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problem with a large parameter
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Abstract. Robin problem for the Laplacian in a bounded planar domain with a smooth
boundary and a large parameter in the boundary condition is considered. We prove a
two-sided three-term asymptotic estimate for the negative eigenvalues. Furthermore, im-
proving the upper bound we get a two term asymptotics in terms of the coupling constant
and the maximum of the boundary curvature.
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1. Introduction and the main result

Asymptotic properties of eigenvalues belong among the most often studied prob-

lems in the spectral theory. In this paper we are going to discuss an asymptotics

of the ‘‘attractive’’ Robin problem for the Laplacian in a bounded domain of R2

in the situation when the parameter b in the boundary condition assumes large

values. The problem has a physical motivation; it naturally arises in the study

of reaction-di¤usion equation where a distributed absorbtion competes with a

boundary source—see [5], [6] for details. At the same the question is of mathe-

matical interest. In a recent paper, Levitin and Parnovski [7] investigated the

asymptotic behavior of the principal eigenvalue and showed that its leading term

is �cb2 where c ¼ 1 if the domain boundary is smooth and c > 1 if it has angles.

The same one-term asymptotics is known to hold in the former case also for

higher eigenvalues [1].
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A related asymptotic problem is encountered in the theory of leaky quantum

graphs [2] where the dynamics is not constrained to a bounded region, instead

it is governed by a singular Schrödinger operator with an attractive interaction

supported by a manifold or complex of a lower dimension. A particularly close

analogy occurs in the two-dimensional situation when the interaction support is

closed smooth loop; using a combination of bracketing and estimates with sepa-

rated variables, one is able to derive an asymptotic expansion of negative eigen-

values [4] in which the absolute term with respect to the coupling parameter is

given by a one-dimensional Schrödinger operator with a potential determined by

the geometry of the problem, specifically the curvature of the loop.

This inspires the question whether the technique used for the singular Schrö-

dinger operators cannot be used also for Robin ‘‘billiards’’ with a smooth

boundary. This is the main topic of the present paper. We are going to show first

that in distinction to the Schrödinger case the method of [4] does not yield an

asymptotic expansion, but two-sided asymptotic estimates only, which squeeze

only when the domain is a circular disc. On the other hand, these estimates hold

true not only for the principal eigenvalue, and moreover, they have three terms in

the powers of b which improves, in particular, the result obtained in [7] for smooth

boundaries. On the other hand, the result admits an improvement. Replacing

the upper bound by a variational estimate similar to that employed recently by

Pankrashkin [8] for the principal eigenvalue, we obtain a bound in which only

the maximum of the boundary curvature appears, and as a result, a two-term

asymptotic expansion.

Let us now state the problem properly. We suppose that W be an open, simply

connected set in R2 with a closed C4 Jordan boundary qW ¼ G : ½0;L� C s 7!
ðG1;G2Þ a R2 which is parametrized by its arc length; for definiteness we choose

the clockwise orientation of the boundary. Let g : ½0;L� ! R be the signed

curvature of G, i.e. gðsÞ ¼ G 00
1 ðsÞG 0

2ðsÞ � G 00
2 ðsÞG 0

1ðsÞ. We investigate the spectral

boundary-value problem

�Df ¼ lf in W

qf

qn
¼ bf on G

ð1Þ

with a parameter b > 0, which will be in the following assumed to be large; the

symbol q
qn

in (1) denotes the outward normal derivative. It is straightforward to

check that the quadratic form

qb½ f � ¼ k‘f k2L2ðWÞ � b

ð
G

j f ðxÞj2 ds ð2Þ
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with DomðqbÞ ¼ H 1ðWÞ is closed and below bounded; we denote by Hb the unique

self-adjoint operator associated with it. Our main goal is to study the asymptotic

behavior of the negative eigenvalues of Hb as parameter b tends to infinity. To

state the result, we introduce the one-dimensional Schrödinger operator

S ¼ � d2

ds2
� 1

4
g2ðsÞ in L2ð0;LÞ ð3Þ

with the domain

P ¼ f f a H 2ð0;LÞ : f ð0Þ ¼ f ðLÞ; f 0ð0Þ ¼ f 0ðLÞg: ð4Þ

We use the symbol mj for the j-th eigenvalue of S counted with the multiplicity,

j a N, and furthermore, we denote g� ¼ max
½0;L�

gðsÞ and g� ¼ min
½0;L�

gðsÞ.

Our main result reads then as follows.

Theorem 1.1. Under the stated assumptions, to any fixed integer n there exists

a bðnÞ > 0 such that the number of negative eigenvalues of Hb is not smaller than

n. For b > bðnÞ we denote by lnðbÞ the n-th eigenvalue of Hb counted with the

multiplicity. Then lnðbÞ satisfies for b ! l the asymptotic estimates

� b þ g�

2

� �2
þ mn þ O

log b

b

� �
a lnðbÞa� b þ g�

2

� �2
þ mn þ O

log b

b

� �
: ð5Þ

Remarks 1.2. (a) It will be clear from the proof that the assumption about simple

connectedness of W is done mostly for the sake of simplicity. The result extends

easily to multiply connected domains, in general with di¤erent parameters at

di¤erent components of the boundary; each of the components then gives rise to

a series of negative eigenvalues tending to �l in the limit.

(b) In the light of the following result the upper bound in (5) is not of much

use. We include it primarily to illustrate the significant di¤erence between the

‘‘two-sided’’ situation discussed in [4] and the ‘‘one-sided’’ one treated here.

As we have indicated, the upper bound can be improved:

Theorem 1.3. In the asymptotic regime b ! þl the inequality

lnðbÞa�b2 � g�b þ Oðb2=3Þ

is valid for any fixed n. Consequently, the j-th eigenvalue behaves asymptotically as

lnðbÞ ¼ �b2 � g�b þ Oðb2=3Þ:
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Thus we obtain a two-term asymptotics which, in contrast to the Schrödinger

operator case treated in [4], is not precise enough to distinguish between individual

eigenvalues whose mutual distances are expected to be of order of Oð1Þ.

2. Proof of Theorem 1.1

Let us first introduce some quadratic forms and operators which we shall need

in the argument. To begin with, we need the following result, which is a straight-

forward modification of Lemma 2.1 of [4], hence we skip the proof.

Lemma 2.1. Let F be the map

½0;LÞ � ð0; aÞ C ðs; uÞ 7!
�
G1ðsÞ þ uG 0

2ðsÞ;G2ðsÞ � uG 0
1ðsÞ
�
a R2:

Then there exists an a1 > 0 such that the map F is injective for any a a ð0; a1�.

Choose an a satisfying 0 < a < a1, to be specified later, and let Sa be the strip

neighborhood of G of width a,

Sa :¼ F
�
½0;LÞ � ½0; aÞ

�
:

Then WnSa ¼ La is a compact simply connected domain with the boundary

Ga :¼ F
�
½0;LÞ � fag

�
. We define

qD
a;b½ f � :¼ k‘f k2Sa

� b

ð
G

j f ðxÞj2 ds for f a f f a H 1ðSaÞ : f jGa
¼ 0g;

qN
a;b½ f � :¼ k‘f k2Sa

� b

ð
G

j f ðxÞj2 ds for f a H 1ðSaÞ;

and denote by LD
a;b and LN

a;b the self-adjoint operators associated with the forms

qD
a;b and qN

a;b, respectively. The first key component of the proof is to use the

Dirichlet-Neumann bracketing—see [9, Sec. XIII.15, Prop. 4]—imposing addi-

tional boundary condition at Ga. This yields

ð�DN
La
ÞaLN

a;b aHb a ð�DD
La
ÞaLD

a;b ð6Þ

in L2ðWÞ ¼ L2ðLaÞaL2ðSaÞ where the inequality should be understood, of course,

in the variational sense. Since the estimating operators have the direct-sum struc-

ture and the first terms in the inequalities (6) referring to the part of W separated

from the boundary are positive, in order to estimate the negative eigenvalues of Hb

it is su‰cient to estimate those of LD
a;b, L

N
a;b.
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To this aim we use the second main trick, introducing a ‘‘straightening’’ trans-

formation in the spirit of [3], to produce a pair of operators in L2
�
ð0;LÞ � ð0; aÞ

�
that are unitarily equivalent to LD

a;b and LN
a;b, respectively. Specifically, we intro-

duce the following change of variables,

f ðx1; x2Þ ¼
1�

1� ugðsÞ
�1=2 jðs; uÞ;

then it is straightforward to check that for any function f a H 2ðSaÞ we have also

j a H 2
�
ð0;LÞ � ð0; aÞ

�
and

j fx1 j
2 þ j fx2 j

2 ¼
"

1�
1� ugðsÞ

�2 qj

qs

����
����
2

þ qj

qu

����
����
2

þ ~VVðs; uÞjjj2

þ ug 0ðsÞ
2
�
1� ugðsÞ

�3 j
qj

qs
þ j

qj

qs

� �
þ gðsÞ
2
�
1� ugðsÞ

� j
qj

qu
þ j

qj

qu

� �#

with

~VVðs; uÞ ¼ g2ðsÞ
4
�
1� ugðsÞ

�2 þ u2
�
g 0ðsÞ

�2
4
�
1� ugðsÞ

�4 ;

where we employ the usual shorthands, fxj ¼
qf

qxj
, and furthermore

ð ð
Sa

ðj fx1 j
2 þ j fx2 j

2Þ dx1 dx2 � b

ð
G

j f ðxÞj2 ds

¼
ð a
0

ðL
0

1�
1� ugðsÞ

�2 qj

qs

����
����
2

ds duþ
ð a
0

ðL
0

qj

qu

����
����
2

ds duþ
ð a
0

ðL
0

Vðs; uÞjjj2 ds du

�
ðL
0

gðsÞ
2

þ b

� �
jjðs; 0Þj2 dsþ

ðL
0

gðsÞ
2
�
1� agðsÞ

� jjðs; aÞj2 ds;
where

Vðs; uÞ ¼ ~VVðs; uÞ � q

qs

ug 0ðsÞ
2
�
1� ugðsÞ

�3
 !

� q

qu

gðsÞ
2
�
1� ugðsÞ

�
 !

¼ � g2ðsÞ
4
�
1� ugðsÞ

�2 � ug 00ðsÞ
2
�
1� ugðsÞ

�3 � 5

4

u2
�
g 0ðsÞ

�2�
1� ugðsÞ

�4 :

145Eigenvalue asymptotics for a Robin problem



Armed with these formulæ we can now introduce the two operators in

L2
�
ð0;LÞ � ð0; aÞ

�
unitarily equivalent to LD

a;b and LN
a;b, respectively. On the

domains

QD
a ¼

�
j a H 1

�
ð0;LÞ � ð0; aÞ

�
: jðL; :Þ ¼ jð0; :Þ on ð0; aÞ; jð:; aÞ ¼ 0 on ð0;LÞ

�
and

QN
a ¼

�
j a H 1

�
ð0;LÞ � ð0; aÞ

�
: jðL; :Þ ¼ jð0; :Þ on ð0; aÞ

�
;

we define the quadratic forms

bD
a;b½j� ¼

ð a
0

ðL
0

1�
1� ugðsÞ

�2 qj

qs

����
����
2

ds duþ
ð a
0

ðL
0

qj

qu

����
����
2

ds du

þ
ð a
0

ðL
0

Vðs; uÞjjj2 ds du�
ðL
0

gðsÞ
2

þ b

� �
jjðs; 0Þj2 ds ð7Þ

and

bN
a;b½j� ¼

ð a
0

ðL
0

1�
1� ugðsÞ

�2 qj

qs

����
����
2

ds duþ
ð a
0

ðL
0

qj

qu

����
����
2

ds du

þ
ð a
0

ðL
0

Vðs; uÞjjj2 ds du�
ðL
0

gðsÞ
2

þ b

� �
jjðs; 0Þj2 ds

þ
ðL
0

gðsÞ
2
�
1� agðsÞ

� jjðs; aÞj2 ds;
respectively. It is easy to check the following claim analogous to Lemma 2.2 of [4].

Lemma 2.2. The operators BD
a;b and BN

a;b associated with above quadratic forms

are unitarily equivalent to LD
a;b and LN

a;b, respectively.

In the next step we estimate BD
a;b and BN

a;b just introduced by operators with

separated variables. We put1

gþ ¼ max
½0;L�

jgð:Þj; g 0þ ¼ max
½0;L�

jg 0ð:Þj; g 00þ ¼ max
½0;L�

jg 00ð:Þj;

VþðsÞ ¼
�g2ðsÞ

4ð1þ agþÞ
2
þ ag 00þ

2ð1� agþÞ
3
;

V�ðsÞ ¼
�g2ðsÞ

4ð1� agþÞ
2
�

ag 00þ

2ð1� agþÞ
3
� 5

4

a2ðg 0þÞ
2

ð1� agþÞ
4
:

1There is a typo in [4]; the second term in the definition of Vþ there has to be deleted.
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For an a satisfying 0 < a < gþ=2 and j belonging to QD
a and QN

a , respectively, we

define

~bbD
a;b½j� ¼ ð1� agþÞ

�2

ð a
0

ðL
0

qj

qs

����
����
2

ds duþ
ð a
0

ðL
0

qj

qu

����
����
2

ds du

þ
ð a
0

ðL
0

VþðsÞjjj2 ds du�
g�
2
þ b

� �ðL
0

jjðs; 0Þj2 ds

and

~bbN
a;b½j� ¼ ð1þ agþÞ

�2

ð a
0

ðL
0

qj

qs

����
����
2

ds duþ
ð a
0

ðL
0

qj

qu

����
����
2

ds du

þ
ð a
0

ðL
0

V�ðsÞjjj2 ds du�
g�

2
þ b

� �ðL
0

jjðs; 0Þj2 ds

� gþ
2ð1� agþÞ

ðL
0

jjðs; aÞj2 ds:

Then we have

bD
a;b½j�a ~bbD

a;b½j� for f a QD
a ; ð8Þ

bN
a;b½j�b ~bbN

a;b½j� for f a QN
a : ð9Þ

Let ~HHD
a;b and ~HHN

a;b be the self-adjoint operators associated with the forms ~bbD
a;b and

~bbN
a;b, respectively. By TD

a;b we denote the self-adjoint operator associated with the

form

tDa;b½j� ¼
ð a
0

jj 0ðuÞj2 du� g�
2
þ b

� �
jjð0Þj2

defined on fj a H 1ð0; aÞ : jðaÞ ¼ 0g. Similarly, TN
a;b is the self-adjoint operator

associated with the form

tNa;b½j� ¼
ð a
0

jj 0ðuÞj2 du� g�

2
þ b

� �
jjð0Þj2 � gþ

2ð1� agþÞ
jjðaÞj2; j a H 1ð0; aÞ:

Furthermore, we introduce the operators

UD
a ¼ ð1� agþÞ

�2 � d2

ds2

 !
þ VþðsÞ; UN

a ¼ ð1þ agþÞ
�2 � d2

ds2

 !
þ V�ðsÞ
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in L2ð0;LÞ, the domain of both of them being P given by (4). Then we have

~HHD
a;b ¼ UD

a n I þ I nTD
a;b;

~HHN
a;b ¼ UN

a n I þ I nTN
a;b; ð10Þ

and we can estimate contributions from the longitudinal and transverse variables

separately. What concerns the former, we denote by mD
j ðaÞ, mN

j ðaÞ the j-th eigen-

value of UD
a , UN

a , respectively, counted with the multiplicity, and use Proposition

2.3 of [4] which contains the following claim:

Lemma 2.3. There exists a constant C > 0 such that the estimates

jmD
j ðaÞ � mjjaCaj2 ð11Þ

and

jmN
j ðaÞ � mjjaCaj2 ð12Þ

hold for any j a N and 0 < a < 1=ð2gþÞ, where C is independent on j, a.

We stress that the constant C here is independent of j and a. As for the transverse

part, let us estimate first the principal eigenvalue of TD
a;b.

Lemma 2.4. Assume that a
�
b þ g�

2

�
> 4

3 . Then TD
a;b has only one negative eigen-

value which we denote by zDa;b. It satisfies the inequalities

� b þ g�
2

� �2
a zDa;b a� b þ g�

2

� �2
þ 4 b þ g�

2

� �2
e�aðbþg�=2Þ:

Proof. Notice that the domain of the operator is

DðTD
a;bÞ ¼ j a H 2ð0; aÞ : j 0ð0Þ ¼ � g�

2
þ b

� �
jð0Þ; jðaÞ ¼ 0

� 	
:

Assume that �k2 with k > 0 is an eigenvalue of TD
a;b, and let a nonzero j be the

corresponding eigenfunction, then we have

(1) �j 00ðuÞ ¼ �k2jðuÞ;
(2) j 0ð0Þ ¼ �

�g�
2 þ b

�
jð0Þ;

(3) jðaÞ ¼ 0.

In view of the first property, the eigenfunction j is of the form

jðuÞ ¼ Aeku þ Be�ku:
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Furthermore, the requirements (2) and (3) yield kA� kB ¼
�
� g�

2 � b
�
ðAþ BÞ

and Aeka þ Be�ka ¼ 0, respectively. Thus the coe‰cients A, B have to satisfy the

equation

eka e�ka

k þ g�
2 þ b �

�
k � g�

2 � b
�

 !
A

B

� �
¼ 0:

Since ðA;BÞA ð0; 0Þ, we get

det
eka e�ka

k þ g�
2 þ b �ðk � g�

2 � bÞ

 !
¼ 0

which is equivalent to ga;bðkÞ :¼ 2ak þ log b þ g�
2 � k

� �
� log b þ g�

2 þ k
� �

¼ 0. It

is easy to see that also the converse is true: if ga;bðkÞ ¼ 0, then �k2 is an eigen-

value of TD
a;b. Let us now show that ga;bð:Þ has a unique zero in 0; b þ g�

2

� �
. By

definition we have ga;bð0Þ ¼ 0, and since

dga;bðkÞ
dk

¼
2a b þ g�

2

� �2 � 2 b þ g�
2

� �
� 2ak2

b þ g�
2

� �2 � k2

we can claim that ga;b is monotonically increasing in 0; b þ g�
2
� 1

a

� �
and it is

monotonically decreasing in b þ g�
2
� 1

a
; b þ g�

2

� �
. Moreover, we have

lim
k!bþg�=2

ga;b ¼ �l;

this implies that the function ga;b has a unique zero in 0; b þ g�
2

� �
. Moreover,

since a b þ g�
2

� �
>

4

3
, we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b þ g�

2

� �
b þ g�

2
� 1

a

� �s
>

1

2
b þ g�

2

� �
. Conse-

quently, the solution k has the form k ¼ b þ g�
2
� s, 0 < s <

1

2
b þ g�

2

� �
. Taking

into account the relation ga;bðkÞ ¼ 0, we get

log s ¼ logð2b þ g� � sÞ � 2a b þ g�
2
� s

� �
a logð2b þ g�Þ � a b þ g�

2

� �
:

Hence we obtain sa ð2b þ g�Þe�aðbþg�=2Þ which concludes the proof. r

Next we estimate the first eigenvalue of TN
a;b.
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Lemma 2.5. Assume that
�
b þ g�

2

�
> max

gþ
2ð1�agþÞ

;
2 log 5

3a

n o
. Then T N

a;b has a

unique negative eigenvalue zNa;b , and moreover, we have

� b þ g�

2

� �2
� 45

4
b þ g�

2

� �2
e�aðbþg�=2Þ

a zNa;b a� b þ g�

2

� �2
:

Proof. The operator domain in this case looks as follows,

DðTN
a;bÞ ¼ j a H 2ð0; aÞ : j 0ð0Þ ¼ � g�

2
þ b

� �
jð0Þ; j 0ðaÞ ¼ gþ

2ð1� agþÞ
jðaÞ

� 	
:

Assume again that �k2 with k > 0 is an eigenvalue of TN
a;b corresponding to a

nonzero eigenfunction j. As in the proof of Lemma 2.4 we infer that �k2 is an

eigenvalue of TN
a;b if and only if2

e2ka ¼
k þ g�

2
þ b

k � g�

2 � b
�
k þ gþ

2ð1�agþÞ

k � gþ
2ð1�agþÞ

: ð13Þ

Since the left-hand side of the last equation is strictly increasing, and the right-

hand side is strictly decreasing for k > 0, then the equation (13) has a unique

positive solution which lies in fact in the subinterval
�
b þ g �

2
;þl

�
.

Next we will show that (13) has no solutions in the interval kb 3
2

�
b þ g�

2

�
.

Suppose that the opposite is true. As
gþ

2ð1�agþÞ
< b þ g �

2
, we have

k þ g�

2
þ b

k � g �

2
� b

�
k þ gþ

2ð1�agþÞ

k � gþ
2ð1�agþÞ

a
k þ g �

2
þ b

k � g�

2
� b

 !2

:

However, since we assume kb 3
2

�
b þ g �

2

�
, this would imply

e2kaa
3
2

�
b þ g �

2

�
þ g�

2
þ b

3
2

�
b þ g �

2

�
� g�

2
� b

 !2
¼ 25:

On the other hand, we have e2kab e3aðbþg�=2Þ > 25, so we come to a contradiction.

Hence the solution k of (13) is of the form k ¼ b þ g �

2
þ s with 0 < s < 1

2

�
b þ g�

2

�
,

and using (13) once again we get

e2kaa
k þ g�

2
þ b

k � g �

2
� b

 !2
a

2b þ g� þ s

s

� �2
a

5
2

�
b þ g �

2
Þ

s

 !2
;

2There is a misplaced exponential in the analogous proof in [4] which does not a¤ect the claim.
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which further implies

sa
5

2
b þ g�

2

� �
e�ka ¼ 5

2
b þ g�

2

� �
e�aðbþg�=2Þ�sa

a
5

2
b þ g�

2

� �
e�aðbþg�=2Þ:

This completes the proof of Lemma 2.5. r

Now we are finally in position to prove Theorem 1.1. We use first the bracket-

ing to squeeze the eigenvalues in question between those of the operators (10).

Since the latter have separated variables, their eigenvalues are sums of eigen-

values of the longitudinal and transverse component which we have estimated in

Lemmata 2.3 and 2.4, 2.5, respectively, and it is su‰cient to choose a ¼ 6
b
log b

to get (5). r

Note that while the argument is pretty much the same as in the proof of

Theorem 1 of [4], with Propositions 2.3–2.5 there replaced by the above men-

tioned lemmata, the result is much weaker due to the presence of the last term in

the form bD
a;b and its counterpart in bN

a;b. In particular, the estimates of Theorem

1.1 squeeze to produce an exact asymptotic expansion if and only if the curvature

is constant, g� ¼ g�. Let us now look at this case in more detail:

Example 2.6. Let W be a disc of radius R centered at the origin. In this case we

have

gðsÞC g ¼ 1

R
ð14Þ

and the eigenvalues mj of the comparison operator S given by (3) can be computed

explicitly,

mj ¼ � 1

4
þ j

2

� �2 !
R�2; ð15Þ

where ½y� denotes the maximum integer which less or equal to y: We introduce

the usual polar coordinates,

x ¼ r cos y

y ¼ r sin y

�
0a raR; 0a y < 2p;

writing with an abuse of notation f ðx; yÞC f ðr; yÞ: Equations (1) with l ¼ �k2

now read
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q2f

qr2
þ 1

r

qf

qr
þ 1

r2
q2f

qy2
¼ k2f ;

qf

qr

����
r¼R

¼ bf :

8>>><
>>>:

ð16Þ

Solution to the first equation in (16) is conventionally sought in the form

f ðr; yÞ ¼
X
m AZ

cmImðkrÞeimy: ð17Þ

Furthermore, the Hamiltonian commutes with the angular momentum operator,

�i q
qy

with periodic boundary conditions, hence the two operators have common

eigenspaces, and we can consider sequence fcmg with nonzero cm corresponding

to a single values of jmj; it goes without saying that the discrete spectrum has

multiplicity two except the eigenvalue corresponding to m ¼ 0 which is simple.

The boundary condition in (16) can be then rewritten as

kI 0mðkRÞ � bImðkRÞ ¼ 0: ð18Þ

for a fixed m a Z. To find its solutions, let us change the variables to X ¼ kR,

a ¼ bR, in which case the condition (18) reads

XI 0mðXÞ
ImðXÞ ¼ a: ð19Þ

The function at the left-hand side of (19) is strictly increasing for k > 0, hence (19)

has a unique solution for any fixed a and m. As a ! þl, so does X in (19), and

using the well-known asymptotics of modified Bessel functions, we find

XI 0mðXÞ
ImðXÞ ¼ X � 1

2
þ 4m2 � 1

8X
þOðX �2Þ; X ! þl:

In combination with the spectral condition (19) this yields

X ¼ aþ 1

2
� 4m2 � 1

8a
þOða�2Þ; a ! þl:

This, in turn, implies the asymptotics for X 2, and returning to the original vari-

ables b, k we find

�k2 ¼ � b þ 1

2R

� �2
þ m2 � 1

4

� �
R�2 þ Oðb�1Þ; b ! þl:
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This agrees, of course, with the conclusion of Theorem 1.1 according to (14) and

(15). At the same time it shows that there is not much room for improving the

error term in the theorem, because it di¤ers from the one in this explicitly solvable

example by the logarithmic factor only.

3. Proof of Theorem 1.3

The idea is to replace the crude estimate of BD
a;b from Lemma 2.2 by the first op-

erator in (10) by a finer one. Consider first the principal eigenvalue which satisfies

l1ðbÞa bD
a;b½j� for any j a QD

a and choose the following family of trial functions,

ĵjðs; uÞ ¼ weðsÞðe�au � e�2aaþuaÞ;

where we is a smooth function on ½0;L� with the support located in an e-

neighborhood of a point s� in which the curvature reaches its maximum,

gðs�Þ ¼ g�, and e is a parameter to be determined later. In view of the boundary

compactness and smoothness, at least one such point exists; without loss of gener-

ality we may assume that ðs� � e; s� þ eÞH ð0;LÞ. We shall consider functions of

the form

weðsÞ :¼ w
s� s� þ e

2e

� �
;

where wðxÞ is a fixed smooth function on R with the support in the interval ð0; 1Þ;
then we have

kwek
2
L2ð0;LÞ ¼ 2ekwk2L2ð0;1Þ; kw 0

ek
2
L2ð0;LÞ ¼ 2eð Þ�1kw 0k2L2ð0;1Þ: ð20Þ

We also note that on the support of we, i.e. for any s a ðs� � e; s� þ eÞ we have

jgðsÞ � g�j < g 0þjs� s�j < g 0þe:

Computing the terms of the form bD
a;b½j� we get for the longitudinal kinetic contri-

bution the estimate

ð a
0

ðL
0

1�
1� ugðsÞ

�2 qĵj

qs

����
����
2

ds du

a

ð a
0

ð s�þe

s ��e

1

ð1� ug�Þ2
þ Ceu

 !
e�au � e�2aaþua
� �2

�
�
w 0ðsÞ

�2
ds du

1

2a
þ Oða�2Þ

� �
þ Ce

1

4a2
þ Oða�3Þ

� �� �
kwk2L2ð0;LÞ;
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where C > 0 is a generic constant independent of b; a, and e: Similarly,

ð a
0

ðL
0

qĵj

qu

����
����
2

ds du ¼ a

2

�
1þ Oðae�2aaÞ

�
kwk2L2ð0;LÞ

holds for the transverse kinetic term,

ð a
0

ðL
0

Vðs; uÞjĵjj2 ds du

a

ð a
0

ð s�þe

s ��e

� ðg�Þ2

4ð1� ug�Þ �
ug 00ðs�Þ

2ð1� ug�Þ3
� 5

4

u2
�
g 0ðs�Þ

�2
ð1� ug�Þ4

þ Ce

 !

� ðe�au � e�2aaþuaÞ2jwðsÞj2 ds du

¼ �ðg�Þ2

4
þ Ce

 !
1

2a

�
1þ Oða�1Þ

�
kwk2L2ð0;LÞ

for the potential one, and

�
ðL
0

gðsÞ
2

þ b

� �
jĵjðs; 0Þj2 dsb� b þ g� � e

2

� �
1� e�2aa
� �2kwk2L2ð0;LÞ;

for the boundary one. Finally, the trial function norm satisfies

ð a
0

ðL
0

jĵjðs; uÞj2 ds du ¼ 1

2a

�
1þ Oðae�2aaÞ

�
kwk2L2ð0;LÞ:

Putting these expressions together and and taking (20) into account we get

bD
a;b½ĵj�

kĵjk2L2ð0;LÞ
a

1

4e2

kw 0k2L2ð0;1Þ

kwk2L2ð0;1Þ
1þ Oða�1Þ þ Ce

1

2a
þ a�2

� �� �

þ a2
�
1þ Oðae�2aaÞ

�
þ �ðg�Þ2

4
þ Ce

 !�
1þ Oða�1Þ

�

� 2a b þ g� � e

2

� ��
1þ Oðae�2aaÞ

�
:

Now we choose a ¼ b þ g�

2
in which case the right-hand side of the last inequality

becomes
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1

4e2

kw 0k2L2ð0;1Þ

kwk2L2ð0;1Þ
1þ Oðb�1Þ þ Ce

1

2b
þ b�2

� �� �
� b þ g�

2

� �2

þ e b þ g�

2

� �
þ �ðg�Þ2

4
þ Ce

 !�
1þ Oða�1Þ

�
;

and to optimize the last formula with respect to e we take e ¼ b�1=3, which yields

the estimate

bD
a;b½ĵj�

kĵjk2L2ð0;LÞ
a� b þ g�

2

� �2
þ Oðb2=3Þ ð21Þ

proving the result. The argument for the higher eigenfunctions proceeds in the

same way. We employ trial functions of the form

ĵjjðs; uÞ ¼ we; jðsÞðe�au � e�2aaþuaÞ;

where the longitudinal part is constructed from a shifted function w, for instance

we; jðsÞ :¼ w
s� s� þ ð2j � 1Þe

2e

� �
:

The above estimate of the form remains essentially the same, up to the values of

the constants involved. By construction, the functions we; j with di¤erent values

of j have disjoint supports, hence ĵjj is orthogonal to ĵji, i ¼ 1; . . . ; j � 1, and by

the min-max principle [9], Sec. XIII.1 the eigenvalue ljðbÞ has again the upper

bound given by the right-hand side of (21). r

References

[1] D. Daners and J. B. Kennedy, On the asymptotic behaviour of the eigenvalues of a
Robin problem. Di¤erential Integral Equations 23 (2010), 659–669. Zbl 1240.35370
MR 2654263

[2] P. Exner, Leaky quantum graphs: a review. In Analysis on graphs and its applications,
Proc. Sympos. Pure Math. 77, Amer. Math. Soc., Providence, RI 2008, 523–564.
Zbl 1153.81487 MR 2459890
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