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1. Introduction

The notion of Lie algebroid (algébroı̈de de Lie in the French terminology) was first

introduced by J. Pradines in [36] in relation with Lie groupoids. Lie algebroids are

generalizations of both Lie algebras and tangent vector bundles. This notion is an

adapted framework for di¤erent problems one can meet

• in geometric mechanics where a theory of Lagrangian and Hamiltonian sys-

tems can be developed on such structures (cf. [43], [9], [8]);

• in symplectic geometry in view of the symplectization of Poisson manifolds

and applications to quantization ([18], [42]);

• in geometry where classifying Lie algebroids ([11]) are associated to finite type

G-structures, this notion of G-structure includes most of the classical geomet-

ric structures ([28]);

• in optimal control theory where one can write a version of the Pontryagin

Maximum Principle (cf. [27]).

*The author is grateful to Professor Fernand Pelletier for helpful comments and suggestions.



In finite dimensions, there exists a bijection

– between Lie algebroid structures on an anchored bundle and Poisson structures

on its dual,

– between Lie algebroid structures and Lie di¤erentials (cf. [26], [9]).

This situation is studied in [7] for almost Lie algebroids under appropriated

conditions.

In this paper, we consider Lie algebroids modeled on Fréchet manifolds. Sev-

eral di‰culties arise when one considers manifolds modeled on Fréchet spaces F:

the lack of a general solvability theory of di¤erential equations (cf. [16]) and the

pathological structure of GlðFÞ (which does not admit a reasonable Lie group

structure). These problems have a solution on certain projective limits of spaces:

on one hand, existence of integral curves of vector fields, autoparallel curves with

respect to linear connections (cf. [4]), horizontal global section for connection on

particular spaces (cf. [3]); on the other hand, existence of a generalized Lie group

H0ðFÞ as structural group for the tangent bundle (cf. [14]).

The study of projective (or inverse) limits of di¤erent types of spaces (mani-

folds, bundles, . . .) was the subject of investigations by many authors:

– projective limits of tangent bundles of a finite dimensional manifold (cf. [15])

and more generally projective limits of fiber bundles (cf. [5]), a classical example

being the geometry of infinite jets bundle as developed for example in [38];

– projective limits of Banach Lie groups studied in [13] linked with the ILB-

groups ([31], [39]);

– universal laminated surfaces studied by Nag and Sullivan (cf. [29]) used in

mathematical physics.

In this paper, we are interested in the notion of projective limits of Lie alge-

broids which can be endowed with Fréchet structures. One can find in [19] the

notion of variational Lie algebroid, used in PDE, where the vector fields are re-

placed by sections of a bundle over a projective limite of finite jets.

The main result of this paper (Theorem 5.1) asserts that the strong projective

limit ðlim � Ei; lim � pi; lim � Mi; lim � riÞ of Banach Lie algebroids (Ei is a vector bundle

over the base Mi and ri : Ei ! TMi is the anchor) is a Fréchet Lie algebroid.

This paper is organized as follows. In part 2 we recall the notions of manifolds

and fiber bundles modeled on convenient vector spaces as defined by Kriegel and

Michor in ([20]) and di¤erent objects of such spaces. The strong projective limit of

Banach fiber bundles is developed in [5] and one gets a generalization of the results

obtained on the tangent bundle by Galanis in [15]; this result is recalled in part 3.

The notion of Banach Lie algebroid is presented in part 4 where one can find the

notions of Lie and di¤erential derivatives and morphisms (cf. [2]). In part 5 the
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projective limit of this kind of algebroids is endowed with a structure of Fréchet

space. In part 6 we give examples of such objects, where Ei ¼ TMi and the anchor

is a Nijenhuis tensor (framework adapted to the infinite-dimensional harmonic

oscillator) and Ei is a particular sub-bundle of TMi:

• for finite dimensional ranks, one can have the notion of di‰ety,

• the inverse limit Banach (or Hilbert) setting corresponds to infinite-

dimensional ranks and is an interesting framework for diverse problems in

quantum field theory.

In the last part we study the projective limits of semisprays and admissible

curves.

2. Infinite dimensional manifolds modeled on convenient vector spaces

Classical di¤erential calculus is perfectly adapted to finite dimensional or even

Banach manifolds (cf. [22]).

On the other hand, convenient analysis, developed in [20], provides a satisfac-

tory solution of the question how to do analysis on a large class of locally convex

spaces and in particular on projective limits of Banach manifolds or fiber bundles.

We recall the main results given in the book [20] or in the paper [21], §2.

2.1. Smooth mappings on convenient vector spaces. In order to endow some

locally convex vector spaces (l.c.v.s.) E, which will be assumed Hausdor¤, with a

di¤erentiable structure we first use the notion of smooth curves c : R! E, which

poses no problems.

We denote the space ClðR;EÞ by C; the set of bounded (resp. continuous)

linear functionals is denoted by E 0 (resp. E �).
We then have the following characterization: a subset B of E is bounded i¤

lðBÞ is bounded for any l a E �.

Definition 2.1. A locally convex vector space is said to be convenient if the follow-

ing condition is satisfied:

if c : R! E is a curve such that l � c : R! R is smooth for all l a E �, then c is

smooth.

The cl-topology on a l.c.v.s. is the final topology with respect to all smooth

curves R! E. Its open sets will be called cl-open.

For Fréchet spaces, this topology coincides with the given locally convex

topology.

Let E and F be two convenient spaces and let U HE be a cl-open. A map

f : EIU ! F is said to be smooth if f � c a ClðR;FÞ for any c a ClðR;UÞ:
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Moreover, cf. [21], 2.3 (5), the space ClðU ;F Þ may be endowed with a structure

of convenient vector space.

2.2. Di¤erentiable manifolds

2.2.1. Structure of di¤erentiable manifold. A chart ðU ; jÞ on a set M is a bijec-

tion j : U ! jðUÞHE from a subset U of M on a cl-open subset of a conve-

nient vector space E.

A family ðUa; jaÞa AA of charts is called a Cl-atlas if all chart changings

jab ¼ ja � ðjbÞ
�1 : jbðUaBUbÞ ! jaðUaBUbÞ are smooth.

Two Cl-atlases are called equivalent if their union is again a Cl-atlas.

The set M equipped with an equivalence class of Cl-atlases is called

Cl-manifold.

A subset W of the manifold M is open i¤ for all a a A the subset jaðUaBWÞ
of E is cl-open.

The so defined topology is both the final topology with respect to all inverses of

chart mapping in one atlas and the final one with respect to all smooth curves.

From now on we assume that manifolds are smoothly Hausdor¤, i.e., the

smooth functions in ClðM;RÞ separate points in M.

2.2.2. Smooth mappings. A mapping f : M ! N between two Cl-manifolds is

called smooth if for all x a M and for all chart ðV ;cÞ on N such that f ðxÞ a V

there exists a chart ðU ; jÞ on M such that x a U , f ðUÞHV and such that

c � f � j�1 is smooth.

This is the case i¤ f � c is smooth for each smooth curve c : R!M.

We will denote by F the ring of smooth functions from M to R.

2.2.3. Vector bundles. Let p : F !M be a smooth mapping between di¤eren-

tiable manifolds F and M.

A vector bundle chart on ðF ; p;MÞ is a pair ðU ;FÞ where U is an open subset

in M and where F is a fiber respecting di¤eomorphism as in the diagram

FjU ¼ p�1ðUÞ ����!F U � V

U

 ���
� ����!p pr1

where V is a fixed real convenient vector space, called the standard fiber.

Two charts ðU1;F1Þ et ðU2;F2Þ are called compatible if F1 � ðF2Þ�1ðx; vÞ may

be written as
�
x;F1;2ðxÞðvÞ

�
where F1;2 : U1BU2 ! GLðVÞ. The mapping F1;2

is smooth in LðVÞ where LðVÞ is the space of bounded linear mapping (and then

smooth).
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A vector bundle atlas ðUa;FaÞa AA for p : F !M is a set of pairwise com-

patible charts ðUa;FaÞ where ðUaÞa AA is an open cover of the manifold M. The

notion of equivalent atlases is obvious.

A smooth vector bundle p : F !M corresponds to manifolds F (total space),

M (base) and a smooth mapping p : F !M (projection) equipped with an equiv-

alence class of vector bundle atlases.

A section s of p : F !M is a smooth mapping s : M ! F such that

p � s ¼ IdM .

The space F of all sections of F can be endowed with a structure of convenient

vector space.

2.2.4. Vector fields. A (kinematic) tangent vector at x a M is an equivalence

class for the following equivalence relation

c1P c2 if and only if
c1ð0Þ ¼ c2ð0Þ ¼ x a U ;

ðj � c1Þ0ð0Þ ¼ ðj � c2Þ0ð0Þ;

�

where ðU ; jÞ is a chart on M.

The set of all tangent vectors at the di¤erent points of the manifold, endowed

with a structure of fiber bundle, is called the (kinematic) tangent bundle and de-

noted by TM.

A (kinematic) vector field is a smooth section of TM. We denote the space of

(kinematic) vector fields by XðMÞ. It can be equipped with a structure of conve-

nient vector space.

For smooth regular manifolds ([20], 14), the bracket of two vector fields X and

Y can be defined if M is assumed to be a cl-open set of a convenient vector space

E by

½X ;Y � ¼ dYðXÞ � dXðYÞ;

where X and Y are seen as smooth mappings from M to E.

2.2.5. Tangent mapping. Let M and N be two di¤erentiable manifolds and let

f : M ! N be a smooth mapping. f induces a linear mapping Tx f : TxM !
Tf ðxÞM which maps a tangent vector to a curve c where cð0Þ ¼ x to the tangent

vector to the curve f � c at f ðxÞ.
The mapping Tf : TM ! TN is then smooth and called tangent mapping of f :

2.2.6. Cotangent bundle. A (kinematic) 1-form at x a M is a bounded linear

functional on the convenient vector space TxM (so it belongs to TxM
0). The set

of all these 1-forms at the di¤erent points of M can be endowed with a structure of

vector bundle called (kinematic) cotangent bundle and denoted by T 0M.
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A smooth atlas ðUa; jaÞa AA of M gives rise to transition functions x 7!
d
�
jb � ðjaÞ

�1�
jaðxÞ

.

2.2.7. Di¤erential forms. On a manifold M a (kinematic) 1-form is nothing but

a smooth section of T 0M.

The set of these 1-forms can be equipped with a structure of convenient vector

space.

On a smooth regular manifold, the class of di¤erential forms ([20], 33.22)

stable under Lie derivation LX , exterior derivative d, interior product iX and

pullback f � is the graded algebra

WðMÞ ¼0
þl

k¼0
WkðMÞ

where

WkðMÞ ¼ Lk
altðTM;RÞ

has a structure of convenient vector space. W0ðMÞ corresponds to F and

W1ðMÞ ¼ T 0M.

We denote by WkðM;EÞ ¼ Lk
altðTM;EÞ the space of k-forms with values in the

vector bundle p : E !M.

The Lie derivative L : XðMÞ �WkðMÞ ! WkðMÞ is a smooth mapping defined

by

ðLXoÞðX1; . . . ;XkÞ ¼ X
�
oðX1; . . . ;XkÞ

�
�
Xk
i¼1

oðX1; . . . ; ½X ;Xi�; . . . ;XkÞ

The exterior derivative d : WkðMÞ ! Wkþ1ðMÞ is smooth and defined by

ðdoÞðxÞðX0; . . . ;XkÞ ¼
Xk
i¼0
ð�1Þ iXi

�
oðX0; . . . ; bXiXi; . . . ;XkÞ

�
þ

X
0ai< jak

ð�1Þ iþjoð½Xi;Xj�;X0; . . . ; bXiXi; . . . ; bXjXj; . . . ;XkÞ:

3. Strong projective limit of Banach vector bundles

3.1. Projective limits of topological spaces. A projective system of topological

spaces is a sequence
�
ðXi; d

j
i Þjbi

�
i AN

where

– for all i a N, Xi is a topological space,

– for all i; j a N such that jb i, d j
i : Xj ! Xi is a continuous mapping,
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– for all i a N, d ii ¼ IdXi
,

– for all integers ia ja k, d j
i � dkj ¼ dki .

An element ðxiÞi AN of the product
Q

i AN Xi is called a thread if for all jb i,

d
j
i ðxjÞ ¼ xi.

The set X ¼ lim � Xi of such elements, endowed with the finest topology for

which all the projections di : X ! Xi are continuous, is called projective limit of

the sequence
�
ðXi; d

j
i Þjbi

�
i AN

.

A basis of the topology of X is constituted by the subsets ðdiÞ�1ðUiÞ where Ui is

an open subset of Xi (and so d
j
i is open).

Let
�
ðXi; d

j
i Þjbi

�
i AN

and
�
ðYi; g

j
i Þjbi

�
i AN

be two projective systems whose re-

spective projective limits are X and Y .

A sequence ð fiÞi AN of continuous mappings fi : Xi ! Yi, satisfying for all

i; j a N, jb i; the condition

g
j
i � fj ¼ fi � d j

i

is called projective system of mappings.

The projective limit of this sequence is the mapping

f : X ! Y ; ðxiÞi AN 7!
�
fiðxiÞ

�
i AN

:

The mapping f is continuous and is a homeomorphism if all the fi are homeo-

morphisms (cf. [1]).

3.2. Strong projective limit of Banach manifolds. The system
�
ðMi; d

j
i Þjbi

�
i AN

is called strong projective system of Banach manifolds if

– Mi is a manifold modeled on the Banach space Mi,

–
�
ðMi; d

j
i Þjbi

�
i AN

is a projective sequence,

– for all x ¼ ðxiÞ a M ¼ lim � Mi; there exists a projective system of local charts

ðUi; jiÞi AN such that xi a Ui where one has the relation ji � d
j
i ¼ d

j
i � jj,

– U ¼ lim � Ui is open in M.

The projective limit M ¼ lim � Mi then has a structure of Fréchet manifold

modeled on the Fréchet space M ¼ lim � Mi where the di¤erentiable structure is

defined via the charts ðU ; jÞ where j ¼ lim � ji : U !
�
jiðUiÞ

�
.

j is a homeomorphism (projective limit of homeomorphisms) and the charts

changings ðc � j�1ÞjjðUÞ ¼ lim �

��
ci � ðjiÞ

�1�
jjiðUiÞ

�
between open sets of Fréchet

spaces are Cl in the sense of convenient spaces.

Example 3.1. Let p : E !M a vector bundle of finite rank over the finite dimen-

sional manifold M. The space of infinite jets of sections of E is a strong projective

system of Banach manifolds (cf. [38], [1]).

7Projective limit of Lie algebroids



Example 3.2. Projective limit of Banach–Lie groups (cf. [13], [31], [1]).

A group G is called projective limit of Banach–Lie group modeled on the pro-

jective limit G ¼ lim � Gi if

(1) G ¼ lim � Gi where ðGi; d
j
i Þ is a projective system of Banach–Lie groups where

Gi is modeled on Gi,

(2) for all i a N there exists a chart ðUi; jiÞ centered at the unity ei a Gi such that

(a) d
j
i ðUjÞHUi for jb i,

(b) d
j
i � jj ¼ jj � d

j
i ,

(c) lim � jiðUiÞ is an open set of G and lim � Ui is open in G according to the

projective limit topology.

As a simple example, one can consider the space of real sequences RN,

equipped with the product topology; it is an abelian Lie group, projective limit of

the abelian Lie groups R j, j a N.

More interesting examples correspond to compact groups because any com-

pact group is the projective limit of a family of compact Lie groups (cf. [41]).

It is possible to define on Fréchet Lie groups G which are projective limits

of sequences of Banach Lie groups the exponential expG as projective limit of the

sequence expGi
. This mapping is then continuous.

3.3. Strong projective limit of vector bundles. Let
�
ðMi; d

j
i Þjbi

�
i AN

be a strong

projective system of Banach manifolds where each manifold Mi is modeled on the

Banach space Mi.

For any integer i let ðEi; pi;MiÞ be the Banach vector bundle whose type fiber

is the Banach vector space Ei where ðEi; l j
i Þjbii AN is a projective system of Banach

spaces.

The sequence
�
ðEi; f

j
i Þjbi

�
i AN

where f
j
i is a morphism of vector bundles is

called strong projective system of Banach vector bundles on
�
ðMi; d

j
i Þjbi

�
if for all

ðxiÞ there exists a projective system of trivializations ðUi; tiÞ of ðEi; pi;MiÞ, where
ti : ðpiÞ�1ðUiÞ ! Ui � Ei are local di¤eomorphisms such that xi a Ui (open in Mi),

and where U ¼ lim � Ui is open in M and where, for all i; j a N such that jb i, we

have the compatibility condition

ðd j
i � l

j
i Þ � tj ¼ ti � f j

i :

We then have the following proposition which generalizes the result of [15]

about the projective limit of tangent bundles to Banach manifolds whose proof

can be found in [5].

Proposition 3.3. Let ðEi; pi;MiÞi AN be a strong projective system of Banach vector

bundles.

Then ðlim � Ei; lim � pi; lim � MiÞ is a Fréchet vector bundle.
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Observe that GlðEÞ cannot be endowed with a structure of Lie group. So it

cannot play the role of structural group. We then consider, as in [14], the general-

ized Lie group H 0ðEÞ ¼ lim � H 0
i ðEÞ, the projective limit of the Banach Lie groups

H 0
i ðEÞ ¼

n
ðh1; . . . ; hiÞ a

Yi

j¼1
GlðEjÞ : l j

k � hj ¼ hk � l j
k for ka ja i

o
:

We then obtain the di¤erentiability of the transition functions T.

4. Banach Lie algebroids

4.1. Definition. Examples. Let p : E !M be a Banach vector bundle whose

fiber is a Banach space E.

A morphism of vector bundles r : E ! TM is called anchor. This morphism

gives rise to r : E ! TM ¼ XðMÞ defined for every x a M and every section s of

E by:
�
rðsÞ

�
ðxÞ ¼ r

�
sðxÞ

�
and still denoted by r.

Assume there exists a bracket ½: ; :�E on the space E which provides a structure

of real Lie algebra on E.

Definition 4.1. ðE; p;M; rÞ is called a Banach Lie algebroid if

(1) r : ðE; ½: ; :�EÞ !
�
XðMÞ; ½: ; :�

�
is a Lie algebra homomorphism,

(2) ½s1; fs2�E ¼ f ½s1; s2�E þ
�
rðs1Þ

�
ð f Þs2 for every f a F and s1; s2 a E.

Example 4.2. E ¼ TM and r ¼ N is a Nijenhuis tensor, i.e., satisfying the condi-

tion

½NX ;NY � ¼ N
�
½NX ;Y � þ ½X ;NY � �Nð½N;Y �Þ

�
ðTM; p;M;NÞ is a Lie algebroid for the bracket ½: ; :�N defined by

½X ;Y �N ¼ ½NX ;Y � þ ½X ;NY � �Nð½X ;Y �Þ:

The trivial case corresponds to N ¼ IdTM .

Example 4.3. E is an involutive distribution over a Banach manifold M. The

anchor is then the canonical injection r : E ! TM.

Example 4.4. E is the cotangent bundle of a Banach manifold and r ¼ P is a

Poisson tensor. The bracket on the sections of T �M (cf. [25]) is defined by

fa; bgP ¼ LPbðaÞ � LPaðbÞ þ d3b;Pa4
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ðT �M;P;M; f: ; :gPÞ is a Lie algebroid because, in particular, we have

fa; f :bgP ¼ f :fa; bgP þ LPað f Þ:b:

One can find in [34] a generalization to the Jacobi structures (which were intro-

duced by Lichnerowicz in [23]).

Example 4.5. Let c : M � G !M be a right action of a Lie group G (with Lie

algebra GÞ on a Banach manifold M: Then there exists a natural morphism of the

trivial Banach bundle M � G in TM defined by

Cðx;XÞ ¼ Tðx; eÞcð0;XÞ:

For all X and Y in G, we have

CðfX ;YgÞ ¼ ½CðXÞ;CðYÞ�;

where f ; g is the Lie bracket on G (cf. [20], 36.12).

ðM � G;C;M; f ; gÞ is then a Lie algebroid.

4.2. Derivatives. On a Banach Lie algebroid the base of which is smooth regular

one can define the notions of Lie derivative Lr
s with respect to a section s of E (this

notion generalizes the Lie derivative LX with respect to a vector field, section of

the tangent bundle) and exterior derivative dr (cf. [2], [7]). For the case of finite

dimensional algebroid, see [26].

For every section s of the vector bundle E, there exists a unique graded endo-

morphism of degree 0 of the graded algebra WðM;EÞ, called the Lie derivative

with respect to s and denoted by Lr
s which satisfies the following properties:

(1) for a smooth function f a W0ðM;EÞ ¼F

Lr
s ð f Þ ¼ Lr�sð f Þ ¼ ir�sðdf Þ

where LX denotes the usual Lie derivative with respect to the vector field X ,

(2) for a q-form o a WqðM;EÞ (where q > 0)

ðLr
soÞðs1; . . . ; sqÞ ¼ Ls

s

�
oðs1; . . . ; sqÞ

�
�
Xq

i¼1
oðs1; . . . ; si�1; ½s; si�E ; siþ1; . . . ; sqÞ:
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On the other hand, we can also define for any function f a W0ðM;EÞ ¼F the

element of W1ðM;EÞ, denoted dr f , by

dr f ¼ tr � df ð1Þ

where tr : T
�M ! E � is the transpose of the anchor.

There exists a unique graded endomorphism of degree 1 of the graded algebra

WðM;EÞ, called WðM;EÞ-value derivative, denoted dr, which satisfies the follow-

ing properties:

(1) For any function f a W0ðM;EÞ ¼F, dr f is the element of W1ðM;EÞ defined
by the relation (1).

(2) For any element o of WqðM;EÞ (q > 0), dro is the unique element of

Wqþ1ðM;EÞ such that for all s0; . . . ; sq a E,

ðdroÞðs0; . . . ; sqÞ ¼
Xq

i¼0
ð�1Þ iLr

si

�
oðs0; . . . ; bsisi; . . . ; sqÞ�

þ
Xq

0ai< jaq

ð�1Þ iþj
�
oð½si; sj�E ; s0; . . . ; bsisi; . . . ; bsjsj; . . . ; sqÞ�:

We then have

dr � dr ¼ 0:

4.3. Algebroids morphisms

Definition 4.6. A linear bundle morphism c : E ! E 0 over f : M !M 0 is a

morphism of the Lie algebroids ðE; p;M; rÞ and ðE 0; p 0;M 0; r 0Þ if the mapping

c� : WqðM;E 0Þ ! WqðM;EÞ defined by

ðc�a 0Þxðs1; . . . ; sqÞ ¼ a 0f ðxÞðc � s1; . . . ;c � sqÞ

commutes with the di¤erentials

dr � c� ¼ c� � dr 0 :

We then get the category of Banach Lie algebroids.

4.4. Admissible curves. In what concerns mechanics, an element a of E can be

regarded as a generalized velocity and the actual velocity v is obtained when

applying the anchor to a; i.e., v ¼ rðaÞ.
A curve g : ½0; 1� ! E is said to be admissible (cf. [9]) if m 0ðtÞ ¼ r

�
gðtÞ

�
where

t 7! mðtÞ ¼ p
�
gðtÞ

�
is the base curve.

A Lie algebroid morphism maps admissible curves to admissible curves.
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4.5. Semisprays. Let ðE; p;M; rÞ be a Banach Lie algebroid and let

Tp : TE ! TM the tangent map of p. We denote by tE : TE ! E the tangent

bundle of E.

The notion of semispray we give is a direct generalization of the one used when

E ¼ TM.

Definition 4.7. A section S : E ! TE is called a semispray if

(1) tE � S ¼ IdE ,

(2) Tp � S ¼ r.

We then have the following link between admissible curves and semisprays

(cf. [2])

Proposition 4.8. A vector field on E is a semispray if and only if all its integral

curves are admissible curves.

We now introduce a particular class of semisprays. For l > 0, we denote by

hl : E ! E the homothety of factor l defined by hlðuxÞ ¼ lux for any u a Ex and

any x a M. A semispray S is a spray if we have

S � hl ¼ lThl � S:

5. Strong projective limits of Banach Lie algebroids

ðEi; pi;Mi; riÞi AN is called strong projective system of Lie algebroids if

–
�
ðEi; f

j
i Þjbi

�
i AN

is a strong projective system of Banach vector bundles

(pi : Ei !MiÞi AN over the strong projective system of manifolds�
ðMi; d

j
i Þjbi

�
i AN

,

– for all i; j a N such that jb i, one has

ri � f
j
i ¼ Td

j
i � rj;

– f
j
i : Ej ! Ei is a morphism of the Lie algebroids ðEj; pj;Mj; rjÞ and

ðEi; pi;Mi; riÞ.

We then have the main result of this paper.

Theorem 5.1. Let ðEi; pi;Mi; riÞi AN be a strong projective systems of Banach Lie

algebroids.

Then ðlim � Ei; lim � pi; lim � Mi; lim � riÞ is a Fréchet Lie algebroid.
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Proof. First observe that the projective limit lim � Mi is endowed with a di¤erential

manifold structure as defined in 2.1.1. Then ðlim Ei; lim � pi; lim � MÞi is a Fréchet

vector bundle whose structural group is H 0ðEÞ (cf. Proposition 3.3). The projec-

tive limit of the (vector) tangent bundles ðlim � TMi; lim � pi; lim � MiÞ is equipped

with a Fréchet vector bundle structure; we then get the result of [15], Theorem 2.1.

Let us study the properties of the sections of the vector bundles lim � TMi,

lim � Ei and the projective limit of the anchors ri.

For ðgiÞi AN such that gj ¼ gi � d j
i ¼ ðd

j
i Þ
�ðgiÞ we can define the projective limit

g ¼ lim � gi which is still smooth.

First remark that if Xi ¼ Td
j
i ðXjÞ, we have XiðgiÞ ¼

�
Td

j
i ðXjÞ

�
ðgiÞ ¼

Xjðgi � d j
i Þ ¼ XjðgjÞ. We can define X ¼ lim � Xi a lim � XðMiÞ and we get Xg ¼

lim � Xigi where Xigi a Fi . If the sequences ðX 1
i Þi AN and ðX 2

i Þi AN where

X 1
i ;X

2
i a XðMiÞ are such that X 1

i ¼ Td
j
i ðX 1

j Þ (resp. X 2
i ¼ Td

j
i ðX 2

j Þ), they give rise

to elements X 1;X 2 a lim � XðMiÞ. Because X 1
i and X 1

j are d
j
i -related (so are

X 2
i and X 2

j ), their brackets are d
j
i -related too, i.e., ½X 1

i ;X
2
i �i ¼ Td

j
i ð½X 1

j ;X
2
j �jÞ and

we get the bracket of X 1 and X 2 as projective limit of these brackets.

Let s ¼ lim � si be where si a Ei. Because the spaces lim � Mi and lim � Ei are dif-

ferentiable manifolds, the section s : ðx0; x1; . . .Þ 7!
�
s0ðx0Þ; s1ðx1Þ; . . .

�
is smooth

(cf. Definition 2.2.2).

Let us prove that we can deduce the compatibility condition

f
j
i � ½s1j ; s2j �Ej

¼ ½s1i ; s2i �Ei
� d j

i

from the structure of morphism of f j
i (commutativity with the di¤erentials applied

to 1-forms).

We have
�
ð f j

i Þ
�ðdEi

aiÞ
�
ðs1j ; s2j Þ ¼ ðdEi

aiÞð f j
i � s1j ; f

j
i � s2j Þ where

ðdEi
aiÞð f j

i � s1j ; f
j
i � s2j Þ

¼ Lri�ð f
j

i
�s1

j
Þ
�
aið f j

i � s2j Þ
�
� Lri�ð f

j
i
�s2

j
Þ
�
aið f j

i � s1j Þ
�
� ai½ f j

i � s1j ; f
j
i � s2j �Ei

¼ Lri�s1i

�
aiðs2i Þ

�
� Lri�s2i

�
aiðs1i Þ

�
� ai½s1i ; s2i �Ei

¼ X 1
i

�
aiðs2i Þ

�
� X 2

i

�
aiðs1i Þ

�
� ai½s1i ; s2i �Ei

:

On the other hand we have

�
dEj

�
ð f j

i Þ
�ai

��
ðs1j ; s2j Þ

¼ Lrj�s1j

��
ð f j

i Þ
�ai

�
ðs2j Þ

�
� Lrj�s2j

��
ð f j

i Þ
�ai

�
ðs1j Þ

�
�
�
ð f j

i Þ
�ai

�
½s1j ; s2j �Ej

¼ X 1
j

�
aið f j

i � s2j Þ
�
� X 2

j

�
aið f j

i � s1i Þ
�
� ai½ f j

i � s1j ; f
j
i � s2i �Ei

¼ X 1
i

�
aiðs2i Þ

�
� X 2

i

�
aiðs1i Þ

�
� ai½ f j

i � s1j ; f
j
i � s2i �Ei

:
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Because f
j
i is a morphism, we get ai½s1i ; s2i �Ei

¼ ai½ f j
i � s1j ; f

j
i � s2i �Ei

and then

the compatibility condition.

So the bracket ½s1; s2�lim � Ei
of projective limits of sections s1 ¼ lim � s1i and

s2 ¼ lim � s2i can be defined as the projective limit of the sections ½s1i ; s2i �Ei
of Ei.

The set lim � Ei equipped with this bracket is then a Lie algebra.

According to the condition ri � f
j
i ¼ Td

j
i � rj the projective limit r ¼ lim � ri is

a linear bundle morphism.

So the mapping r ¼ lim � ri is a Lie algebra homomorphism between

ðlim � Ei; ½: ; :�lim � Ei
Þ and ðlim � TMi; ½: ; :�iÞ:

For all i a N, every section s1i and s2i of Ei and every smooth gi : Mi ! R; we

have

½s1i ; gis2i �Ei
¼ gi½s1i ; s2i �Ei

þ
�
riðs1i Þ

�
ðgiÞs2i :

In order to get the relation

½s1; gs2�E ¼ g½s1; s2�E þ
�
rðs1Þ

�
ðgÞs2

we have to prove that

1) f
j
i � ðgj½s1j ; s2j �Þ ¼ gi½s1i ; s2i � � d

j
i ,

2) f
j
i �

��
rjðs1j Þ

�
ðgjÞs2j

�
¼

��
riðs1i Þ

�
ðgiÞs2i

�
� d j

i .

For the first item, for any thread ðxiÞi AN , i.e., xj ¼ d
j
i ðxjÞ; we have

f
j
i � ðgj½s1j ; s2j �Ej

ÞðxjÞ ¼ f
j
i

�
ðgi � d j

i � ½s1j ; s2j �Ej
ÞðxjÞ

�
:

Because f
j
i is a linear mapping from p�1j ðxjÞ to p�1i ðxiÞ; this expression equals

giðxiÞ � f
j
i

�
½s1j ; s2j �Ej

ðxjÞ
�
. Thanks to the compatibility condition f

j
i � ½s1j ; s2j �Ej

¼
½s1i ; s2i �Ei

� d j
i we have proved the first point.

For the second item, we first use the commutativity with the di¤erentials dEi

and dEj
.

½ð f j
i Þ
�ðdEi

giÞ�ðsjÞðxjÞ ¼
�
dEj

�
ðd j

i Þ
�ðgiÞ

��
ðsjÞðxjÞ

and so

ðdEi
giÞð f j

i � sjÞðxjÞ ¼ ½dEj
ðgjÞ�ðsjÞðxjÞ:

Using the definition of dEi
; i.e., dEi

gi ¼ tri � dgi we have

dgi
�
ri
�
f
j
i

�
sjðxjÞ

���
¼ dgj

�
rj
�
sjðxjÞ

��
and so

½rið f
j
i � sjÞ�ðgiÞðxiÞ ¼ ½rj � sj�ðgjÞðxjÞ:
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Due to the compatibility condition, we get

½ f j
i � ðrj � sjÞ�ðgiÞ ¼ ½rjðsjÞ�

�
ðd j

i Þ
� � gi

�
:

It is then easy to obtain the second point. r

6. Examples

6.1. Nijenhuis Lie algebroid. Let
�
ðMi; d

j
i Þjbi

�
i AN

be a strong projective system

of Banach manifolds.

For any i a N, consider a Nijenhuis tensor Ni : TMi ! TMi (cf. Example 4.2).

In this case, we consider f
j
i ¼ Td

j
i morphism from TMj to TMi. If we have the

compatibility condition

Ni � Td
j
i ¼ Td

j
i �Nj;

then ðlim � TMi; lim � pi; lim � Mi; lim � NiÞ is a Fréchet Lie algebroid because we get in

particular

ðd j
i Þ
� � dTMi

¼ dTMj
� ðd j

i Þ
�:

As an example we can consider the case of an infinite-dimensional harmonic

oscillator which is a L-integrable Hamiltonian system (cf. [24]). We consider the

projective limit
�
ðR2i; d j

i Þjbi

�
i AN

where d
j
i is the canonical projection from R2j

onto R2i. The Nijenhuis tensor Ni which corresponds to the recursion operator

can be written as

Ni ¼
Xi

k¼1
ðx2

k þ y2kÞ dxk n
q

qxk
þ dyk n

q

qyk

� �
;

where
�
ðx1; y1Þ; . . . ; ðxi; yiÞ

�
are the coordinates on R2i. It is then easy to establish

the compatibility condition.

6.2. Distributions. A distribution on a Banach manifold B is a smooth map

D : B! TB such that for every x a B, Dx is a linear subspace of TxB. This distri-

bution is involutive if for any vector fields X and Y tangent to D, the bracket

½X ;Y � is still tangent to D.

Notice that the range of a Lie algebroid anchor is an involutive weak distribu-

tion (cf. [33]) if the base is smooth regular (cf. [7]).

Let
�
ðMi; d

j
i Þjbi

�
i AN

be a strong projective system of Banach manifolds. Con-

sider for any i a N a smooth involutive distribution Ei over the manifold Mi.
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Then ðEi; pi;Mi; JiÞi AN, where Ji : Ei ! TMi is the natural injection and f
j
i is the

restriction of Td
j
i to Ei, is a strong projective system of Lie algebroids.

The projective limit lim � Ei can be seen as an involutive distribution of the

Fréchet bundle lim � TMi.

6.2.1. Projective limit of finite rank distributions. Consider the case of a

1-dimensional distribution on the infinite jets of sections of a linear bundle

p : F ! N. Let X be a vector field on F projectable on N with projection X̂X ;

the flow jX
t of X covers the flow jX̂Xt of X̂X and by prolongation to JlðFÞ we

obtain a one-parameter local group ft ¼ prlðjX
t Þ of transformations on JlðFÞ

(cf. [6], [30]). The prolongation prlðXÞ of the vector field X is the vector field

on JlðpÞ associated to this flow. Moreover this flow preserves the Cartan distri-

bution (contact ideal) C.

One can remark that C is an involutive distribution on the projective limit

lim � TJ iðpÞ which appears as limit of non involutive distributions on J iðpÞ (cf. [38]).
If one considers a system of PDEs E, i.e., a subvariety of the bundle J kðpÞ, by

infinite prolongation, we get a submanifold i : E! JlðpÞ of JlðpÞ. We then

have an involutive distribution on E by restriction of the Cartan distribution to E

by the pull-back i (cf. [19], [10]).

Recall that an infinite-dimensional smooth Fréchet di¤erentiable manifold

equipped with a finite dimensional involutive distribution corresponds to the no-

tion of di‰ety (di¤erential variety) as introduced by Vinogradov ([40]). One can

find applications of such a framework in non holonomic mechanics and non linear

control systems (see for instance [12]).

6.2.2. Inverse limit of Banach distributions. One considers here the case where

the maps d iþ1i : Miþ1 !Mi are canonical injections between Banach manifolds,

the distributions Ei are of corank 1 defined as ker ai where ai is a 1-form fulfilling

the di¤erent compatibility conditions.

One can meet this kind of situation forMi ¼ CiðS1Þ where aiðuiÞ ¼
Ð
S1 uiðxÞ dx.

The associated distribution is a‰ne ([17]) and is linked with the first Poisson tensor

of the KdV equation.

7. Strong projective limit of semisprays

Let ðEi; pi;Mi; riÞi AN be a strong projective system of Lie algebroids.

Consider a sequence ðgiÞi AN where gi : ½0; 1� ! Ei is an admissible curve such

that for all i; j a N such that jb i

f
j
i � gj ¼ gi:

Hence g ¼ lim � gi exists.

16 P. Cabau



For all i; j a N such that jb i and for all t a ½0; 1�; using the equalities

ðpi � giÞ
0ðtÞ ¼

�
d
j
i � ðpj � gjÞ

� 0ðtÞ ¼ Td
j
i

�
ðpj � gjÞ

0ðtÞ
�

we obtain

ðpi � giÞ
0ðtÞ � ri

�
giðtÞ

�
¼ Td

j
i

�
ðpj � gjÞ

0ðtÞ � rj
�
gjðtÞ

��
:

So, for all t a ½0; 1�, we have

ðp � gÞ0ðtÞ ¼ r
�
gðtÞ

�
:

Such a curve will be called admissible curve in E ¼ lim � Ei.

Now consider a sequence ðSiÞi AN where Si : Ei ! TEi is a semispray such

that

Tf
j
i � Sj ¼ Si � f j

i :

We then can define S : ðu0; u1; . . .Þ 7!
�
S0ðu0Þ;S1ðu1Þ; . . .

�
which is a smooth

section of lim � TEi. It is easy to see that we have tE � S ¼ IdE .

For all i; j a N such that jb i and for all ui ¼ f
j
i ðujÞ we have

ðTpi � si � riÞðuiÞ ¼ ðTpi � si � f j
i � ri � f

j
i ÞðujÞ

¼ ðTpi � Tf j
i � sj � ri � f

j
i ÞðujÞ

¼
�
Tðpi � f j

i Þ � sj � ri � f
j
i

�
ðujÞ

¼
�
Tðd j

i � pjÞ � sj � ri � f
j
i

�
ðujÞ:

Finally, we can write

ðTpi � si � riÞðuiÞ ¼ Td
j
i ðTpj � sj � rjÞðujÞ:

So we have

Tp � s ¼ r:

S will be called semispray.

One can obviously define the notion of spray on the projective limit lim � Ei as

projective limit of sprays.

We end this paper with a proposition which establishes the link between semi-

sprays and admissible curves. It generalizes the result of [2] (for the case of sprays

in the particular case E ¼ TM see [37]).
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Proposition 7.1. A vector field S ¼ lim � Si on E ¼ lim � Ei is a semispray if and only

if all its integral curves are admissible curves.

Proof. The proof is nothing but an adaptation of the proof of Theorem 2.3 one

can find in the paper [2]. Consider a semispray S ¼ lim � Si and assume that

c : ½0; 1� ! E is an integral curve of S. Then for all i a N, ci : ½0; 1� ! Ei is an

integral curve of Si (i.e., for all t a ½0; 1�, c 0i ðtÞ ¼ Si

�
ciðtÞ

�
), where f

j
i � cj ¼ ci. It

follows that for all i a N and for all t a ½0; 1� we have

Tpi � c 0i ðtÞ ¼ ðTpi � SiÞ
�
ciðtÞ

�
:

Because pi � c 0ðtÞ ¼ ri
�
cðtÞ

�
, ci is an admissible curve and so is c ¼ lim � ci.

The converse is left to the reader. r

For a projective limit of sprays it is easy to prove that for all i; j a N such that

jb i and for all ui ¼ f
j
i ðujÞ using the relation hl

i � f
j
i ¼ f

j
i � hl

j and properties of

tangent mappings we have

Tf
j
i ðsj � hl

j � lThl
j � sjÞðujÞ ¼ ðsi � hl

i � lThl
i � siÞðuiÞ:

So we can write S � hl ¼ lThl � S and S is a spray on E.
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Forum 5 (2010), 2901–2909. Zbl 1218.58007 MR 2745224

[38] D. J. Saunders, The geometry of jet bundles. London Math. Soc. Lecture Note Ser.
142, Cambridge University Press, Cambridge 1989. Zbl 0665.58002 MR 989588

[39] R. Schmid, Infinite dimensional Lie groups with applications to mathematical physics.
J. Geom. Symmetry Phys. 1 (2004), 54–120. Zbl 1063.22020 MR 2096566

[40] A. M. Vinogradov, Local symmetries and conservation laws. Acta Appl. Math. 2

(1984), 21–78. Zbl 0534.58005 MR 736872
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