
Portugal. Math. (N.S.) Portugaliae Mathematica
Vol. 70, Fasc. 1, 2013, 59–91 6 European Mathematical Society

DOI 10.4171/PM/1926

Tropical Severi varieties

Jihyeon Jessie Yang*

(Communicated by Rui Loja Fernandes)

Abstract. We study the tropicalizations of Severi varieties, which we call tropical Severi
varieties. In this paper, we give a partial answer to the following question: ‘‘Describe the
tropical Severi varieties explicitly.’’ We obtain a description of tropical Severi varieties
in terms of regular subdivisions of polygons. As an intermediate step, we construct explicit
parameter spaces of curves. These parameter spaces are much simpler objects than the
corresponding Severi variety and they are closely related to flat degenerations of the Severi
variety, which in turn describes the tropical Severi variety. As an application, we under-
stand G. Mikhalkin’s correspondence theorem for the degrees of Severi varieties in terms
of tropical intersection theory. In particular, this provides a proof of the independence of
point-configurations in the enumeration of tropical nodal curves.
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1. Introduction

The advent of tropical geometry and its fast development suggest to look at the

classical algebraic geometry in a di¤erent perspective. Tropicalization is an oper-

ation that turns subvarieties of an algebraic torus into polyhedral objects in a real

vector space along with a locally-constant integral-valued function on it. This

procedure enables us to build an intersection theory on the algebraic torus called

tropical intersection theory which can be used to solve classical enumerative

questions. There are many attractive properties of this intersection theory. First

of all, we work with polyhedral objects instead of algebraic varieties. Also we

sometimes do not need to consider compactifications. The case of hypersurfaces

is closely related to Newton polytope theory: the tropicalization of a hypersurface

defined by a Laurent polynomial f is the codimension 1 skeleton of the outer-
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normal fan of the Newton polytope of f . Moreover, the locally-constant integral-

valued function on it is determined by the lattice lengths of the edges of the

Newton polytope of f . Using tropical geometry, G. Mikhalkin [17] found a

purely combinatorial method to compute the degree of a Severi variety (or

Gromov–Witten invariants of plane P2). This celebrated work, correspondence

theorem (Theorem 4.11), has brought tropical methods to the attention of

geometers and motivated active systematic developments of tropical geometry.

A Severi variety SevðD; dÞ (Definition 4.1) is a complex projective variety which

parameterizes curves on the toric surface XD of an integral polygon D with a given

number d of nodal singularities. It is known that the degree of a Severi variety

is equal to the number of such nodal curves passing through a certain number of

generic points in C2. Mikhalkin’s correspondence theorem, simply speaking, says

that this enumerative number is equal to the number of tropical plane curves

passing through the same number of generic points in R2 counted with certain

multiplicities, called Mikhalkin’s multiplicity (§4.4). These tropical plane curves

are tropicalizations of classical algebraic curves and they are purely combinatorial

objects. Therefore, the enumerative problem becomes a purely combinatorial one.

This approach brings up some questions such as, ‘‘why does this count give the

solution for the original classical problem?’’ and ‘‘what is the meaning of such

multiplicities assigned to tropical curves?’’. The answers for these questions

are given in the proof of Mikhalkin’s correspondence theorem [17] or Shustin’s

proof based on algebraic geometry [22]. However, their proofs on the indepen-

dence of point-configuration rely on the well-known fact that the number of

classical nodal curves does not depend on the position of points, which is a fact

from classical intersection theory. Another proof of the independence of point-

configuration is proved in [9] by considering moduli spaces of tropical curves.

In this paper, we take another approach: we study the tropicalization of a

Severi variety Trop
�
SevðD; dÞ

�
and understand the enumeration of nodal curves

in terms of tropical intersection theory. The subset Trop
�
SevðD; dÞ

�
of a real vec-

tor space has a natural weighted fan structure induced from the Gröbner fan of

SevðD; dÞ. The main ingredients of the definition of Trop
�
SevðD; dÞ

�
are the initial

schemes ino SevðD; dÞ of the very a‰ne Severi variety, SevðD; dÞ�, which is the in-

tersection of the Severi variety SevðD; dÞ and the big open torus of the ambient

projective space of SevðD; dÞ. When o is a regular point of Trop
�
SevðD; dÞ

�
, that

is, it is in the relative interior of a maximal cone of Trop
�
SevðD; dÞ

�
, we know that

the initial scheme ino SevðD; dÞ is supported on the union of finitely many trans-

lates of a subtorus of the big torus (for example, see [12], §6). The number of

such translations of a subtorus (counted with multiplicities) is called the weight of

o. The first simple description of (the support of ) Trop
�
SevðD; dÞ

�
is given by a

positive integer rankðoÞ (Definition 2.10) assigned to every point in the ambient

real vector space of Trop
�
SevðD; dÞ

�
:
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Theorem 1.1 (Theorem 4.4). If an integral point o has rankðoÞ > dim
�
SevðD; dÞ

�
,

then o is not in Trop
�
SevðD; dÞ

�
.

The following two descriptions of Trop
�
SevðD; dÞ

�
use the regular subdivisions

of polygons (§2.3.1).

Theorem 1.2 (Theorem 4.6). Let o be an integral point in Trop
�
SevðD; dÞ

�
with

the following conditions:

• rankðoÞ ¼ dim
�
SevðD; dÞ

�
;

• The regular subdivision Do has no non-primitive parallelogram.

Then o is a regular point of Trop
�
SevðD; dÞ

�
, that is, o is in a maximal cone of

Trop
�
SevðD; dÞ

�
. Furthermore, the weight of o on Trop

�
SevðD; dÞ

�
is equal to

mSevðD; dÞðoÞ ¼ lðVÞ � fYY length
�
EdgesðDoÞ

�
; ð1:1Þ

where

(1) lðVÞ is the number of connected components of V;

(2) eQQ length
�
EdgesðDoÞ

�
is the product of the lattice lengths of the edges which

are representatives of each equivalence class in EdgesðDoÞ, where we define an

equivalence relation as follows: let eP e 0 if e and e 0 are the parallel edges of a

parallelogram in Do and extend it by transitivity.

Theorem 1.3 (Theorem 4.7). Let o be an integral point in Trop
�
SevðD; dÞ

�
with

the following conditions:

• rankðoÞ ¼ dim
�
SevðD; dÞ

�
;

• o is a regular point in Trop
�
SevðD; dÞ

�
.

Then the weight of o on Trop
�
SevðD; dÞ

�
is equal to

mSevðD; dÞðoÞ ¼ lðVÞ � fYY length
�
EdgesðDoÞ

�
; ð1:2Þ

as defined in the previous theorem.

Using these results on tropical Severi varieties, we provide another proof of the

independence of the configuration of points in the enumerations of tropical plane

curves (§4.4).

2. Preliminaries

In tropical geometry, we study tropical varieties, which are polyhedral objects

with certain properties. The precise definition is presented in §2.1. Classical
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algebraic varieties are connected with tropical varieties by an operation called

tropicalization. In this section, we review only what we need to study parameter

spaces of algebraic curves on toric surfaces.

2.1. Tropical varieties ([16]). Let SHRn be a one-dimensional fan with r rays.

Let ui be the first lattice point on the ith ray of S. We give S the structure of a

weighted fan by assigning a weight mi a N to the ith ray of S.

We say that S is balanced if

Xr
i¼1

miui ¼ 0: ð2:1Þ

We now extend this concept to arbitrary polyhedral complexes.

Definition 2.1. Let SHRn be a rational polyhedral fan, of pure dimension d,

and fix mðsÞ a N for all maximal cones s. Such S is called a weighted fan.

We denote the set of all cones of dimension k in S by Sðd�kÞ. Let t a Sð1Þ and
let Lt be the a‰ne span of t. Note that since t is a rational cone, LZ ¼ LBZn is

a free abelian group of rank d � 1 with Zn=LZ GZn�dþ1. For each maximal

cone s a S with tH s the cone ðsþ LtÞ=Lt is a one-dimensional cone (ray) in

Rn=Lt. Let us=t be the first lattice point on this ray. The weighted fan S is

balanced at t if

X
mðsÞus=t ¼ 0 a Rn=Lt; ð2:2Þ

as the sum varies over all maximal cones containing t.

The weighted fan S is balanced if it is balanced at all t a Sð1Þ. Now let S be a

rational polyhedral complex of pure dimension d with weight mðsÞ a N on each

maximal polyhedron s in S. Then for each t a S the fan starSðtÞ inherits a weight-

ing function m, where starSðtÞ is the star of t a S whose cones are indexed by

those s a S for which t is a face of s: Fix o a t. Then the cone of starSðtÞ indexed
by s is the Minkowski sum

s :¼ fv a Rn : be > 0 with oþ ev a sg þ a¤ðtÞ � o; ð2:3Þ

where a¤ðtÞ is the a‰ne span of t. This is independent of the choice of o. The

weighted polyhedral complex S is balanced if the fan starSðtÞ is balanced for all

t a Sð1Þ.
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Definition 2.2 ([1], [14], [24], §1). (1) A homogeneous tropical variety of degree

n� d is a pair ðT;mÞ, where T is a subset of Rn and m : T� ! Z>0 is a locally

constant function, called weighting function which satisfies:

• There exists a pure d-dimensional rational polyhedral complex supported on

T;

• T� HT is the open subset of regular points, where o a T is called regular if

there exists a vector subspace Lo HRn such that locally near o, T is equal to

a translation Lo þ v of Lo for some v a Rn.

• The function m satisfies the balancing condition for one (and hence for any)

polyhedral complex supported on the set T.

(2) A tropical cycle is a formal sum of homogeneous tropical varieties of

di¤erent degrees.

2.2. Tropicalization ([12], [14], [16]). We consider an extension of the complex

field C: Let K denote the field of locally convergent Puiseux series over C, that is,

the elements of K are power series of the form

bðtÞ ¼
X
t AR

ctt
t; ð2:4Þ

where RHQ is contained in an arithmetic progression bounded from above,

ct a C, and
P

t AR jctjtt < l for su‰ciently large positive t. This is an algebrai-

cally closed field of characteristic zero with a non-Archimedean valuation

ValðbÞ ¼ maxft a R : ctA 0g: ð2:5Þ

Without loss of generality we may suppose that ValðbÞ is an integer by chang-

ing the parameter t 7! t l for some l. We always assume this unless mentioned

otherwise. Note that this definition of K is slightly di¤erent from the one in

[22]. However, the one in [22] can be obtained by the substitution, t 7! t�1.

Also the tropicalization can be defined for a general field with a non-Archimedean

valuation. However, it is enough to consider only K for our purpose of the study

of parameter spaces of curves on toric surfaces.

By a scheme we shall mean an algebraic scheme over the field K, that is, a

scheme X together with a morphism of finite type from X to SpecðKÞ. A variety

will be a reduced scheme, and a subvariety of a scheme will be a closed reduced

subscheme. A point on a scheme will always be a closed point. A curve is

a 1-dimensional scheme. In fact, the tropicalization is an operation which is

defined only on subvarieties of an algebraic torus ðK�Þn ¼ SpecðK½Zn�Þ. The
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subvarieties of ðK�Þn are called very a‰ne varieties. We often use the vector-

notation, for example, ca is ci1 � c
j
2 and ca is cði; jÞ where a ¼ ði; jÞ. Also we often

identify a Laurent polynomial with a function on a finite set as follows: let

f ¼
P

a AA cax
a be a Laurent polynomial with variables x and coe‰cients ca in a

ring R, where A is a finite subset of Zn. Then f is identified with the function

f : A ! R; a 7! ca: ð2:6Þ

2.2.1. Tropicalization: varieties over C. In this section we present a precise def-

inition of the tropicalization of X , where X is a subvariety of an algebraic torus

over C, T ¼ SpecðC½Zn�Þ ¼ SpecðC½xe1
1 ; . . . ; xe1

n �Þ.

Definition 2.3. (Initial sets) Given a finite subset A of Zn and a vector o a Zn,

let ino A denote the set of all points a a A such that the inner product a � o is

maximal.

(Initial polynomials) Given a Laurent polynomial f a ðC�ÞA and a vector

o a Zn, the o-degree of f is the maximum of a � o for all a a A. Let ino f

denote the restriction of f to ino A so that ino f is homogeneous with respect to

o-degree. We can also see that

ino f ðxÞ ¼ lim
t!l

t�g f ðto � xÞ; ð2:7Þ

where g is the o-degree of f .

(initial ideals) Given an ideal I in the ring of Laurent polynomials C½Zn� and
a vector o a Zn, let ino I denote the ideal generated by all initial polynomials

ino f for f a I .

(Initial schemes) Given an a‰ne scheme VðIÞ :¼ SpecðC½Zn�=IÞ and a vector

o a Zn, the scheme Vðino IÞ :¼ SpecðC½Zn�=ino IÞ defined by ino I is called the

initial scheme of VðIÞ with respect to o.

Remark 2.4. We may consider the initial scheme Vðino IÞ as a flat degenera-

tion of VðIÞ, that is, there exist a one-parameter flat family VðItÞ such that

VðIÞ ¼ VðI1Þ and Vðino IÞ ¼ VðI0Þ. The details are given in [5], §15.8.

Definition 2.5. Let X be an irreducible subvariety of the algebraic torus T ¼ TC.

A vector o a Zn is called a c-vector of X if the initial ideal ino IX of the

defining ideal IX of X contains no monomial, equivalently, the initial scheme

ino X :¼ Vðino IX Þ is not empty. (‘‘c’’ is the first letter of ‘‘current’’ as introduced

in [14])

The (support of the) tropicalization of X is the closure of the union of positive

rays Rb0 � o generated by all c-vectors o of X and it is denoted by TropðXÞ.
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We define a weighting function mX on TropðXÞ as follows: For a point o

in TropðXÞ let mðoÞ to be the sum of the multiplicities of all minimal associated

prime ideals of the initial ideal ino IX .

The set TropðXÞ together with the weighting function mX is called the tropic-

alization of X and it is denoted again by TropðXÞ.

Example 2.6. Let X ¼ V
�
ð1þ xþ yÞ2

�
be the plane curve. The picture below is

the support of TropðXÞ. The integers near the three rays are the corresponding

weights. For example, let o ¼ ð0;�1Þ. The corresponding initial polynomial,

inð0;�1Þ f , is equal to ð1þ xÞ2 and so m
�
ð0;�1Þ

�
¼ 2.

2.2.2. Tropicalization. Now we consider the general case: varieties over KIC.

As noted in Remark 2.4, for varieties defined over C, tropicalization is a way

to record certain flat limits. Geometrically, the extension of field from C to K

can be seen as adding one parameter t and considering flat families of varieties.

This idea is well described in Proposition 2.8 in the case of curves on toric

surfaces. By generalizing the definition of the initial ideal to consider the role of

the new parameter t, we can define the tropicalization of a variety over K in a

straightforward way.

Definition 2.7. (Initial sets) Let ðA; nÞ be a pair of a finite subset A of Zn and a

real-valued function n on it. Given a ðA; nÞ and a vector o in Zn, let inoðA; nÞ
denote the set of all points a a A such that a � oþ nðaÞ is maximal.

(Initial polynomials) Given a Laurent polynomial f ¼
P

a AA caðtÞxa over K

and a vector o a Zn, the t� o-degree of f is the maximum of a � oþ ValðcaÞ for
all a a A. We define ino f which is defined over C as follows:

ino f ðxÞ ¼ lim
t!l

t�g f ðto � xÞ; ð2:8Þ

where g is the t� o-degree of f . The following shows how to obtain ino f : Let

D ¼ Newtonð f Þ be the Newton polytope of f . We take the convex hull ~DD of

the set
��

a;ValðcaÞ
�
a Znþ1 : a a A

�
and introduce the function

nf : D ! R; nf ðaÞ ¼ maxfb : ða; bÞ a ~DDg: ð2:9Þ

This is a concave piecewise-linear function. Notice that we can write

caðtÞ ¼ c�a t
nf ðaÞ þ l:o:t:; ð2:10Þ
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where c�a is some complex number which is zero if nf ðaÞ > ValðcaÞ. Then

ino f ¼
X

a A inoðA; nf Þ
c�ax

a: ð2:11Þ

(Initial ideals) For an ideal I in the ring of Laurent polynomials K½Zn� and a

vector o a Zn, let ino I HC½Zn� denote the ideal generated by all initial polyno-

mials ino f for f a I .

The definition of the tropicalization given in the previous subsection §2.2.1

generalizes in a straightforward way for an irreducible subvariety X of the alge-

braic torus TK.

Now the proofs of the following facts can be found in many references on

tropical geometry, for example, [3], [4], [16]:

• The tropicalization TropðXÞ has the structure of a homogeneous tropical

variety with dimension dimðXÞ.

• Suppose that X is defined over C, i.e., the ideal IX HK½Zn� of X can be

generated by Laurent polynomials over C and thus X is independent of the

parameter t. (Sometimes, this case is called constant coe‰cient case.) Then

TropðXÞ coincides with Trop
�
XðCÞ

�
, that is, we can treat it as in the previous

section. Furthermore, in this case
�
TropðXÞ;mX

�
has a balanced polyhedral

fan structure.

• For any regular point o a TropðXÞ, the initial scheme ino X is a union of

finitely many translations of a subtorus Ge of T ¼ TC.

2.3. Tropical plane curves. We want to study complex algebraic curves on toric

surfaces by studying their tropicalizations. Recall that tropicalization is defined

for subvarieties of algebraic tori. Thus we only consider the intersections of the

curves with the big open torus ðC�Þ2 of the toric surfaces. It is very easy to under-

stand the tropicalizations of the curves: any such curve X in ðC�Þ2 is defined by a

Laurent polynomial f ðx; yÞ in two variables over C. The tropicalization TropðXÞ
is the 1-dimensional skeleton of the (outer) normal fan of the Newton polygon of

f and the multiplicity of each ray is the lattice length of the corresponding edge

of the Newton polygon of f (see Example 2.6). The problem is that TropðXÞ
does not distinguish much about the curves because curves with the same Newton

polygon have the same tropicalization. This lack of information is overcome by

considering a more generalized version of TropðXÞ. Namely, we extend the field

of coe‰cients from C to K, the field of locally convergent Puiseux series over C.

The relationship between algebraic curves over C and K is formulated in the fol-

lowing statement.
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Proposition 2.8 ([22], §2.3). Let a Laurent polynomial

f ðx; yÞ ¼
X

ði; jÞ AD
cijðtÞxiy j a K½x; y� ð2:12Þ

define a curve CK H ðK�Þ2 with only isolated singularities and Newton polygon D.

We obtain a one-parameter family C ðtÞ of curves on ðC�Þ2. For t with jtjg 0, the

family C ðtÞ is equisingular and the topological types of singularities of C ðtÞ are in

1-to-1 correspondence with topological types of singularities of CK.

Shustin [22] found nice characterizations of the tropicalizations of nodal curves

on toric surfaces which are crucial to the study of the initial schemes of Severi

varieties. However, these characterizations are valid only for nodal curves satisfy-

ing certain base-point conditions. In the following subsections we show that how

we can replace the base-point conditions by the rank-condition (Definition 2.10).

2.3.1. Subdivisions of polygons and adjacency graphs

Definition 2.9. Let D be a convex lattice polygon.

(1) A subdivision of D, denoted by SðDÞ, is a decomposition of D into a finite

number of non-degenerate convex lattice sub-polygons such that the inter-

section of any two of these sub-polygons is a common face of both of them

(maybe empty). (We consider D itself as a subdivision of D with one two-

dimensional face.)

(2) Given a subdivision SðDÞ, let Vertices
�
SðDÞ

�
, Edges

�
SðDÞ

�
, Faces

�
SðDÞ

�
,

Triangles
�
SðDÞ

�
, Parallelograms

�
SðDÞ

�
, Int

�
SðDÞ

�
BZ2 be the set of verti-

ces, edges, (2-dimensional) faces, triangles, parallelograms, interior lattice

points of SðDÞ, respectively.
(3) A subdivision SðDÞ is called
• triangular if every 2-dimensional face is a triangle;

• nodal if every 2-dimensional face is either a triangle or a parallelogram;

• simple if every lattice point on the boundary of D is a vertex of SðDÞ.
(4) A subdivision SðDÞ is called regular if there exists a continuous concave piece-

wise-linear function on D whose domains of linearity are precisely the 2-

dimensional faces of SðDÞ.
(5) Given a regular subdivision SðDÞ, consider the set of all concave piecewise-

linear functions on D whose domains of linearity induce the subdivision

SðDÞ. As embedded in RDBZ2

, this set is a polyhedral cone. We take its

image in the quotient space RDBZ2

=R � ð1; . . . ; 1Þ which is again a polyhedral

cone and denote it by TC
�
SðDÞ

�
, called the tropical cone of SðDÞ. Its

dimension is called the rank of SðDÞ and denoted by rank
�
SðDÞ

�
.
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Now let c : DBZ2 ! R be a real-valued function defined on DBZ2. We

construct a regular subdivision Dc of D from c as follows:

Let Gc HR3 be the convex hull of the set

fða; yÞ : yacðaÞ; a a DBZ2g: ð2:13Þ

Then the upper boundary of Gc is the graph of a concave piecewise-linear function

ccðcÞ which is called the concave hull of c. (The upper boundary of Gc is by

definition the union of faces of Gc which do not contain vertical half-lines.) Let

Dc denote the regular subdivision of D given by the domains of linearity of ccðcÞ.
The figure on the right illustrates the case when D is the segment,

convð0; . . . ; 4Þ. The subdivision Dc is the union of two segments

convð0; 2Þ and convð2; 4Þ (We denote the convex hull of a set A by

convðAÞ.)
Let us consider the tropical cone TCðcÞ :¼ TCðDcÞ. It contains the concave

hull of c restricted on DBZ2: ccðcÞjDBZ2 a TCðcÞ. Notice that ccðcÞjDBZ2 may

not coincide with c and in such case c B TCðcÞ.

Definition 2.10. The rank of c, written as rankðcÞ, is the rank of the regular

subdivision Dc.

Proposition 2.11. Suppose that SðDÞ ¼ Dc is a regular nodal subdivision of D.

Then,

rankðcÞ ¼
��Vertices�SðDÞ

���� 1�
��Parallelograms

�
SðDÞ

���: ð2:14Þ

The proof of this proposition can be easily deduced from Lemma 2.40 of [11].

Remark 2.12. The regular subdivisions of a lattice polytope is studied in [10],

Ch. 7, in which the secondary fan is introduced. In a forthcoming paper, the

connection of the tropical cone TCðcÞ and rankðcÞ to the secondary fan will be

studied.

Now we study the adjacency graph SðDÞ� of a given subdivision SðDÞ of D.
By definition, the vertices F � of SðDÞ� correspond to the 2-dimensional faces F

of SðDÞ and two vertices F �
1 and F �

2 of SðDÞ� are connected by an edge ðF �
1 ;F

�
2 Þ

if the corresponding faces F1 and F2 of SðDÞ have a common edge ðF1;F2Þ in

SðDÞ. Given an orientation G on Edges
�
SðDÞ

�
, we define an orientation G� on

Edges
�
SðDÞ�

�
as follows: direct F �

1 ! F �
2 , if the oriented edge ðF1;F2Þ and a

normal vector to it leaving from F1 to F2 are positively oriented. Otherwise, direct

F �
2 ! F �

1 . For any subdivision SðDÞ of D, we can always find an orientation G on

Edges
�
SðDÞ

�
such that G� has neither an oriented cycle nor a sink. (A sink (resp.

source) is a vertex v such that all edges adjacent to v are coming into (resp. leaving
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from) v.) In fact, an oriented cycle in G� corresponds to a sink or a source at an

internal vertex of
�
SðDÞ;G

�
. Also, a sink in G� corresponds to an oriented cycle

in G. We can choose an orientation G on Edges
�
SðDÞ

�
such that G has no

oriented cycle and it also has no sink/source at an internal vertex of SðDÞ. For

example, choose a generic vector z a R2nf0g and orient the edges of SðDÞ so that

they form acute angles with z.

2.3.2. Shustin’s characterizations. Let VKð f Þ be a curve defined by a Laurent

polynomial over K,

f ¼
X

a ADBZ2

caðtÞxa a K½Z2�; ca a Knf0g; ð2:15Þ

where D ¼ Newtonð f Þ. The support of the tropicalization of VKð f Þ is the corner
locus of the piecewise-linear function

R2 ! R; a 7! max
a ADBZ2

fa � aþ Valf ðaÞg; ð2:16Þ

where Valf is the function

Valf : DBZ2 ! Z; a 7! Val
�
caðtÞ

�
: ð2:17Þ

Let us denote the support of the tropicalization of the curve VKð f Þ by tf . In gen-

eral, the tropical curve to is by definition the corner locus of the piecewise-linear

function

R2 ! R; a 7! max
a ADBZ2

fa � aþ oðaÞg; ð2:18Þ

where o : DBZ2 ! Z is an integral-valued function on DBZ2. The regular sub-

division Do of D is dual to the tropical curve to in the following sense ([11], §2.5.1):

• the components of R2nto are in 1-to-1 correspondence with VerticesðDoÞ;

• the edges of to are in 1-to-1 correspondence with EdgesðDoÞ so that an edge e

of to is dual to an edge of Do which is orthogonal to e with the lattice length

oðeÞ;
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• the vertices of to are in 1-to-1 correspondence with the 2-dimensional faces of

Do so that the valency of a vertex of to is equal to the number of sides of the

dual face.

We call a tropical curve to to be simple (respectively, triangular, nodal) if the dual

regular subdivision Do of D is simple (respectively, triangular, nodal). The rank of

to is by definition the rank of Do.

Example 2.13. Let f ¼ ð1þ xþ yÞð1þ txþ tyÞ. The picture below on the right

is tf and one on the left is the corresponding subdivision of the Newton polygon

of f .

Now let us study the initial schemes of the curve VKð f Þ, which are defined

by the initial polynomials of f . For this, we rewrite the coe‰cients of f ,

caðtÞ ¼ cat
Valf ðaÞ þ l:o:t:, ca a ðCÞ�, a a DBZ2 as follows:

caðtÞ ¼ c�a t
nf ðaÞ þ l:o:t:; ð2:19Þ

where nf is the concave hull of Valf (defined as in 2.3.1) and c�a is some complex

number which is zero if nf ðaÞ > Valf ðaÞ. Given a point a which is either a vertex

or a point in the relative interior of an edge of tf , the maximum of a � aþ nf ðaÞ
ða a DBZ2Þ is attained on the corresponding dual face or edge in Df :¼ Dnf .

Therefore,

ina f ¼
X

c�ax
a; ð2:20Þ

where the sum runs over the lattice points on the dual face or edge in Df . In par-

ticular, we consider the initial polynomials inai f , where ai are the vertices of tf
corresponding to the faces (2-dimensional subpolygons) Di in Df : D1A � � �ADm.

Then, given a curve VKð f Þ in ðK�Þ2 with Newtonð f Þ ¼ D we obtain a collection

of complex curves Vðinai f Þ in ðC�Þ2 with Newtonðinai f Þ ¼ Di ði ¼ 1; . . . ;mÞ.
This collection of complex polynomials together with the subdivision Df com-

pletely determines the tropicalization of the curve VKð f Þ (or of f ).

Now we can present Shustin’s characterizations of the tropicalizations of nodal

curves with a given rank condition:

Theorem 2.14 ([22], §3.3). Let VKð f Þ be a curve with d nodal singular points (i.e.

ordinary double points) as the only singularities, where d is a natural number with
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da jIntðDÞBZ2j. Suppose that rankðDf Þb r, where r ¼ jDBZ2j � 1� d. Then

the following holds true:

(1) (combinatorial ) the regular subdivision Df : D1A � � �ADm is simple, nodal, and

rankðDf Þ ¼ r;

(2) (geometric)

• for each triangle Di , the curve Vðinai f Þ is rational and meets the union of

toric divisors TorðqDiÞ at exactly three points, where it is unibranch;

• for each parallelogram Dj , the polynomial inaj f has the form

xkylðaxa þ bybÞpðgxc þ dydÞq ð2:21Þ

with ða; bÞ ¼ ðc; dÞ ¼ 1, ða : bÞA ðc : dÞ, a; b; g; d a Cnf0g:

Shustin’s original statement ([22], §3.3) has the following base-point condition

instead of the rank condition, rankðDf Þb r: Suppose that the curve VKð f Þ passes
through r generic points p1; . . . ; pr a ðK�Þ2 such that q1 ¼ Valðp1Þ; . . . ; qr ¼
ValðprÞ a R2 (taking valuations coordinatewise) are generic points (Definition

4.9), where r ¼ jDBZ2j � 1� d.

We explain why we can replace the base-point condition by the rank condition:

His proof is by estimating �wwðC ðtÞÞ, the topological Euler characteristic of the nor-

malization of the complex curve C ðtÞ ¼ Vð ftÞ (see Proposition 2.8) from above

and from below and comparing the bounds. The upper bound of �wwðC ðtÞÞ in his

computation holds true for any flat deformation. For a lower bound, he uses the

following inequality:

�wwðC ðtÞÞ ¼ 2� 2gðC ðtÞÞ

¼ 2� 2
�
jIntðDÞBZ2j � d

�
¼ 2� 2jIntðDÞBZ2j þ 2ðjDBZ2j � 1� rÞ

¼ 2jqDBZ2j � 2r

b 2jqDBZ2j � 2 rankðDf Þ: ð2:22Þ

In the second equality, he used the fact that C ðtÞ has d nodal points. The last

inequality follows from the condition, ra rankðDf Þ. In fact, Shustin called the

points q1; . . . ; gr to be generic when ra rankðDf Þ. (Definition 4.9)

2.4. Tropical intersection theory ([1], [12], [14], [15]). Tropical cycles form a

graded commutative algebra A. To a subvariety X of the algebraic torus TK ¼
SpecðK½Zn�Þ, we can assign an element TropðXÞ of A, namely the tropicalization

71Tropical Severi varieties



of X . This correspondence determines an intersection theory of subvarieties

of TK. In this paper, we only summarize about the product T1 �T2 when T1

and T2 are complementary dimensional tropical varieties in Rn. The support

of the product T1 �T2 is by definition the zero-dimensional strata of the set

suppðT1ÞB suppðT2Þ. It is a finite set of points in Rn. The weighting function

m ¼ mT1�T2
in the product T1 �T2 is defined as follows: let o a suppðT1ÞB

suppðT2Þ. There are two possible cases that o is the intersection point of a trans-

versal intersection or not.

In the first case, o is a regular point of eachTi and so Ti is equal to Li locally near

o, i ¼ 1; 2, where L1 and L2 are a‰ne spaces of complementary dimensional.

(1) The extrinsic intersection multiplicity of T1 and T2 at o, denoted by

xðo;T1;T2Þ, is the volume of the parallelepiped constructed by the funda-

mental cells of the lattices Li BZn, ði ¼ 1; 2Þ (‘‘principal parallelepiped’’)
(2) The tropical intersection multiplicity of T1 and T2 at o is

mðoÞ ¼ mðo;T1;T2Þ :¼ mT1
ðoÞ �mT2

ðoÞ � xðo;T1;T2Þ: ð2:23Þ

In the second case, o is not a regular point of either T1 or T2. However, by a

small local displacement of T1 and T2, we can achieve the transversality near o.

(The details can be found in [8], [18]). Then mðoÞ is by definition the sum of

all mð ~ooÞ, where ~oo’s are the transversal intersection points appearing in the

displacement.

When Ti ¼ TropðXiÞ for subvarieties Xi of TK ði ¼ 1; 2Þ, the sum of weights

on the product T1 �T2 is equal to the number of intersection points in X1B gX2

for a generic g a TK. It is called the degree of the product T1 �T2 and denoted by�
TropðX1Þ � TropðX2Þ

�
: ð2:24Þ

For example,

• the degree of the product of tropicalizations of n hypersurfaces in TC is

the mixed volume of the Newton polyhedra of the hypersurfaces times n!;

(compare [2].)

• let T1 and T2 be two subtori of TC of complementary dimension. Then their

tropicalizations are rational linear subspaces of Rn with constant multiplicity
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1 and they are of complementary dimension. The degree of the product

TropðT1Þ � TropðT2Þ is equal to the (normalized) volume of the parallele-

piped defined by the fundamental cells of the lattices, TropðT1ÞBZn and

TropðT2ÞBZn.

3. Intermediate parameter spaces

In this section, we study certain parameter spaces of curves on toric surfaces,

which are closely related to the initial schemes of Severi varieties. They are

defined by considering Shustin’s characterization (Theorem 2.14) in the view of

parameter spaces and turn out to be very simple.

Let us consider the projective toric surface XD constructed from a 2-dimensional

lattice polygon D in R2. That is, XD HPn�1 ¼ PðCnÞ is the closure of the set

X �
D ¼ fðxa1 : � � � : xanÞ : x ¼ ðx1; x2Þ a ðC�Þ2g; ð3:1Þ

where DBZ2 ¼ fa1; . . . ; ang. We can identify the projectivization of the dual

space of Cn, P
�
ðCnÞ�

�
, as the projectivization of the vector space of Laurent

polynomials whose Newton polygons are subsets of the polygon D, which is called

the tautological linear system of curves on the toric surface XD and denoted by

PD. We study several subvarieties V� of this linear system PD. The study of V�
was motivated by trying to understand the initial schemes of Severi varieties.

However, besides the roles as building blocks to understand the Severi varieties,

the author believes that the V�s have their own independent interests and also

they may be generalized in many di¤erent perspectives. Let TD be the big open

torus of PD.

3.1. VqS(D),P1 .

Definition 3.1. Let VqD denote the set of all f a TD such that the restriction of f

on each edge of D is a pure power of a binomial (up to multiplication by a mono-

mial), i.e. of the form of xaybðaxc þ bydÞs, where a; b; c; d a Z, a; b a C� and s is

the lattice length of the edge. Geometrically, points of VqD correspond to curves

on the toric surface XD such that they cross the union of the toric divisors at pre-

cisely l points, where l is the number of edges of D. More generally, we consider

subdivisions SðDÞ of the polygon D. Let VqSðDÞ denote the set of all f a TD such

that fDi
a VqDi

for every Di a Faces
�
SðDÞ

�
, where fDi

is the restriction of f on Di.

Let VqSðDÞ;P1 denote the set of all f a VqSðDÞ such that fDi
defines a rational curve

which is unibranch at each intersection point with the boundary divisors of the

toric surface XDi
for every Di a Faces

�
SðDÞ

�
.

73Tropical Severi varieties



Lemma 3.2 ([22], Lemma 3.5.). If D ¼C is a triangle, every f a VqC;P1 can be

given by the following rational parametrization,

y 7!
�
ays1v11ðyþ 1Þs2v21 ; bys1v12ðyþ 1Þs2v22

�
; ð3:2Þ

where a; b a ðC�Þ2 and v1 ¼ ðv11; v12Þ, v2 ¼ ðv21; v22Þ are two vectors among the

three primitive inner-normal vectors to the edges of the triangle C, and s1 and s2
are the lattice lengths of the corresponding edges ofC.

Theorem 3.3. Suppose that SðDÞ is triangular, that is, every face Di of SðDÞ is a
triangle. Then the following hold true.

(1) VqSðDÞ;P1 is a translation of a closed subgroup of the torus TD.

(2) Its dimension is equal to
��Vertices�SðDÞ

���� 1.

Proof. There are three steps to complete the proof. First, we show that V :¼
VqSðDÞ;P1 is not empty. Second, we construct a closed subgroup G of TD with

dimension
��Vertices�SðDÞ

���� 1. Last, we show that V is equal to the translation

f �G of any point f a V.

Step 1. From Lemma 3.2, we know that for a triangle D any element in VqD;P1

is uniquely determined by an element ða; bÞ a ðC�Þ2 by assuming that one of the

vertices of D is the origin and the constant term of an equation is always 1. Let us

denote this element by f ða;bÞ. We extend this argument to the many-triangles case,

SðDÞ : D1A � � � ADm. We know that we can always find a ða; bÞ a ðC�Þ2 such

that f ða;bÞ (up to the multiplication by a monomial) satisfies a given prescription

on any two of the three edges of a triangle D. That is, the following data are

prescribed: the coe‰cients of the equation f ða;bÞ at the vertices of D and the inter-

section points of the rational curve (defined by f ða;bÞ) with toric divisors corre-

sponding to two of the three edges of D (for a proof, see Lemma 3.5 of [22]).

Now we choose an orientation on the adjacency graph SðDÞ� of SðDÞ which

has no oriented cycle and no sink at vertices of 3-valency. (see §2.3.1 for details.)

It is clear that such oriented adjacency graph provides an algorithm to construct

a point in V. That is, we can choose a consistent collection of ða; bÞDi
for sub-

polygons Di in SðDÞ. Therefore V is not empty.

Step 2. Choose a linear order, D1; . . . ;Dm, in the set of triangles in the subdivi-

sion SðDÞ. We choose one of the vertices of D1 and assume that it is the origin.

We order the set of inner edges in SðDÞ in the following way: Choose all inner

edges belonging to D1 (there are at most three such edges). Put them in an order.

Then, choose all inner edges belonging to D2 except the ones which may belong to

D1. Add them in an order to the first set. In this way, we put a linear order in the

set of all inner edges. Each inner edge defines two binomial equations as follows:
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Let l ¼ sij be the inner edge shared by Di and Dj , i < j. Let a ¼ ða1; a2Þ be the

lattice point of one of the two ends of l and let v ¼ ðv1; v2Þ be the primitive vector

along l from a.

gia
a1
i b a2

i � gja
a1
j b a2

j ¼ 0; ð3:3Þ
av1
i b v2

i � av1
j b v2

j ¼ 0: ð3:4Þ

We collect the binomials for all inner edges and add one more binomial,

g1 ¼ 1. Let us denote this system by ðQÞ. Then it is clear that this system is

uniquely determined by the following system,

g1 ¼ 1; ð3:5Þ
av1
i b v2

i a�v1
j b�v2

j ¼ 1ðQQÞ ð3:6Þ

where the monomials in the left hand side of the equations are collected for all the

inner edges. Let G be the closed subgroup in the torus ðC�Þ3 � � � � � ðC�Þ3 with

coordinates ða; b; gÞ ¼
�
ða1; b1; g1Þ; . . . ; ðam; bm; gmÞ

�
defined by the system ðQÞ.

Let M :¼ MqSðDÞ;P1 be the matrix corresponding to the monomials in the left

hand side of equations in (QQ) where the rows are indexed by the inner edges

and the columns are indexed by ðai; biÞ, i ¼ 1; . . . ;m. It is straightforward to see

that the rows of M are linearly independent. Therefore,

dimðGÞ ¼ 2
��Triangles�SðDÞ

���� ��IEdges�SðDÞ
���; ð3:7Þ

where IEdges
�
SðDÞ

�
is the set of all inner edges in SðDÞ. Also, by Lemma 3.5,

dimðGÞ ¼
��Vertices�SðDÞ

���� 1: ð3:8Þ

Now we embed G into TD in the following way,

F ¼ ðFðw1;w2ÞÞðw1;w2Þ ADBZ2 : G ! TD; ð3:9Þ
Fðw1;w2Þ

�
ða1; b1; g1Þ; . . . ; ðam; bm; gmÞ

�
¼ gka

w1

k bw2

k ; ð3:10Þ

where ðw1;w2Þ a Dk BZ2, k ¼ 1; . . . ;m. This map is well-defined because G satis-

fies the system ðQÞ. Also this map is injective by Lemma 3.6.

Step 3. Let us first show that f �GHV for any f a V. (We don’t distinguish

G from its image under the embedding F.) Let ða; b; gÞ a G. The restriction

of f � ða; b; gÞ on Dk is given by gk fDk
ðakx; bk yÞ, which is a point in VDk ;P

1

ðk ¼ 1; . . . ;mÞ. Thus, it is enough to show that the restrictions of f � ða; b; gÞ on
all sub-triangles coincide along the inner edges. It follows from the fact that G

satisfies the system ðQÞ. Now we show that the other inclusion also holds. Let
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h; h 0 a V. Then the restriction of h (resp. h 0) on Dk has the following form up to

the multiplication by a monomial xb1yb2 ,

hDk
ðx; yÞ ¼ gkð f ðak ;bkÞÞ ¼ gk f

ðak ;bkÞðakx; bk yÞ; ð3:11Þ
h 0
Dk
ðx; yÞ ¼ g 0kð f ða

0
k
;b 0

kÞÞ ¼ g 0k f
ða 0

k
;b 0

kÞða 0
kx; b

0
k yÞ; ð3:12Þ

for some ðak; bk; gkÞ (resp. ða 0
k; b

0
k; g

0
kÞ a ðC�Þ3), ðb1; b2Þ a DBZ2, where k ¼

1; . . . ;m. Thus h 0
Dk
ðx; yÞ ¼ g 0kg

�1
k hDk

ða�1
k a 0

kx; b
�1
k b 0

k yÞ. That is, h 0
Dk

is the restric-

tion of ða�1a 0; b�1b 0; g 0g�1Þ � h on Dk. Therefore

h 0 ¼ ða�1a 0; b�1b 0; g 0g�1Þ � h: ð3:13Þ

We have completed the proof. r

Remark 3.4. We can compute the number of components of VqSðDÞ;P1 easily

from the matrix MqSðDÞ;P1 . It is equal to the greatest common divisor of all the

absolute values of l � l minors of MqSðDÞ;P1 . Also it is equal to the number of lat-

tice points in the parallelepiped P ¼ fx1v1 þ � � � þ xlvl : 0axi < 1; i ¼ 1; . . . ; lg,
where v1; . . . ; vl are the row vectors of MqSðDÞ;P1 .

Lemma 3.5. If a subdivision SðDÞ of D is triangular, then

2
��Triangles�SðDÞ

���� ��IEdges�SðDÞ
��� ¼ ��Vertices�SðDÞ

���� 1 ð3:14Þ

Proof. Let F be the number of the triangles, E 0 be the number of the edges on the

boundary of D, and let IE be the number of the inner edges in SðDÞ, respectively.
Then, 3 � F ¼ E 0 þ 2 � IE. Since jVerticesj � jEdgesj þ jFacesj ¼ 1,��Vertices�SðDÞ

���� 1 ¼ jEdgesj � jFacesj
¼ ðE 0 þ IEÞ � F

¼ ð3 � F � IEÞ � F

¼ 2 � F � IE: ð3:15Þ

Lemma 3.6. The map F ¼ ðFðw1;w2ÞÞðw1;w2Þ ADBZ2 defined in the proof of Theorem

3.3 is injective.

Proof. Given a vertex v1 of any triangle Dk, ðk ¼ 1; . . . ;mÞ, we can find two lattice

points v2, v3 on Dk such that the convex hull of v1, v2, v3 is a primitive triangle,

that is, it has no interior lattice point. Now it is clear that any given values for

Fvi ði ¼ 1; 2; 3Þ uniquely determine ak, bk, gk. r
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Example 3.7. Let SðDÞ be the following subdivision with 3 2-dimensional faces

F1, F2, F3. Since SðDÞ has no interior lattice point, VqSðDÞ ¼ VqSðDÞ;P1 . We get

the matrix MqSðDÞ;P1 :

MqD;P1 ¼

a1 b1 a2 b2 a3 b3
s12 1 2 �1 �2 0 0

s13 1 0 0 0 �1 0

s23 0 0 �1 2 1 �2

0BBB@
1CCCA ð3:16Þ

The Smith Normal Form of MqSðDÞ;P1 is :

1 0 0 0 0 0

0 1 0 0 0 0

0 0 2 0 0 0

0B@
1CA: ð3:17Þ

Thus VqSðDÞ ¼ VqSðDÞ;P1 is a union of two translations of 3-dimensional subtorus

of TD.

3.2. VqS(D), nodal. Now we allow to have parallelograms in a subdivision SðDÞ.

Definition 3.8. For a parallelogramo, let Vqo;P1þP1 denote the set of all f a PD

such that f is the product of Laurent polynomials f1, f2 whose Newton polygons

are two nonparallel sides of o and each fi is a pure power of a binomial for

i ¼ 1; 2. Let Ac HoBZ2 be the set of lattice points in o which are not in the

lattice generated by the primitive vectors along the sides of o. Any element of

Ac is called special. If Ac is not empty, theno is called non-primitive.

(The figure on the right shows that there are 5 lattice points in o.

The unique interior lattice point is special.)

Notice that f has no term corresponding to the monomial xa for any

f a Vqo;P1þP1 and a a Ac. Therefore Vqo;P1þP1 is contained in the coordinate

subspace of Po defined by the linear equations za ¼ 0, a a Ac. If Ac is empty,

then the coordinate space is the ambient space Po itself. Let TA be the big open

torus of this coordinate subspace.

Now suppose that SðDÞ :¼ D1A � � � ADm is nodal, that is, every sub-polygon

is either a triangle or a parallelogram. Let VqSðDÞ;nodal denote the set of all f a PD

with the following properties:

• (C) For every triangle Di, fDi
a VqDi ;P

1 .

• (o) For every parallelogram Dj, fDj
a VqDj ;P

1þP1 .
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We consider the subset A ¼ A1A � � � AAm of DBZ2 defined as follows:

• if Di is a triangle, Ai ¼ Di BZ2;

• if Di is a parallelogram, Ai is the set of non-special lattice points on Di.

Theorem 3.9. VqSðDÞ;nodal is a translation of a closed subgroup of the torus TA.

Its dimension is equal to
��Vertices�SðDÞ

���� 1�
��Parallelograms

�
SðDÞ

���.
Proof. The proof of the first statement follows from a simple adjustment of the

proof of Theorem 3.3. Now the adjacency graph SðDÞ� may have vertices of

4-valency. We choose a directed graph on SðDÞ� which has no oriented cycle

and no sink at vertices of 3 and 4-valency and also the edges in SðDÞ� which are

dual to the parallel edges of a parallelogram in SðDÞ are co-oriented. Using this

directed graph, we can construct a point in VqSðDÞ;nodal. The construction of the

closed subgroup G is exactly same as the one given in the proof of Theorem 3.3.

The second statement follows from the following Lemma 3.10. r

Lemma 3.10. For a nodal subdivision SðDÞ, the following holds true:

2jTrianglesj þ 2jParallelogramsj � jIEdgesj
¼ jVerticesj � 1� jParallelogramsj ð3:18Þ

Proof. Let T :¼ jTrianglesj, P :¼ jParallelogramsj, E :¼ jEdgesj, IE :¼ jIEdgesj,
V :¼ jVerticesj, and F :¼ jFacesj. Then V � E þ F ¼ 1, F ¼ T þ P; and

3T þ 4P ¼ E þ IE. Thus V � 1� P ¼ E � T � 2P ¼ ð3T þ 4P� IEÞ � T � 2P

¼ 2T þ 2P� IE. r

Remark 3.11. In terms of the algebra of tropical cycles A (§2.4), we can write:

TropðVqSðDÞ;nodalÞ ¼ lðVÞ � TropðGeÞ; ð3:19Þ

where lðVÞ is the number of components of V ¼ VqSðDÞ;nodal, and Ge is the iden-

tity component of the closed subgroup G ¼ GqSðDÞ;nodal of TA.

4. Tropical Severi varieties

4.1. Severi varieties. Severi varieties are very classical varieties which go back to

F. Enriques [6] and F. Severi [20]. As in §3 let XD be the projective toric surface

constructed from a 2-dimensional convex lattice polygon D, let PD be the tautolog-

ical linear system on XD and let TD be the big open torus of PD.

Definition 4.1. Let d be a non-negative integer with da jIntðDÞBZ2j.
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The Severi variety SevðD; dÞHPD is the closure of the set of curves with exactly

d nodes (ordinary double points) as their only singularities.

The very a‰ne Severi variety SevðD; dÞ� is the intersection of the Severi variety

SevðD; dÞ with the big open torus TD.

The tropicalization of the very a‰ne Severi variety is called tropical Severi

variety and denoted by Trop
�
SevðD; dÞ

�
.

It is well known that dim
�
SevðD; dÞ

�
is equal to jDBZ2j � d� 1. We only con-

sider the case when SevðD; dÞ� is dense in SevðD; dÞ and thus they have the same

dimension. This case includes the classical one, plane curves of a given degree d,

equivalently, the case when the polygon D is the triangle with vertices ð0; 0Þ, ðd; 0Þ,
ð0; dÞ, where d is a positive integer.

4.2. Patchworking theory. In this section we review Shustin’s patchworking

theory. In 1979–80, O. Viro found a patchworking construction for obtaining

real nonsingular projective algebraic hypersurfaces with prescribed topology.

This method was a breakthrough in Hilbert’s 16th problem. In the early 1990s,

E. Shustin suggested to use the patchworking construction for tracing other prop-

erties of objects defined by polynomials, for example, prescribed singularities of

algebraic hypersurfaces and many others [21], [22]. He starts with a modified

version of the patchworking construction, which allows one to keep singularities

in the patchworking deformation. An important di¤erence with respect to the

original Viro method is that singularities are not stable in general, and thus one

has to modify the Viro deformation and impose certain transversality conditions.

The following is a version of Shustin’s patchworking theory about curves

on toric surfaces, summarized for the purposes of this paper [22], §3.7. (Note the

conventions in §2.2.)

• Let SðDÞ be a regular subdivision of D with rank
�
SðDÞ

�
¼ dim

�
SevðD; dÞ

�
.

Suppose that SðDÞ is simple and nodal, then there exists a c-vector o of

SevðD; dÞ such that Do ¼ SðDÞ.

• Let o : DBZ2 ! Z be an integral-valued function on DBZ2 such that

rankðoÞ ¼ dim
�
SevðD; dÞ

�
and Do is simple-triangular.

(Enumeration 1) If we fix the coe‰cients cb a Cnf0g for b a VerticesðDoÞ,
then the number of F a V ¼ VqDo;nodal with F ðbÞ ¼ cb is equal toQ

2 areaðTrianglesÞQ
length

�
EdgesðDoÞ

� ; ð4:1Þ

where the numerator stands for the product of twice the (Euclidean) area of

each triangle in Do and the denominator is the product of the lattice lengths

of the edges.
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(Enumeration 2) If we fix the coe‰cients cbðtÞ ¼ cbt
oðbÞ þ l:o:t: a Knf0g for

b a VerticesðDoÞ, then the number of f a SevðD; dÞðKÞ with f ðbÞ ¼ cbðtÞ
and tf dual to Do is equal to

Y
2 areaðTrianglesÞ: ð4:2Þ

(In Shustin’s notations in [22], §3.7, given cbðtÞ for b a VerticesðDoÞ, the num-

ber of possible A (amoeba) is 1, the number of possible F (initial terms

of coe‰cients of f ) is

Q
2 areaðTrianglesÞQ
lengthðEdgesðDoÞÞ

, and the number of possible R

(deformation patterns) is
Q

length
�
EdgesðDoÞ

�
. Thus the number of possible

ðA;F ;RÞ is equal to
Q

2 areaðTrianglesÞ and each of them gives rise to a

unique f a SevðD; dÞðKÞ.)

Remark 4.2. In fact the enumerations above hold when the subdivision Do is

simple-nodal, which was the case Shustin worked on. In this case, we replace

VerticesðDoÞ by a subset B with jBj ¼ dim
�
SevðD; dÞ

�
þ 1 so that for any F a V

fixing coe‰cients for b a B uniquely determines the other coe‰cients for

b a VerticesðDoÞnB. Also the denominator of the formula (4.1) should be ad-

justed as follows: eQQ length
�
EdgesðDoÞ

�
, the product of the lattice lengths of the

edges which are representatives of each equivalence class in EdgesðDoÞ, where
we define an equivalence relation as follows: let eP e 0 if e and e 0 are the parallel

edges of a parallelogram in Do and extend it by transitivity.

4.3. Initial schemes of very a‰ne Severi varieties. Let o a ZDBZ2

be an inte-

gral vector. As in §2.2.1, we have the initial scheme ino SevðD; dÞHTD of the

very a‰ne Severi variety SevðD; dÞ�. Also, o can be identified with an integral-val-

ued function on the set of lattice points DBZ2 on D and we get the regular subdi-

vision Do of D constructed from o. We are going to find a description of

ino SevðD; dÞ with respect to Do. Let us begin with an example which is simple

since the Severi variety is a hypersurface:

Example 4.3. Let D be as described on the right.

A general polynomial with Newton polygon D is

written as f ¼ ay2 þ bx2yþ cxyþ dyþ e.

We consider the curves Vð f Þ with one singular point, that is, SevðD; dÞðD; 1Þ.
The hypersurface SevðD; dÞðD; 1Þ is defined by a polynomial DA which is called

A-discriminant, where A ¼ DBZ2:

DA ¼ 16b2d 2 � 8bc2d þ c4 � 64ab2e: ð4:3Þ
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The figure below on the left represents the Newton polytope of DA and

Trop
�
SevðD; dÞðD; 1Þ

�
which is modded out by the 3-dimensional linearity space.

The figure on the right shows the connection to the subdivisions of D.

Choose an integral vector o on one of the rays of Trop
�
SevðD; dÞðD; 1Þ

�
as

shown on the figure above. The corresponding initial scheme ino SevðD; dÞðD; 1Þ
is defined by the polynomial 16b2d 2 � 8bc2d þ c4 ¼ ð4bd � c2Þ2. That is,

ino SevðD; dÞðD; 1Þ is a non-reduced scheme, a translation of the torus Vðbd � c2Þ
with multiplicity 2. Let us look at the corresponding subdivision Do. We can

find that lðVÞ, the number of components of V ¼ VqDo;nodal, is equal to 1. Also

we see that Do has one interior edge of lattice length 2. Therefore, the number

of translations of a subtorus (counted with multiplicity) in the initial scheme

ino SevðD; dÞðD; 1Þ coincides with the product of lðVÞ and the lattice length of the

interior edge of Do. The main theorems of this paper presented below show that

this description of the initial schemes of Severi varieties holds true in general.

The following theorem gives a description of the support of Trop
�
SevðD; dÞ

�
.

Theorem 4.4. If the rank of o is strictly larger than dim
�
SevðD; dÞ

�
, then o is not a

c-vector of SevðD; dÞ, that is, ino SevðD; dÞ ¼ j.

Proof. Suppose o is a c-vector of SevðD; dÞ with rankðoÞbdim
�
SevðD; dÞ

�
. In

§2.3.2, we showed that o must satisfy Shustin’s combinatorial characterization,

i.e., the subdivision Do is simple-nodal and rankðoÞ ¼ dim
�
SevðD; dÞ

�
. Thus the

rank of any c-vector of SevðD; dÞ cannot by strictly larger than dim
�
SevðD; dÞ

�
.

r

Also if o is a c-vector of SevðD; dÞ with maximal rank dim
�
SevðD; dÞ

�
, Shustin’s

combinatorial characterization says that the regular subdivision Do must be simple

and nodal. Furthermore, if we impose one more restriction on the parallelograms

in Do, we can obtain a complete description of initial schemes ino SevðD; dÞ as

presented in the next theorem following lemma which provides a geometric char-

acterization of initial schemes.
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Lemma 4.5. Let X be a subvariety of an algebraic torus T. The set of closed points

of ino X is equal to

fz a T : there exists z ¼ zto þ l:o:t: a XðKÞHTðKÞg; ð4:4Þ

where l.o.t. stands for ‘‘lower order terms’’ and z is in vector-notation.

Proof. The proof for the inclusion H can be found in Lemma 4.15 of [12],

Proposition 4 of [13], and [19]. Let us consider the other inclusion I. Suppose

z ¼ zto þ l:o:t: a XðKÞ and let f a IðXÞ. It is enough to show that ino f ðzÞ ¼ 0,

which follows from the fact that ino f ðzÞ is the constant term of f ðzÞ � t�g a C½t�,
where g is the t� o-degree of f . r

Theorem 4.6. Let o be a c-vector of SevðD; dÞ. Suppose that o satisfies the follow-

ing conditions:

• The rank of o is maximal, that is, rankðoÞ ¼ dim
�
SevðD; dÞ

�
;

• The regular subdivision Do has no non-primitive parallelogram.

Then the following hold true:

(1) As the sets of closed points, ino SevðD; dÞ is equal to V ¼ VqDo;nodal. Thus,

ino SevðD; dÞ is a union of finitely many translations of the torus Ge, the identity

component of G ¼ GqDo;nodal.

(2) The weight of o on ino SevðD; dÞ, that is, the number of such translations of the

torus Ge counted with multiplicity, is equal to

mSevðD; dÞðoÞ ¼ lðVÞ � fYY length
�
EdgesðDoÞ

�
; ð4:5Þ

where

(a) lðVÞ is the number of connected components of V;

(b) eQQ length
�
EdgesðDoÞ

�
is the product of the lattice lengths of the edges which

are representatives of each equivalence class in EdgesðDoÞ, where we define

an equivalence relation as follows: let eP e 0 if e and e 0 are the parallel edges
of a parallelogram in Do and extend it by transitivity.

Proof. We prove the first statement. Applying Lemma 4.5 to our case X ¼
SevðD; dÞ, we see that c ¼ ðcaÞa ADBZ2 a ino SevðD; dÞ if and only if there exists a

1-parameter equisingular family of nodal curves with d nodes defined by

fðtÞðx; yÞ ¼
X

a¼ða1;a2Þ ADBZ2

caðtÞxa1ya2 ð4:6Þ
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such that

caðtÞ ¼ cat
oa þ l:o:t: ð4:7Þ

Thus, c is closely related to the tropicalization of fðtÞ. Let us recall the definition

of the tropicalization of fðtÞ: Let nfðtÞ be the concave hull of o ¼ ValfðtÞ and rewrite

fðtÞ with respect to nfðtÞ :

fðtÞðx; yÞ ¼
X

a¼ða1;a2Þ ADBZ2

caðtÞxa1ya2 ð4:8Þ

such that

caðtÞ ¼ c�a t
nfðtÞ ðaÞ þ l:o:t:; ð4:9Þ

where c�a is a complex number such that c�a ¼ ca exactly when nfðtÞ ðaÞ ¼ oðaÞ and
otherwise c�a ¼ 0. This collection of complex numbers, c� ¼ fc�a : a a DBZ2g,
together with the regular subdivision DnfðtÞ

¼ Do : D1A � � �Dm of the Newton

polygon D of fðtÞ gives rise to a collection of complex polynomials f1; . . . ; fm
with Newtonð fiÞ ¼ Di for i ¼ 1; . . . ;m. Now Shustin’s geometric characterization

2.14 implies that under the hypothesis of our theorem, if c a ino SevðD; dÞ, then
c ¼ c� a VqDo;nodal. (Notice that in our case that there is no non-primitive paral-

lelogram in the subdivision Do, c
�ðaÞA 0 for all a a DBZ2, which also implies

that nfðtÞ ¼ o, that is, o should be concave.) Thus, ino SevðD; dÞ is a subset of

VqDo;nodal. The other inclusion follows easily from Shustin’s patchworking theory

§4.2.

Now we prove the second statement. Let B be a subset of VerticesðDoÞ with
the properties given in Remark 4.2, and let LB be the n�

�
dim

�
SevðD; dÞ

�
þ 1
�

dimensional coordinate subspace of TD defined by the equations xb ¼ 1, b a B.

Then Shustin’s first enumeration (4.1) deduces the following:

�
TropðVÞ � TropðLBÞ

�
¼
Q

2 areaðTrianglesÞeQQ length
�
EdgesðDoÞ

� : ð4:10Þ

Moreover, from the second enumeration (4.2), we obtain the following:

��
Trop

�
ino SevðD; dÞ

�
� TropðLBÞ

��
¼
Y

2 areaðTrianglesÞ: ð4:11Þ

Thus,
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mSevðD; dÞðoÞ
�
TropðGeÞ � TropðLBÞ

�
¼
�
Trop

�
ino SevðD; dÞ

�
� TropðLBÞ

�
¼
Y

2 areaðTrianglesÞ

¼ fYY
length

�
EdgesðDoÞ

�
�
Q

2 areaðTrianglesÞeQQ length
�
EdgesðDoÞ

�
¼ fYY

length
�
EdgesðDoÞ

��
TropðVÞ � TropðLBÞ

�
¼ lðVÞfYY length

�
EdgesðDoÞ

��
TropðGeÞ � TropðLBÞ

�
ð4:12Þ

Thus we obtain

mSevðD; dÞðoÞ ¼ lðVÞfYY length
�
EdgesðDoÞ

�
: ð4:13Þ

r

Now we consider the case that there is a non-primitive parallelogram in the

subdivision Do. We need to consider a certain projection. Let us begin with a

general setting. Let SðDÞ be a nodal subdivision which may have non-primitive

parallelograms. As we studied in §3.2, in this case, the variety VqSðDÞ;nodal is
contained in every coordinate hyperplane Ha of the ambient projective space PD

defined by xa ¼ 0, where a is a special point in a non-primitive parallelogram. In

particular, VqSðDÞ;nodal is disjoint from the big open torus TD. Let HSðDÞ be the

intersection of all such coordinate hyperplanes Ha. Let TSðDÞ HHSðDÞ be the big
open torus in HSðDÞ so that VqSðDÞ;nodal HTSðDÞ. Let pSðDÞ be the projection from

PD to HSðDÞ,

pSðDÞ : PD ! HSðDÞ: ð4:14Þ

Now we consider the case when the subdivision SðDÞ is given by a c-vector o of

SevðD; dÞ with maximal rank, that is, SðDÞ ¼ Do and rankðoÞ ¼ dim
�
SevðD; dÞ

�
.

We impose one more condition that o is a regular point of the tropical Severi

variety Trop
�
SevðD; dÞ

�
, that is, Trop

�
SevðD; dÞ

�
coincides with an a‰ne space of

dimension dim
�
SevðD; dÞ

�
locally near o. (Warning: the maximality of rank of o

does not necessarily imply that o is a regular point of Trop
�
SevðD; dÞ

�
.) Then we

obtain the following theorem.

Theorem 4.7. Let o be a c-vector of SevðD; dÞ. Suppose that o satisfies the follow-

ing conditions:

• The rank of o is maximal, that is, rankðoÞ ¼ dim
�
SevðD; dÞ

�
;

• o is a regular point in Trop
�
SevðD; dÞ

�
.
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Then the following statements hold true:

(1) The projection pDo
is a bijection from ino SevðD; dÞ to V ¼ VqDo;nodal.

(2) The initial scheme ino SevðD; dÞ is the union of finitely many translations of

a torus Ge� of dimension dim
�
SevðD; dÞ

�
which is sent to Ge by the projection

pDo
, where Ge is the identity component of G ¼ GqDo;nodal.

(3) The weight of o on ino SevðD; dÞ, that is, the number of such translations of the

torus Ge� counted with multiplicity, is equal to

mSevðD; dÞðoÞ ¼ lðVÞ � fYY length
�
EdgesðDoÞ

�
; ð4:15Þ

as defined in the previous theorem.

Proof. The first and second statements are deduced straight-forwardly from the

conditions on o. Let us show the last statement. It is a slight adjustment of the

proof in the previous theorem adding the consideration of the projection pDw
.

Shustin’s first enumeration (4.1) deduces the following:

�
TropðVÞp�

�
TropðLBÞ

��
¼
Q

2 areaðTrianglesÞeQQ length
�
EdgesðDoÞ

� ; ð4:16Þ

where p� : R
n ! RjAj is the projection corresponding to p ¼ pDo

. Moreover, from

the second enumeration (4.2), we obtain the following:

�
Trop

�
ino SevðD; dÞ

�
� TropðLBÞ

�
¼
Y

2 areaðTrianglesÞ: ð4:17Þ

Thus,

mSevðD; dÞðoÞ
�
TropðGe�Þ � TropðLBÞ

�
¼
�
Trop

�
ino SevðD; dÞ

�
� TropðLBÞ

�
¼
Y

2 areaðTrianglesÞ

¼ fYY
length

�
EdgesðDoÞ

�
�
Q

2 areaðTrianglesÞeQQ length
�
EdgesðDoÞ

�
¼ fYY

length
�
EdgesðDoÞ

��
TropðVÞ � p�

�
TropðLBÞ

��
¼ lðVÞfYY length

�
EdgesðDoÞ

��
TropðGeÞ � p�

�
TropðLBÞ

��
¼ lðVÞfYY length

�
EdgesðDoÞ

��
TropðGe�Þ � TropðLBÞ

�
: ð4:18Þ
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The last equality can be seen easily by considering the projection p� as follows: by
choosing a coordinate system,

�
TropðGeÞ � p�

�
TropðLBÞ

��
is the determinant of a

matrix ðM1 j M2Þ, where M1 and M2 are found from lattice bases of TropðGeÞ
and p�

�
TropðLBÞ

�
, respectively. Then

�
TropðG�

� Þ � TropðLBÞ
�
is the determinant

of a matrix of the form of
M1 M2 0

� 0 I

 !
, where I is the identity matrix.

Therefore

�
TropðGeÞ � p�

�
TropðLBÞ

��
¼
�
TropðGe�Þ � TropðLBÞ

�
:

Thus,

mSevðD; dÞðoÞ ¼ lðVÞfYY length
�
EdgesðDoÞ

�
: ð4:19Þ

r

Remark 4.8. As a corollary, if ino SevðD; dÞA j and the subdivision Do is either

simple or nodal but not both, then rankðoÞ < r.

4.4. The degrees of Severi varieties. In this section, we study Mikhalkin’s Cor-

respondence theorem with respect to tropical intersection theory. Let us review

this theorem.

Definition 4.9 ([11], Definition 2.41). (1) Let SðDÞ be a subdivision of D. We

say that the distinct points x1; . . . ; xz a Q2 are in SðDÞ-general position, if the

condition for tropical curves to pass through x1; . . . ; xz (‘‘base-point-condition’’)

cuts out the tropical cone TC
�
SðDÞ

�
either the empty set, or a polyhedron of

codimension z.

(2) We say that the distinct points x1; . . . ; xz are in D-general position (or sim-

ply, generic points), if they are SðDÞ-general for all subdivisions SðDÞ of D.

Lemma 4.10 ([11], Lemma 2.42). For any given convex lattice polygon D, the set of

D-general configurations x1; . . . ; xz is dense in ðQ2Þz.

To present the correspondence theorem we need one more numeric invariant

assigned to a subdivision SðDÞ of a polygon D, besides the rank of SðDÞ: suppose
SðDÞ is nodal, that is, the subpolygons are either triangles or parallelograms.

Then the (Mikhalkin’s) multiplicity of SðDÞ is by definition

m
�
SðDÞ

�
:¼
Y

2 areaðTrianglesÞ; ð4:20Þ

the product of twice areas of all the triangles in SðDÞ.
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Theorem 4.11 (Mikhalkin’s Correspondence Theorem, [11], Theorem 2.43,

[17]). Let P be a set of r ¼ dim
�
SevðD; dÞ

�
points in R2 which are in D-general

position. Then

degree
�
SevðD; dÞ

�
¼
X
o

mðoÞ; ð4:21Þ

where the sum runs over all tropical curves to of degree D passing through all the

points in P. (mðoÞ is by definition mðDoÞ.)

First, we show that the set S of such tropical curves described above is in

one-to-one correspondence with the set-theoretic transversal intersection of two

tropical varieties (Definition 4.12), Trop
�
SevðD; dÞ

�
BTrop

�
LðpÞ

�
. Then, we

show that Mikhalkin’s multiplicity of any curve in the set S is equal to the

tropical intersection multiplicity of the corresponding point in the intersection

Trop
�
SevðD; dÞ

�
BTrop

�
LðpÞ

�
. Thus, Mikhalkin’s enumeration is equal to the

computation of the degree
�
Trop

�
SevðD; dÞ

�
� Trop

�
LðpÞ

��
. Let us begin with

the definition of LðpÞ.

Definition 4.12. Let p ¼ fp1; . . . ; pzgH ðK�Þ2 be a finite set of points in ðK�Þ2.
Define LðpÞHPDðKÞ to be the parameter space of algebraic curves on the toric

surface XDðKÞ passing through all the points in p. This parameter space LðpÞ is
the complete intersection of hyperplanes Hpj HPDðKÞ defined by the condition of

passing through the point pj, ð j ¼ 1; . . . ; zÞ: The intersection of LðpÞ with the big

open torus TD is again denoted by LðpÞ.

Lemma 4.13. An integral vector o is a c-vector of the hyperplane Hq, i.e.,

o a TropðHqÞ, if and only if the tropical curve to passes through the point

ValðqÞ ¼
�
Valðq1Þ;Valðq2Þ

�
, where q ¼ ðq1; q2Þ a ðK�Þ2.

Proof. Let q1 ¼ atm þ l:o:t: and q2 ¼ btn þ l:o:t: and thus ValðqÞ ¼ ðm; nÞ. Now

Hq is the hyperplane defined by the linear polynomial

X
a¼ða1;a2Þ ADBZ2

ðatm þ l:o:t:Þa1ðbtn þ l:o:t:Þa2ca ¼ 0 ð4:22Þ

in the variables ca, a a DBZ2. Thus, the support of TropðHqÞ is the corner locus
of the map:

ðxaÞa ADBZ2 7! max
a ADBZ2

fxa þ ðm; nÞ � ða1; a2Þg: ð4:23Þ
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Also, the tropical curve to is by definition the corner locus of the map:

ðX ;YÞ 7! max
a ADBZ2

foa þ ðX ;YÞ � ða1; a2Þg: ð4:24Þ

The statement follows in a straightforward way. r

From Lemma 4.13 above, we see that o is a c-vector of LðpÞ if and only if the

tropical curve to passes through all the points Valðp1Þ; . . . ;ValðpzÞ in R2.

Theorem 4.14. Let p ¼ fp1; . . . ; prg a
�
ðK�Þ2

�r
be a configuration of r generic

points in ðK�Þ2 so that Val(p) ¼ fValðp1Þ; . . . ;ValðprÞg a ðQ2Þr is in D-general

position, Trop
�
LðpÞ

�
BTrop

�
SevðD; dÞ

�
is a transversal intersection and the linear

system 4.27 is independent, where r ¼ dim
�
SevðD; dÞ

�
. Then the following state-

ments hold true:

(1) The intersection Trop
�
LðpÞ

�
BTrop

�
SevðD; dÞ

�
is in one-to-one correspon-

dence with the set of tropical curves to passing through all the points in Val(p).

(2) The extrinsic intersection multiplicity (§2.4 (1)) of Trop
�
LðpÞ

�
and

Trop
�
SevðD; dÞ

�
at o a Trop

�
LðpÞ

�
BTrop

�
SevðD; dÞ

�
is

x
�
o;Trop

�
LðpÞ

�
;Trop

�
SevðD; dÞ

��
¼

Q
2 areaðTrianglesÞ

lðVÞ � eQQ lengthðEdgesÞ
: ð4:25Þ

(3) The tropical intersection multiplicity (§2.4 (2)) of Trop
�
LðpÞ

�
and

Trop
�
SevðD; dÞ

�
at o a Trop

�
LðpÞ

�
BTrop

�
SevðD; dÞ

�
is equal to Mikhalkin’s

multiplicity of the tropical curve to:

m
�
o;Trop

�
LðpÞ

�
;Trop

�
SevðD; dÞ

��
¼
Y

2 areaðTrianglesÞ: ð4:26Þ

Proof. Let us prove the first statement: Since the set of c-vectors are open dense

in the tropicalization of a variety, we can assume that the intersection points in

Trop
�
LðpÞ

�
BTrop

�
SevðD; dÞ

�
are all c-vectors, in particular, they are all rational

vectors. From Lemma 4.13 and Shustin’s combinatorial characterization Theo-

rem 2.14, the first statement follows.

To prove the second statement, we find neighborhoods of o in Trop
�
SevðD; dÞ

�
and in Trop

�
LðpÞ

�
. Then we compute the volume of the corresponding prin-

cipal parallelepiped, which is by definition the extrinsic intersection multiplicity of

Trop
�
LðpÞ

�
and Trop

�
SevðD; dÞ

�
at o (§2.4 (1)). Since the points are in D-general

position and the base-point-condition cuts out the cone K
�
TSðDÞo

�
non-empty

(ccðoÞZ a K
�
TSðDÞo

�
), the rank of o must be at least r ¼ dim

�
SevðD; dÞ

�
and

so is equal to r, since o is a c-vector of SevðD; dÞ. Also o is a regular point

of both Trop
�
SevðD; dÞ

�
and Trop

�
LðpÞ

�
, being a traversal-intersection-point.
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Thus, by Theorem 4.7, near o, the support of Trop
�
SevðD; dÞ

�
is equal to

TropðGe�Þ, which is a r-dimensional linear space. Now let us consider a full-

dimensional neighborhood of o in Trop
�
LðpÞ

�
. The tropical curves correspond-

ing to points in such neighborhood are tropical curves passing through the r points

Valðp1Þ; . . . ;ValðprÞ and their degrees are subsets of D. In particular, the trop-

ical curve to also passes through the points. Since rankðoÞ ¼ r, they lie on r dis-

tinct edges of to which correspond to some r edges of the subdivision Do. If

si a EdgesðDoÞ correspond to a point ValðpiÞ and ai, a
0
i are the endpoints of si,

1a ia r, then we have the following linear conditions on oðaiÞ and oða 0
i Þ:

oðaiÞ � oða 0
i Þ ¼ ða 0

i � aiÞ � ValðpiÞ ði ¼ 1; . . . ; rÞ: ð4:27Þ

Let B be the set of vertices of Do which are involved in this independent linear

system. Thus the values of o on B are fixed and ones on ðDBZ2ÞnB can be

any values. Thus we can see that near o, the support of Trop
�
LðpÞ

�
is equal to

TropðLBÞ, where LB is defined in the proof of Theorem 4.6. Note that TropðGe�Þ
and TropðLBÞ have constant weighting function 1. Thus we can compute the

extrinsic intersection multiplicity of Trop
�
LðpÞ

�
and Trop

�
SevðD; dÞ

�
at o as

follows:

x
�
o;Trop

�
LðpÞ

�
;Trop

�
SevðD; dÞ

��
¼ TropðGe�Þ � TropðLBÞ
¼ TropðGeÞ � p�

�
TropðLBÞ

�
¼

TropðVÞ � p�
�
TropðLBÞ

�
lðVÞ

¼
Q

2 areaðTrianglesÞeQQ length
�
EdgesðDoÞ

�
lðVÞ

ð4:28Þ

Now we prove the last statement: it follows from the definition of mðoÞ given in

§2.4:

m
�
o;Trop

�
LðpÞ

�
;Trop

�
SevðD; dÞ

��
¼ mLð pÞðoÞ �mSevðD; dÞðoÞ � x

�
o;Trop

�
LðpÞ

�
;Trop

�
SevðD; dÞ

��
¼ 1 � lðVÞ � fYY lengthðEdgesÞ �

Q
2 areaðTrianglesÞeQQ length
�
EdgesðDoÞ

�
lðVÞ

¼
Y

2 areaðTrianglesÞ ð4:29Þ
r

Therefore from the Theorem 4.14, Mikhalkin’s enumeration of tropical curves

is equal to the computation of the degree
�
Trop

�
LðpÞ � Trop

�
SevðD; dÞ

��
.
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