this end, the following errors have to be controlled.

• The error f̂f ðuh
kÞ � f̂f hkðuh

kÞ in the reduced objective function can be reduced

by choosing an adaptively refined mesh hkþ1 < hk for the state solver Shkþ1 .
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• The error ‘f̂f ðuh
kÞ � ĝgh

k in the reduced gradient at the current control uh
k as

well as the inexactness ‘f̂f hk ðuh
kÞ � ĝgh

k of the discrete reduced gradient resulting

from using independent state and adjoint solvers can be controlled by adaptive

mesh refinement for the state solver Shkþ1 and the adjoint solver Shkþ1

ly
.

• The error in the admissible sets Uad and U hk
ad can be reduced by mesh refine-

ment hkþ1 < hk of the control space Uhkþ1
.

3.1.2. Su‰cient decrease condition for the trust-region step. Let hk be the

current mesh. We compute now an approximate solution shk of the trust-region

problem (12) that satisfies the generalized Cauchy decrease condition

uh
k þ shk a U hk

ad ; kshkkU aDk;

predh
kðshkÞ :¼ q̂qh

kð0Þ � q̂qh
kðshkÞ

bk1kPU
hk
ad

ðuh
k � ĝgh

kÞkU minfk2kPU
hk
ad

ðuh
k � ĝgh

kÞkU ; k3Dkg;
ð14Þ

where k1, k2, k3 are positive constants independent of k and the grid.

If Uad ¼ U then we have kP
U

hk
ad

ðuh
k � ĝgh

kÞkU ¼ kĝgh
kkU and (14) is just the classi-

cal Cauchy decrease condition ensuring that shk provides a fraction of the decrease

that is possible along the direction of steepest descent inside the trust-region. We

refer to [27], §5.3 for several possibilities to compute suitable steps.

If control constraints are considered, the decrease condition is generalized to

the projected negative gradient path direction. Possibilities to compute such steps

are discussed in [26]. A simple procedere to guarantee the generalized Cauchy

decrease condition is to compute the projected negative gradient direction with

Armijo or Goldstein type linesearch. If the Hessians are bounded, which will be

guaranteed by Assumption 4.1, then one can show that in this way (14) can be

ensured, cf. [26].

To invoke second order methods, in the case of simple pointwise bound con-

straints it is possible to compute a projected inexact Newton step ([4], [16]) and to

check if the generalized Cauchy decrease condition (14) is satisfied as described in

the fallback projected inexact Newton algorithm in [26], Alg. 5.10. By [26], Rem.

5.11 the step shk computed by Algorithm [26], Alg. 5.10 satisfies the generalized

Cauchy decrease condition (14).

3.1.3. Acceptance of steps. As in the standard trust-region method sketched

above the decision about the acceptance of the step and the update of the trust-

region radius Dk is based on the ratio

rh
k :¼ aredh

kðshkÞ
predh

kðshkÞ
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of the actual reduction

aredh
kðshkÞ :¼ f̂f hkðuh

kÞ � f̂f hkðuh
k þ shkÞ; ð15Þ

and the predicted reduction based on the quadratic model on the current mesh

predh
kðshkÞ ¼ q̂qh

kð0Þ � q̂qh
kðshkÞ: ð16Þ

Note that q̂qh
k is an approximation of the reduced cost functional f̂f hk , but the

gradient ĝgh
k is in general inexact. This issue will be considered in 3.1.4.

The step shk is accepted if

rh
k b h1;

otherwise shk is rejected and the trust-region is reduced.

We choose the trust-region radius as follows:

For fixed 0 < a0a a1 < 1 < a2, 0 < h1 < h2 < 1, and Dminb 0 set

Dkþ1 a

½a0Dk; a1Dk�; if rh
k < h1

½maxfDmin; a1Dkg;maxfDmin;Dkg�; if rh
k a ½h1; h2Þ

½maxfDmin;Dkg;maxfDmin; a2Dkg�; if rh
k b h2:

8><
>: ð17Þ

3.1.4. Accuracy control of the inexact reduced gradient. To control the inex-

actness of the reduced gradient ĝgh
k we use the following condition, which is a

weakened variant of the condition proposed in [14], see also [25–27].

If the step shk was rejected then the gradient accuracy condition

���‘f̂f hkðuh
kÞ; shk

�
U
� ðĝgh

k ; s
h
kÞU
��a x2 minfkP

U
hk
ad

ðuh
k � ĝgh

kÞkU ;DkgkshkkU ð18Þ

is checked, where x2 > 0 is a fixed constant. Note that the directional derivative�
‘f̂f hkðuh

kÞ; shk
�
U

can also be computed approximately by a di¤erence quotient

using the state solver. If (18) is satisfied, the accuracy of ĝgh
k is su‰cient and no

mesh refinement is required.

If (18) fails, then the discretization is refined and the iteration is recomputed

until either the stopping criterion of the algorithm is satisfied or the trial step is

accepted or the gradient accuracy condition (18) is satisfied. The latter can be

achieved by su‰cient refinement as shown in the convergence analysis.

Remark 3.1. If ĝgh
k is the exact discrete reduced gradient, i.e., ĝgh

k ¼ ‘f̂f hk ðuh
kÞ then

(18) is always satisfied, since the left hand side vanishes.
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3.1.5. Refinement criteria. So far only the gradient accuracy condition (18)

may require a mesh refinement. As we will see, the trust-region method together

with the accuracy condition (18) ensures that the criticality measure satisfies

lim infk!lkP
U

hk
ad

ðuh
k � ĝgh

kÞkU ¼ 0 under weak additional assumptions.

To ensure that for the generated iterates ðyh
k ; u

h
k ; l

h
kÞ the residual of the opti-

mality system (9) for the infinite dimensional optimization problem (1) is driven

to zero, we have to refine the meshes accordingly during the optimization.

The main idea for refinement is to control the residuals in the infinite dimen-

sional optimality system (9) with the discrete criticality measure kP
U

hk
ad

ðuh
k � ĝgh

kÞkU .
As long as the criticality measure is large enough compared to the residuals

kCðyh
k ; u

h
kÞkV � of the state equation and klyðyh

k ; u
h
k ; l

h
kÞkY � of the adjoint equation,

the current discretization can be considered as su‰ciently accurate to compute

productive steps. On the other hand, if the norm of the discrete criticality measure

on the current grid is small compared to the residuals of state and adjoint equation

then one has to ensure by refinement of the discretizations that the infinite dimen-

sional problem and, in particular, the infinite dimensional reduced gradient and its

projection are well represented in the current discretization such that reasonable

steps can be computed. Observe that the inexact reduced gradient ĝgh
k depends on

the (inexact) state yh
k ¼ Shk ðuh

kÞ and the (inexact) adjoint lh
k ¼ Shk

ly
ðyh

k ; u
h
kÞ. There-

fore, the residual norms of the infinite dimensional state- and adjoint equation

must be controlled. Since these residual norms cannot be computed directly, we

will use reliable error estimators instead.

Hence, we would like to ensure the following inequalities

kCðyh
k ; u

h
kÞkV � aKykPU

hk
ad

ðuh
k � ĝgh

kÞkU

klyðyh
k ; u

h
k ; l

h
kÞkY � aKlkPU

hk
ad

ðuh
k � ĝgh

kÞkU

kPUad
ðuh

k � ĝgh
kÞ � P

U
hk
ad

ðuh
k � ĝgh

kÞkU aKukPU
hk
ad

ðuh
k � ĝgh

kÞkU

ð19Þ

with fixed constants Ky;Kl;Ku > 0, where

yh
k ¼ Shkðuh

kÞ; lh
k ¼ Shk

ly
ðyh

k ; u
h
kÞ:

The third inequality in (19) results from the di¤erence of the (infinite dimensional)

projection onto Uad and the discrete projection onto Uhk
ad . Note that it implies

kPUad
ðuh

k � ĝg
hðkÞ
k ÞkU a ðKu þ 1ÞkP

U
hk
ad

ðuh
k � ĝgh

kÞkU ð20Þ

Since a direct computation of the residual norms of the state and adjoint PDE

is too expensive to compute, we use the reliable error estimators in Assumption
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2.3, D4. Then instead of (19) we check the condition

hhk
y ðyh

kÞa ~ccykPU
hk
ad

ðuh
k � ĝgh

kÞkU ð21aÞ

hhk
l ðlh

k ; y
h
k ; u

h
kÞa ~cclkPU

hk
ad

ðuh
k � ĝgh

kÞkU ð21bÞ

kPUad
ðuh

k � ĝgh
kÞ � P

U
hk
ad

ðuh
k � ĝgh

kÞkU a ~ccukPU
hk
ad

ðuh
k � ĝgh

kÞkU ð21cÞ

with fixed (arbitrary) constants ~ccy; ~ccl; ~ccu > 0. By D4 this implies (19) with

Ky ¼ cy~ccy, Kl ¼ cl~ccl and Ku ¼ ~ccu.

Remark 3.2. In the important case U ¼ L2
�
ð0;TÞ �Wc

�
and Uad ¼ fu a U :

aa ua bg with a; b a Ll
�
ð0;TÞ �Wc

�
the left hand side of (21c) can usually be

estimated directly as long as a, b are not too complicated.

If according to D4 0 a posteriori estimators for the error in state and ad-

joint are available then one can use the fact that by A1 and A3 the mapping

C : ðDY ; k�kY Þ �U ! V � is Lipschitz continuous on bounded subsets of Y þ �U

and lyðy; u; �Þ a LðV ;Y �Þ is bounded on bounded subsets of Yþ �U . If DU in

Assumptions 2.1 and 2.3 are bounded in U then by A2 and D1 we can choose

DY � Y þ bounded and have Sðuh
j Þ a DY and Shk ðuh

j Þ a DY for all uh
j a U

hj
ad �

DU . Now let Ly and Ll be the corresponding local Lischitz constants of C and

lyðy; u; �Þ on DY �DU . Under assumption D4 0 we obtain with xh
k ¼ ðyh

k ; u
h
kÞ

kCðxh
kÞkV � ¼

��Cðyh
k ; u

h
kÞ � C

�
Sðuh

kÞ; uh
k

���
V � aLykyh

k � Sðuh
kÞkY ;

klyðxh
k ; l

h
kÞkY � ¼

��lyðxh
k ; l

h
kÞ � ly

�
xh
k ;Slyðxh

kÞ
���

Y � aLlklh
k � Slyðxh

kÞkV :
ð22Þ

If we use now (21) with the a posteriori error estimators in D4 0 then (22) yields

that again (19) holds with constants Ky ¼ Lycy~ccy, Kl ¼ Llcl~ccl, and Ku ¼ ~ccu.

3.1.6. Su‰cient mesh refinement. After the computation of a successful step

on the current grid we need (at least after some iteration K) that the decrease

produced for f̂f hk on the current grid ensures also decrease for the exact objec-

tive function f̂f hk . To this end, we impose the following condition for su‰cient

refinement

aredh
kðshkÞb ð1þ dÞ

��
f̂f ðuh

k þ shkÞ � f̂f hkðuh
k þ shkÞ

�
�
�
f̂f ðuh

kÞ � f̂f hk ðuh
kÞ
��

EkbK ; ð23Þ

with 0 < d < 1. If criterion (23) is not satisfied the Y -grid is refined properly and

the step is recomputed until (23) holds.
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To implement condition (23) assume that the algorithm generates a sequence

hk & 0. If uh
k ; u

h
k þ shk � DU remain bounded, D3 and A1 yield

aðuh
kÞ :¼ f̂f ðuh

kÞ � f̂f hkðuh
kÞ ¼! 0

aðuh
k þ shkÞ :¼ f̂f ðuh

k þ shkÞ � f̂f hk ðuh
k þ shkÞ ! 0:

ð24Þ

Assume now that we have a realible estimator b hkðuh
k ; s

h
kÞ > 0, which can be con-

tructed from the error estimator hhk
y in D4 or D4 0, such that

aðuh
k þ shkÞ � aðuh

kÞaKb hk ðuh
k ; s

h
kÞ ! 0 for k ! l ð25Þ

with some fixed possibly unkown K > 0.

Then to ensure (23) it su‰ces to verify the following su‰cient refinement

condition

aredh
kðshkÞb xbhkðuh

k ; s
h
kÞ

o ð26Þ

for fixed o a ð0; 1Þ and x > 0. In fact, having (26), assumption (24) yields with

(25)

ð1þ dÞ
�
aðuh

k þ shkÞ � aðuh
kÞ
�
a ð1þ dÞKbhkðuh

k ; s
h
kÞa xbhkðuh

k ; s
h
kÞ

o EkbK

with K large enough and consequently (23).

An alternative criterion to (23) is the su‰cient refinement condition

Xl
k¼0

f
�
Shkþ1ðuh

kþ1Þ; uh
kþ1

�
� f

�
Shkðuh

kþ1Þ; uh
kþ1

�
< l ð27Þ

that originates from the jumps in the di¤erences of the cost functional due to

refinement of the meshes which shall be summable.

Our convergence proof is given for criterion (26) which implies (23) after

finitely many iterations if the algorithm refines infinitely many times. A conver-

gence proof using condition (27) instead of (23) or (26) in the algorithm is very

similar. Only a few details in the proof of Theorem 4.5 need to be adapted.

3.2. Statement of the adaptive multilevel trust-region algorithm. We now state

the complete algorithm.

Algorithm 3.3. Adaptive multilevel trust-region algorithm

S0 Initialization: Choose etol > 0, 0 < a0a a1 < 1 < a2, 0 < h1 < h2 < 1, Dminb

0, x2 > 0, d > 0, ~ccy; ~ccl; ~ccu > 0, an initial mesh Th0 , u
h
0 a U h0

ad and D0 > 0 with

D0bDmin. Set k :¼ 0.
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For k ¼ 0; 1; 2; . . .

S1 Compute yh
k ¼ Shkðuh

kÞ as solution of the discretized state equation and the error

estimator hhk
y ðyh

kÞ for the state as in D4 or D4 0 (if not already done).

S2 Compute the discretized adjoint state lh
k ¼ Shk

ly
ðyh

k ; u
h
kÞ and the error estimator

hhk
l ðlh

k ; y
h
k ; u

h
kÞ for the adjoint as in D4 or D4 0. Determine the inexact reduced

gradient ĝgh
k by (13) and the criticality measure kP

U
hk
ad

ðuh
k � ĝgh

kÞkU.
S3 If the refinement condition (21) holds then goto S5.

S4 If the refinement condition (21a) fails then refine the Y-grid adaptively. If (21b)

or (21c) is violated then refine the V- or U-grid, respectively. Goto S1.

S5 If hhk
y ðyh

kÞ þ hlðlh
k ; y

h
k ; u

h
kÞ þ kP

U
hk
ad

ðuh
k � ĝgh

kÞkU a etol holds in S5 or during the

refinement in S4 then stop and return ðyh
k ; u

h
kÞ as approximate solution for

problem (1).

S6 Compute shk as inexact solution of (12) satisfying (14) and compute predh
kðshkÞ

in (16).

S7 Compute a discrete state yh
kþ1 ¼ Shkðuh

k þ shkÞ and aredh
kðshkÞ as in (15).

S8 If rh
k ¼ aredh

kðshkÞ=pred
h
kðshkÞb h1, then provisionally accept shk , update the trust-

region radius according to (17) and goto S9.

If the gradient accuracy condition (18) is violated then refine the Y- and V-grid

properly leading to a new mesh hk and go back to S1 with uh
k .

Otherwise reject the step shk and reduce the trust-region radius according to (17).

Set ðyh
kþ1; u

h
kþ1Þ :¼ ðyh

k ; u
h
kÞ, k :¼ k þ 1 and goto S6.

S9 If (26) is satisfied (or (23)) then accept shk , set ðyh
kþ1; u

h
kþ1Þ :¼ ðyh

kþ1; u
h
k þ shkÞ,

k :¼ k þ 1 and goto S2. Otherwise reject shk , refine the Y-grid properly leading

to a new mesh hk and go back to S1 with uh
k .

4. Convergence analysis

We make the following assumption.

Assumption 4.1. The iterates uh
k ; u

h
k þ shk remain in a bounded closed convex set

DU � U with Uad � DU and Assumptions 2.1 and 2.3 hold. By A2 and D1 we

can choose DY � Y þ bounded and Sðuh
kÞ;Sðuh

k þ shkÞ;Shkðuh
kÞ;Shkðuh

k þ shkÞ a DY

holds for all k. Finally, there exists MH > 0 with

kĤHkkL2ðU ;U �Þ aMH Ek:

Throughout this section we assume that Assumption 4.1 holds.
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4.1. Well definedness of refinement conditions. First we will show that the

gradient accuracy condition (18) can always be satisfied by su‰cient refinement.

Lemma 4.2. Let Assumption 4.1 hold. If
��PUad

�
uh
k � ‘f̂f ðuh

kÞ
���

U
> 0 then a new

iteration k :¼ k þ 1 is generated after finitely many grid refinements.

Proof. As long as the algorithm stays in iteration k, the control uh
k remains

unchanged.

By Assumption 2.3, D3 and D4 or D4 0 the refinement ðhk; jÞj & 0 within itera-

tion k ensures together with the continuity properties in Assumption 2.1 that the

left hand side of (21) tends to zero for j ! l. Moreover, by D3 we have with

yh
k; j :¼ Shk; jðuh

kÞ and lh
k; j :¼ S

hk; j
ly

ðyh
k; j; u

h
kÞ

ĝg
hk; j
k ðuh

kÞ ¼ luðyh
k; j; u

h
k ; l

h
k; jÞ ! lu

�
Sðuh

kÞ; uh
k ;Sly

�
Sðuh

kÞ; uh
k

��
¼ ‘f̂f ðuh

kÞ: ð28Þ

Hence, the right hand side of (21) satisfies��P
U

h
j

k
ad

�
uh
k � ĝg

hk; j
k ðuh

kÞ
���

U
!
��PUad

�
uh
k � ‘f̂f ðuh

kÞ
���

U
¼: e > 0 ð29Þ

and thus (21) holds after finitely many refinements and S5 ist reached.

We show that after finitely many refinements also the gradient accuracy condi-

tion (18) in S8 is satisfied if it is checked. In fact, by D3 we have

ð f̂f hk; j Þ0ðuh
kÞ ¼ fyðyh

k; j; u
h
kÞðShk; jÞ0ðuh

kÞ þ fuðyh
k; j; u

h
kÞ

! fy
�
Sðuh

kÞ; uh
k

�
S 0ðuh

kÞ þ fu
�
Sðuh

kÞ; uh
k

�
¼ f̂f 0ðuh

kÞ:

Hence, together with (28) we see that (18) eventually holds, since by (29) the right

hand side of (18) is eventually > x2=2min
���PUad

�
uh
k � ‘f̂f ðuh

kÞ
���

U
;Dk

�
kshk; jkU b

const: kshk; jkU .
Finally, also the su‰cient refinement criterion (26) in step S9 is satisfied after

finitely many refinements. In fact, uh
k and Dk remain unchanged and thus (29)

yields after finitely many refinements kP
U

hk
ad

ðuh
k � ĝgh

kÞkU b e=2. Since S9 is only

reached if aredh
kðshk; jÞb h1 pred

h
kðshk; jÞ, the decrease condition (14) yields

aredh
kðshk; jÞb h1 pred

h
kðshk; jÞb

1

2
h1k1emin k2

1

2
e; k3Dk

� 	
b e 0 > 0:

Since bhk; jðuh
k ; s

h
k; jÞ ! 0 as j ! 0 by (25), the su‰cient refinement criterion (26) is

satisfied after finitely many iterations. r

4.2. Acceptance of steps. We start by estimating the di¤erence of actual and

predicted reduction.
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Lemma 4.3. Let Assumption 4.1 hold and let 0 < ga 1 be such that f̂f hk is

g-Hölder continuously di¤erentiable, which is ensured Proposition 2.4. Then there

exists Cred > 0 such that for any inexact reduced gradient ĝgh
k satisfying the gradi-

ent accuracy condition (18) and any step shk computed by the Algorithm 3.3 the

inequality

jaredh
kðshkÞ � predh

kðshkÞjaCredðD1þg
k þ D2

kÞ

holds.

Proof. By the definition of actual and predicted reduction we have by using the

g-Hölder continuous di¤erentiability of f̂f hk on bounded sets, see Proposition 2.4,

and the mean value theorem with a t a ½0; 1�

jaredhðshkÞ � predh
kðshkÞja

���‘f̂f hkðuh
k þ tshkÞ � ‘f̂f hkðuh

kÞ; shk
�
U

��
þ
���‘f̂f hkðuh

kÞ � ĝgh
k ; s

h
k

�
U

��þ 1

2
3shk ; ĤHks

h
k4U ;U�

aLgD
1þg
k þ x2D

2
k þ

1

2
MHD

2
k :

Here, Lg denotes the uniform local Hölder constant of ‘f̂f hk and we have used

(18), the boundedness of ĤHk and kshkkU aDk. r

We next show that after finitely many trial iterations with possible refinements

and reductions of the trust-region radius there will be a successful step. In partic-

ular, there is a lower bound for the trust-region radius if the criticality measure is

bounded from below.

Lemma 4.4. Let Assumption 4.1 hold. Let e > 0, then there exists a constant

D 0 > 0 depending on e such that if kP
U

hk
ad

ðuh
k � ĝgh

kÞkU > e and the gradient accuracy

condition (18) holds then

aredhðshkÞb h1 pred
h
kðshkÞ

for Dk aD 0. In particular the step shk will be eventually accepted in S8 and

Dkþ1bDk.

Proof. By Lemma 4.3 we have

jaredh
kðshkÞ � predh

kðshkÞjaCredðD1þg
k þ D2

kÞ:

On the other hand the decrease condition (14) yields

54 S. Ulbrich and J. C. Ziems



predh
kðshkÞ :¼bk1kPU

hk
ad

ðuh
k � ĝgh

kÞkU minfk2kPU
hk
ad

ðuh
k � ĝgh

kÞkU ; k3Dkg

bk1eminfk2e; k3Dkg:

Hence, there exists D 0 ¼ D 0ðeÞ > 0 such that

aredh
kðshkÞ

predh
kðshkÞ

� 1b� jaredh
kðshkÞ � predh

kðshkÞj
predh

kðshkÞ
b h1 � 1 E0 < Dk aD 0:

This proves the first assertion.

Now consider step S8. The next iteration k þ 1 is only reached if the step is

accepted or if possibly after mesh refinement the gradient accuracy condition (18)

is satisfied. Hence, the decrease ratio is tested with (18) holding before a step is

rejected and the trust region radius is reduced. After finitely many unsuccessful

iterations we have Dk aD 0 and the step is accepted. r

4.3. Global convergence result. We show now global convergence to a station-

ary point of the infinite dimensional problem (1) if etol ¼ 0 or finite termination if

etol > 0, respectively. We start with the following result.

Theorem 4.5. Let Assumption 4.1 hold. If etol > 0 then Algorithm 3.3 terminates

finitely. If etol ¼ 0 then Algorithm 3.3 terminates finitely or the sequence of iterates

generated by Algorithm 3.3 satisfies

lim inf
k!l

kP
U

hk
ad

ðuh
k � ĝgh

kÞkU þ hyðyh
kÞ þ hlðlh

k ; y
h
k ; u

h
kÞ ¼ 0: ð30Þ

Proof. Consider first the case etol > 0. Suppose that Algorithm 3.3 runs infinitely.

Since kP
U

hk
ad

ðuh
k � ĝgh

kÞkU þ hyðyh
kÞ þ hlðlh

k ; y
h
k ; u

h
kÞ > etol in S5 and (21) holds by

S3, S4, there exists e > 0 such that

kP
U

hk
ad

ðuh
k � ĝgh

kÞkU b e Ek:

By Lemma 4.4 there exists D 0 > 0 such that for all accepted steps we obtain by the

update rule for the trust-region radius

Dk b a0D
0 ¼: D�

and there is an infinite sequence of accepted steps. For all eccepted steps we get by

the generalized Cauchy decrease condition (14)

aredh
kðshkÞb h1k1eminfk2e; k3D�gb e 0 > 0 ð31Þ

for constants k1; k2; k3 > 0.
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We will distinguish the two di¤erent cases where either only finitely many mesh

refinements are performed by the algorithm or the algorithm produces infinitely

many mesh refinements.

Let us first consider the case where only finitely many mesh refinements are

carried out by the algorithm. Then there exists K a N such that the mesh is not

refined for all iterations with k larger than K . Consequently, condition (26) does

not necessarily imply (23). Therefore, we give a separate proof for this case that is

similar to the finite dimensional convergence theory.

By Assumption 4.1, uh
k remains in a bounded set DU and consequently

yh
k ¼ Shkðuh

kÞ and also Sðuh
kÞ remain in a bounded subset DY � Y þ. Hence, the

sequence f̂f hkðuh
kÞ ¼ f ðyh

k ; u
h
kÞ as well as f̂f ðuh

kÞ ¼ f
�
Sðuh

kÞ; uh
k

�
is bounded below.

Summation of the actual reduction in the successful steps gives

Xl
k¼0

aredh
kðshkÞ ¼

Xl
k¼0

�
f̂f hk ðuh

kÞ � f̂f hkðuh
kþ1Þ

�

¼
X
k<K

aredh
kðshkÞ þ

Xl
kbK

�
f̂f hK ðuh

kÞ � f̂f hK ðuh
kþ1Þ

�
¼
X
k<K

aredh
kðshkÞ þ f̂f hK ðuh

kÞ � lim
k!l

f̂f hK ðuh
kÞ < l:

Hence, the summability yields aredhðshkÞ ! 0 as k ! l bus this contradicts (31).

Let us now consider the case where the algorithm produces infinitely many

refinements. Then condition (26) implies condition (23) for all kbK with some

K > 0. We then consider the exact actual reduction

aredðshkÞ :¼ f̂f ðuh
kÞ � f̂f ðuh

k þ shkÞ ¼ f
�
Sðuh

kÞ; uh
k

�
� f

�
Sðuh

k þ shkÞ; uh
k þ shk

�
;

where S denotes the solution operator of the PDE constraint. Condition (23) then

yields

aredh
kðshkÞ ¼

d

1þ d
aredh

kðshkÞ þ
1

1þ d
aredh

kðshkÞ

b
d

1þ d
aredh

kðshkÞ þ
��

f̂f hkðuh
kÞ � f̂f ðuh

kÞ
�
�
�
f̂f hkðuh

kþ1Þ � f̂f ðuh
kþ1Þ

��
¼ d

1þ d
aredh

kðshkÞ þ aredh
kðshkÞ � aredðshkÞ

for all kbK , with some d > 0. Hence, using this inequality, we obtain

aredðshkÞb
d

1þ d
aredh

kðshkÞb
d

1þ d
h1 pred

h
kðshkÞb

d

1þ d
h1e

0 ð32Þ
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for all kbK . Now, by assumption, f̂f ðuh
kÞ is bounded below. Summation of the

infinite dimensional actual reduction in the successful steps gives

Xl
k¼0

aredðshkÞ ¼ f̂f ðuh
0 Þ � lim

k!l
f̂f ðuh

kÞ < l:

Hence, the summability yields aredðshkÞ ! 0 as k ! l which contradicts (32).

Now let etol ¼ 0 and assume that (30) does not hold. Then there exists e 0tol > 0

small enough such that the algorithm would also not terminate for the stopping

tolerance e 0tol > 0. But this contradicts the finite termination for etol > 0. r

By using the reliability of the error estimators, we obtain the following conver-

gence result.

Corollary 4.6. Let Assumption 4.1 hold. If etol ¼ 0 then Algorithm 3.3 terminates

finitely with a stationary point of problem (1) or the sequence of iterates generated

by Algorithm 3.3 satisfies

lim inf
k!l

kCðyh
k ; u

h
kÞkV � þ klyðyh

k ; u
h
k ; l

h
kÞkY �

þ
��PUad

�
uh
k � ‘ulðyh

k ; u
h
k ; l

h
kÞ
���

U

�
¼ 0: ð33Þ

Proof. The steps S3 and S4 ensure that (21) holds and we have shown in 3.1.5 that

Assumption 2.3, D4 or D4 0 ensure (19).
Hence, if the algorithm runs infinitely then (30) implies by (19) the assertion

(33).

If the algorithm terminates finitely then kP
U

hk
ad

ðuh
k � ĝgh

kÞkU ¼ 0 and (19) shows

with U hk
ad � Uad (see D3) that ðyh

k ; u
h
kÞ satisfies (9). r

5. Numerical results

In this section we present some numerical results for the adaptive multilevel trust-

region method. The algorithm has been implemented in Matlab. We use the

method of lines with conformal finite element discretization in space by quadratic

finite elements and the 3-stage Rosenbrock method ROS3P from [19] in time.

Moreover, our Matlab implementation uses adaptive refinement in time and uni-

form refinement in space. We present results for a semilinear parabolic boundary

control problem with control constraints of the form (2).

Further results can be found in [25]. Moreover, we have coupled the presented

algorithm with the highly e‰cient PDAE solver Kardos, which uses adaptive
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refinements in space and time, and have applied it to a realistic glass cooling

problem as well as a thermistor problem, see [5–7].

5.1. An a posteriori error estimator for parabolic PDEs. In our numerical

examples we used the error estimator from [8]. We briefly sketch the main ideas

of this error estimator. The derivation, proofs and numerical tests can be found in

[8].

The error estimator is designed for parabolic initial boundary value problems

as the state PDE in (2). The PDE is discretized with the method of lines using for

example finite elements in space with a spatial mesh of characteristic mesh size

h and an existing time integrator for the resulting system of ordinary diferential

equations (ODEs). Let yhðtÞ be the unique solution vector of the resulting system

of ODEs representing the spatial degrees of freedom. Moreover, let vhðtiÞ denote
its approximations in the time grid point ti on a certain timegrid obtained by

applying a numerical integration method of order pa 3 and denote by vhðtÞ an

interpolatory polynomial by using Lagrange or Hermite interpolation. The global

time error is then defined by ehðtÞ ¼ vhðtÞ � yhðtÞ. Let Rh : yðt; �Þ 7! RhyðtÞ be the
restriction operator which maps yðtÞ to its spatial degrees of freedom. Then the

spatial discretization error is defined by hhðtÞ ¼ yhðtÞ � RhyðtÞ, where y denotes

the solution of the PDE. The overall discretization error EhðtÞ ¼ vhðtÞ � RhyðtÞ
is then given as the sum of global time and spatial error, EhðtÞ ¼ ehðtÞ þ hhðtÞ.

Debrabant and Lang approximate these residuals by solving a linear spatial

error transport equation and a linear time error transport equation. They involve

the spatial truncation error, which is in [8] estimated by Richardson extrapola-

tion, and the residual time error, respectively. The obtained approximations of

the global error ~EEhðtÞ ¼ ~eehðtÞ þ ~hhhðtÞ can be controlled by spatial and temporal

adaptivity. [8] conclude that based on tolerance proportionality, reducing the

local error tolerances by a factor will reduce the global error by the same factor.

Hence, given a prescribed tolerance for the global error, the local tolerances can

be chosen appropriately. If the global error is not below a prescribed tolerance,

the state computation is redone with adjusted tolerances and refined spatial reso-

lution, cf. [8].

In the context of our adaptive multilevel trust-region algorithm global error

estimators for the di¤erence between the solution yh of the discretized PDE and

the infinite dimensional solution y of the original PDE are required. With the

global estimates of the space and time error from [8], we obtain the error estimate

kvh � Rhyk2L2ð0;T ;H1ðWÞÞQ

ðT
0

k ~EEhðtÞk2H1ðWÞ dt: ð34Þ

Numerical tests show that the approach yields accurate estimates of global space

and time error [8].
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5.2. Local refinement and its implementation. The error estimator of Debra-

bant and Lang [8] provides an estimate of the global space and time error. More-

over, since the error estimator is computed while solving the discretized PDE, the

timestep size can be adjusted adaptively such that the local time residual estima-

tion is a suitable portion of a predefined tolerance for the global time error. Thus,

a time refinement results in a change of the predefined tolerance for the local time

residual, a solve of the discretized PDE including the residual estimation and the

possible insertion of additional timepoints.

Thus, since the error estimator provides a global time and space error estima-

tion, we implement the refinement criteria (21) by first checking the refinement con-

dition just for the global time error, here given exemplarily for the state equation

hy; tðyh
kÞa cy; tkPU

hk
ad

ðuh
k � ĝgh

kÞkU ; ð35Þ

where hy; t denotes the error estimator for the time error and cy; t > 0 is the (appro-

priately chosen) constant for the time refinement in the state. For the adjoint state

the equation looks the same with l instead of y. After having checked the refine-

ment condition for the state in time, the refinement condition (21) with the estima-

tion of the global space-time error is tested.

To prevent too much spatial refinements if the stationary measure becomes

very small on the current grid, we modify the spatial refinement condition (21)

with an additional space residual tolerance ex > 0 of the form

hy;xðyh
kÞamaxf~ccykPU

hk
ad

ðuh
k � ĝgh

kÞkU ; exg ð36Þ

and analogously for the adjoint with y replaced by l. By choosing the space

residual tolerance for example as ex ¼ minf~ccy; 1=3getol, an additional refinement

when the criticality measure drops below the stop tolerance can be prohibited.

Nevertheless, space refinements are still possible through the gradient condition

(18) such that convergence of the criticality measure to the prescribed tolerance

etol can still be guaranteed.

We describe the adaptive refinement strategy. If a time refinement is triggered

by the state error estimation we do not only compute the state on an adaptively

refined timegrid but also perform an adaptive solve of the discretized adjoint

PDE with the same predefinded tolerance for the global time residual estimation

in the adjoint state as before and possibly additional timepoints due to the

(slightly) di¤erent state. If a time refinement is necessary by the adjoint error esti-

mate it is done vice versa. After such a refinement the timegrid is fixed. In our

implementation a spatial refinement is performed as a uniform refinement of the

space grid followed by an adaptive time refinement during the state and adjoint

computation as described above. For numerical results with the fully space-time

adaptive solver Kardos, we refer to [5–7].
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Let TolA;y;TolR;y > 0 denote the tolerances for the control of the adaptive

stepsize choice for the state computation as described in [8] and TolA;l;TolR;l > 0

the corresponding ones for the adjoint state computation. Let hy; t denote the

estimator for the time error in the state computation. Let cy; t > 0 denote the

refinement constant in (21a) for the time error. We then implemented the follow-

ing refinement procedere for the state in time:

While hy; t > cy; tkPU
hk
ad

ðuh
k � ĝgh

kÞkU , do
1. Set e ¼

�
cy; tkPU

hk
ad

ðuh
k � ĝgh

kÞkU
�
=ð1:2 � hy; tÞ.

Set TolA;y ¼ max
�
0:2;minðe; 0:9Þ

�
� TolA;y.

Set TolR;y ¼ max
�
0:2;minðe; 0:9Þ

�
� TolR;y.

2. Recompute the state with TolA;y, TolR;y and insert additional timepoints when

necessary.

3. Recompute the adjoint state with TolA;l, TolR;l and insert additional time-

points when necessary.

4. Recompute ĝgh
k and kP

U
hk
ad

ðuh
k � ĝgh

kÞkU .

The refinement procedere for the adjoint state in time is the same as for the state

with changed roles of y and l. In our examples, the refinement procedures both in

time or in space and time usually needed only one refinement iteration.

5.3. A semilinear parabolic optimal boundary control problem. We consider

the following semilinear parabolic boundary control problem of the form (2).

Let W ¼ ð0; 1Þ � ð0; 1Þ � R2, T ¼ 1, ST :¼ ð0;TÞ � qW, a > 0, a; b a LlðSTÞ
and set U ¼ L2ðST Þ, H ¼ L2

�
ð0;TÞ �W

�
, and Q ¼ H 1

�
ð0;TÞ �W

�
. With the

Gelfand triple Q ,! H ¼ H � ,! Q� we set

Y ¼ W ð0;TÞ ¼ fy a L2ð0;T ;QÞ : yt a L2ð0;T ;Q�Þg;

V ¼ V1 � V2 ¼ L2ð0;T ;QÞ �H:

Moreover, let y0C 1 in W, yd C 0:2 in W and let yQðt; xÞ ¼ 1� 0:8t, ðt; xÞ a
½0; 1� �W. Then the problem is given by

min
y AY ;u AU

f ðy; uÞ :¼ 1

2
kyðTÞ � ydk2L2ðWÞ þ

1

2
ky� yQk2L2ðð0;TÞ�WÞ þ

a

2
kuk2U

s:t: yt � Dy ¼ 0 in ð0;TÞ �W;

yn ¼ u� y3jyj on ð0;TÞ � qW ¼: ST ;

yð0; �Þ ¼ y0 in W;

aa ua b;

ð37Þ
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where yn denotes the outer normal derivative and the state equation has to be

understood in the weak sense.

Hence, Uad ¼ fu a U : aa ua bg is a bounded, convex and closed subset of

LlðST Þ and of U .

5.3.1. Verification of Assumption 2.1. We now verify Assumption 2.1 with

Y þ :¼ Y BCð½0;T � �WÞ and DU :¼ Uad. A1 is obvious.

Since Uad is bounded in LlðSTÞ, the state PDE admits for all u a Uad a unique

weak solution y a Y BCð½0;T � �WÞ, see [23], Thm. 5.5 and the solution remains

in a convex bounded closed set DY � Y þ. Moreover, by [23], Thm. 5.8 the solu-

tion mapping S : u a LsðSTÞ ! SðuÞ a Y þ is Lipschitz continuous for s > 3. Since

DU ¼ Uad is bounded in LlðSTÞ and by interpolation kukLs a kuk2=sU kuk1�1=s
Ll , we

conclude that S : ðDU ; k�kU Þ ! Y þ is Hölder continuous. This proves A2.

To verify A3 we note that the weak solution of the state equation is the unique

solution of the operator equation Cðy; uÞ ¼ 0, where

C : Yþ �U 7! L2ð0;T ;Q�Þ
H


 �
¼ V �

1 � V �
2 ¼ V �

Cðy; uÞ :¼ yt þ ð‘y;‘�ÞL2ðð0;TÞ�WÞ þ ðy3jyj � u; �ÞL2ðST Þ
yð0; �Þ � y0

 !
:

From standard parabolic theory it is obvious that the linear part of Cðy; uÞ is in
LðY �U ;V �Þ. We study now the di¤erentiability properties of the nonlinear

term

B : y a Y þ 7! ðy3jyj; �ÞL2ðST Þ a L2ð0;T ;Q�Þ ¼ V �
1 :

It is obvious that B : Y þ ! V �
1 is continuously Fréchet di¤erentiable with deriva-

tive

B 0ðyÞv ¼ ð4jyj3v; �ÞL2ðST Þ a V �
1 :

Since DY � Y þ is bounded, also the operator B : ðDY ; k�kY Þ ! V �
1 is well de-

fined. Moreover, for all y a DY the operator B 0ðyÞ admits an extension B 0ðyÞ a
LðY ;V �

1 Þ. In fact, we have Y ,! V1 ,! L2
�
0;T ;LpðqWÞ

�
for all 1a p < l and

thus

3B 0ðyÞv;w4V �
1
;V1

¼ ð4jyj3v;wÞL2ðST Þa 4kyk3Y þkvkL2ðST ÞkwkL2ðST Þ

a ckyk3Y þkvkYkwkV1
:

Finally, we show that also B : ðDY ; k�kY Þ ! V �
1 is continuously Fréchet di¤eren-

tiable with g-Hölder continuous derivative for all 0 < g < 1.
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We start by showing that B 0 : ðDY ; k�kY Þ ! LðY ;V �
1 Þ is g-Hölder continuous

for all 0 < g < 1. We will need the embedding Y ,! L2=s
�
0;T ;L1=ð1�sÞðqWÞ

�
for

all 1=2 < s < 1. In fact, the embedding can be proven as follows. The trace

theorem and interpolation yields for 1=2 < s < 1

k�kH s�1=2ðqWÞa ck�kH sðWÞ a ck�ks
Qk�k

1�s
H

and thus, since Y ¼ Wð0;TÞ ,! Cð½0;T �;HÞ and Hs�1=2ðqWÞ ,! L1=ð1�sÞðqWÞ

k�kL2=sð0;T ;L1=ð1�sÞðqWÞÞa ck�kL2=sð0;T ;H s�1=2ðqWÞÞa ck�k1�s
Llð0;T ;HÞk�k

s
L2ð0;T ;QÞa ck�kY :

There exists a constant R > 0 such that

kykY þ ; kyþ hkY þ aR Ey; yþ h a DY :

For all y; yþ h a DY Taylor expansion yields with r :¼
Ð 1
0 12ðyþ thÞjyþ thj dt

��
B 0ðyþ hÞ � B 0ðyÞ

�
v;w
�
V �

1
;V1

¼ ðrhv;wÞL2ðST Þ:

We have the embedding V1 ,! L2
�
0;T ;H 1=2ðqWÞ

�
,! L2

�
0;T ;LpðqWÞ

�
for all

1a p < l. Let now pb 2 (will be adjusted later depending on g) and let p 0 be
the dual index with 1=pþ 1=p 0 ¼ 1. Then

ðrhv;wÞL2ðST Þa 12R2ckhvkL2ð0;T ;L p 0 ðqWÞÞkwkV1
:

Fix an arbitrary 0 < g < 1 and set q ¼ 2gþ 2. Moreover, choose 1=2 < s < 1

with 2=s ¼ q and 1 < p 0 < 2 with 2p 0a 1
1�s

. Then Y ,! Lq
�
0;T ;L2p 0 ðqWÞ

�
,

1=2 ¼ 1=qþ g=q and thus

khvkL2ð0;T ;L p 0 ðqWÞÞa khkLq=gð0;T ;L2p 0 ðqWÞÞkvkLqð0;T ;L2p 0 ðqWÞÞa cR1�gkhkg
YkvkY :

Thus, B 0 : ðDY ; k�kY Þ ! LðY ;V �
1 Þ is g-Hölder continuous for all 0 < g < 1.

Now the Fréchet-di¤erentiability of B : ðDY ; k�kY Þ ! V �
1 follows easily. Point-

wise Taylor expansion with integral remainder term yields with the g-Hölder con-

tinuity of B 0

3Bðyþ hÞ � BðyÞ � B 0ðyÞh;w4V �
1
;V1

a

ð1
0

kB 0ðyþ thÞ � B 0ðyÞkLðY ;V �
1
Þ dtkhkYkwkV1

a ckhk1þg
Y kwkV1

:

Using the properties of B we have shown that C : ðDY ; k�kY Þ �U 7! V � is

Fréchet-di¤erentiable with g-Hölder continuous derivative for all 0 < g < 1. To
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conclude the verification of A3 we note that for ðy; uÞ a DY �DU the linear

parabolic operator Cyðy; uÞ a LðY ;V �Þ has a bounded inverse by standard para-

bolic theory, since the nonlinear term ð4jyj3�; �ÞL2ðST Þ is continuous and nonnega-

tive on L2ðSTÞ � L2ðSTÞ.
Finally, it can be shown that the problem (37) has at least one optimal solu-

tion, cf. [23], Thm. 5.7.

5.3.2. Numerical results. We present now numerical results for problem (37).

We use the method of lines with quadratic finite elements in space and the 3-stage

Rosenbrock method ROS3P from [19] in time. For the discretization of the ad-

joint equation we use also quadratic finite elements in space and ROS3P in time.

For the mesh refinement we apply the a posteriori time and space error estimator

of [8] and adaptive time refinement as described in 5.2 as well as uniform refine-

ment in space.

For the approximate solution of the trust-region problem we use the projected

cg-Newton algorithm [26], Alg. 5.10 with at most 10 cg iterations, where we com-

pute ĤHkv by the discretized version of the exact evaluation of the Hessian vector

product based on the standard adjoint formula, see [15], §1.6.5.

For the particular instance of (37) we set a ¼ �0:2, b ¼ 0:3, and a ¼ 1e� 2. In

Algorithm 3.3 with the implementation details of 5.2 we have chosen etol ¼ 5e� 5,

ex ¼ 8e� 4, cy; t ¼ 0:5, ~ccy ¼ 10, cl; t ¼ 0:5, ~ccl ¼ 10, ~ccu ¼ 0:25, and x2 ¼ 1:5. The

starting control was uh
0 C 0.

Table 1 depicts the iteration history. The first column shows the iteration

number, the second column the type of refinement. cm is the discrete criticality

measure, hu is the error in the discrete criticality measure (left hand side of (21c)),

hy; t=hl; t and hy;x=hl;x denote the time and space error of state/adjoint according to

5.2 and the last column shows the size of the ðx; tÞ-grid.
Figure 1 shows the computed optimal state at end time T with two di¤erent

scalings of the y-axis. One sees that the desired state yd C 0:2 is reached quite

accurately. Moreover, the adaptive time grid of the final discretization is shown.

The bound constraints become sigificantly active for the computed optimal control

uh
k .

It can be seen that the algorithm requires several refinements for the state and

the adjoint in time and two times also in space to achieve the prescribed spatial

tolerance. Particularly, the refinement for the adjoint in time in iteration 2 shows

that the current discretization was not suitable to compute a su‰ciently accurate

adjoint state, implying that the gradient could not be resolved adequately. All

residuals are driven to zero by suitable refinement. Thus, the residuals in the

optimality system are reduced e‰ciently to the desired tolerance and most of the

optimization iterations are carried out on coarser grids, only the last few iterations

require execution on the finest mesh.
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6. Conclusions

In this paper we have presented an adaptive multilevel trust-region algorithm for

optimization problems governed by nonlinear PDEs with control constraints. The

algorithm starts on a coarse discretization of the problem and combines an e‰-

cient trust-region method with an implementable adaptive refinement strategy

for the current discretization based on a posteriori error estimators. The refine-

ments are controlled by a criticality measure which we choose as the norm of the

projected gradient step. The optimization method can be used with any given

Table 1. Iteration history for problem 37

It. Refine cm hu hy; t hy;x hl; t hl;x ðx; tÞ-grid

0 2:7e�1 0:0e0 1:8e�4 4:6e�3 5:3e�3 7:7e�2 289� 32

1 4:4e�2 0:0e0 2:8e�4 9:6e�3 1:3e�2 2:1e�2 289� 32

2
adjoint t

1:4e�2
1:4e�2 1:9e�4

8:6e�4
5:2e�4

1:6e�2
7:6e�3

8:0e�3
3:6e�4

1:4e�2
7:5e�3

289� 32
289� 57

3 8:4e�3 8:5e�4 2:4e�4 9:4e�3 1:6e�4 3:7e�3 289� 57

4 3:2e�3 7:2e�4 5:3e�4 1:1e�2 8:8e�5 1:8e�3 289� 57

5 1:2e�3 2:2e�4 3:2e�4 1:0e�2 4:6e�5 9:9e�4 289� 57

6 1:5e�3 1:6e�4 4:9e�4 9:5e�3 7:6e�5 1:5e�3 289� 57

7 1:5e�3 2:0e�4 4:4e�4 1:0e�2 6:7e�5 1:3e�3 289� 57

8
state x,t

4:0e�4
4:8e�3 1:6e�5

4:1e�4
2:0e�4

1:0e�2
2:9e�3

6:1e�5
7:2e�5

1:2e�3
1:1e�3

289� 57
1089� 113

9 2:1e�3 2:2e�6 2:0e�4 2:8e�3 6:8e�5 1:0e�3 1089� 113

10 1:8e�3 1:2e�4 9:8e�5 2:7e�3 7:4e�5 1:1e�3 1089� 113

11 7:8e�4 1:2e�5 9:8e�5 2:8e�3 4:9e�5 4:5e�4 1089� 113

12 4:5e�4 3:3e�5 4:5e�5 2:8e�3 5:7e�5 7:4e�4 1089� 113

13
state x,t

1:1e�4
8:0e�5 1:0e�5

3:9e�5
1:3e�5

2:8e�3
7:2e�4

4:6e�5
1:8e�5

6:3e�4
3:1e�4

1089� 113
4225� 228

14 1:1e�4 1:2e�5 9:8e�6 7:3e�4 1:9e�5 3:2e�4 4225� 228

15 1:2e�4 9:5e�6 5:4e�6 7:6e�4 2:0e�5 3:3e�4 4225� 228

16 1:1e�4 9:0e�6 5:4e�6 7:6e�4 2:0e�5 3:3e�4 4225� 228

17
adjoint t

2:1e�5
2:3e�5 5:0e�6

5:4e�6
3:0e�6

7:6e�4
3:9e�4

1:9e�5
9:0e�6

3:1e�4
1:8e�4

4225� 228
4225� 306
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adaptive state and adjoint solvers. In particular, highly e‰cient solvers for

unsteady PDEs can be coupled with the optimization framework. The resulting

inexactness of the reduced gradient in the discretizations is controlled by the

algorithm. The presented numerical example shows that the algorithm carries

out most optimization iterations on relatively coarse discretizations. The error

estimators for the state and the adjoint equation as well as the criticality mea-

sure are e‰ciently driven to zero. Thus, the algorithm is a promising rigorous

framework for a globally convergent adaptive multilevel method for PDE con-

strained optimization problems with control constraints that can be used with

PDE solvers provided by the user. The approach presented in this paper has sev-

eral advantages: 1) Di¤erent solvers for the state and the adjoint PDE can be used

within this optimization framework. 2) The mesh is refined as needed during the

optimization algorithm to approach the solution of the PDE constrained problem

with control constraints e‰ciently. 3) (First order) convergence of the proposed

multilevel algorithm for nonlinear, non-convex, PDE constrained optimization

problems with control constraints is proven.
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