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Abstract. This is a concise introduction to the theory of Lie groupoids, with emphasis in
their role as models for orbispaces. After some preliminaries, we review the foundations
on Lie groupoids, and we carefully study equivalences and proper groupoids.

Orbispaces are geometric objects which have manifolds and orbifolds as special in-
stances, and can be presented as the transverse geometry of a Lie groupoid. Two Lie
groupoids are equivalent if they are presenting the same orbispace, and proper groupoids
are presentations of separated orbispaces, which by the linearization theorem are locally
modeled by linear actions of compact groups. We discuss all these notions in detail.

Our treatment diverges from the expositions already in the literature, looking for a
complementary insight over this rich theory that is still in development.
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1. Introduction

Lie groupoids constitute a general framework which has received much attention

lately. They generalize group actions, submersions, foliations, pseudogroups and

principal bundles, among other construction, providing a new perspective to

classic geometric questions and results. Besides, Lie groupoids can be seen as an

intermediate step in defining orbispaces, some geometric objects admiting singu-

larities and generalizing both manifolds and orbifolds.

Orbispaces can be defined within the language of stacks, an abstract concept

introduced by Grothendieck in his work on algebraic geometry (cf. 4.7.4). Here

we avoid that paraphernalia and follow a more concrete approach, according to

which an orbispace is what encodes the transversal geometry of a Lie groupoid.

Every Lie groupoid has an underlying orbispace, and two Lie groupoids have

the same one if they are equivalent. These equivalences, sometimes called Morita

equivalences, can be realized either by principal bibundles or by chains of fully

faithful essentially surjective maps. Many properties of Lie groupoids are invari-

ant under equivalences because they are actually properties of their orbispaces.

Proper groupoids constitute an important family of Lie groupoids. It includes

manifolds, compact groups, submersions and proper actions, among others. They

have a Hausdor¤ orbit space and their isotropy groups are compact. Moreover,

they can be linearized around an orbit, which implies that their underlying orbi-

spaces, called separated, can locally be modeled by linear actions of compact

groups.

These notes contain the foundations of Lie groupoids with special emphasis

in equivalences and proper groupoids, including the relatively new results on

linearization. We pursued a self-contained presentation with a stress in examples,

and avoiding when possible technical digressions.
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Even though most of the material is already available in the literature, we

provide a new perspective over known results, such as new proofs and examples,

and we also include new subsidiary results: a description on the di¤erential of

the anchor (cf. 3.5.1), a characterization of weak equivalences by means of the

normal representations (cf. 4.3.1), a discussion of stable orbits (cf. 5.3.3), and a

reduction on Zung’s theorem that simplifies the proof (cf. 5.4.3), to mention

some of them.

What we omit is talking about Lie algebroids, the infinitesimal counterpart of

Lie groupoids, and the interesting theory they play together. This can be found

elsewhere, see e.g. [4], [6], [10], [19], [21]. Note that the topics studied here, equiv-

alences and proper groupoids, have not a known infinitesimal version in the inter-

play between groupoids and algebroids.

To finish, let us mention that the linearization problem is studied here in the

spirit of the original works [27] and [28], and the more recent paper [7]. A

completely new approach will be presented in [13], where we define compatible

metrics with the groupoid structure, and establish the linearization by exponen-

tial maps, providing both a stronger version and a simpler proof for this

important theorem.

Organization. In Section 2 we recall some preliminaries, in Section 3 we present

a brief self-contained introduction to Lie groupoids, we carefully discuss equiva-

lences of Lie groupoids in Section 4, and finally in Section 5 we deal with proper

groupoids and linearization. A more detailed description can be found at the

beginning of each section.

Acknowledgments. These notes were born out of expositions in workgroup semi-

nars at IMPA, Rio de Janeiro, and at IST, Lisbon. I thank Rui Loja Fernandes

for encouraging me to write them and for his comments on preliminary versions. I

am indebted to him and to Henrique Bursztyn for their guidance and support. I

also want to thank Fernando Cukierman, Reimundo Heluani, Alejandro Cabrera,

Thiago Drummond, Olivier Brahic, David Martinez and Daniele Sepe for the

fruitful conversations.

2. Preliminaries

Throughout this section we collect basic facts that are scattered on the literature

and provide alternative formulations for some of them. The topics are proper

maps, pullbacks and quotients of smooth manifolds, and the structure of sub-

mersions. These results will be needed in the subsequent sections.

We refer to [2] for a detailed exposition on proper maps, and to [9] and [17] for

generalities on di¤erential geometry.
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2.1. Properness and properness at a point. All our spaces are assumed to be

second countable, locally compact and Hausdor¤. This includes smooth mani-

folds and Hausdor¤ quotients of them.

Let X , Y be two spaces. A continuous map f : X ! Y is proper if it satisfies

any, and hence all, of the following equivalent conditions:

• for all map Z ! Y the base-change ~ff : X �Y Z ! Z of f is closed;

X �Y Z ���! X

~ff

???y
???y f

Z Y :

pb

�����!
• f is closed and has compact fibers;

• f �1ðKÞHX is compact for all K HY compact; and

• every sequence ðxnÞHX with f ðxnÞ ! y admits a convergent subsequence

xnk ! x.

The proofs of the equivalences are rather standard, see e.g. [2]. Let us

remark that the first two formulations remain equivalent when working with

any topological spaces, and they are equivalent to the other two only under our

hypothesis.

Example 2.1.1. An inclusion AHX is proper if and only if A is a closed

subspace of X . A projection F � X ! X is proper if and only if the fiber F is

compact.

Proper maps form a nice class of maps, namely (1) every homeomorphism is

proper, (2) composition of proper maps is proper, and (3) the base-change of a

proper map is proper.

The notion of properness admits a punctual version. The map f : X ! Y is

proper at y if any sequence ðxnÞHX such that f ðxnÞ ! y has a convergent subse-

quence xnk ! x (cf. [11]). Clearly f is proper if and only if it is proper at every

point of Y . It turns out that properness is an open condition, namely the points

at which f is proper is an open of Y .

Proposition 2.1.2. If f : X ! Y is proper at y then there exists an open y a V

such that f jV : f �1ðVÞ ! V is proper.

Proof. Take a sequence of open subsets ðVnÞHY such that Vn & y, and a

sequence of compact subsets ðKnÞHX such that intKn % X . If for some n we

have f �1ðVnÞHKn then f jVn
satisfies that preimages of compact sets are compact
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and hence is proper. If for all n we can take xn a f �1ðVnÞnKn then f ðxnÞ ! y and

ðxnÞ has no convergent subsequence, which contradicts the hypothesis. r

To better understand the notion of properness at a point let us introduce the

following natural definition. Given f : X ! Y , y a Y , F ¼ f �1ðyÞ, we say that

f satisfies the tube principle at y if for every open U , F HU HX , there exists an

open V , y a V HY , such that f �1ðVÞHU . In other words, any open containing

the fiber must also contain an open tube around it.

Proposition 2.1.3. A map f : X ! Y is proper at y if and only if the fiber F is

compact and f satisfies the tube principle at y.

Proof. If f : X ! Y is proper at y then we have seen that there is a tube on which

f is proper. Then we can assume that f is proper, and therefore closed. Now, if

U is an open containing the fiber F , we can take V ¼ Yn
�
f ðXnUÞ

�
.

Conversely, suppose that ðxnÞ is such that f ðxnÞ ! y but ðxnÞ has no conver-

gent subsequence. If F is compact, then xn will belong to F at most finitely many

times. Dropping the first terms of the sequence we can assume that xn B F for

any n, and then U ¼ Xnfxng is an open around F which does not contain any

tube. r

Example 2.1.4. Next examples show the necessity of the two conditions. The

projection S1nfig ! R, expðitÞ 7! cosðtÞ, has compact fiber at 0 but it does not

satisfy the tube principle. The smooth map f : R! R, fðxÞ ¼ 0 for xa 0,

fðxÞ ¼ expð�1=xÞ for x > 0, satisfies the tube principle at 0 but its fiber is not

compact.

2.2. Good pullbacks of manifolds. The pullback of two maps in the category of

smooth manifolds, if it exists, may behave badly with respect to the underlying

topologies and also to the construction of tangent spaces. Let us illustrate this

with examples.

Example 2.2.1. The next square is a pullback of manifolds, but the induced dia-

gram between the tangent spaces at 0 is not a pullback.

0 ���! R???y
???yg

R ���!f R2

;
f ðtÞ ¼ ðt; 0Þ;
gðtÞ ¼ ðt; t2Þ:

pb

The intersection between the two curves is something more than the point, it con-

tains some extra infinitesimal data.
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Example 2.2.2. Let a be irrational and let DHR� R be the set-theoretic

pullback

D R???y
???yg

R ���!f S1 � S1

;
f ðtÞ ¼ ðeiat; eitÞ;
gðtÞ ¼ ðeit; eiatÞ;

pb

�����!

viewed as a discrete manifold. The square is not a topological pullback, for the

intersection of the two dense curves on the torus has a non-trivial topology. How-

ever, it is a pullback of manifolds, for a smooth map M ! S1 � S1 whose image

lies in the intersection of the two curves has to be constant.

We say that a pullback of smooth manifolds is a good pullback if

M1 �M M2 ���!~ff1 M2

~ff2

???y
???y f2

M1
f1

M:

pb

������!
(1) It is a pullback of the underlying topological spaces, and

(2) It induces pullbacks between the tangent spaces, say for each x1, x2, x such

that f1ðx1Þ ¼ x ¼ f2ðx2Þ the following sequence is exact.

0! Tðx1;x2ÞðM1 �M M2Þ ! Tx1M1 � Tx2M2 ! TxM:

The last arrow is given by ðv;wÞ 7! dx1 f1ðvÞ � dx2 f2ðwÞ.

In other words, the pullback is good if the map M1 �M M2 !M1 �M2 is a

closed embedding with the expected tangent space.

The standard criterion for the existence of pullbacks is by means of trans-

versality. Recall that two smooth maps f1 : M1 !M, f2 : M2 !M are trans-

verse if dx1 f1ðTx1M1Þ þ dx2 f2ðTx2M2Þ ¼ TxM for all x1, x2, x making sense.

Proposition 2.2.3. If f1 : M1 !M and f2 : M2 !M are transverse, then their

pullback M1 �M M2 exists and it is a good pullback.

For a proof see e.g. [17].

Remark 2.2.4. A submersion is transverse to any other map, thus the pullback

between a submersion and any other map always exists and it is good.

The base-change of a submersion is always a submersion. As a partial

converse, with the notations above, if ~ff1 is a submersion and f2 is a surjective
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submersion, then f1 has to be a submersion as well, as it follows from the induced

squares of tangent vector spaces.

2.3. Quotients of manifolds. Given M a smooth manifold and RHM �M an

equivalence relation on it, it is natural to ask whether if the quotient set M=R can

be regarded as a new manifold. Of course, this is not the case in general.

Example 2.3.1. The action by rotations on the plane S1
h R2 leads to a quo-

tient R2=S1 which is not a manifold for it is not locally euclidean. We do not

allow manifolds to have border.

Example 2.3.2. The foliation F on R2nfð0; 0Þg by horizontal lines defines an

equivalence relation on which the quotient
�
R2nfð0; 0Þg

�
=F is locally euclidean,

but it is not Hausdor¤.

Given M and R, if the quotient M=R admits a manifold structure and the

projection M !M=R is a submersion, then the following square happens to be

a good pullback:

R ���! M???y
???y

M ���! M=R:

pb

Then RHM �M has to be a closed embedded submanifold and the projections

p1jR; p2jR : R!M have to be submersions. It turns out that these conditions are

su‰cient to define a manifold structure on the quotient.

Proposition 2.3.3 (Godement criterion). If an equivalence relation RHM �M

is a closed embedded submanifold and p1jR; p2jR : R!M are submersions, then

M=R inherits a unique manifold structure that makes the projection M !M=R a

submersion.

Note that if one of the projections is a submersion then so is the other. For the

construction of such a manifold structure on M=R we refer to [12], see also [25].

Given M and RHM �M as in 2.3.3, we can identify the smooth maps

M=R! Z with those maps M ! Z which are constant over the classes defined

by R.

ClðM=R;ZÞGCl
R ðM;ZÞHClðM;ZÞ:

In fact, since M !M=R is a surjective submersion then (1) it is open and hence a

topological quotient, and (2) it admits local sections, hence a continuous map
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M=R! Z is smooth if and only if the composition M !M=R! Z is so. This

proves in particular the uniqueness in 2.3.3.

The following corollary is probably better known than the criterion itself.

Let G be a Lie group and consider an action G h M, ðg; xÞ 7! g � x, over a

manifold M. Recall that the action is proper if the map G �M !M �M,

ðg; xÞ 7! ðg � x; xÞ is proper.

Corollary 2.3.4. If G h M is a free proper action of a Lie group on a manifold,

then the quotient M=G inherits a unique manifold structure that makes the projec-

tion M !M=G a submersion.

Sketch of proof. Given x a M, consider the map G !M, g 7! g:x. If v a T1G is

a nonzero vector in the kernel of its di¤erential, then the 1-parameter group it

generates is included in the isotropy of x. This proves that there is no such a v.

The same argument shows that G �M !M �M, ðg; xÞ 7! ðgx; xÞ is an injective

immersion. Since it is also proper it turns out to be a closed embedding. The

composition G �M !M �M !p2 M is clearly a submersion and we can apply

Godement criterion 2.3.3. r

For alternative approaches see [11] and [26].

2.4. The structure of submersions. The constant rank theorem implies that, in a

neighborhood of a point, a submersion looks as a projection. When moving along

the fiber this leads to the following description of the structure of submersions.

Proposition 2.4.1. Let f : M ! N be a submersion, y a N, F ¼ f �1ðyÞ. There

are opens U IF and V C y, and an open embedding iU : U ! F � V extending

the obvious inclusion F ! F � y and satisfying f jU ¼ pr � iU .

M I U !iU F � V

# # #
N I V ¼ V :

Note that this is a local statement around y, thus we may change V by any

smaller neighborhood. In particular we may take V GRn a ball-like open and

this way compare f with the projection F � Rn ! Rn.

Proposition 2.4.1 admits rather elementary proofs. We propose the following

using Riemannian geometry, maybe more sophisticated, but with interesting gen-

eralizations (see the proof of 5.5.1, and also [13]).

Sketch of proof. We can assume N ¼ Rn. Endow M and N with Riemannian

metrics for which f is a Riemannian submersion, that is, such that dfxjðker dfxÞ? is

an isometry for all x. Such metrics can be easily constructed.
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The normal bundle NF of the fiber F is trivial. We identify it with the vectors

orthogonal to TF . The geodesics associated to these vectors are preserved by f ,

thus the exponential maps of the metrics yield a commutative diagram

F � Rn G NF �!exp M

# # #
Rn G TyN �!exp N:

Since the map F � Rn GNF �!exp M is injective over F � 0 and its di¤erential is

invertible over F � 0, it follows from a standard metric argument that it is still

injective in an open around F � 0, hence an open embedding, and we can take iU
as its inverse. r

As a straightforward application we obtain the well-known Ehresmann

Theorem.

Proposition 2.4.2 (Ehresmann Theorem). Let f : M ! N be a submersion,

y a N, F ¼ f �1ðyÞ. The following are equivalent:

(1) f is locally trivial at y and F is compact;

(2) f is proper at y; and

(3) f satisfies the tube principle at y.

Proof. The implications (1)) (2)) (3) are obvious (cf. 2.1.3).

To prove (3)) (2) we need to show that the fiber is compact (cf. 2.1.3). Be-

cause of 2.4.1 it is enough to study the case U HF � Rn ! Rn. Given ðxnÞHF ,

we will see that it admits a convergent subsequence. If not, we can take vn a Rn

such that 0 < kvnk < 1=n and ðxn; vnÞ a U , then Unfðxn; vnÞgn is an open around

F not containing any tube, which contradicts (3).

Finally, assume (2) and let us prove (1). Since f is proper at y, the fiber F is

compact, and f satisfies the tube principle at y. Then, in 2.4.1, by shrinking U , we

can assume it is saturated. Since the projection F � V ! V is also proper we can

shrink U again so as to make iU ðUÞ saturated, and U will remain saturated as

well, proving local triviality. r

Ehresmann theorem admits an interesting particular case on which the hypoth-

esis rely only on the topology of the fibers.

Corollary 2.4.3. Let f : M ! N be a submersion, y a N, F ¼ f �1ðyÞ. If F is

compact and the nearby fibers are connected then f is proper at y.
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Proof. Let U , V and iU : U ! F � V be as in 2.4.1. Since F is compact the pro-

jection F � V ! V is proper, and by the tube principle we may shrink U so as to

make iU ðUÞ saturated. We may suppose that U intersects only connected fibers

F 0. For each of these fibers F 0 we have that U BF 0G iU ðU BF 0ÞGF is com-

pact, hence closed and open on F 0. This proves F 0HU and that U is saturated

as well. r

3. Lie groupoids

This section starts with definitions and examples on Lie groupoids. Then we

discuss groupoid actions and linear representations, with special emphasis in the

normal representation, which encodes the linear infinitesimal information around

an orbit. We describe then the di¤erential of the anchor map, and use this to char-

acterize two important families: submersion groupoids and transitive groupoids.

Finally we discuss principal groupoid-bundles.

We suggest [4], [6], [10], [19], [21] as standard references for this section.

3.1. Definitions and basic facts. A smooth graph GxM consists of a manifold

M of objects, a manifold G of arrows, and two submersions s; t : G !M indicat-

ing the source and target of an arrow. We often write the arrows from right to left,

thus by y g x we mean x; y a M, g a G, sðgÞ ¼ x and tðgÞ ¼ y. We call M the

base of the graph.

A Lie groupoid consists of a smooth graph GxM endowed with a smooth

associative multiplication m,

m : G �M G ! G; ðz g2 y; y g1 xÞ 7! ðz �g2g1 xÞ;

where G �M G ¼ fðg2; g1Þ j sðg2Þ ¼ tðg1ÞgHG � G is the submanifold of compos-

able arrows. This multiplication is required to have a unit u and an inverse i,

which are smooth maps

u : M ! G; x 7! ðx 1x xÞ; i : G ! G; ðy g xÞ 7! ðx �g
�1

yÞ;

satisfying the usual axioms gg�1 ¼ 1y, g�1g ¼ 1x, g1x ¼ g and 1yg ¼ g for all

y g x. We refer to s, t, m, u, i as the structural maps of the Lie groupoid. By

an abuse of notation, we denote ðGxM;mÞ just by GxM, or even G.

Given GxM a smooth graph, a bisection BHG is an embedded submani-

fold such that the restrictions sB; tB : B!M of the source and target are

open embeddings. Naming U ¼ sðBÞ and V ¼ tðBÞ, the maps sB : B! U and

tB : B! V are di¤eomorphisms, and the composition fB ¼ tBs
�1
B : U ! V is
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called the underlying map to B. We can visualize B as a bunch of arrows from U

to V . Given any g a G, it is easy to see that there always exists a bisection B

containing g.

When GxM is a Lie groupoid, the bisections can be composed, inverted,

and every open U HM has a unitary bisection. The underlying maps to bisec-

tions of G define hence a pseudogroup on M, the characteristic pseudogroup of

GxM. There are local translation and conjugation maps associated to a bisec-

tion B.

LB : GðU ;�Þ ! GðV ;�Þ; ðy h xÞ 7!
�
fBðyÞ  ���s�1

B
ðyÞh

x
�
;

CB : ðGU xUÞ ! ðGV xVÞ; ðy h xÞ 7!
�
fBðyÞ  ��������s�1

B
ðyÞhs�1

B
ðxÞ�1

fBðxÞ
�
:

Here we are using the notations GðA;�Þ ¼ t�1ðAÞ and GA ¼ s�1ðAÞB t�1ðAÞ.
Given GxM a Lie groupoid and x a M, the s-fiber at x is defined by

Gð�; xÞ ¼ s�1ðxÞHG, the isotropy group at x is Gx ¼ s�1ðxÞB t�1ðxÞHG, and

the orbit of x is the set Ox ¼ fy j by 
g
xg ¼ t

�
Gð�; xÞ

�
.

Proposition 3.1.1. Given GxM and x; y a M, the subset Gðy; xÞHG is an

embedded submanifold. In particular Gx is a Lie group. The orbit Ox HM is a

(maybe not embedded ) submanifold in a canonical way.

Proof. Denote by tx : Gð�; xÞ !M the restriction of the target map to the s-fiber.

Given g; g 0 a Gð�; xÞ and a bisection B containing g 0g�1, we can locally write

txLB ¼ fBtx in a neighborhood of g, and since LB and fB are invertible, the rank

of tx at the points g and LBðgÞ ¼ g 0 agree. This shows that tx has constant rank,

hence its fibers Gðy; xÞ are embedded submanifolds. In particular Gx, with the

operations induced by those of G, becomes a Lie group. This group acts freely

and properly on Gð�; xÞ by the formula

Gð�; xÞ � Gx ! Gð�; xÞ; ðy g
0

x; x g xÞ 7! ðy �g
0g

xÞ:

We can identify the quotient Gð�; xÞ=Gx with the orbit Ox HM, and regard it as a

submanifold in a canonical way (cf. 2.3.4). r

The orbit space M=G is the set of orbits with the quotient topology. The

quotient map q : M !M=G is open, as it follows from a simple argument on

bisections. The partition of M into the connected components of the orbits is a

singular foliation, called the characteristic foliation of G.

The space M=G is not a smooth manifold in general. We can think of the

Lie groupoid GxM as a way to describe certain smooth singular data on it

(cf. 4.7).
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A map of graphs f : ðGxMÞ ! ðG 0xM 0Þ is a pair of smooth maps

far : G ! G 0; fob : M !M 0

that preserves the source and the target. We usually denote far and fob simply

by f. A map of Lie groupoids is a map between the underlying graphs that also

preserves the multiplicative structure, that is, commutes with m, and therefore

with u and i. We denote the category of Lie groupoids and maps between

them by

fLie groupoidsg

Out of a Lie groupoid GxM we have constructed a family of Lie groups

fGxgx AM and a quotient map M !M=G. These constructions are functo-

rial, a map f : ðGxMÞ ! ðG 0xM 0Þ induces Lie group homomorphisms

f� : Gx ! GfðxÞ and a continuous map between the orbit spaces f� : M=G !
M 0=G 0.

3.2. Some examples. Lie groupoids constitute a common framework to work

with several geometric structures. We give here some of the fundamental

examples. We do not include the examples of foliations and pseudogroups, for

in these cases, the manifold G may not be second countable nor Hausdor¤, as we

require. These and other important examples can be found in [19] and [21].

Example 3.2.1 (Manifolds and Lie groups). A manifold M gives rise to the unit

groupoid with only unit arrows, where the five structural maps are identities, the

isotropy is trivial and the orbits are just the points. As other extremal case, a Lie

group G can be seen as a Lie groupoid with a single object.

M V MxM; G V Gx � :

These constructions preserve maps. We will identify manifolds and Lie groups

with their associated Lie groupoids.

Example 3.2.2 (Group actions). If G h M is a Lie group acting over a mani-

fold, the action groupoid GyM ¼ ðG �MxMÞ is defined with source the pro-

jection, target the action, and multiplication, unit and inverse maps induced by

those of G.

G h M V G �MxM:

A typical arrow in the action groupoid has the form g � x �ðg;xÞ x. Orbits and iso-

tropy correspond to the usual notions for actions. A map of actions induce a map
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between the corresponding action groupoids, but in general there are more maps

than these.

Action groupoids GyM are fundamental examples. Not every Lie groupoid

is of this form, but we will see that every proper groupoid is locally equivalent to

one of these (cf. 5.5.1).

Example 3.2.3 (Submersions). A submersion q : M ! N yields a submersion

groupoid M �N MxM with one arrow between two points if they belong to the

same fiber.

M ! N V M �N MxM:

The isotropy of a submersion groupoid is trivial and the orbits are the fibers of q.

A map between submersion groupoids ðM �N MxMÞ ! ðM 0 �N 0 M
0
xM 0Þ is

the same as a commutative square of smooth maps. We will characterize later the

groupoids arising from submersions (cf. 3.5.2).

Given a manifold M, the submersion groupoid of the identity idM : M !M

yields the unit groupoid, and the submersion groupoid of the projection

pM : M ! � is the pair groupoid M �MxM, which has exactly one arrow

between any two objects. Other interesting case arise from an open cover

U ¼ fUigi of M. The several inclusions Ui !M yield a surjective submersion‘
i Ui !M, and this yields a covering groupoid

‘
i; j Ui BUj x

‘
i Ui, also called

Cech groupoid.

Roughly speaking, every Lie groupoid emerges from a submersion M ! S

over a space S, which in this case is the manifold N, but in general it may be some-

thing singular, namely an orbispace. Later we will see how to formalize this idea

(cf. 4.7.3).

Example 3.2.4 (Principal group-bundles). Let G be a Lie group, N a manifold,

and let G h P! N be a smooth principal bundle. This is essentially the same

as a free proper action G h P, for the surjective submersion P! N can be recov-

ered as the quotient map P! P=G (see eg. [26], App. E).

The gauge groupoid P�G PxN consists of the equivariant isomorphisms

between fibers of the principal bundle. It can be constructed as the quotient of

the pair groupoid P� PxP by the action of G.

G h P! N V P�G PxN:

Here we are considering the diagonal action G h P� P, which is also free and

proper, we are writing P�G P ¼ ðP� PÞ=G, and identifying P=GGN. The

structural maps of the pair groupoid are equivariant and that is why they induce

a Lie groupoid structure in the quotient (cf. 2.3.4).
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A gauge groupoid is transitive, namely it has a single orbit, and its isotropy at

any point is isomorphic to G. A map between principal bundles leads to a map

between their gauge groupoids, but this assignation is not injective in general.

Example 3.2.5 (Linear groupoids). The automorphisms GLðVÞ of a vector space

V constitute the fundamental example of a Lie group. In a similar fashion, given

E !M a smooth vector bundle, we can consider the general linear groupoid

E !M V GLðEÞxM

whose objects are the fibers of the vector bundle, and whose arrows are the linear

isomorphisms between them. It can be defined as the gauge groupoid of the frame

bundle of E.

This construction admits the usual variants. For instance, if the vector bundle

is endowed with a metric we can define the orthogonal linear groupoid OðEÞxM,

which consists of the isometries between the fibers.

Example 3.2.6 (Orbifolds). Orbifolds are spaces locally modeled by quotients of

euclidean spaces by finite group actions. We refer to [21] for a detailed treatment.

During these notes we briefly discuss how orbifolds can be framed into the theory

of Lie groupoids and orbispaces.

Recall that an orbifold chart ðU ;G; fÞ on a space O consists of a connected

open U HRd in some euclidean space, a finite group of GHDi¤ðUÞ, and an

open embedding f : U=G ! O. An orbifold consists of a space O endowed with

an orbifold atlas, that is, a collection U ¼ fðUi;Gi; fiÞgi of compatible orbifold

charts. Two atlases define the same orbifold if they are compatible, namely if their

union is again an atlas.

Given O an orbifold and U a numerable atlas, we can define a Lie groupoid as

follows.

OþU V GxM:

The manifold of objects is M ¼
‘

i Ui. The manifold G consists of germs of com-

positions of maps in some Gi, endowed with the sheaf-like manifold structure.

While the construction of this groupoid relies on the choice of an atlas, we will

see that compatible atlases lead to equivalent Lie groupoids.

3.3. Groupoid actions and representations. Let GxM be a Lie groupoid.

Given p : A!M a smooth map, we can consider the good pullback G �M A ¼
fðg; aÞ j sðgÞ ¼ pðaÞg. A left groupoid action

y : ðGxMÞh ðA!MÞ
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is a smooth map y : G �M A! A, ðg; aÞ 7! ygðaÞ, such that p
�
ygðaÞ

�
¼ tðgÞ,

y1x ¼ idAx
and ygyh ¼ ygh when g, h are composable. Right actions are defined

analogously. The map p : A!M is sometimes called the moment map of the

action. An action y realizes the arrows of the groupoid GxM as symmetries

of the family of fibers of the moment map, namely for each arrow y g x we

have a di¤eomorphism yg : Ax ! Ay.

Example 3.3.1. Actions of manifolds ðMxMÞh ðA!MÞ are trivial. Ac-

tions of Lie groups ðGx �Þh ðA! �Þ are the usual ones.
An action ðGyMxMÞh ðA!MÞ of an action groupoid is the same as

an action G h A and an equivariant map A!M.

For a submersion groupoid, an action ðM �N MxMÞh ðA!MÞ is the

same as an equivalence relation R on A inducing a pullback square as bellow

(cf. 3.6.3):

ðM �N MxMÞh ðA!MÞ $

A ���! A=R???y
???y

M ���! N:

pb

Given a groupoid action G h A we can construct the action groupoid

GyA ¼ ðG �M AxAÞ, on which the source is the projection, the target is the

action, and composition, inverses and identities are induced by those of G. This

generalizes the example 3.2.2, and admits an obvious version for right actions. We

say that the action G h A is free if the action groupoid has no isotropy, and that

the action is proper if the map G �M A! A� A, ðg; aÞ 7!
�
ygðaÞ; a

�
is so. By

Godement criterion 2.3.3, the orbit space of a free proper groupoid action inherits

the structure of a manifold. This statement is in fact equivalent both to 2.3.3 and

to 3.5.2.

We can identify actions of G with groupoid maps ~GG ! G of a special kind.

Given an action ðGxMÞh ðA!MÞ, its moment map A!M and the projec-

tion G �M A! G define a groupoid map

p : ðG �M AxAÞ ! ðGxMÞ

inducing a pullback between the source maps. A map satisfying this property is

called an action map. Conversely, given any action map p : ð ~GGxAÞ ! ðGxMÞ,
the composition G �M AG ~GG !t A becomes a left action, we call it the underlying

action. It is straightforward to check that these constructions are mutually inverse.

Proposition 3.3.2. There is a 1-1 correspondence between left actions and action

maps.

ðGxMÞh ðA!MÞ $ ð ~GGxAÞ ! ðGxMÞ:
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A map of groupoids is an action map if and only if the associated target square

is a pullback, thus we can also identify action maps with right actions.

We study now a particular type of actions. Given a Lie groupoid GxM and a

vector bundle E !M, a linear representation ðGxMÞh ðE !MÞ is an action

y : G �M E ! E such that for all y g x in G the map yg : Ex ! Ey is linear.

Example 3.3.3. Representations of manifolds ðMxMÞh ðE !MÞ are trivial.
Representations of Lie groups ðGx �Þh ðE ! �Þ are the usual ones.

Representations of an action groupoid ðGyMxMÞh ðE !MÞ are equiv-
ariant vector bundles.

Given q : M ! N a surjective submersion, a representation ðM �N MxMÞ
h ðE !MÞ is the same as a vector bundle ~EE ! N such that q� ~EE ¼ E (cf. 3.6.3).

Using an exponential law argument it can be proved that representations are

in 1-1 correspondence with maps on the general linear groupoid.

ðGxMÞh ðE !MÞ $ ðGxMÞ !
�
GLðEÞxM

�
:

See [19], Prop. 1.7.2 for the transitive case. The general case is proved analo-

gously.

The action map of a representation can be regarded as a compatible diagram

of Lie groupoids and vector bundles. More precisely, a VB-groupoid

G ���!���! E???y
???y

G ���!���! M

is a groupoid map ðGxEÞ ! ðGxMÞ such that G! G and E !M are vector

bundles, and the structural maps of GxE are vector bundle maps. The core

C !M is defined by C ¼ kerðs : G! EÞjM , where we are identifying M ¼ uðMÞ.

Example 3.3.4. Given GxM we can construct a new Lie groupoid TGxTM

whose structural maps are the di¤erentials of those of G. The canonical projec-

tions define the tangent VB-groupoid.

ðTGxTMÞ ! ðGxMÞ:

The core of this VB-groupoid is the Lie algebroid AG associated to G (cf. [19],

[21]).

When the core is trivial, namely C ¼ 0M !M, then the ranks of G! G and

E !M agree and we can identify the total space G with the pullback of E along

the source map, GGG �M E. Thus 3.3.2 provides the following.
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Proposition 3.3.5. There is a 1-1 correspondence between representations of

GxM and VB-groupoids ðGxEÞ ! ðGxMÞ with trivial core.

VB-groupoids are something more general than representations. Actually,

they admit a nice interpretation in the theory of representations up to homotopy

(cf. [15]). For more on VB-groupoids and their infinitesimal counterpart we refer

to [3].

3.4. The normal representation. Given GxM a Lie groupoid and OHM

an orbit, the normal representation is a representation of the restriction GO xO

over the normal bundle NO! O. It encodes the linear infinitesimal information

around the orbit and plays a fundamental role in the theory. We present it here

after a short digression on restrictions.

Given GxM a Lie groupoid and AHM a submanifold, the subset GA HG

may not be a submanifold in general, and even if that is the case, GA xA may not

be a Lie groupoid.

Example 3.4.1. Let GxM be the Lie groupoid arising from the projection

S1 � R! S1 (cf. 3.2.3). Let A ¼ fðeit2 ; tÞ : t a Rg and B ¼ fðeit3 ; tÞ : t a Rg.
Then A;BHM are embedded submanifolds, but GA HG is not a submanifold,

and even when GB HG is embedded, the restriction of the source map GB ! B is

not a submersion and hence GB xB is not a Lie groupoid.

We say that the restriction GA xA is well defined when GA HG is a submani-

fold, GA xA is a Lie groupoid, and the following is a good pullback of manifolds.

GA G???y
???y

A� A ���! M �M:

pb

������!

For instance, given U HM open, the restriction GU xU is clearly well defined.

Proposition 3.4.2. Given GxM a Lie groupoid and OHM an orbit, the restric-

tion GO xO is well defined.

Proof. The key point here is that an orbit OHM is an initial submanifold, namely

every smooth map Z !M whose image lies in O restricts to a smooth map

Z ! O. This is because tx : Gð�; xÞ !M has constant rank, hence a map

Z !M with image included in O can be locally lifted to a map Z ! Gð�; xÞ,
proving that the co-restriction Z ! O is also smooth.

Now, since GO ¼ s�1ðOÞ ¼ t�1ðOÞ, we can lift the manifold structure in

OHM to one in GO HG that makes it an initial submanifold of the same
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codimension. The left square below is a good pullback by construction. It easily

follows from this that the right square is a good pullback as well.

GO ���!s G???y
???y

O ���!
s

M;

GO G???y
???y

O�O ���! M �M:

pb pb

r

������!

Given GxM and OHM, we can construct a sequence of VB-groupoids

ðTGO xTOÞ ! ðTGjGO
xTMjOÞ !

�
NðGOÞxNO

�
;

where the first one is the tangent of GO, the second one is the restriction of the

tangent of G to GO, and the third one, the normal bundle, is defined by the quotient

vector bundles, with the induced structural maps.

The submanifolds GO HG and OHM have the same codimension, then the

ranks of the vector bundles NðGOÞ and NO agree, the core of NðGOÞxNO is

trivial and there is an underlying groupoid representation (cf. 3.3.5).

h : ðGO xOÞh ðNO! OÞ

This is called the normal representation of G at the orbit O.

Unraveling this construction, the normal representation can be geometrically

described as follows: if g is a curve on M whose velocity at 0 represents v a NxO,

and ~gg is a curve on G such that ~ggð0Þ ¼ g and s � ~gg ¼ g, then hgðvÞ a NyO is defined

by the velocity at 0 of t � ~gg.
Fixed x a M, the normal representation can be restricted to the isotropy

group, say hx : Gx h NxO. For some purposes, the restriction hx manages to

encode the necessary information of h. Note that if x, y belong to the same

orbit, then an arrow y g x yields an isomorphism of group representations

ðGx h NxOÞG ðGy h NyOÞ.

Remark 3.4.3. The normal representation is functorial. If f : ðGxMÞ !
ðG 0xM 0Þ is a map sending an orbit OHM to O 0HM 0, then we have a naturally

induced morphism of VB-groupoids and of representations f� : ðGO h NOÞ !
ðG 0O 0 h NO 0Þ. In particular, for each x a O, there is a morphism of Lie group

representations f� : ðGx h NxOÞ ! ðGfðxÞ h NfðxÞO
0Þ.

3.5. The anchor map. Given GxM a Lie groupoid, its anchor rG ¼ ðt; sÞ :
G !M �M is the map whose components are the source and the target, namely

rðy g xÞ ¼ ðy; xÞ. The image of rG is the equivalence relation on M defining

the orbit space M=G, and its fiber over a diagonal point ðx; xÞ is the isotropy

group Gx.
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Proposition 3.5.1. Given y g x in G, the di¤erential of the anchor dgr : TgG !
TyM � TxM has kernel and image given by

kerðdgrÞ ¼ TgGðy; xÞ; imðdgrÞ ¼ fðv;wÞ j ½v� ¼ hg½w�g:

Proof. The description of the kernel follows from the fact that t : Gð�; xÞ !M

has constant rank and fiber Gðy; xÞ. Regarding the image, note that the map dgr

yields a commutative square

TgG ���! TyM � TxM???y
???y

NgGO ���! NyO�NxO

from which any vector in ImðdgrÞ satisfies the equation involving the normal

representation. The other inclusion follows by an argument on the dimensions:

the fibration Gðy; xÞ ! Gð�; xÞ ! Ox implies that

dim kerðdgrÞ ¼ dimGðy; xÞ ¼ dimG � dimM � dimO:

Then we conclude

codim imðdgrÞ ¼ 2 dimM � dimG þ dimkerðdgrÞ ¼ dimM � dimO: r

Previous proposition plays a role in many results. An immediate corollary

is that the anchor is injective if and only if it is an injective immersion, and it is

surjective if and only if it is a surjective submersion. Next we provide character-

izations both for submersion groupoids and for gauge groupoids.

Proposition 3.5.2. The submersion groupoid construction (cf. 3.2.3) provides a 1-1

correspondence between surjective submersions and Lie groupoids GxM with

anchor closed and injective.

GxM 7! M !M=G;

M �N MxM M M ! N:

Proof. Given a surjective submersion q : M ! N, its submersion groupoid

M �N MxM has trivial isotropy and Hausdor¤ orbit space, hence its anchor

is injective and closed. Conversely, given GxM whose anchor is closed and

injective, it follows from 3.5.1 that the anchor is also an immersion, hence a closed

embedding, and we can use Godement criterion 2.3.3 to endow the quotient M=G

with a manifold structure. These constructions are mutually inverse up to obvious

isomorphisms. r
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Proposition 3.5.3. The gauge construction presented in 3.2.4 provides a 1-1 corre-

spondence between transitive Lie groupoids GxM and principal group-bundles

G h P!M.

GxM 7! Gx h Gð�; xÞ !M;

P�H PxM M H h P!M:

Proof. To every principal bundle G h P!M we can associate its gauge group-

oid P�G PxP, which is clearly transitive. Conversely, given GxM a transi-

tive Lie groupoid, by fixing some x a M we can associate to it the principal

bundle Gx h Gð�; xÞ !tx M. Note that since the anchor is a submersion by

3.5.1, the map tx : Gð�; xÞ !M also is a submersion and both manifold struc-

tures on M, the original and that of the orbit, agree. It is easy to check that these

constructions are mutually inverse up to isomorphism. r

Remark 3.5.4. In 3.5.2 the 1-1 correspondence extends to maps. This may be

understood as a reformulation of Godement criterion. On the other hand, the cor-

respondence in 3.5.3 does not preserves maps. In order to get a principal bundle

out of a transitive groupoid we need to pick an arbitrary object, and general maps

need not to respect this choice.

3.6. Principal groupoid-bundles. Groupoid-bundles are a natural generalization

of group-bundles, on which much of the theory can be reconstructed. In this sub-

section we give the definition and the basic properties.

Let GxM be a Lie groupoid and let N be a manifold. A left G-bundle

G h P! N consists of a left action y : G h P and a surjective submersion

q : P! N such that the fibers of q are invariant by y, namely q
�
ygðxÞ

�
¼ qðxÞ

for all ðg; xÞ a G �M P. There is a canonical map from the action groupoid to

the submersion groupoid,

x : ðG �M PxPÞ ! ðP�N PxPÞ;
�
ygðxÞ  �

ðg;xÞ
x
�
7!

�
ygðxÞ; x

�
:

A bundle G h P! N is called principal if the action is free and the orbits are

exactly the fibers of the submersion. Note that, in view of 3.5.2, the bundle is

principal if and only if x is an isomorphism.

Right bundles N  P i G, as well as the corresponding notions, are defined

analogously.

Example 3.6.1. Principal ðGx �Þ-bundles are the usual principal group-bundles.
A ðMxMÞ-bundle is the same as a pair of maps M  P! N where the

second leg is a surjective submersion. It is principal if and only if P! N is a

di¤eomorphism.
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Given a group action G h M, a principal GyM-bundle is the same as a

principal G-bundle G h P! N and an equivariant map P!M.

In a principal bundle G h P! N the action y is free and proper. Conversely,

given a free proper action G h P, it can be seen that the action groupoid GyP

has a smooth quotient P=G (cf. 3.5.2) and therefore G h P! P=G is a principal

bundle. In other words, the submersion q is implicit in the action y, as it happens

in the group case (cf. [26], App. E). Thus we have

Proposition 3.6.2. There is a 1-1 correspondence between principal G-bundles and

free proper actions of G.

A map of bundles f : ðG h P 0 ! N 0Þ ! ðG h P! NÞ is a smooth map

f : P 0 ! P compatible with the actions and the submersions.

Given G h P! N a principal bundle and N 0 ! N a smooth map, we define

the pullback bundle by

G h ðP�N N 0Þ ! N 0; y 0gðx; yÞ ¼
�
ygðxÞ; y

�
; q 0ðx; yÞ ¼ y;

which is also principal. It is easy to see that the canonical projection P�N N 0 ! P

is a map of bundles. Conversely, every map of principal bundles turns out to be a

pullback.

Proposition 3.6.3. A map f : ðG h P 0 ! N 0Þ ! ðG h P! NÞ of principal

bundles induces an isomorphism of bundles

ðG h P 0 ! N 0ÞG
�
G h ðP�N N 0Þ ! N 0

�
:

Proof. Again we can imitate the Lie group case. It is enough to show that f gives

di¤eomorphisms between the fibers P 0a 0 !
G

Pa, where a 0 a N 0 and fða 0Þ ¼ a a N.

Choosing u 0 a P 0a 0 and calling u ¼ fðu 0Þ a Pa, we can identify

Gð�; xÞGP 0a 0 ; g 7! y 0gðu 0Þ; and Gð�; xÞGPa; g 7! ygðuÞ;

and under these identifications, the map is just the identity, from where the result

is clear. r

Given GxM a Lie groupoid, the unit principal bundle G h G !M is de-

fined by the action ygðg 0Þ ¼ gg 0 and the quotient map qðgÞ ¼ sðgÞ. We say that a

principal bundle G h P! N is trivial if it is the pullback of the unit bundle

along some map N !M. Note that a trivial principal bundle need not to be a

trivial map.
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Any principal bundle G h P! N is locally trivial. In fact, if U HN is a

small open and s : U ! P is a local section of q, then there is an isomorphism

between the restriction to U and the trivial bundle induce by ts.

ðG h G �M U ! UÞG
�
G h q�1ðUÞ ! U

�
; ðg; uÞ 7! gsðuÞ:

This leads to a cocycle description of principal bundles, completely analog to the

group case (see 4.5.4). In particular, a principal bundle is trivial if and only if it

admits a global section.

Remark 3.6.4. Given G h P! N a principal bundle such that P!M is a

submersion, we can define the diagonal action ðGxMÞh ðP�M P!MÞ,
which is also free and proper. The structural maps of the submersion groupoid

P�M PxP are equivariant, thus they induce maps in the quotients P�G
M P ¼

ðP�M PÞ=G and P=G ¼ N, defining a new Lie groupoid, the gauge groupoid.

G h P! N V ðP�G
M PxNÞ:

This construction generalizes both the one presented in 3.2.3 and that in 3.2.4.

4. Equivalences

We start this section by discussing isomorphisms between Lie groupoid maps.

Then we deal with weak equivalences and provide an original characterization

for them. After that we make a short digression on homotopy pullbacks, which

play an important role hereafter. We define equivalent groupoids and generalized

maps by using weak equivalences, and explain the relation of this approach to

that of principal bibundles. Finally, we introduce orbispaces, showing that a Lie

groupoid is essentially the same as a presentation for such an orbispace.

Some references for this material are [21] and [22].

4.1. Isomorphisms of maps. The category of Lie groupoids and maps can be

enriched over groupoids, namely there are isomorphisms between maps, and

many times it is worth identifying isomorphic maps, and considering diagrams

that commute up to isomorphisms.

Given f1; f2 : ðGxMÞ ! ðG 0xM 0Þ maps of Lie groupoids, an isomorphism

a : f1 G f2 consists of a smooth map a : M ! G 0 assigning to each object x in M

an arrow f2ðxÞ  �
aðxÞ

f1ðxÞ in G 0 such that aðyÞf1ðgÞ ¼ f2ðgÞaðxÞ for all y 
g
x.

Example 4.1.1. Two maps between manifolds are isomorphic if and only if they

are equal.
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Two maps between Lie groups f1; f2 : ðGx �Þ ! ðG 0x �Þ are isomorphic if

and only if they di¤er by an inner automorphisms of G 0.
Two maps between submersion groupoids are isomorphic if and only if they

induce the same map in the orbit manifolds (cf. 3.5.2).

f1 G f2 : ðGxMÞ ! ðG 0xM 0Þ () ðf1Þ� ¼ ðf2Þ� : M=G !M 0=G 0:

For the sake of simplicity we will identify two maps if they are isomorphic, and

do not pay attention to the automorphisms of a given map. We denote the set of

isomorphism classes of maps G ! G 0 by MapsðG;G 0Þ=G and the category of Lie

groupoids and isomorphism classes of maps by

fLie Groupoidsg=U:

A map which is invertible up to isomorphism is called a categorical equivalence,

and an inverse up to isomorphism is called a quasi-inverse. We use the notation

U for categorical equivalences and keepG for the isomorphisms.

Given GxM, its groupoid of arrows GI ¼ ðG �M G �M GxGÞ is the Lie

groupoid whose objects are the arrows of G and whose arrows are commutative

squares, or equivalently chains of three composable arrows.

y  ���
g

x

g 0h�1

???y
???yh�1g

y 0  ���
g 0

x 0
 ! ðy 0  g

0

x 0Þ  �������ðg 0h�1;h;h�1gÞ ðy g xÞ:�����
!

h

With these definitions we can regard the unit, source and target of G as Lie

groupoid maps u : G ! GI and s; t : GI ! G. There is a tautological isomor-

phism sG t given by the identity G ! G, which is universal: An isomorphism

a : f1 G f2 : G
0 ! G turns out to be the same as a map ~aa : G 0 ! GI such that

f1 ¼ s~aa and f2 ¼ t~aa.

We have associated to a Lie groupoid GxM its orbit space M=G and its

normal representations Gx h NxO, x a M. These constructions are functorial,

and behave well with respect to isomorphisms of maps.

Proposition 4.1.2. If a : f1 G f2 : ðGxMÞ ! ðG 0xM 0Þ then f1, f2 induce the

same map ðf1Þ� ¼ ðf2Þ� : M=G !M 0=G 0 between the orbit spaces, and there are

commutative triangles between the normal representations

Gx h NxO

G 0f1ðxÞ h Nf1ðxÞO
0 ���������!

h 0
aðxÞ

G 0f2ðxÞ h Nf2ðxÞO
0:

 ���
�ðf1Þ�

 ���
�

ðf2Þ�
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The proof is straightforward. Note that it is enough to prove it for the univer-

sal isomorphism sG t : GI ! G.

4.2. Weak equivalences. A Lie groupoid GxM can be regarded as a presenta-

tion for an orbispace, which we will denote by ½M=G�. In order to formalize this

we use weak equivalences. Intuitively, a weak equivalence is a map of groupoids

inducing isomorphisms between the underlying orbispaces.

Let f : ðGxMÞ ! ðG 0xM 0Þ be a map between Lie groupoids. Then f is

fully faithful if it induces a good pullback of manifolds between the anchors,

G
f

G 0

r

???y
???yr 0

M �M ���!f�f
M 0 �M 0

pb

��������!

and f is essentially surjective if the following map of manifolds is a surjective

submersion:

t pr1 : G
0 �M 0 M !M 0;

�
x 0  g

0

fðxÞ; x
�
7! x 0:

We say that f is a weak equivalence if it is both fully faithful and essentially

surjective. We use the notationP for weak equivalences.

Example 4.2.1. A map between manifolds is fully faithful if and only if it is

an injective immersion, and it is essentially surjective if and only if it is a sur-

jective submersion. Thus, in this case, a weak equivalence is the same as a

di¤eomorphism.

If G is transitive, then any map G 0 ! G is essentially surjective.

Given GxM and AHM such that the restriction GA xA is well defined

(cf. 3.4), the inclusion ðGA xAÞ ! ðGxMÞ is fully faithful, and it is essentially

surjective if and only if A intersects transversally every orbit.

If O is an orbifold and U,U 0 are numerable atlases of O such that U refinesU 0,
then a choice of inclusions leads to a Lie groupoid map ðGxMÞ ! ðG 0xM 0Þ
between the induced Lie groupoids (cf. 3.2.6). This map is a weak equivalence

(cf. 4.3.1, see also [21]).

Every isomorphism is a categorical equivalences, and every categorical equiv-

alence is a weak equivalence. Actually, if two maps are isomorphic, then one

of them is a weak equivalence if and only if the other is so. This can be proved

directly from the definitions or can be obtained as a corollary of 4.1.2 and 4.3.1.

Next example shows that the three notions are in fact di¤erent.
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Example 4.2.2. Let q : M ! N be a submersion and let f be the induced map

f : ðM �N MxMÞ ! ðNxNÞ

Then f is a weak equivalence if and only if q is surjective, f is a categorical equiv-

alence if and only if q admits a global section, and f is an isomorphism if and only

if q is a di¤eomorphism.

Remark 4.2.3. When working up to isomorphisms, a fully faithful map

f : G ! G 0 is a categorical monomorphism, namely for any H it induces an injec-

tive map

MapsðH;GÞ=G!MapsðH;G 0Þ=G; c 7! fc:

In fact, given c1;c2 : H ! G, an isomorphism a : fc1 G fc2 can be lifted to

another ~aa : c1 Gc2 by the universal property of the pullback determined by the

anchors.

Remark 4.2.4. Our definition of fully faithful maps slightly di¤ers from the one

in the literature (cf. eg. [21]), for we are asking for the pullback to be good. As

an example, the map R! R, x 7! x3, is not fully faithful for us, while it is for

the other definition. Nevertheless, when the map is essentially surjective, then r 0

and f� f are transverse and both definitions for weak equivalences agree.

4.3. A characterization of weak equivalences. The orbispace ½M=G� associated
to a Lie groupoid GxM consists of the orbit space M=G endowed with some

smooth data, encoded in the normal representations Gx h NxO. These represen-

tations play the role of tangent spaces of ½M=G�. Next criterion can be seen as a

formulation of this idea.

Theorem 4.3.1. A map f : ðGxMÞ ! ðG 0xM 0Þ is a weak equivalence if and

only if it yields a homeomorphism between the orbit spaces and isomorphisms

between the normal representations.

f : ðGxMÞ !P ðG 0xM 0Þ () f� : M=G !G M 0=G 0;

fx : ðGx h NxOÞ !G ðG 0x 0 h Nx 0O
0Þ for all x:

(

Proof. Let us write x 0 ¼ fðxÞ, g 0 ¼ fðgÞ, and so on.

First step: Assume that f is fully faithful. The pullback involving the anchors

induces di¤eomorphisms between their fibers, namely

Gðy; xÞ !G G 0ðy 0; x 0Þ for all x; y a M:
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This implies that we have isomorphisms on the isotropy groups Gx !G G 0x 0 , and
that the induced map f� : M=G !M 0=G 0 between the orbit spaces is injective.

Moreover, the map f� : NxO! Nx 0O
0 is a monomorphism for all x. In fact, if

v a TxM and dxfðvÞ a Tx 0O
0, then

�
dxfðvÞ; 0

�
a ImðduðxÞr 0Þ (cf. 3.5.1), and since

the following is a pullback of vector spaces,

TuðxÞG Tuðx 0ÞG
0

duðxÞr

???y
???yduðx 0Þr

0

TxM � TxM ���! Tx 0M
0 � Tx 0M

0;

pb

��������!

it turns out that ðv; 0Þ a ImðduðxÞrÞ, hence v a TxO.

Second step: It is easy to see that t pr1 : G
0 �M 0 M !M 0 is surjective if and only

if f� : M=G !M=G 0 is so. Now consider the diagram of vector spaces

Tg 0 ðG 0 �M 0 MÞ ���! Tg 0G
0 ���!dt Ty 0M

0???y ds

???y
???yh

g 0�1py 0

TxM Tx 0M
0 ���!px 0

Nx 0O
0:

pb

�������!
It follows by diagram chasing and 3.5.1 that the upper composition is an epi-

morphism if and only if the lower one is so. We can conclude that t pr1 is a

submersion if and only if f� : NxO! Nx 0O
0 is an epimorphism for all x.

Note that if f is essentially surjective, then f� : M=G !M 0=G 0 has to be open,

for the top and the right arrow in next commutative square are so:

G 0 �M 0 M ���!t pr1
M 0

q pr2

???y q 0

???y
M=G ���!

f�
M 0=G 0:

Third step: It only remains to show that the criterion implies that f is fully

faithful. From the isomorphisms Gx !G G 0x 0 and the homeomorphism M=G !G

M 0=G 0 it follows that the anchor maps define a set-theoretical pullback, and that

the maps Gðy; xÞ !G G 0ðy 0; x 0Þ are di¤eomorphisms. Since the maps NxO! Nx 0O
0

are onto, the following are transverse (cf. 3.5.1).

f� f : M �M !M 0 �M 0; r 0 : G 0 !M 0 �M 0:

Thus their pullback exists and it is good, and we get a map G !
ðM �MÞ �M 0�M 0 G 0. It is bijective for both are set-theoretical pullbacks. Its
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di¤erential at each point is invertible as can be proved by diagram chasing be-

tween the following two exact sequences (cf. 3.5.1):

0 ���! TgGðy; xÞ ���! TgG ���! TyM � TxM ���! NyO ���! 0???yG

???y
???y

???yG

0 ���! Tg 0G
0ðy 0; x 0Þ ���! Tg 0G

0 ���! Ty 0M
0 � Tx 0M

0 ���! Ny 0O
0 ���! 0:

We conclude that GG ðM �MÞ �M 0�M 0 G 0 and hence f is fully faithful. r

By using this characterization we can easily get the following saturation prop-

erties of the class of weak equivalences.

Corollary 4.3.2. If two maps are isomorphic and one of them is a weak equivalence,

then so does the other (cf. 4.1.2).

In a commutative triangle of Lie groupoid maps, if two out of the three maps are

weak equivalences, then the third also is.

If f is such that there exist c1, c2 such that fc1 and c2f are weak equivalences,

then f is a weak equivalence as well.

4.4. Homotopy pullbacks. The pullback of two Lie groupoid maps

f1 : ðG1 xM1Þ ! ðGxMÞ and f2 : ðG2 xM2Þ ! ðGxMÞ, if it exists, consists
of the Lie groupoid whose objects and arrows

G1 �G G2 xM1 �M M2

are the corresponding pullbacks of manifolds, and whose structural maps are

induced by those of G1 and G2. We say that f1 and f2 are transverse if they are

so on objects and on arrows.

Proposition 4.4.1. If f1 and f2 are transverse then their pullback exists.

Proof. The pullbacks of manifolds G 0 ¼ G1 �G G2 and M 0 ¼M1 �M M2 exist

and are good (cf. 2.2.3). The source, target and unit maps of G1 and G2 induce

new maps s 0; t 0 : G 0 !M 0 and u 0 : M 0 ! G 0 by the obvious formulas. The key

point is to show that s 0 : G 0 !M 0 is a submersion. Since s 0u 0 ¼ idM 0 the di¤eren-

tial of s 0 is surjective near u 0ðM 0Þ. We just need to prove that the dimension of

ker dg 0s
0 ¼ ðTg 0

1
G1 �TgG Tg 0

2
G2ÞBker dg 0 ðs1; s2ÞHTg 0

1
G1 � Tg 0

2
G2

does not depend on g 0 ¼ ðg 01; g 02Þ. Given ðy 01; y 02Þ  ���ðh 0
1
;h 0

2
Þ
ðx 01; x 02Þ in G 0, we have a

di¤eomorphism G1ð�; y 01Þ � G2ð�; y 02ÞGG1ð�; x 01Þ � G2ð�; x 02Þ defined by right

multiplication by h 0. It is easy to see that its di¤erential maps ker dg 0s
0 inside
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ker dg 0h 0s
0. Since g 0 and h 0 are arbitrary we conclude that ker dg 0s

0 has constant

dimension and hence s 0 is a submersion. The rest is routine. r

Remark 4.4.2. A summary in pullbacks of Lie groupoids and algebroids will ap-

pear in [3]. Result 4.4.1 is stated in [21], §5.3 without a proof. In [19], Prop. 2.4.14

it is proved that the pullback between a fibration and any map exists. This can

be seen as a corollary of 4.4.1, for it is immediate that a fibration is a surjective

submersion on objects and arrows, and then it is transverse to any other map.

Homotopy pullbacks of Lie groupoids are an alternative for usual pullbacks

that take consideration of the isomorphisms between maps. They play a relevant

role in defining and composing generalized map of Lie groupoids. Next we pro-

vide their definitions and basic properties. We suggest [21] as an alternative refer-

ence, where homotopy pullbacks appear with the name of weak fibred products.

Given f1 and f2 as above, their homotopy pullback G1 ~��G G2 is defined as

the pullback between the Lie groupoid maps ðs; tÞ : GI ! G � G and f1 � f2 :
G1 � G2 ! G � G. Its objects are triples

�
x1; f1ðx1Þ  

g
f2ðx2Þ; x2

�
, and its arrows

are triples ðk1; k2; k3Þ as below:

x1 f1ðx1Þ  ���g
f2ðx2Þ x2

k1

???y f1ðk1Þ

???y
???yf2ðk3Þ

???yk3

y1 f1ðy1Þ  ���h
f2ðy2Þ y2:

�����
!

k2

Since the groupoid of arrows GI classifies isomorphisms of maps, the homotopy

pullback G1 ~��G G2 fits into a universal commutative square up to isomorphism.

G1 ~��G G2 ���! G1 � G2???y
???yf1�f2

GI

ðs; tÞ
G � G

 !

G1 ~��G G2 ���!~ff1 G2

~ff2

???y
???yf2

G1
f1

G:

pb hpb

������! ������!
The universal property of the pullback translates into the following.

Remark 4.4.3. Given c1 : H ! G1, c2 : H ! G2 and an isomorphism

f1c1 G f2c2, there is a unique map c : H ! G1 ~��G G2 such that c1 ¼ ~ff2c,
c2 ¼ ~ff1c and the isomorphism is naturally induced by c.

In particular we have that G1 ~��G G2 is a pullback in fLie Groupoidsg=U, the
category of groupoids and isomorphism classes of maps. We say that ~ff1,

~ff2 are

the base-changes of f1, f2 respectively.
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We discuss finally the behavior of homotopy pullbacks with respect to weak

equivalences. We say that f : ðGxMÞ ! ðG 0xM 0Þ is surjective if f : M !M 0

is a surjective submersion. This implies essentially surjective, as it follows from

the composition

MGM 0 �M 0 M ��!ðu; idÞ G 0 �M 0 M ��!t pr1 M 0:

A surjective equivalence is a map both surjective and fully faithful. In a surjective

equivalence the map on arrows G ! G 0 is also a surjective submersion.

Proposition 4.4.4. Given f1 and f2 as above, if f1 is a weak equivalence then

the homotopy pullback G1 ~��G G2 exists and the base-change ~ff1 is a surjective

equivalence.

Sketch of proof. The di¤erential of f1 is surjective in the direction normal to the

orbits (cf. 4.3.1). Then the map fob
1 � fob

2 : M1 �M2 !M �M is transverse

to the anchor rG : G !M �M (cf. 3.5.1). It follows from here that f1 � f2 is

transverse to ðs; tÞ and hence the homotopy pullback G1 ~��G G2 exists (cf. 4.4.1).

The map ~ff1 is surjective because in the pullback of manifolds

M1 �M G �M M2 ���!~ff1 M2

pr

???y
???yf2

M1 �M G
s pr2

M

pb

������!
the bottom arrow is a surjective submersion and therefore the upper one also is.

It remains to prove that ~ff1 is fully faithful. The pullback manifold between the

anchor r2 and the map ~ff1 � ~ff1 is�
ðM1 �M G �M M2Þ � ðM1 �M G �M M2Þ

�
�M2

G2:

By rearranging the coordinates and using the multiplication of G this manifold is

di¤eomorphic to �
ðM1 �M1Þ �M G

�
�M G �M G2:

Since f1 is fully faithful we can replace ðM1 �M1Þ �M GGG1 and conclude that
~ff1 is fully faithful as well. r

4.5. Equivalent groupoids and generalized maps. Two Lie groupoids G, G 0 are
equivalent, notation GPG 0, if there is a third groupoid H and weak equiva-

lences H !P G, H !P G 0. Equivalent groupoids have homeomorphic orbit spaces

M=GGM 0=G 0, and for every pair of points x a M, x 0 a M 0, whose classes
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are related by this homeomorphism, the corresponding normal representations

ðGx h NxOÞG ðG 0x 0 h Nx 0O
0Þ are isomorphic (cf. 4.3.1).

Example 4.5.1. A Lie groupoid GxM is equivalent to a manifold NxN if and

only if G is a submersion groupoid with quotient M=GGN.

A Lie groupoid GxM is equivalent to a Lie group Hx � if and only if G is

transitive and the isotropy at a point is H.

Given O an orbifold and U1, U2 two numerable atlases, by picking a common

refinement U we can see that the induced groupoids G1 xM1 and G2 xM2 are

equivalent (cf. 4.2.1). Thus, to an orbifold O we can associate a Lie groupoid

GðOÞ ¼ ðGxMÞ, which is determined up to canonical equivalence.

A pair of equivalences H !P G, H !P G 0 is an example of a generalized map.

Given G, G 0 Lie groupoids, a generalized map c=f : GaG 0 is defined by two

maps f : H !P G and c : H ! G 0 where the first is a weak equivalence:

G  f
P

H !c G 0:

Two pairs define the same generalized map, c1=f1 ¼ c2=f2, if there is a third pair

c3=f3 and they all fit into a diagram commutative up to isomorphisms:

G  ���f1

P
H1 ���!c1

G 0����
x???

����
G  ���f3

P
H3 ���!c3

G 0����
???y

����
G  ���f2

P
H1 ���!c2

G 0:

This is an equivalence relation on pairs ðf;cÞ as it can be proved by using homo-

topy pullbacks (cf. 4.4.4). We denote by H 1ðG;G 0Þ the set of generalized maps

GdG 0:

H 1ðG;G 0Þ ¼ fc=f : GdG 0g:

It is easy to see that, after the identifications, this is in fact a set and not a proper

class.

Example 4.5.2. Generalized maps between manifolds MdM 0 are the same as

usual smooth maps:

H 1ðM;M 0Þ ¼MapsðM;M 0Þ:
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Generalized maps between Lie groups GdG 0 are usual maps modulo inner

automorphisms of G 0:

H 1ðG;G 0Þ ¼MapsðG;G 0Þ=G:

Given a principal groupoid-bundle G h P! N, we can construct a general-

ized map NdG as follows (cf. 3.6):

ðNxNÞ  P ðP�N PxPÞG
x
ðG �M PxPÞ ! ðGxMÞ:

This construction sets a 1-1 correspondence (cf. 4.6.3):

H 1ðN;GÞG fprincipal G-bundles over Ng:

We can identify orbifold maps O! O 0 and generalized maps between the

induced groupoids (cf. [21]):

H 1
�
GðOÞ;GðO 0Þ

�
¼MapsðO;O 0Þ:

Remark 4.5.3. By playing with homotopy pullbacks (cf. 4.4.4) it is easy to see

that every generalized map can be presented as a fraction c=f where f : H !P G

is a surjective equivalence (see eg. [21]). The same argument shows that an equiv-

alence GPG 0 can always be realized by two surjective equivalences H !P G,

H !P G 0.

Generalized maps also admit a cocycle description. Given a Lie groupoid

GxM and a numerable open covering U ¼ fUigi of M, denote MU ¼
‘

i Ui

and GU ¼
‘

i; j GðUi;UjÞ. The structure of G induce a new Lie groupoid

GU xMU and a surjective equivalence

fU : ðGU xMUÞ !P ðGxMÞ:

If U, U 0 are open coverings and U refines U 0, then fU clearly factors through fU 0 ,

and two such factorizations must be isomorphic.

Proposition 4.5.4. Every generalized map GdG 0 can be realized as a fraction

c=fU for some numerable open covering U of M, and two fractions agree if, when

expressed over the same covering U, their numerators are isomorphic:

H 1ðG;G 0Þ ¼ lim�!
U

MapsðGU;G
0Þ=G:
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Proof. Given c=f : GdG 0 with f : ðHxNÞ !P ðGxMÞ a surjective equiva-

lence, the map on objects f : N !M is a surjective submersion and therefore it

admits local sections over some open covering U of M. A choice of such sections

provides a factorization

GU �������! H

G

 ���
� ����!qU f

and the resulting map GU !P H is a weak equivalence. It is determined up to

isomorphism by 4.2.3. This also proves the second statement. r

4.6. Bibundles as generalized maps. There is another approach to equivalences

and generalized maps via principal bibundles. Let G, G 0 be Lie groupoids. A

left and right actions G h P i G 0 define a bibundle if they commute and the

moment map of one is invariant for the other. We depict the situation by

G h P i G 0

## . & ##
M M 0:

We call G h P!M 0 and M  P i G 0 the left and right underlying bundles. A

bibundle is principal if both underlying bundles are so. A bundle is left (resp.

right) principal if only the right (resp. left) underlying bundle is so.

Example 4.6.1. A left principal bibundle G h P i N between a Lie groupoid

G and a manifold N is the same as a principal bundle G h P! N (cf. 3.6).

The left and right multiplications G h G i G, g � g � g 0 ¼ ghg 0, constitute a

principal bibundle.

Given G and AHM, we denote by 3A4 its saturation. If the restrictions GA,

G3A4 are well defined, then previous example restricts to a principal bibundle

G3A4 h Gð�;AÞi GA. In particular when G is transitive and x a M, we have

a principal bibundle G h Gð�; xÞi Gx.

A free proper action G h P leads to a principal bibundle as follows. The

action gives a principal bundle G h P! P=G (cf. 3.6.2) and hence a gauge

groupoid P�G
M PxP=G (cf. 3.6.4). An arrow of this gauge groupoid is denoted

by ½a 0; a 00�, with a 0; a 00 a P in the same fiber of the moment map. The gauge group-

oid acts over P on the right, P i P�G
M P, by the formula

a � ½a 0; a 00� ¼ g � a 0 () g � a 00 ¼ a:
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This action is free, proper and compatible with that of G, yielding a principal

bibundle

G h P i P�G
M P

## . & ##
M P=G:

It turns out that every principal bibundle arises in this way.

Proposition 4.6.2. Given a principal bibundle G h P i G 0, there is a canonical

isomorphism G 0G ðP�G
M PÞ compatible with the actions.

Proof. Since M  P i G 0 is also a principal bundle we have an isomorphism

ðP�M PxPÞG ðP�M 0 G 0xPÞ

that identifies the orbits of the actions G h P and G h P�M P with the fibers of

the action map ðP�M 0 G 0xPÞ ! ðG 0xM 0Þ. The result now follows. r

Theorem 4.6.3. There is a 1-1 correspondence between generalized maps and iso-

morphism classes of right principal bibundles.

H 1ðG;G 0ÞG fright principal bibundles G h P i G 0g:

Under this correspondence, equivalences corresponds to principal bibundles.

Proof. Given a bibundle G h P i G 0, we can construct an action groupoid of

the simultaneous action

GyPzG 0 ¼ ðG �M P�M 0 G 0xPÞ

with source ðg; a; g 0Þ 7! a, target ðg; a; g 0Þ 7! gag 0, and unit, multiplication and

inverses induced by those of G and G 0. There are obvious projections

p1 : GyPzG 0 ! G, p2 : GyPzG 0 ! G 0, and it is easy to see that p1 (resp.

p2) is a weak equivalence if and only if the bibundle is right (resp. left) principal:

ðG h P i G 0Þ 7!a ðG  GyPzG 0 ! G 0Þ:

On the other hand, given a fraction of groupoid maps ðG  f
P

H !c G 0Þ, we can
construct a bibundle as follows. Consider the following groupoid action:

ðHxNÞh ðG �M N �M 0 G 0 �!pr2 NÞ; h � ðg; a; g 0Þ ¼
�
gfðhÞ�1; tðhÞ;cðhÞg 0

�
:
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This action is free and proper because f is fully faithful. The groupoids G, G 0 act
on the quotient manifold ðG �M N �M 0 G 0Þ=H by ~gg � ½g; n; g 0� � ~gg 0 ¼ ½~ggg; n; g 0~gg 0 �.
This bibundle is right principal, and it is left principal if and only if c is a weak

equivalence as well:

G h

ðG �M N �M 0 G 0Þ
H

i G 0
� �

M
b
ðG  H ! G 0Þ:

There is a natural isomorphism baðG h P i G 0Þ !G ðG h P i G 0Þ defined
by ½g; a; g 0 � 7! gag 0. Regarding the other composition there is a natural map

ðHxNÞ ! abðHxNÞ; n 7! ½1; n; 1�; h 7!
�
fðhÞ�1;cðhÞ

�
;

that establishes an identity of generalized maps.

G H G 0����
???y

����
G  ���P

Gy
ðG�MN�M 0G

0Þ
H

zG 0 ���! G 0:

 �����������P �����������!

r

Under the above correspondence, a right principal bibundle G h P i G 0 is
associated to a map f : G ! G 0 if and only if its right underlying bundle is trivial.

In fact, if we denote by Pðc=fÞ the bibundle associated to the fraction c=f, we

have P ¼ Pð f =1Þ ¼ ðG�MM�M 0G
0Þ

G
¼M �M 0 G 0. In particular, a principal bibundle

corresponds to a weak equivalence if and only if it admits a global section.

Remark 4.6.4. A right principal bibundle G h P i G 0 can be thought of as a

principal G 0-bundle with base G. In fact, the moment map of the let action

ðG �M PxPÞ ! ðGxMÞ

is a compatible diagram of Lie groupoids and principal G 0-bundles, and every

such diagram comes from a right principal bundle (cf. 3.3.2, 3.6.3). From this

point of view, proposition 4.6.3 is saying that each G-bundle over G 0 is the pull-

back along a unique generalized map of the universal bundle G h GI !s G.

4.7. Orbispaces. Every Lie groupoid has an underlying orbispace. A general-

ized map between Lie groupoids is a map between their orbispaces, and two Lie

groupoids are equivalent if and only if their orbispaces are isomorphic. In this

section we formalize these ideas.

194 M. L. del Hoyo



Given two generalized maps c=f : GdG 0, c 0=f 0 : G 0dG 00, their composi-

tion is defined as c 0c 00=f 00f, where f 00 : K !P H and c 0 : K ! H 0 are such that

the square below commutes up to isomorphism:

K

H H 0

G G 0 G 00:

 ����  ����

 ����  ����
f 00 c 00

P

c f 0

 ����  ����f
P P

c 0

We can take as K the homotopy pullback H ~��G 0 H
0, and any other choice will

lead to an equivalent fraction (cf. 4.4.3, 4.4.4). With this composition we get a

well defined category of Lie groupoids and generalized maps. Given a Lie group-

oid GxM, we define its underlying orbispace ½M=G� as the object it defines in this

category.

fOrbispacesg ¼ fLie Groupoidsg=P:

Maps of orbispaces ½M=G� ! ½M 0=G 0� are, by definition, generalized maps of Lie

groupoids GdG 0. Such a map induces a map between the orbit spaces and

maps between the normal representations (cf. 4.3.1). We can think of ½M=G� as
the topological space M=G with some smooth data attached.

Example 4.7.1. We can identify manifolds with their unit groupoids and their

underlying orbispaces. This way we can see the category of orbispaces as an

extension of that of manifolds (cf. 4.5.2). The same happens with orbifolds. We

can actually define orbifolds as the underlying orbispaces to certain Lie groupoids

(proper with finite isotropy).

Remark 4.7.2. The construction of the category of orbispaces from that of

Lie groupoids can be framed into the theory of localization and calculus of

fractions (see eg. [16], §7.1). The category fOrbispacesg is obtained from

fLie Groupoidsg=U by formally inverting the weak equivalences. The description

of the maps as fractions c=f is a consequence of the general theory, once it is

proved that the class of maps we are inverting is a left multiplicative system

(cf. 4.3.2 and 4.4.4).

According to 4.3.2 weak equivalences are saturated (cf. [16], §7.1), and thus a

generalized map c=f is invertible if and only if c is a weak equivalence. In other

words, two Lie groupoids are equivalent GPG 0 if and only if their orbispaces are

isomorphic ½M=G�G ½M 0=G 0�. Of course, this can also be proved directly.
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Given GxM a Lie groupoid, the canonical inclusion ðMxMÞ ! ðGxMÞ
induces a map p : M ! ½M=G� of orbispaces, which we call the presentation of

½M=G� induced by GxM.

GxM V M ! ½M=G�:

It turns out that a Lie groupoid is essentially encoded in this presentation.

Theorem 4.7.3. There is a 1-1 correspondence between isomorphism classes of

maps ðGxMÞ ! ðG 0xM 0Þ and commutative squares in fOrbispacesg between

the induced presentations:

ðGxMÞ !y ðG 0xM 0Þ  !
M

f
M 0???y
???y

½M=G� ���!c=f ½M 0=G 0�:

������!

Proof. It is clear that a map y induces one of these commutative squares of

orbispaces. Let us prove the converse.

Let f : M !M 0 and c=f : ½M=G� ! ½M 0=G 0� be such that p 0f ¼ ðc=fÞp. We

can assume that f is a surjective equivalence. Write j : ðK xNÞH ðHxNÞ for
the kernel of f, say the Lie groupoid of arrows that are mapped by f into

identities. In the following diagram of Lie groupoids

M  ��P

fjK
K M 0

p

???y
???y j

???yp 0

G  ��P

f
H ��!

c
G 0

f

the left square commutes on the nose, hence ðc=fÞp ¼ ðcjÞ=fjK . From the iden-

tity ðcjÞ=fjK ¼ p 0f we deduce that there is an isomorphism of Lie groupoid maps

a : cjG p 0f fjK : K ! G 0; f
�
fðnÞ

�
 �aðnÞ cðnÞ for all n a N:

Now we use a to twist the map c. More precisely, we define ~cc : H ! G 0 by

~ccðn 0  h nÞ ¼
�
f fðn 0Þ  �������aðn 0ÞcðhÞaðnÞ�1

f fðnÞ
�
:

The map a gives an isomorphism ~ccGc, and ~cc is constant along the fibers of

f : H ! G, hence it induces a map y : G ! G 0 as required. r
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Remark 4.7.4. The category of orbispaces can alternatively be constructed by

using stacks. Roughly speaking, stacks are sheaves of groupoids, they extend

the notion of spaces, and have proved to be a useful tool especially in moduli

problems. Within that framework, what we called an orbispace is just a stack

over the category of manifolds which can be presented as a quotient of a man-

ifold, and a Lie groupoid is one of such presentations. We refer to [1] and [18]

for an introduction to stacks in general and smooth stacks in particular. See

also [14].

5. Proper groupoids

This section deals with proper groupoids and the geometry of their underlying

orbispaces. Along the several subsections we include: definitions and examples;

properties of orbits and slices; a discussion on stability; Zung’s Theorem; and an

overview on linearization.

We use [21], [27] as general references for this section, and we especially follow

[7] for Zung’s theorem and the linearization discussion. As we explained in the

introduction, a completely new approach to the topic will be presented in [13].

5.1. Proper groupoids. A Lie groupoid GxM is said to be proper if its anchor

r ¼ ðt; sÞ : G !M �M is a proper map (cf. §2.1). Equivalently, a groupoid is

proper if given compact sets K ;K 0HM the set of arrows between them

GðK ;K 0Þ is compact as well.

Since a proper map is closed with compact fibers, in a proper groupoid the iso-

tropy groups Gx are compact, the relation rðGÞHM �M is closed, and therefore

the orbit space M=G is Hausdor¤.

Example 5.1.1. Given M a manifold, its unit groupoid MxM and its pair

groupoid M �MxM are proper. More generally, a submersion groupoid

M �N MxM is the same as a proper groupoid without isotropy (cf. 3.5.2).

A Lie group Gx � is proper if and only if it is compact. More generally, a

transitive groupoid is proper if and only if its isotropy at a point is compact.

For instance, the general linear groupoid GLðEÞ of a vector bundle E is not

proper, but the orthogonal groupoid OðEÞ is so (cf. 3.2.5).

By definition, an action ðGxMÞh ðA!MÞ is proper if the action group-

oid G �M AxA is so (cf. 3.3, see also [11] for the group case).

The Lie groupoid arising from a covering of an orbifold is proper (cf. [21]).

There is a local version for the notion of properness. A Lie groupoid GxM is

proper at x if its anchor map r is proper at ðx; xÞ. A proper groupoid is proper at

every point, but the converse is not true.
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Example 5.1.2. Let GxM be the groupoid without isotropy whose objects are

the non-zero points in the plane, and whose orbits are the leaves of the foliation by

horizontal lines. This groupoid is proper at every point, but it is not proper, for

M=G is not Hausdor¤.

Proposition 5.1.3 (Compare with [11], 2.5). A groupoid GxM is proper if and

only if it is proper at every point and the orbit space M=G is Hausdor¤.

Proof. Let GxM be such that M=G is Hausdor¤ and the anchor r is proper at

ðx; xÞ for all x. We have to show that r is proper at any point ðy; xÞ. Since M=G

is Hausdor¤ the relation rðGÞHM �M is closed and the anchor is obviously

proper at points ðy; xÞ B rðGÞ. On the other hand, if there is an arrow y g x

in G, the translation by a bisection through g shows that the anchor over ðy; xÞ
behaves as over ðx; xÞ, and thus the result. r

Remark 5.1.4. Given any Lie groupoid GxM, the points U HM at which it is

proper is open and saturated. It is open because of the local nature of properness

(cf. 2.1.2) and it is saturated because of the argument with bisections used in the

proof above. It follows that a groupoid GxM is proper at a point x a M if and

only if there exists a saturated open x a V HM such that the restriction GV xV

is proper: we can take x a U HM small so as to make GU xU proper, and then

take V as its saturation.

Properness is invariant under equivalences, it is a property of the underlying

orbispace rather than the Lie groupoid itself.

Proposition 5.1.5. If two Lie groupoids are equivalent and one of them is proper,

then so does the other.

Proof. Equivalent groupoids can always be linked by surjective equivalences.

Thus, let f : ðGxMÞ ! ðG 0xM 0Þ be a surjective equivalence. Since f is fully

faithful the square

G G 0

r

???y
???yr 0

M �M ���! M 0 �M 0

pb

��������!

is a pullback, and thus r is a base-change of r 0. On the other hand, since f is sur-

jective, we can locally express r 0 as a base-change of r by using local sections of

M �M !M 0 �M 0. Since properness of maps is stable under base-change the

result follows. r
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Previous proposition admits a punctual version: If ½M=G� ! ½M 0=G 0� is an

isomorphism of orbispaces mapping ½x� to ½x 0�, then GxM is proper at x if and

only if G 0xM 0 is proper at x 0. This can be seen by restricting the equivalence to

suitable saturated open subsets V HM and V 0HM 0.
We say that an orbispace is separated if it is associated to a proper groupoid.

5.2. Orbits and slices. Given GxM a Lie groupoid and x a M, the source-

fiber Gð�; xÞHG is an embedded submanifold, the isotropy acts Gð�; xÞi Gx

freely and properly, and the orbit Gð�; xÞ=Gx GOx, whose manifold structure is

that of the quotient, is included as a submanifold Ox HM. It may be the case that

the orbit is not embedded.

Example 5.2.1. The foliation on the torus T ¼ S1 � S1 ¼ R2=Z2 induced by the

parallel lines on R2 of some irrational slope is called Kronecker foliation. We can

define a Lie groupoid without isotropy, with an arrow between two points if they

belong to the same leaf. The orbits on this Lie groupoid are exactly the leaves,

which are not embedded submanifolds.

Proposition 5.2.2. If GxM is proper at x then Ox HM is closed and embedded.

Proof. By restricting to a neighborhood we can assume that G is proper (cf. 5.1.4).

The orbit is closed because it is a fiber of the quotient map M !M=G and M=G

is Hausdor¤. Write ~OOx HM for the orbit endowed with the subspace topology,

an consider the following topological pullback:

Gð�; xÞ G???y
???yr

~OOx � x ���! M �M:

pb

�����!

Since the right map is proper, the left one is closed and hence it is a topological

quotient. We conclude that both the quotient and the subspace topologies on the

orbit agree, namely Ox ¼ ~OOx, and we are done. r

Given GxM and x a M, a slice of G at x is an embedded submanifold

x a SHM such that (1) S is transverse to the orbits, and (2) S intersects Ox only

at x. This notion is close to those of slices for Lie group actions, and transverse

sections to foliations. However, note that a slice for an action groupoid need not

to be a slice for the corresponding group action (cf. [11]).

Slices may not exist in general (see eg. 5.2.1) but do exist for proper groupoids.

Proposition 5.2.3. If GxM is proper at x then there is a slice S at x.
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Proof. Since G is proper at x the orbit Ox HM is an embedded submanifold

(cf. 5.2.2). Then we can take a manifold chart

f : Rp � Rq ! U HM

such that fð0; 0Þ ¼ x and f�1ðOxBUÞ ¼ Rp � f0g. Consider S 0 ¼ fðf0g � RqÞ
HM, which is an embedded submanifold that intersects Ox only at x. We can

take as a slice the open subset SHS 0,

S ¼ fy jTyOy þ TyS
0 ¼ TyMg;

which is open for it is the locus on which some matrices have maximum rank. r

As we explained in 3.4, the restriction of a Lie groupoid GxM to a submani-

fold AHM may not be well defined, even if A is embedded. Next we use what we

know on the di¤erential of the anchor to show that we can restrict a Lie groupoid

to a slice.

Proposition 5.2.4. Given GxM a Lie groupoid and S a slice at x, the restriction

GS xS is a well-defined Lie groupoid.

Proof. The map S � S !M �M is transverse to the anchor (cf. 3.5.1), thus we

have a good pullback

GS G???y
???y

S � S ���! M �M

pb

������!

and GS HG is an embedded submanifold. In order to prove that GS xS with the

induced structure is a Lie groupoid we just need to show that the source restricts to

a submersion s : GS ! S. Given y g x an arrow in GS and v a TxS, we look for

a vector ~vv a TgGS such that dsð~vvÞ ¼ v. From the pullback of vector spaces

TgGS TgG???y
???y

TyS � TxS ���! TyM � TxM

pb

��������!

we deduce that such a ~vv exists if and only if there is some w a TyS with ðw; vÞ a
ImðdgrÞ. Since S and Oy are transverse, the composition TyS ! TyM ! NyOy

is surjective, from where there always exists such a w (cf. 3.5.1). r

Note that if GxM is proper, then the restriction GS xS also is.
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Remark 5.2.5. A slice S of G at x allows us to describe the geometry of the

orbispace ½M=G� in a neighborhood of ½x�. In fact, the inclusion GS ! G is fully

faithful, and if we write U for the saturation of S, then U is open and we have

an equivalence GS PGU , which is the same as an isomorphism between the under-

lying orbispaces ½S=GS�G ½U=GU �.

5.3. Stable orbits. Orbits of Lie groupoids play the role of the fibers of a

submersion, the leaves of a foliations, or the orbits of group actions. We can

export from there the notion of stability. Given GxM a Lie groupoid, an orbit

Ox HM is called stable if it admits arbitrary small invariant neighborhoods,

namely for every open U , Ox HU HM, there exists a saturated open V such

that Ox HV HU .

Example 5.3.1. Let M �N MxM be the Lie groupoid arising from a submer-

sion q : M ! N. An orbit Ox is stable if and only if q satisfies the tube principle

at qðxÞ, i.e. if it is proper at qðxÞ (cf. 2.4.2). In particular, a stable orbit has to be

compact.

As in previous example, compactness is always a necessary condition for

stability.

Proposition 5.3.2. A stable orbit Ox of a Lie groupoid GxM is compact.

Proof. Let d be a distance defining the topology of M. If Ox is not compact then

it contains an infinite discrete set fxngHOx. Let Bn be the d-ball centered at x

of radius 1=n, and let 3Bn4 be its saturation. For each n we can take a point

yn a 3Bn4nOx such that dðxn; ynÞ < 1=n. Then Mnfyng is open and does not

contain any invariant neighborhood, hence the orbit is not stable. r

Let GxM be a Lie groupoid and let x a M. We say that G is s-proper at x if

the source map s : G !M is proper at x. Note that s-proper at x implies proper

at x.

Proposition 5.3.3. The following are equivalent:

(1) G is s-proper at x;

(2) G is proper at x and Ox is stable;

(3) G is s-locally trivial at x and Gx and Ox are compact.

Proof. The s-fiber Gð�; xÞ is compact if and only if the isotropy Gx and the orbit

Ox are so, for these three fit into the isotropy bundle Gx h Gð�; xÞ ! Ox. This,

together with Ehresmann theorem 2.4.2, give the equivalence (1), (3).
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To prove (1)) (2), suppose that s : G !M is proper at x. Given an open U

containing the orbit Ox, since s�1ðOxÞH t�1ðUÞ, by the tube principle (cf. 2.1.3),

we can take an open V , x a V HM, such that s�1ðVÞH t�1ðUÞ. Then t
�
s�1ðVÞ

�
is open invariant with Ox H t

�
s�1ðVÞ

�
HU .

Finally, to prove (2)) (1), assume that GxM is proper at x and Ox is stable,

and thus compact. Let ðyn  
gn

xnÞHG be such that xn converges to x. We

may assume either that infinitely many yn belong to Ox, or that yn B Ox for any

n. In the first case, since the orbit is compact, there is a subsequence ðgnkÞ whose
source and target converge, and since G is proper ðgnk Þ has to have a convergent

subsequence. In the second case, Mnfyng contains Ox but does not contain any

saturated open set. It follows that Mnfyng is not open and then fyng has to have

a convergent subsequence and we can conclude as before. r

Particular cases and other versions of the previous result can be found in the

literature (cf. [7], 4.4, [7], 4.10, [27], 3.3).

5.4. Zung’s Theorem and the local structure of separated orbispaces. Given a

Lie groupoid GxM, we should think of the normal representation Gx h NxO

as the tangent space of the orbispace ½M=G� at ½x�, for it encodes the infinitesimal

linear information around the point:

T½x�½M=G�GGx h NxO:

If GxM is proper, it turns out that a neighborhood of ½x� in ½M=G� can be recon-

structed as the orbispace underlying the action Gx h NxO. Note that, by the

existence of slices, it is enough to study neighborhoods of fixed points (cf. 5.2.3,

5.2.5). In this sense we have Zung’s Theorem, which is both a particular case of

the Linearization Theorem 5.5.1, and the key step in proving it.

Theorem 5.4.1 (Zung). Let GxM be a Lie groupoid and let x a M be a fixed

point. If G is proper at x then there is an open x a U HM and an isomorphism

between the restriction and the action groupoid of the normal representation at x:

ðGU xUÞG ðGx yTxMxTxMÞ:

As explained above, the following is obtained as an immediate corollary.

Corollary 5.4.2. A separated orbispace ½M=G� is locally isomorphic to an orbi-

space underlying a linear action of a compact group.

The first proof of Zung’s Theorem appeared in [28], see also [10]. In the re-

maining of this section we overview the proof presented in [7]. To begin with,

we establish the following reduction, which is a strengthened version of [7], 2.2.
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Proposition 5.4.3. Given G and x as in 5.4.1, there exists an open x a U HM and

a di¤eomorphism GU GGx � Rn extending the obvious one Gx GGx � 0, and

such that the source corresponds to the projection Gx � Rn ! Rn and the units to

1� Rn.

Proof. To start with, by restricting G to a small ball-like open around x, it is clear

that we can assume M ¼ Rn and x ¼ 0.

Moreover, we can assume that GHG0 � Rn, with source the projection. In

fact, since 0 is a fixed point we have s�1ð0Þ ¼ G0 and by the structure theorem

for submersions (cf. 2.4.1) there is an open V , G0 HV HG, on which the

source looks as a projection. Since the anchor r is proper at 0 the open V must

contain a tube GW ¼ r�1ðW �W ÞHV (cf. 2.1.3) and we can of course take

W GRn.

Since su ¼ id and s is just the projection, the unit map u : Rn ! G0 � Rn can

be written as v 7!
�
u1ðvÞ; v

�
. Thus, in order to associate the units with the points

ð1; vÞ, we just need to compose the inclusion GHG0 � Rn with the di¤eomor-

phism G0 � Rn ! G0 � Rn, ðg; vÞ 7!
�
gu1ðvÞ�1; v

�
.

To conclude we need to construct an open x a U HRn such that: it trivializes

the source map, it is saturated, and it is di¤eomorphic to Rn. Any small enough

open trivializes the source, for s : GHG0 � Rn ! Rn is proper at 0. Moreover,

since 0 is a stable orbit (cf. 5.3.3) there are arbitrary small saturated opens. The

saturation of a set W can be written as ts�1ðW Þ. The problem thus is how to take

W so as to get ts�1ðW ÞGRn. Next we provide an argument whose details are left

to the reader.

Given W a small open trivializing the source, its saturation can be written as

t
�
s�1ðWÞ

�
¼ tðGx �W Þ ¼ 6

g AG0

tðg�W Þ

It is well-known that a star-shaped open in Rn is di¤eomorphic to Rn, thus it is

enough to show that tðg�W Þ is starred at 0 for all g. Fixed g, the formula

x 7! tðg; xÞ defines a di¤eomorphisms fg in a neighborhood of 0 with inverse cg.

The result now follows from the following lemma:

If a smooth map c : U ! U 0, U ;U 0HRn, cð0Þ ¼ 0 has Dc0 invertible then it

maps small balls centered at 0 to starred sets at 0.

In our case, since G0 is compact, we can take the same ball for all cg. r

In light of Proposition 5.4.3, in order to prove Zung’s theorem we can assume

that M ¼ Rn, that x ¼ 0 is a fixed point with isotropy G0, that G ¼ G0 � Rn and

the source and unit maps are as follows:

ðGxMÞ ¼ ðG0 � Rn
xRnÞ; sðg; vÞ ¼ v; uðvÞ ¼ ð1; vÞ:
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Out of G we construct a new Lie groupoid ~GG, that can be seen as a 1-parameter

family containing G and the local model. Its objects, arrows, source and unit

maps are given by

ð ~GGx ~MMÞ ¼ ðG0 � Rn � RxRn � RÞ; ~ssðg; v; eÞ ¼ ðv; eÞ; ~uuðv; eÞ ¼ ð1; v; eÞ;

whereas the other structural maps ~tt, ~mm, ~ii are defined by canonically deforming t,

m, i into their linearization. This is done by means of the following lemma.

Let A be a manifold and let f : A� Rq ! R be smooth and such that

f ðx; 0Þ ¼ 0 for all x. Then the function ~ff : A� Rq � R! R defined below is

smooth:

~ff ðx; y; eÞ ¼
1
e
f ðx; eyÞ; eA 0;

qy f jðx;0Þ � y; e ¼ 0:

(

For instance, the target map is defined by ~ttðg; v; eÞ ¼
�
1
e
tðg; evÞ; e

�
for eA 0

and ~ttðg; v; 0Þ ¼ ðqvtjðg;0Þ � v; 0Þ. The multiplication and inverse maps are defined

similarly. With these definitions, it is clear that ~GGx ~MM is a well-defined Lie

groupoid, and it is s-proper for G0 is compact.

Remark 5.4.4. Let us explain how to see ~GG as a 1-parameter family. The pro-

jection

ð ~GGx ~MMÞ ! ðRxRÞ; ðg; v; eÞ 7! e; ðv; eÞ 7! e;

is a surjective map of groupoids, hence for each e a R the fibers over e give a

new Lie groupoid ~GGe x
~MMe whose structural maps are induced by those of ~GG.

For e ¼ 1 this is isomorphic to G, say ~GG1 GG, and for e ¼ 0 this can be naturally

identified with the action groupoid of the normal representation at 0, say
~GG0 GG0 yRn.

The last step in proving 5.4.1 consists of proving that the family ~GG yields a

trivial deformation near 0. Such a trivialization is obtained by the flow of a multi-

plicative vector field. A vector field X ¼ ðXG;XMÞ on the a Lie groupoid GxM

is just a pair of vector fields XG, XM in G, M respectively. Such a vector field is

multiplicative if it defines a groupoid map

ðGxMÞ ! ðTGxTMÞ:

The flow of a multiplicative field is by Lie groupoid morphisms (cf. [20]), namely

for each e a R the e-flow is a groupoid map fe
X : D! G defined over an open sub-

groupoid DHG.
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Proposition 5.4.5. The Lie groupoid ð ~GGx ~MMÞ constructed above admits a multi-

plicative vector field X such that X Pp qe and Xðg; 0; eÞ ¼ qe for all g, e.

The proof of this can be consulted in [7]. Roughly, the idea is to lift qe to the

obvious vector field ðg; v; eÞ 7! qe on ~GG and then use an averaging argument to

replace it by a multiplicative one ~XX .

Once X is constructed, the conclusion of 5.4.1 is routine. First, since the

curves gðtÞ ¼ ðg; 0; tÞ are integral curves of X we have that G0 � 0� 0 is contained

in the open D1 H ~GG where the 1-flow f1
X is defined. By the tube principle if U is

small enough then G0 �U � 0HD1, and if in addition U is an invariant ball-like

open with respect to some G0-invariant metric, we have an embedding

G0 �U � 0!
f1
X
G0 � Rn � 1

whose image has to be of the form GV , yielding an isomorphisms of Lie groupoids

ðG0 yT0MxT0MÞG ðG0 yU xUÞG ðGV xVÞ:

Remark 5.4.6. It is well-known that the orbit space of a proper group action ad-

mits a smooth stratification (see eg. [11]). It follow by Zung’s Theorem that the

orbit space M=G of a proper groupoid is locally given by an action, and thus it

locally admits smooth stratifications. A global stratification for the space M=G

is studied in [23].

Remark 5.4.7. Corollary 5.4.2 suggests the existence of a chart description for

separated orbispaces, similar to those of Chen’s orbispaces [8] and Schwarz’s Q-

manifolds [24]. We believe it would be interesting to investigate this and to better

understand the relations among all these concepts. We postpone this question to

be treated elsewhere.

5.5. Linearization. The Linearization Theorem 5.5.1 unifies many linearization

results such as Ehresmann Theorem for submersions, the Tube Theorem for group

actions, and Reeb stability for foliations. It has becomed a milestone of the

theory.

Given GxM a Lie groupoid and OHM an orbit, we can see GO xO as a

subgroupoid of GxM and also as the zero-section on the normal representation

NGO xNO:

ðGxMÞ  ðGO xOÞ ! ðNGO xNOÞ:

The linearization problem consists in determine whether if this two groupoids are

isomorphic in suitable neighborhoods. More precisely, G is linearizable at O if
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there are open sets OHU HM and OHV HNO and an isomorphism between

the restrictions

ðGU xUÞG
�
ðNGOÞV xV

�
:

The linearization is called strict if both U ;V can be taken to be saturated, and

semistrict if only V can be taken saturated. Within this language, Zung’s Theorem

5.4.1 asserts that a proper groupoid can be linearized at a fixed point, and that the

linearization is semistrict.

Theorem 5.5.1 (Zung, Weinstein). If GxM is proper at x a M then G is linear-

izable at the orbit O ¼ Ox.

Proof. We know that the groupoid, restricted to a saturated open OHU HM, is

equivalent to the restriction to a slice GS xS (cf. 5.2.5). Now, by Zung’s Theo-

rem 5.4.1, we can assume that the restrict to the slice is isomorphic to the action

groupoid of the normal representation Gx h NxO.

The equivalence ðGU xUÞP ðGx yNxOxOÞ can be realized by a principal

bibundle

Gx �NxO h P i GU

## . & ##
NxO U :

On the other hand, the inclusion NxO! NO of the fiber into the vector bundle

induces another equivalence ðGx yNxOxNxOÞP ðNGO xNOÞ and thus we

have another principal bibundle

Gx �NxO h P 0 i NGO

## . & ##
NxO NO:

It is easy to check that the central fibers P0, P
0
0 of the submersions P! NxO,

P 0 ! NxO are in fact equal, and furthermore we can identify P 0 with the product

P0 �NxO as Gx-spaces. It follows from 4.6.2 that in order to establish the desired

isomorphism it is enough to show that P and P 0 are isomorphic as Gx yNxO-

bundles in a neighborhood of the central fibers.

Now, a principal Gx yNxO-bundle is the same as a free proper action Gx h P

and an equivariant submersion P! NxO. Thus the result follows from an equiv-

ariant version of 2.4.1. Just pick a Gx-invariant metric on P which makes the sub-

mersion P! NxO Riemannian. Such a metric can be constructed first by taking
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an invariant metric on P, using it to define an invariant horizontal direction (the

orthogonal to the fibers) and then redefine the metric on the horizontal direction

by lifting an invariant one in M. Then the exponential map associated to this

metric provides a di¤eomorphism V GV 0 between open subsets P0 HV HP and

P 00 HV 0HP 0 compatible with the action and the submersion. r

We can think of this linearization theorem as a variant of theorem 2.4.1 ap-

plied to the presentation M ! ½M=G�. In fact, when GxM is proper without

isotropy we have seen that ½M=G� is in fact a manifold, M ! ½M=G� is a submer-

sion, and in this case both theorems state the same. From this point of view, it

makes sense to ask which would be the corresponding version of Ehresmann’s

Theorem 2.4.2. It turns out that the properness of the map M ! ½M=G� at a
point ½x� can be expressed as the s-properness of GxM at x.

Corollary 5.5.2. If GxM is s-proper at x, then G is strictly linearizable at Ox.

Proof. Write N ¼ NxO, and using notations of previous theorem, we have a

diagram

P  ��� P�N P ���! GU???y
???y

???y
N  ��� P ���! U

pb pb

on which the left square is clearly a pullback and, since the right square can

be regarded as a principal Gx-bundle map ðP�N P! GU Þ ! ðP! UÞ, it is a

pullback as well.

Properness is stable under base-change and P! U is a submersion. Thus,

the fact of s : GU ! U being proper at x implies that P! N is proper at 0. We

can finally apply the tube principle (cf. 2.4.2) and shrink a linearizable open

P0 HV HP provided by 5.5.1 to a saturated one. The result now follows. r

Example 5.5.3. A nice example to understand the di¤erence between strict and

non-strict linearization is the groupoid arising from the projection MHS1�
R! R, where M is obtained by removing a point over 0. The linear model

around the orbit over 0 does not perceive that the nearby orbits in the original

groupoid are in fact compact.

Remark 5.5.4. In [13] we generalize Theorem 5.5.1 by establishing lineariza-

tion not only around orbits but around any saturated embedded submanifold.

This may be regarded as the existence of tubular neighborhoods for separated

orbispaces.
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Remark 5.5.5. Given an action G h M of a compact group on a manifold, the

action groupoid G �MxM is s-locally trivial and thus can be strict linearizable

(cf. 5.5.2). This gives a tube around the orbit on which the action can be describe

by means of the behavior on the orbit and on a slice. This is the well-known Tube

Theorem (cf. [11], 2.4.1). The tube theorem remains valid not only for actions

of compact groups but for proper actions of Lie groups in general. This shows

that condition in 5.5.2 is su‰cient but not necessary, and as far as we know a

characterization of strict linearizable groupoids is still not known. Our guess is

that s-local triviality should be enough.
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