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Sharkovskii order for non-wandering points

Maria Pires de Carvalho and Fernando Jorge Moreira*

Abstract. For a map f : I ! I , a point x a I is periodic with period p a N if f pðxÞ ¼ x

and f jðxÞA x for all 0 < j < p. When f is continuous and I is an interval, a theorem
due to Sharkovskii ([1]) states that there is an order in N, say p, such that if f has a
periodic point of period p and pp q, then f also has a periodic point of period q. In this
work, we will see how an extension of the orderp to sequences of positive integers yields a
Sharkovskii-type result for non-wandering points of f .
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1. Introduction

Let f : ½a; b� ! R be a continuous map. A point x0 a ½a; b� is non-wandering if, for

each neighborhood V of x0, there is a positive integer N such that f NðVÞB
VA j. If moreover f kðVÞBV ¼ j for all k a f1; 2; . . . ;N � 1g, we say that N

is a first return of V to itself. This notion is a weak form of recurrence and gathers

recurrent points (the ones that are accumulated by their orbits) and the periodic

ones. The aim of this work is to generalize Sharkovskii’s Theorem to non-

wandering points, replacing periodic points by neighborhoods, and periods by first

return times.

The main di‰culty of such a formulation lies on the control of the speed of the

returns and their nearness to the starting non-wandering point, parameters that,

in the case of a periodic orbit, are not only elementary to express but completely

determined by the period. A straight extension of Sharkovskii’s result should state

that, given two sequences ðRnÞn AN and ðSnÞn AN of positive integers such that

Rn pSn for all n, if f : ½a; b� ! R has a non-wandering point with a fundamental

system of neighborhoods whose first returns happen at times ðRnÞn AN, then f has a
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non-wandering point with a fundamental system of neighborhoods first returning

at times ðSnÞn AN. This is true if the sequences ðRnÞn AN and ðSnÞn AN are eventually

constant (equal to c and d, respectively, with cp d). In fact, if, for n big enough,

each neighborhood Vn of a fundamental system of x0 has a first return by the

power f c, then there is yn a Vn (so the sequence ðynÞn AN converges to x0) such

that f cðynÞ a Vn (thus the sequence
�
f cðynÞ

�
n AN

also converges to x0), and, there-

fore, as f is continuous, x0 is periodic with period c; hence, as cp d, Sharkovskii’s

Theorem informs that f has a periodic point with period d, to whom we may

easily find a fundamental system of neighborhoods first returning by f d . (Similar

reasoning holds if ðRnÞn AN has a bounded subsequence.)

For more general sequences of returns, our argument demands some control of

the size of the neighborhoods with respect to the amount of time a return needs

to occur. Given e > 0, we consider a fundamental system of dynamical balls

centered at the non-wandering point x0, say ðVnÞn AN, determined by e and the uni-

form continuity of f j, for all 1a jaSn (see Lemma 3.1). The connection

between ðVnÞn AN, ðRnÞn AN and ðSnÞn AN will be established by the following condi-

tions, which essentially assert that Rn is a first return of Vn with respect to both the

usual and Sharkovskii’s order:

(F1) For each n, Rn is the first return of Vn.

(F2) For each n, the neighborhood Vn does not return by the iteration Sn.

Therefore, we have:

Theorem 1.1. Let f : ½a; b� ! R be a continuous function, x0 a non-wandering

point of f , ðRnÞn AN and ðSnÞn AN two sequences of positive integers such that, for

all n a N, Rn pSn.

(a) If condition (F1) holds, then we may find a subsequence ðSnkÞk AN and a point

x1 in ½a; b� with a neighborhood whose length is arbitrarily close to 2e and

returns at times Snk for all k.

(b) If, besides condition (F1), we assume (F2), then there is a periodic point by f

with period Sn for all n.

The proof goes as follows. Starting with a non-wandering point x0, we create,

through countably many small local perturbations of f (see Lemma 3.2), a se-

quence ð fmÞm AN of continuous maps of ½a; b�, converging to f and such that fm
has a periodic point with period Rm. To each of them we apply Sharkovskii’s

Theorem, ensuring the existence of another periodic point zm of fm with period

Sm. Then, under assumption F1, we take an accumulation point x1 of ðzmÞm AN

and verify that it has the sought neighborhood with the requested return times

by f . If we assume both (F1) and (F2), then we guarantee that each zm was
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created out of the neighborhoods of perturbation of f , and so conclude that it

is a periodic point of f .

2. Examples

(1) The point x1 just obtained may coincide with x0. However, properties of either

x0 or the returns may prevent this to happen.

If ðSnÞn AN is eventually periodic, then x1 is periodic by f .

Suppose that ðSnÞn AN is eventually periodic, say equal to b1b2 . . . bl. Then,

taking a subsequence if necessary, we may assume that there is bj such that each

znk is periodic by fnk with period bj, for some j a f1; 2; . . . ; lg. Then, as ð fnkÞk
converges to f , ðznkÞk converges to x1 and f

bj
nk ðznkÞ ¼ znk for all k, we conclude

that x1 is periodic by f with period that divides bj .

Thus, in particular, if the initial point x0 is not periodic, or has a period that

does not divide bj, then x1Ax0.

For instance, assume that ðRnÞn AN ¼ ð3nÞn AN and ðSnÞn AN ¼ 24. As the Rn’s

are first returns of a fundamental system of neighborhoods of x0, then x0 cannot

be a periodic point with period in f1; 2; 4g. Theorem 1.1 ensures that f has a

periodic point x1 with period that divides 4, hence x1Ax0.

If x0 is not periodic, then x1Ax0.

Indeed, in this case ðRnÞn AN cannot have a bounded subsequence, and so

limn!l Rn ¼ l. Therefore, fixing any p a N, we may consider the constant

sequence ðSnÞn AN ¼ ð2pÞn AN and be sure that ðRnÞn AN p ðSnÞn AN. Thus x1 is a

periodic point by f , with a period that divides 2p, and so x1Ax0.

(2) Condition (F1) is hard to check but seems to be the natural extension to

returns of the connection between periods described by Sharkovskii’s order.

Yet, it would be interesting to unlink the size of the sets ðVnÞn AN from the

sequence ðSnÞn AN because what we need is that these neighborhoods have first

returns ðRnÞn AN. This is achieved if we demand that the sequences ðRnÞn AN and

ðSnÞn AN are related by both the Sharkovskii’s order and the usual one: if, for

each n, we have RnpSn and Sn < Rn, then the definition of the neighborhoods

Vn may use Rn instead of Sn. (And moreover condition (F2) holds since Rn is

the first return of Vn.)

(3) The assumption (F2) prevents the perturbations of f to destroy periodic

orbits of f with periods given by the sequence ðSnÞn AN.
For instance, if ðRnÞn AN ¼ ð5� 2nÞn AN, ðSnÞn AN ¼ ð7� 2nÞn AN, the Rn’s are

first returns of the fundamental system of neighborhoods ðVnÞn AN and, for every
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n, we have f SnðVnÞBVn ¼ j, then f has a periodic point with period 7 (and so

infinitely many others).

3. The size of the neighborhoods

In the sequel we will consider the uniform norm kgk ¼ maxfjgðxÞj : aaxa bg
on the space of real continuous maps g defined on the interval ½a; b�. Let

f : ½a; b� ! R be one of such maps. As f is uniformly continuous in ½a; b�, given
t > 0 there exists hðtÞ > 0 such that, if x and y belong to ½a; b� and jx� yj < hðtÞ,
then j f ðxÞ � f ðyÞj < t

2 .

Take a positive e and consider a sequence ðSnÞn AN of positive integers.

Definition 3.1. For each n a N, dðe;SnÞ denotes the minimum of the set with

Sn þ 1 elements given by r1 ¼ 1
n
, r2 ¼ e

2 and, for 3a kaSn þ 1,

rk ¼
1

2
hð2rk�1Þ:

Lemma 3.1. If g : ½a; b� ! R is continuous and k f � gk < dðe;SnÞ, then, for all

k a f1; . . . ;Sng, we have k f k � gkk < e.

Proof. Fix n and the corresponding Sn. If k ¼ 1, the assertion is a direct conse-

quence of the fact that dðe;SnÞ < e. For k ¼ 2, as k f � gk < dðe;SnÞ, we know

that k f � gk < e
2 and k f � gk < hðeÞ. Therefore, by the definition of hðeÞ, we

have k f � f � f � gk < e
2 ; besides, k f � g� g � gka k f � gk < e

2 . So

k f 2 � g2ka k f � f � f � gk þ k f � g� g � gk < e:

Similarly, from k f � gk < dðe;SnÞ, we deduce that k f � gk < e
2 , k f � gk <

hðeÞ
2

and k f � gk < h
�
hðeÞ

�
, which together imply, as just checked, that

k f 2 � g2ka k f � f � f � gk þ k f � g� g � gk <
hðeÞ
2

þ hðeÞ
2

¼ hðeÞ;

and so

k f 3 � g3ka k f � f 2 � f � g2k þ k f � g2 � g � g2k <
e

2
þ e

2
:

The argument proceeds inductively. r

Given x0 and n a N, let Vn ¼ �x0 � dðe;SnÞ; x0 þ dðe;SnÞ½. Assume that each

Vn first returns at time Rn. We may choose a sequence ðynÞn AN of elements of
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½a; b� such that, for all n, both yn and f RnðynÞ belong to Vn. The next Lemma tells

us how, by a small perturbation of f , we may bind the extremes of the finite block

fyn; f ðynÞ; . . . ; f RnðynÞg of the orbit of yn, thus creating a periodic point for a

close dynamics.

Lemma 3.2. For each n, there is a continuous map fn : ½a; b� ! R such that

f Rn
n ðynÞ ¼ yn and k f � fnk < dðe;SnÞ.

Proof. As yn and f RnðynÞ belong to the open interval Vn, we may find a z > 0

such that the intervals In (the one that connects these two points inside ½a; b�, which
may be degenerate if yn ¼ f RnðynÞ) and Jn (which we obtain from In adding to

it two short segments, with length z, on its extremes) are contained in Vn. Con-

sider a continuous bump-function fn : ½a; b� ! R so that the restriction of fn to In
is constant and equal to 1, and the value of fn in ½a; b�nJn is zero. Denote by

Tn : ½a; b� ! R the map

TnðtÞ ¼ tþ ½yn � f RnðynÞ� � fnðtÞ:

The function Tn is the identity in the complement of Jn and translates the elements

of Jn by an amount that does not exceed jyn � f RnðynÞj.
Define now the map fn : ½a; b� ! R by fn ¼ Tn � f . This is a continuous func-

tion and, as Rn is the first return of Vn to itself, we have, for any integer l such

that 1a l < Rn,

f l
n ðynÞ ¼ Tn

�
f lðynÞ

�
¼ f lðynÞA yn;

and

f Rn
n ðynÞ ¼ ðTn � f ÞRnðynÞ ¼ Tn

�
f RnðynÞ

�
¼ f RnðynÞ þ ½yn � f RnðynÞ� � 1 ¼ yn:

Moreover, fn coincides with f in ½a; b�n f �1ðVnÞ since, if t B f �1ðVnÞ, then

f
�
f ðtÞ

�
¼ 0 and therefore

fnðtÞ ¼ Tn

�
f ðtÞ

�
¼ f ðtÞ þ ½yn � f RnðynÞ� � f

�
f ðtÞ

�
¼ f ðtÞ:

Furthermore, if t a f �1ðVnÞ, then

j fnðtÞ � f ðtÞj ¼
�� f ðtÞ þ ½yn � f RnðynÞ� � f

�
f ðtÞ

�
� f ðtÞ

��
¼

��½yn � f RnðynÞ� � f
�
f ðtÞ

���a jyn � f RnðynÞj
< dðe;SnÞ:

So k fn � f k < dðe;SnÞ. r
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Corollary 3.3. The functions just defined verify:

(a) The sequence ð fnÞn AN converges uniformly to f .

(b) For each n a N, the map fn has a periodic point zn with period Sn.

Remark 3.1. If, for each n, the point yn is already periodic by f with period Rn,

then fn ¼ f and we know, without using the previous lemmas, that f has a peri-

odic point zn with period Sn for all n.

4. Proof of Theorem 1.1

Proof. (a) Take any accumulation point x1 a ½a; b� of ðznÞn AN and consider a

sequence of positive integers ðnkÞk AN verifying the condition

znk a
i
x1 �

1

k
; x1 þ

1

k

h
for all k a N:

By Lemma 3.2, for each nk, we have k fnk � f k < dðe;SnkÞ, and so, by Lemma 3.1,

we get k f Snk
nk � f Snk k < e: Consequently, as znk is a periodic point with period Snk

for the map fnk , the neighborhood Wk ¼
�
x1 � 1

k
� e; x1 þ 1

k
þ e

�
of x1 returns to

itself by f Snk . Hence x1 and the neighborhoods Wk are the ones we were looking

for.

(b) As the neighborhood Vn does not return by the iterate Sn, the orbit of the

point zn cannot cross it since any point of this orbit is periodic with period Sn. So,

the perturbation fn coincides with f along this orbit, and therefore zn is already

periodic by f . r

5. Motivation

This result emerged from the nonstandard version of the Theorem of Sharkovskii,

conveyed to the hyperreals through the known transfer principles. We started us-

ing nonstandard analysis and an ultrafilter in N that contains all the co-finite sets

to extend the order p to an ultrapower of the positive integers (see [2] and [3] for

more details). Then we reformulated the infinitely many first returns, of a count-

able family of neighborhoods of a non-wandering point by the map f , as a peri-

odic point, with a hyperinteger period corresponding to the class of ðRnÞn AK for

some big set KJN, associated to a suitable continuous (and internal) dynamical

system acting on an interval of the hyperreals. Applying the transfered version of

Sharkovskii’s Theorem, we obtained another periodic point for the same dynam-

ics, with period given by the hyperinteger represented by ðSnÞn AK. Finally, this
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information was projected on f and ½a; b�, thus arising the requested point x1 and

the corresponding neighborhoods with return times given by a subsequence of

ðSnÞn AK. The argument presented in Sections 3 and 4 is the standard statement

of the previous lines.
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