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Existence, uniqueness and decay rates for
evolution equations on trees

Leandro M. Del Pezzo1, Carolina A. Mosquera2 and Julio D. Rossi3

Abstract. We study evolution equations governed by an averaging operator on a directed
tree, showing existence and uniqueness of solutions. In addition we find conditions of the
initial condition that allows us to find the asymptotic decay rate of the solutions as t ! l.
It turns out that this decay rate is not uniform, it strongly depends on how the initial con-
dition goes to zero as one goes down in the tree.
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1. Introduction

Let Tm be a directed tree with m-branching, we denote by x the vertices of the

tree. Given a function f : Tm ! R, in this work we study the following Cauchy

problem

utðx; tÞ � DFuðx; tÞ ¼ 0 in Tm � ð0;þlÞ;
uðx; 0Þ ¼ f ðxÞ in Tm;

�
ð1:1Þ

where

DFuðx; tÞ ¼ F
�
u
�
ðx; 0Þ; t

�
; . . . ; u

�
ðx;m� 1Þ; t

��
� uðx; tÞ;

being F an averaging operator, see the precise definition in Section 2. The sim-

plest linear example of an averaging operator is the usual average

Fðx1; . . . ; xmÞ ¼
1

m

Xm
j¼1

xj
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but we can include nonlinear functions as

F ðx1; . . . ; xmÞ ¼
a

2

�
max

1ajam
fxjg þ min

1ajam
fxjg

�
þ 1� a

m

Xm
j¼1

xj;

with 0 < a < 1.

We can see that u is a solution of (1.1) if and only if it is a solution of the in-

tegral equation

uðx; tÞ ¼ Kf uðx; tÞ; ð1:2Þ

where

Kf uðx; tÞ :¼
ð t

0

ez�tF
�
u
�
ðx; 0Þ; z

�
; . . . ; u

�
ðx;m� 1Þ; z

��
dzþ e�tf ðxÞ:

We first prove existence and uniqueness of a locally bounded global in time

solution using a fixed point argument for Kf .

Theorem 1.1. Let f a LlðTm;RÞ. Then there exists a unique solution u in

Ll
loc

�
½0;þlÞ;LlðTm;RÞ

�
:¼ fv a LlðTm � ½0;T �;RÞ ET > 0g

of (1.1).

In addition, a comparison principle holds.

Theorem 1.2. Let F be an averaging operator, f ; g a LlðTm;RÞ such that f a g

in Tm, and u; v a Ll
loc

�
½0;þlÞ;LlðTm;RÞ

�
such that

uðx; tÞaKf uðx; tÞ and vðx; tÞbKgvðx; tÞ ð1:3Þ

for all ðx; tÞ a Tm � ½0;þlÞ. Then ua v in Tm � ½0;þlÞ.

Once we have established existence and uniqueness of global in time solutions

a natural question is to look for its asymptotic behaviour as t ! l. We find con-

ditions on the initial condition f (that involve the speed at which they go to zero

as one goes down in the tree) that guarantee that solutions go to zero as t ! l.

Under these conditions we can find bounds for the decay rate. Surprisingly the

decay rate for solutions to (1.1) is not uniform. It strongly depends on the decay

of the initial condition f . For example, for initial conditions with finite support

(only a finite number of vertices have non-zero values) we find a decay of the form

tme�t (here m depends on the size of the support of f ), while for data without finite
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support we find a decay of the form e�lt (with 0 < l < 1 depending on the decay

of f ). This is the content of our next results whose proof rely mostly on compar-

ison arguments. For the statements we need to introduce the following notations.

Let f a LlðTm;RÞ. We will say that f has finite support if there exists n a N0

such that f ðxÞ ¼ 0 for all x a Tm with lðxÞb n, where lðxÞ denotes the level of x.
We also define

að f Þ :¼ minf j a N0 : f ðxÞ ¼ 0; Ex a Tm with lðxÞb jg;

and

mð f Þ :¼ að f Þ � 1 if að f Þ > 0;

0 if að f Þ ¼ 0:

�
Theorem 1.3. Let F be an averaging operator and f a LlðTm;RÞ with finite

support. If u a Ll
loc

�
½0;þlÞ;LlðTm;RÞ

�
is the solution of (1.1) with initial condi-

tion f , then

max
x ATm

juðx; tÞja tmð f Þe�t

mð f Þ! k f kLlðTm;RÞ; ð1:4Þ

for t large enough.

The above bound is optimal, see Remark 4.1.

For f that are not finitely supported we have the following result.

Theorem 1.4. Let F be an averaging operator and f a LlðTm;RÞ such that there

exist l a ð0; 1Þ and k a R>0 such that

j f ðxÞja kð1� lÞ lðxÞ Ex a Tm:

If u a Ll
loc

�
½0;þlÞ;LlðTm;RÞ

�
is the solution of (1.1) with initial condition f , then

max
x ATm

juðx; tÞja ke�lt Et a R:

Again this bound is optimal, see Proposition 4.2.

In the next result we show that we can construct a solution with quite di¤erent

bahaviours at j, the first node of our tree.

Theorem 1.5. Let F be an averaging operator and a0ðtÞ a Cl
�
½0;lÞ;R

�
, then

there is a solution of utðx; tÞ � DFuðx; tÞ ¼ 0 in Tm � ð0;þlÞ, such that

uðj; tÞ ¼ a0ðtÞ Et a R:
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Let us end the introduction with a brief comment on previous bibliography

that concerns mostly the stationary problem. For nonlinear mean values on a

finite graph we refer to [8] and references therein. For equations on trees like

the ones considered here, see [1], [6], [7] and [9], [10], where for the stationary

problem it is proved the existence and uniqueness of a solution using game

theory. See also [2], [5] where the authors study the unique continuation and find

some estimates for the harmonic measure on trees. Here we use ideas from these

references.

The time dependent di¤usion equations on simple, connected, undirected

graphs, have been used to model di¤usion processes, such as, modeling energy

flows through a network or vibration of molecules, [3], [4].

In the case when F is the usual average, it is possible to construct a funda-

mental solution for (1.1) on infinite, locally finite, connected graphs. See [11],

[12] and the references therein.

This paper is a natural extension of the previously mentioned references since

here we deal with the evolution problem associated to an averaging operator on a

tree that is a directed graph.

This paper is organized as follows: in Section 2 we collect some preliminaries;

in Section 3 we deal with existence and uniqueness of solutions and prove Theo-

rem 1.1 and Theorem 1.2; in Section 4 we prove our results concerning the decay

of solutions as t ! l proving Theorem 1.3, Theorem 1.4 and Theorem 1.5.

2. Preliminaries

We begin with a review of the basic results that will be needed in subsequent

sections. The known results are generally stated without proofs, but we provide

references where the proofs can be found. Also, we introduce some of our nota-

tional conventions.

2.1. Directed tree. Let m a N>2. In this work we consider a directed tree Tm

with regular m-branching, that is, Tm consists of the empty set j and all finite

sequences ða1; a2; . . . ; akÞ with k a N, whose coordinates ai are chosen from

f0; 1; . . . ;m� 1g. The elements in Tm are called vertices. Each vertex x has m

successors, obtained by adding another coordinate. We will denote by SðxÞ the
set of successors of the vertex x. A vertex x a Tm is called an n-level vertex

(n a N) if x ¼ ða1; a2; . . . ; anÞ, and we will denote by lðxÞ the level of vertex x.

The set of all n-level vertices is denoted by Tn
m.

A branch of Tm is an infinite sequence of vertices, each followed by its imme-

diate successor. The collection of all branches forms the boundary of Tm, denoted

by qTm.
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We now define a metric on TmA qTm. The distance between two sequences

(finite or infinite) p ¼ ða1; . . . ; ak; . . .Þ and p 0 ¼ ða 0
1; . . . ; a

0
k; . . .Þ is m�Kþ1 when

K is the first index k such that ak A a 0
k; but when p ¼ ða1; . . . ; aKÞ and p 0 ¼

ða1; . . . ; aK ; a 0
Kþ1; . . .Þ, the distance is m�K . Hausdor¤ measure and Hausdor¤ di-

mension are defined using this metric. We have that Tm and qTm have diameter

one and qTm has Hausdor¤ dimension one. Now, we observe that the mapping

c : qTm ! ½0; 1� defined as

cðpÞ :¼
Xþl

k¼1

ak

mk

is surjective, where p ¼ ða1; . . . ; ak; . . .Þ a qTm and ak a f0; 1; . . . ;m� 1g for all

k a N. Whenever x ¼ ða1; . . . ; akÞ is a vertex, we set

cðxÞ :¼ cða1; . . . ; ak; 0; . . . ; 0; . . .Þ:

We can also associate to a vertex x an interval Ix of length 1
mk as follows

Ix :¼ cðxÞ;cðxÞ þ 1

mk

� �
:

Observe that for all x a Tm, IxB qTm is the subset of qTm consisting of all

branches that start at x. With an abuse of notation, we will write p ¼ ðx1; . . . ;
xk; . . .Þ instead of p ¼ ða1; . . . ; ak; . . .Þ where x1 ¼ a1 and xk ¼ ða1; . . . ; akÞ a
Sðxk�1Þ for all k a Nb2.

Finally we will denote by Tx
m the set of the vertices y a Tm such that Iy H Ix.

Example 2.1. Then Let k a N be at least 3. A 1=k-Cantor set, which we denote

by C1=k, is the set of all x a ½0; 1� that have a base k expansion without the digit 1,

that is, x ¼
P

ajk
�j with aj a f0; 1; . . . ; k� 1g with aj A 1. Thus C1=k is obtained

from ½0; 1� by removing the second k-th part of the line segment ½0; 1�, and then

removing the second interval of length 1=k from the remaining intervals, and so

on. This set can be thought of as a directed tree with regular m-branching with

m ¼ k� 1.

For example, if k ¼ 3, we identify ½0; 1� with j, the sequence ðj; 0Þ with the first

interval right ½0; 1=3�, the sequence ðj; 1Þ with the central interval ½1=3; 2=3� (that
is removed), the sequence ðj; 2Þ with the left interval ½2=3; 1�, the sequence ðj; 0; 0Þ
with the interval ½0; 1=9� and so on.

2.2. Averaging operator. The following definition is taken from [1]. Let

F : Rm ! R
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be a continuous function. We call F an averaging operator if it satisfies the fol-

lowing set of conditions:

(i) Fð0; . . . ; 0Þ ¼ 0 and F ð1; . . . ; 1Þ ¼ 1;

(ii) Fðtx1; . . . ; txmÞ ¼ tF ðx1; . . . ; xmÞ for all t a R;

(iii) Fðtþ x1; . . . ; tþ xmÞ ¼ tþ Fðx1; . . . ; xmÞ for all t a R;

(iv) Fðx1; . . . ; xmÞ < maxfx1; . . . ; xmg if not all xj ’s are equal;

(v) F is nondecreasing with respect to each variable.

Remark 2.2. It holds that, if ðx1; . . . ; xmÞ; ðy1; . . . ; ymÞ a Rm, then

xj a yj þ max
1ajam

fxj � yjg

for all j a f1; . . . ;mg. Let F be an averaging operator. Then, by (iii) and (v),

Fðx1; . . . ; xmÞaFðy1; . . . ; ymÞ þ max
1ajam

fxj � yjg:

Therefore

Fðx1; . . . ; xmÞ � F ðy1; . . . ; ymÞa max
1ajam

fxj � yjg;

and moreover

jFðx1; . . . ; xmÞ � F ðy1; . . . ; ymÞja max
1ajam

fjxj � yjjg:

Now we give some examples.

Example 2.3. This example is taken from [6]. For 1 < p < þl, the operator

F pðx1; . . . ; xmÞ ¼ t

from Rm to R defined implicity by

Xm
j¼1

ðxj � tÞjxj � tjp�2 ¼ 0

is a permutation invariant averaging operator.
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Example 2.4. For 0a a; ba 1 with aþ b ¼ 1, let us consider

F1ðx1; . . . ; xmÞ ¼ a median
1ajam

fxjg þ
b

m

Xm
j¼1

xj ;

F2ðx1; . . . ; xmÞ ¼ a median
1ajam

fxjg þ
b

2

�
max

1ajam
fxjg þ min

1ajam
fxjg

�
;

where

median
1ajam

fxjg :¼
yðmþ1Þ=2 if m is even;
ym=2þyðm=2þ1Þ

2 if m is odd;

(

with fy1; . . . ; ymg a nondecreasing rearrangement of fx1; . . . ; xmg.
It holds that F1 and F2 are permutation invariant averaging operators.

3. Existence and uniqueness

First we show that there exists a unique solution of problem (1.1) in the space

Ll
loc

�
½0;þlÞ;LlðTm;RÞ

�
.

Proof of Theorem 1.1. Existence: Let T > 0 and

CT :¼ fu a LlðTm � ½0;T �;RÞ : uðx; tÞ is continuous in tg:

Observe that CT is a Banach space with the Ll-norm.

We can see that Kf is a contraction on CT . In fact, using Remark 2.2, we have

that

kKf u1 � Kf u2kla

ð t

0

ez�t dzku1 � u2kla ð1� e�T Þku1 � u2kl;

for all u1; u2 a CT . Therefore, by the Brouwer fixed-point theorem, Kf has a

unique fixed point u a CT .

Since T > 0 is arbitrary, we can obtain a globally defined solution of (1.2), u.

Uniqueness: Let u; v be two solutions of (1.1) such that

u; v a Ll
loc

�
½0;þlÞ;LlðTm;RÞ

�
:

Then u, v are solutions of (1.2) and therefore they are fixed points of Kf . Thus

uC v in Tm � ½0;T � for all T > 0 due to Kf is a contraction operator. Therefore

uC v in Tm � ½0;þlÞ. r
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Remark 3.1. We note that there is no need of a ‘‘boundary condition’’. This

problem can be regarded as the analogous for the tree to the Cauchy problem for

a PDE, as ut ¼ Du in Rn � ð0;lÞ with uðx; 0Þ ¼ f ðxÞ in Rn. Here we consider

f a Ll, but the result can be slightly improved to allow for an unbounded initial

condition; see Remark 3.3 below.

Next we show a comparison principle.

Proof of Theorem 1.2. Let T > 0. We consider

MT :¼ sup
Tm�½0;T �

fu� vg:

Then, given e > 0, there exists ð~xx; ~ttÞ a Tm � ½0;T � such that

MT � ea uð~xx; ~ttÞ � vð~xx; ~ttÞ:

Now, by (1.3), we obtain that

MT � ea uð~xx; ~ttÞ � vð~xx; ~ttÞ

a

ð ~tt

0

ez�
~tt
�
F
�
u
�
ð~xx; 0Þ; z

�
; . . . ; u

�
ð~xx;m� 1Þ; z

��
� F

�
v
�
ð~xx; 0Þ; z

�
; . . . ; v

�
ð~xx;m� 1Þ; z

���
dzþ e�

~tt
�
f ð~xxÞ � gð~xxÞ

�
:

Thus, using that f a g in Tm and Remark 2.2, we have

MT � eaMTð1� e�T Þ;

and therefore e�TMT a e for all e > 0. Then, using that e�T > 0, we obtain that

MT a 0 and this implies that uðx; tÞa vðx; tÞ for all ðx; tÞ a Tm � ½0;T �.
Since T > 0 is arbitrary, we can conclude that ua v in Tm � ½0;þlÞ. r

Corollary 3.2. Let F be an averaging operator and f a LlðTm;RÞ. Then any

bounded solution u of (1.1) with initial condition f satisfies the inequality

juðx; tÞja k f kLlðTm;RÞ

for all ðx; tÞ a Tm � ½0;þlÞ.

Proof. We just observe that wðx; tÞ ¼ M ¼ k f kLlðTm;RÞ is the solution of (1.1)

with initial condition M. Since f ðxÞaM, from Theorem 1.2, we obtain that

uðx; tÞaM for all ðx; tÞ a Tm � ½0;þlÞ:
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In a similar way, we can prove that uðx; tÞb�M for all ðx; tÞ a Tm � ½0;þlÞ.
Therefore,

juðx; tÞja k f kLlðTm;RÞ Eðx; tÞ a Tm � ½0;þlÞ:

This completes the proof. r

Remark 3.3. We remark that we can have existence of a solution even if the ini-

tial condition f is not bounded. In fact, we just observe that

uðx; tÞ ¼ Ceðl�1Þtl lðxÞ;

with l > 0 is a solution of (1.1) with initial condition f ðxÞ ¼ Cl lðxÞ.
Then there is a solution of (1.1) for any initial condition such that

0a f ðxÞaCl lðxÞ:

To obtain such a solution we generate a sequence of approximating solutions

using truncations of the initial condition. In fact, let

fnðxÞ ¼ minf f ðxÞ; ng; unðx; tÞ ¼ minfuðx; tÞ; ng;

and take wnðx; tÞ a Ll
loc

�
½0;þlÞ;LlðTm;RÞ

�
the unique solution of (1.1) with ini-

tial condition fn (Theorem 1.1).

We can see that, un ! u as n ! þl, Kfnuna un, and, by the comparison prin-

ciple, wn is increasing with n and wna un.

Finally, taking the limit as n ! l in the form of the equation given by (1.2),

we obtain that wðx; tÞ :¼ limn!þl wnðx; tÞ is a solution of (1.1) with initial condi-

tion wðx; 0Þ ¼ f ðxÞ.

4. Decay estimates

First, we prove Theorem 1.3.

Proof of Theorem 1.3. We begin by observing that if f C 0 on Tm then uC 0 on

Tm � ½0;þlÞ. Therefore, (1.4) holds trivially in this case.

Now we consider the case f 2 0. Then að f ÞA 0, f ðxÞA 0 for some x a Tmð f Þ
m

and f ðxÞ ¼ 0 for all x such that lðxÞ > mð f Þ. Thus, by Theorem 1.1, uðx; tÞ ¼ 0

for all x such that lðxÞ > mð f Þ. Therefore, if x a Tmð f Þ
m , we have that

utðx; tÞ ¼ F
�
u
�
ðx; 0Þ; t

�
; . . . ; u

�
ðx;m� 1Þ; t

��
� uðx; tÞ

¼ F ð0; . . . ; 0Þ � uðx; tÞ ¼ �uðx; tÞ:
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Then

d

dt

�
etuðx; tÞ

�
¼ 0:

Since uðx; 0Þ ¼ f ðxÞ for all x a Tm, we get

uðx; tÞ ¼ f ðxÞe�t Ex a Tmð f Þ
m :

Thus, for any x a Tmð f Þ�1
m we have that

utðx; tÞ ¼ F
�
u
�
ðx; 0Þ; t

�
; . . . ; u

�
ðx;m� 1Þ; t

��
� uðx; tÞ

¼ F
�
f ðx; 0Þe�t; . . . ; f ðx;m� 1Þe�t

�
� uðx; tÞ

¼ F
�
f ðx; 0Þ; . . . ; f ðx;m� 1Þ

�
e�t � uðx; tÞ:

Then

d

dt

�
etuðx; tÞ

�
¼ A1

x ;

where A1
x ¼ F

�
f ðx; 0Þ; . . . ; f ðx;m� 1Þ

�
. Therefore,

uðx; tÞ ¼
�
A1

x tþ f ðxÞ
�
e�t Ex a Tmð f Þ�1

m : ð4:5Þ

Observe that

jA1
x ja k f kLlðTm;RÞ Ex a Tmð f Þ�1

m ; ð4:6Þ

due to the fact that F is nondecreasing with respect to each variable.

Arguing as before, using (4.5), we obtain

d

dt

�
etuðx; tÞ

�
¼ F

�
A1

ðx;0Þtþ f ðx; 0Þ; . . . ;A1
ðx;m�1Þtþ f ðx;m� 1Þ

�
;

for every x a Tmð f Þ�2
m . Then, since F is nondecreasing with respect to each vari-

able, we have

A2
x t� k f kLlðTm;RÞa

d

dt

�
etuðx; tÞ

�
aA2

x tþ k f kLlðTm;RÞ Ex a Tmð f Þ�2
m ;

where

A2
x ¼ FðA1

ðx;0Þ; . . . ;A
1
ðx;m�1ÞÞ:
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Therefore,

e�t
�
A2

x

t2

2
� k f kLlðTm;RÞtþ f ðxÞ

�
a uðx; tÞa e�t

�
A2

x

t2

2
þ k f kLlðTm;RÞtþ f ðxÞ

�

for all x a Tmð f Þ�2
m .

By (4.6), using again that F is nondecreasing with respect to each variable, we

obtain

jA2
x ja k f kLlðTm;RÞ Ex a Tmð f Þ�2

m :

Continuing in the same manner, we can prove

e�tp1ðtÞa uðj; tÞa e�tp2ðtÞ;

where

p1ðtÞ ¼ A
mð f Þ
j

tmð f Þ

mð f Þ!�
Xmð f Þ�1

j¼1

t j

j!
k f kLlðTm;RÞ þ f ðjÞ;

p2ðtÞ ¼ A
mð f Þ
j

tmð f Þ

mð f Þ!þ
Xmð f Þ�1

j¼1

t j

j!
k f kLlðTm;RÞ þ f ðjÞ;

A
mð f Þ
j ¼ F ðAmð f Þ�1

ðj;0Þ ; . . . ;A
mð f Þ�1

ðj;m�1ÞÞ:

Arguing as before, we have

jAmð f Þ
j ja k f kLlðTm;RÞ:

Thus,

max
x ATm

juðx; tÞja tmð f Þe�t

mð f Þ! k f kLlðTm;RÞ

for t large enough. r

Remark 4.1. The bound that we obtained in Theorem 1.3 is optimal. In fact, let

n a N, F be an averaging operator and fn a LlðTm;RÞ defined by

fnðxÞ :¼
n! if lðxÞ ¼ n;

0 if lðxÞA n:

�
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Note that k fnkLlðTm;RÞ ¼ n! and mð fnÞ ¼ n. Let

znðx; tÞ :¼
n!

ðn�lðxÞÞ! t
ðn�lðxÞÞ if 0a lðxÞa n;

0 if lðxÞ > n:

(

Then we observe that unðx; tÞ :¼ e�tznðx; tÞ a Ll
loc

�
½0;þlÞ;LlðTm;RÞ

�
, un is the

solution of (1.1) with initial condition fn, and

max
x ATm

junðx; tÞj ¼ tne�t ¼ tmð fnÞe�t

mð fnÞ!
k fnkLlðTm;RÞ:

Proposition 4.2. Let F be an averaging operator and f ðxÞ ¼ ð1� lÞ lðxÞ for some

l a ð0; 1Þ. Then uðx; tÞ ¼ e�ltf ðxÞ is the solution to (1.1).

Proof. We have uðx; 0Þ ¼ f ðxÞ for all x a Tm and

DFuðx; tÞ ¼ F
�
u
�
ðx; 0Þ; t

�
; . . . ; u

�
ðx;m� 1Þ; t

��
� uðx; tÞ

¼ F
�
e�ltf ðx; 0Þ; . . . ; e�ltf ðx;m� 1Þ

�
� e�ltf ðxÞ

¼ e�ltF
�
f ðx; 0Þ; . . . ; f ðx;m� 1Þ

�
� e�ltf ðxÞ

¼ e�ltF
�
ð1� lÞ lðxÞþ1; . . . ; ð1� lÞ lðxÞþ1�� e�ltð1� lÞ lðxÞ

¼ e�ltð1� lÞ lðxÞþ1 � e�ltð1� lÞ lðxÞ

¼ e�ltð1� lÞ lðxÞð1� lþ 1Þ

¼ �le�ltð1� lÞ lðxÞ

¼ utðx; tÞ

for all ðx; tÞ a Tm � ð0;þlÞ. r

We observe that for this particular solution we have

max
x ATm

uðx; tÞ ¼ e�lt max
x ATm

f ðxÞ ¼ e�lt ¼ uðj; tÞ:

Therefore, using the comparison principle stated in Theorem 1.2, we obtain Theo-

rem 1.4 as an immediate consequence.

Proposition 4.2 shows that the bound is optimal.

Finally, let us prove that there are solutions with any prescribed behaviour of

uðj; tÞ.

Proof of Theorem 1.5. We just consider uðx; tÞC alðxÞðtÞ (that is, we take u to

be constant at every level). Then the equation reduces to find a1; a2; . . . ; an; . . .
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such that

a 0
i ðtÞ ¼ aiþ1ðtÞ � aiðtÞ;

that is,

aiþ1ðtÞ ¼ a 0
i ðtÞ þ aiðtÞ:

Hence, given a0, we can construct

a1ðtÞ ¼ a 0
0ðtÞ þ a0ðtÞ;

a2ðtÞ ¼ a 00
0 ðtÞ þ 2a 0

0ðtÞ þ a0ðtÞ

etc., that is, at level n, we have

anðtÞ ¼
Xn

j¼0

n

j

� 	
a
ð jÞ
0 ðtÞ:

Therefore

uðx; tÞ ¼
XlðxÞ
j¼0

lðxÞ
j

� 	
a
ð jÞ
0 ðtÞ

is a solution of the equation. r

Remark that depending on the behaviour of the derivatives of a0 it may hold

that

uðj; tÞ ¼ a0ðtÞ ¼ max
x ATm

uðx; tÞ:

If we have

a0ðtÞ ¼ ð1þ tÞ�a ða > 0Þ;

then we get

uðx; tÞ ¼
XlðxÞ
j¼0

lðxÞ
j

� 	
a
ð jÞ
0 ðtÞ ¼

XlðxÞ
j¼0

lðxÞ
j

� 	
ð�1Þ j

�Yj�1

i¼0

ðaþ iÞ
�
ð1þ tÞ�a�j:

Note that we have as initial condition for this particular solution

f ðxÞ ¼
XlðxÞ
j¼0

lðxÞ
j

� 	
ð�1Þ j

�Yj�1

i¼0

ðaþ iÞ
�
:
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Note that this initial condition can be unbounded. For example, for a ¼ 1 we

have

a0ðtÞ ¼ ð1þ tÞ�1:

Then we get that

uðx; tÞ ¼
XlðxÞ
j¼0

lðxÞ
j

� 	
a
ð jÞ
0 ðtÞ

¼
XlðxÞ
j¼0

ð�1Þ j lðxÞ
j

� 	
j!ð1þ tÞ�ð jþ1Þ

¼
XlðxÞ
j¼0

ð�1Þ j lðxÞ!�
lðxÞ � j

�
!
ð1þ tÞ�ð jþ1Þ

is a solution of (1.1) with initial condition

f ðxÞ ¼
XlðxÞ
j¼0

ð�1Þ j lðxÞ!�
lðxÞ � j

�
!
¼ ð�1Þ lðxÞ!lðxÞ;

where !n denotes the subfactorial of n.

We observe that f ðxÞ is an oscillating function with

j f ðxÞj ! þl as lðxÞ ! þl:
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