# Scarf lattice ideals 

Hossein Sabzrou*<br>(Communicated by Bernd Sturmfels)


#### Abstract

This paper deals with the Scarf property of lattice ideals initiated by Peeva and Sturmfels [10], [11]. We will present a Scarf lattice ideal that is neither generic nor of codimension 2 and show that this property gives rise to several algebraic and combinatorial properties. In particular, we prove that for monomial curves, this property coincides with the notion of genericity, and that certain Scarf lattice ideals can have certain Scarf initial ideals.


Mathematics Subject Classification (2010). Primary 13D02, 13F20; Secondary 52B20.
Keywords. Lattice ideals, minimal free resolution, Scarf complexes.

## 1. Introduction

Let $B=\left(b_{i j}\right)$ be an integer $n \times m$-matrix of rank $m$. Let $L$ be the lattice spanned in $\mathbb{Z}^{n}$ by the columns of $B$. Let $I_{L}$ be the lattice ideal in $S=\mathbb{k}[\boldsymbol{x}]:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$, $k_{k}$ a field, generated by all pure binomials $\boldsymbol{x}^{\boldsymbol{u}^{+}}-\boldsymbol{x}^{\boldsymbol{u}^{-}}$where $\boldsymbol{u}=\boldsymbol{u}^{+}-\boldsymbol{u}^{-}$runs over $L$. If $L$ is saturated, that is, the Abelian group $\mathbb{Z}^{n} / L$ is torsion-free, then $I_{L}$ is prime and there exists an integer $d \times n$-matrix $A=\left(a_{i j}\right)$ of rank $d(=n-m)$ such that $L=\operatorname{ker}_{\mathbb{Z}} A$. In this case, $I_{L}$ is called the toric ideal of $A$ and is denoted by $I_{A}$.

Throughout this paper, we assume that the matrix $B$ is homogeneous with respect to a strictly positive integer vector $\boldsymbol{w}=\left(w_{1}, \ldots, w_{n}\right)$, that is, the following equivalent conditions are satisfied (cf. [12], Proposition 2.1):

- $\boldsymbol{w} B=0$.
- $L \cap \mathbb{N}^{n}=\{0\}$, i.e., $L$ contains no non-negative vectors.
- For each $\boldsymbol{u} \in \mathbb{R}^{n}$, the body $P_{\boldsymbol{u}}:=\left\{\boldsymbol{v} \in \mathbb{R}^{m}: B \boldsymbol{v} \leq \boldsymbol{u}\right\}$ is a polytope.
- Both rings $S$ and $S / I_{L}$ are $\mathbb{Z}$-graded by $\operatorname{deg}\left(x_{i}\right)=w_{i}$.

[^0]Here we recall some definitions and results from [11]. The rings $S$ and $S / I_{L}$ are graded by the abelian group $\Gamma:=\mathbb{Z}^{n} / L$ via $\operatorname{deg}\left(\boldsymbol{x}^{\boldsymbol{u}}\right):=\boldsymbol{u}+L$. When $L$ is saturated, then $\Gamma \simeq \mathbb{Z}^{d}$, and we can equivalently $\operatorname{define} \operatorname{deg}\left(\boldsymbol{x}^{\boldsymbol{u}}\right):=A \boldsymbol{u}$. Notice that our assumption on the matrix $B$ allows us to choose the matrix $A$ non-negative integer. The set of all monomials of a fixed degree in $\Gamma$ is called a fiber, and $\mathbb{N}^{n} / L$ is the set of all fibers. The fiber containing a particular monomial $\boldsymbol{x}^{u}$ can be identified with the lattice points in the polytope $P_{\boldsymbol{u}}$ via the map $\boldsymbol{v} \mapsto \boldsymbol{u}-B \boldsymbol{v}$. Two polytopes $P_{\boldsymbol{u}}$ and $P_{\boldsymbol{u}^{\prime}}$ are lattice translates of each other if $\boldsymbol{u}-\boldsymbol{u}^{\prime} \in L$. Disregarding lattice equivalence, we set $P_{C}:=P_{u}$ for all monomials $\boldsymbol{x}^{u}$ in a fibre $C$. This polytope is called the polytope of the fiber $C \in \mathbb{N}^{n} / L$. A fiber $C$ is called basic if $\operatorname{gcd}(C)=1$ and $\operatorname{gcd}\left(C \backslash\left\{\boldsymbol{x}^{u}\right\}\right) \neq 1$ for all $\boldsymbol{x}^{u} \in C$ where $\operatorname{gcd}(C)$ denotes the greatest common divisor of all monomials in $C$. If $C$ is a basic fiber and $\boldsymbol{x}^{\boldsymbol{u}}$ a monomial in $C$, then the monomials in $C \backslash\left\{\boldsymbol{x}^{u}\right\}$ divided by their greatest common divisor form a basic fiber. For any finite subset $J \subset L$, let $\max (J)$ be the vector which is coordinatewise maximum of $J$. Let

$$
\Delta_{L}:=\left\{J \subset L: \max (J) \neq \max \left(J^{\prime}\right) \text { for all finite subsets } J^{\prime} \subset L \text { other than } J\right\}
$$

$\Delta_{L}$ is an infinite simplicial complex of dimension at most $n-1$ which has $L$ as its vertex set. Since the lattice $L$ acts naturally on $\Delta_{L}$ via $(\boldsymbol{u}, J) \mapsto \boldsymbol{u}+J$, we can form the finite simplicial complex

$$
\Delta_{L}^{0}:=\left\{J \subset L \backslash\{0\} \mid \bar{J}:=J \cup\{0\} \in \Delta_{L}\right\},
$$

modulo the action by $L$. The simplicial complex $\Delta_{L}^{0}$ is called the linked Scarf complex. We have the one to one correspondence $J \mapsto C_{J}:=\left\{\boldsymbol{x}^{\max (\bar{J})-\boldsymbol{u}}: \boldsymbol{u} \in \bar{J}\right\}$ between the faces of $\Delta_{L}^{0}$ and the set of all basic fibers, and that $\# J=\# C_{J}-1$. The $\Gamma$-graded module $\boldsymbol{F}_{L}:=\bigoplus_{J \in \Delta_{L}^{0}} S\left(-\boldsymbol{e}_{C_{J}}\right)$ equipped with the differential given in [11] is the algebraic Scarf complex where each basis element $\boldsymbol{e}_{C_{J}}$ is in homological degree $\# J$ and $\Gamma$-degree $C_{J}$, i.e., $\Gamma$-degree of a monomial in $C_{J}$. In general the complex $\boldsymbol{F}_{L}$ is contained in the minimal free resolution of $S / I_{L}$ over $S$, and if the equality occurs we say that $I_{L}$ is a Scarf lattice ideal.

It follows from the definition that the minimal free resolution of a Scarf lattice ideal $I_{L}$ is a monomial resolution which does not depend on the characteristic of the field $\mathbb{k}$, and the quotient $\sum_{J \in \Delta_{L}^{0}}(-1)^{\# J} \cdot \boldsymbol{x}^{\max (\bar{J})} / \prod_{i=1}^{n}\left(1-x_{i}\right)$ is the $\Gamma$-graded Hilbert series of $S / I_{L}$, where we identify all monomials in a fiber.

All codimension 1, non-complete intersection codimension 2 and generic lattice ideals, i.e., lattice ideals generated by binomials with full supports, are the well-known examples of Scarf lattice ideals [10], [11]. However, as we will see in Section 5, we can have other types of Scarf lattice ideals.

This paper is organized as follows. In Section 2, we will describe minimal generators of a Scarf lattice ideal (cf. Theorem 2.2). We will see that a Scarf lattice
ideal defining a monomial curve must be generic (cf. Theorem 2.4). In Section 3, we will see that the initial ideals of a Scarf lattice ideal may also be minimally resolved by a certain kind of Scarf complexes (cf. Theorem 3.1). We will also present a proof of an unpublished result due to Yanagawa which states that all initial monomial ideals of a non-complete intersection codimension 2 lattice ideal are Scarf (cf. Corollary 3.2). In Section 4, we will see that for a Scarf lattice ideal being Cohen-Macaulay (resp. being Gorenstein) is equivalent to satisfying $S_{2}$ condition (resp. being principal) (cf. Theorem 4.2 and Theorem 4.3). Moreover, if a Scarf lattice ideal is $k$-Buchsbaum $(k>0)$, then the length of its minimal free resolution is maximal (cf. Theorem 4.4). We will also see that like the generic lattice ideals, Cohen-Macaulay codimension 2 lattice ideals have always a CohenMacaulay initial ideal (cf. Corollary 4.10). In Section 5, we will provide some examples of Scarf lattice ideals. In particular, we will present a Scarf lattice ideal that is neither generic nor of codimension 2.

The author would like to thank Professor Kohji Yanagawa for his contribution, guidance and encouragement at the starting point of this work. He also thanks the referees for their valuable comments.

## 2. Minimal generators

For the homogeneous matrix $B$, the set of neighbors of the origin (cf. [2]) and its Hilbert basis (cf. [10]) are defined by

$$
N(B):=\left\{\boldsymbol{u} \in \mathbb{Z}^{m} \mid \boldsymbol{u} \neq 0, \operatorname{int} P_{(B u)^{+}} \cap \mathbb{Z}^{m}=\emptyset\right\}
$$

and

$$
H(B):=\left\{\boldsymbol{u} \in \mathbb{Z}^{m} \mid \boldsymbol{u} \neq 0, \#\left(P_{(B \boldsymbol{u})^{+}} \cap \mathbb{Z}^{m}\right)=2\right\}
$$

respectively. Clearly $H(B) \subseteq N(B)$ and both of them are 0 -symmetric. Therefore we can identify antipodal pairs in them. Since $B$ is homogeneous, $N(B) \neq \emptyset$ (cf. [2]). However, $H(B)$ may or may not be empty.

Lemma 2.1. If for each $\boldsymbol{u} \in N(B)$ we have $\# \operatorname{supp}(B \boldsymbol{u})=n$, then $H(B)=N(B)$.
Proof. Let $\boldsymbol{u} \in N(B)$. By definition of $P_{(B u)^{+}}$, each facet of $P_{(B u)^{+}}$goes either from the origin or from $\boldsymbol{u}$. Suppose the contrary that $P_{(B u)^{+}}$has a lattice point $\boldsymbol{v}_{0}$ other than 0 and $\boldsymbol{u}$. We consider two following cases:

Case 1: $\boldsymbol{v}_{0}$ is on the facet passing from the origin. This case is not possible because there exists a Gale vector $b_{i}$, i.e., a row vector of the matrix $B$, such that $b_{i} \cdot \boldsymbol{v}_{0}=0$ which is a contradiction by $\# \operatorname{supp}\left(B \boldsymbol{v}_{0}\right)=n$ (notice that if $\boldsymbol{u} \in N(B)$ and $\boldsymbol{v} \in P_{(B u)^{+}} \cap \mathbb{Z}^{m}$, then $\left.\boldsymbol{v} \in N(B)\right)$.

Case 2: $\boldsymbol{v}_{0}$ is on the facet passing from $\boldsymbol{u}$. In this case, we consider the polytope $P_{(B \boldsymbol{u})^{+}}-\boldsymbol{u}=P_{(B u)^{-}}=P_{(B(-\boldsymbol{u}))^{+}}$. Then $\boldsymbol{v}_{0}-\boldsymbol{u}$ is on the facet of $P_{(B(-\boldsymbol{u}))^{+}}$passing from the origin. Thus, there exists a Gale vector $b_{i}$ such that $b_{i} \cdot\left(\boldsymbol{v}_{0}-\boldsymbol{u}\right)=0$. Since $\boldsymbol{v}_{0}-\boldsymbol{u} \in N(B)$, this contradicts \# $\operatorname{supp}\left(B\left(\boldsymbol{v}_{0}-\boldsymbol{u}\right)\right)=n$.

Theorem 2.2. Let $B$ be an integer $n \times m$-matrix of rank $m$ which is homogeneous with respect to a strictly positive integer vector $\boldsymbol{w}=\left(w_{1}, \ldots, w_{n}\right)$. Consider the following statements:
(1) $\boldsymbol{u} \in H(B)$.
(2) $\left\{\boldsymbol{x}^{(B u)^{+}}, \boldsymbol{x}^{(B u)^{-}}\right\}$is a 2-element fiber.
(3) $\{0, B \boldsymbol{u}\} \in \Delta_{L}$.
(4) $\{B \boldsymbol{u}\} \in \Delta_{L}^{0}$.
(5) $\boldsymbol{x}^{(B u)^{+}}-\boldsymbol{x}^{(B u)^{-}}$is an indispensable binomial.
(6) $\boldsymbol{u} \in N(B)$.

Then the first five statements are equivalent and they imply (6). Moreover, if $B$ is generic, then all of them are equivalent. Consequently, if $I_{L}$ is a Scarf lattice ideal, then it has a unique minimal set of $\Gamma$-homogeneous binomial generators which correspond to the elements of $H(B)$.

Proof. (1) $\Leftrightarrow(2) \Leftrightarrow(3)$ : The implications follow from correspondences $\boldsymbol{v} \mapsto \boldsymbol{u}-B \boldsymbol{v}$ and $J \mapsto C_{J}$ mentioned in Section 1, respectively.
(3) $\Leftrightarrow(4)$ : Follows from the definition of $\Delta_{L}^{0}$.
$(2) \Rightarrow(5)$ : By definition of an indispensable binomial, we have to show that every system of binomial generators of $I_{L}$ contains $\boldsymbol{x}^{(B \boldsymbol{u})^{+}}-\boldsymbol{x}^{(B u)^{-}}$up to a sign. This follows from the fact that the Betti number corresponding to the fiber $\left\{\boldsymbol{x}^{(B u)^{+}}, \boldsymbol{x}^{(B \boldsymbol{u})^{-}}\right\}$is equal to 1 (cf. [10], Lemma 2.1).
$(5) \Rightarrow(2)$ : Let $\mathscr{G}$ be an arbitrary set of minimal generators of $I_{L}$. Since $\boldsymbol{x}^{(B \boldsymbol{u})^{+}}-\boldsymbol{x}^{(B \boldsymbol{u})^{-}}$is an indispensable binomial, then we may assume that $\boldsymbol{x}^{(B \boldsymbol{u})^{+}}-$ $\boldsymbol{x}^{(B \boldsymbol{u})^{-}} \in \mathscr{G}$. Suppose, on the contrary, that $\left\{\boldsymbol{x}^{(B u)^{+}}, \boldsymbol{x}^{(B \boldsymbol{u})^{-}}\right\}$is not a 2-element fiber. Then it has a monomial $\boldsymbol{x}^{\boldsymbol{a}}$ other than $\boldsymbol{x}^{(B \boldsymbol{u})^{+}}$and $\boldsymbol{x}^{(B \boldsymbol{B})^{-}}$. We can replace $\boldsymbol{x}^{(B \boldsymbol{u})^{+}}-\boldsymbol{x}^{(B \boldsymbol{u})^{-}} \in \mathscr{G}$ by two binomials $\boldsymbol{x}^{(B \boldsymbol{u})^{+}}-\boldsymbol{x}^{\boldsymbol{a}}$ and $\boldsymbol{x}^{\boldsymbol{a}}-\boldsymbol{x}^{(B \boldsymbol{B})^{-}}$and reduce the new set of generators to the minimal one by eliminating a superfluous element. This contradicts that the binomial $\boldsymbol{x}^{(B u)^{+}}-\boldsymbol{x}^{(B u)^{-}}$is indispensable.
$(1) \Rightarrow(6)$ : Follows from the definitions of $H(B)$ and $N(B)$.
If $B$ is generic, then Lemma 2.1 implies the result.
Remark 2.3. The Scarf property of $I_{L}$ does not imply that $N(B)=H(B)$. To see this, suppose that

$$
B^{T}=\left[\begin{array}{cccccc}
1 & -1 & 1 & -1 & 2 & -2 \\
0 & 1 & -1 & 0 & 1 & -1
\end{array}\right]
$$

Since the Gale diagram intersects each of the four open quadrants, by [10], Proposition 4.1, $I_{L}$ is not Cohen-Macaulay and therefore is a Scarf lattice ideal. We can see easily that $\boldsymbol{u}=(1,1) \in N(B)$, but $\boldsymbol{u} \notin H(B)$.

Theorem 2.4. If $B$ is of size $n \times(n-1)$, then $I_{L}$ is a Scarf lattice ideal if and only if it is generic. In particular, the result is true for the defining ideal of a monomial curve in $\mathbb{A}^{n}$.

Proof. If $I_{L}$ is generic, the result is obvious. Conversely, suppose that $I_{L}$ is a Scarf lattice ideal and let $\boldsymbol{u} \in N(B)$. By relaxing (cf. the proof of [8], Proposition 2.6.1, to see what "relaxing" means) the facets of the simplex $P_{(B u)^{+}}$(if it is necessary), we can find a maximal lattice point free polytope $Q$ which has $\boldsymbol{u}$ as one of its lattice points. Here we recall that a polytope is said to be maximal lattice point free if it contains no lattice points in its interior, but every facet of it contains at least one lattice point in its relative interior. It is easy to show that all homogeneous matrices of size $n \times(n-1)$ are Cohen-Macaulay. Therefore the matrix $B$ is Cohen-Macaulay, and we can apply [12], Theorem 3.2, to see that $Q$ corresponds to a basic fiber of the degree of a highest minimal syzygy of $S / I_{L}$ over $S$. Since $I_{L}$ is a Scarf lattice ideal, $Q$ has exactly $n$ lattice points, i.e., each facet of $Q$ has a unique lattice point. This implies that $0 \neq \boldsymbol{u}$ is not on the facet passed from the origin and consequently $\# \operatorname{supp}(B \boldsymbol{u})=n$. Since $\boldsymbol{u}$ is an arbitrary element of $N(B)$, we get the result.

Remark 2.5. An important problem in combinatorial commutative algebra is to characterize face numbers (resp. total Betti numbers) of Scarf complex $\Delta_{L}^{0}$ (resp. of Scarf lattice ideal $I_{L}$ ). In the non-complete intersection codimension 2 case, we know by [10] that $f\left(\Delta_{L}^{0}\right)=\left(f_{0}, 2\left(f_{0}-2\right), f_{0}-3\right)$. For a generic $(n+1) \times n$ matrix $B$, Björner [3] proved that the $h$-vector $h\left(\Delta_{L}^{0}\right)=\left(h_{0}, \ldots, h_{n}\right)$ satisfies the equalities $h_{0}=h_{n-1}=1, h_{n}=0$ and $h_{i}=h_{n-1-i}$ for all $0 \leq i \leq\left\lfloor\frac{n-1}{2}\right\rfloor$. Then using this observation he also showed that $f_{0}, f_{1}, \ldots, f_{\lfloor(n-3) / 2\rfloor}$ completely determine $f\left(\Delta_{L}^{0}\right)$. Here, by Theorem 2.4, the problem is solved in the case of Scarf monomial curves.

## 3. Initial ideals

Let $M$ be a monomial ideal in $S$ minimally generated by monomials $\boldsymbol{x}^{\boldsymbol{u}_{1}}, \ldots, \boldsymbol{x}^{\boldsymbol{u}_{r}}$ and

$$
\begin{aligned}
\Delta_{M}:= & \left\{J \subseteq\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{r}\right\} \mid \max (J) \neq \max \left(J^{\prime}\right)\right. \\
& \text { for all } \left.J^{\prime} \subseteq\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{r}\right\} \text { other than } J\right\} .
\end{aligned}
$$

Recall from [9], Chapter 6 that $\Delta_{M}$ is a simplicial complex and the $\mathbb{N}^{n}$-graded module $\boldsymbol{F}_{M}:=\bigoplus_{J \in \Delta} S\left(-\boldsymbol{e}_{J}\right)$ equipped with the differential given in [9], Chapter 6 is the monomial Scarf complex where each basis element $\boldsymbol{e}_{J}$ is in the homological degree $\# J$ and $\mathbb{N}^{n}$-degree $\max (J) \in \mathbb{N}^{n}$. In general, the complex $\boldsymbol{F}_{M}$ is contained in the minimal free resolution of $S / M$ over $S$, and if the equality occurs we say that $M$ is a Scarf monomial ideal.

Theorem 3.1. Let $I_{L}$ be an $x_{i}$-full Scarf lattice ideal, i.e., the variable $x_{i}$ appears in each of its minimal binomial generators. Then the reverse lexicographic initial ideal of $I_{L}$ with $x_{i}$ smallest is a Scarf monomial ideal.

Proof. We may assume that $\mathscr{G}=\left\{\boldsymbol{x}^{\boldsymbol{u}_{1}^{+}}-\boldsymbol{x}^{\boldsymbol{u}_{1}^{-}}, \ldots, \boldsymbol{x}^{\boldsymbol{u}_{r}^{+}}-\boldsymbol{x}^{\boldsymbol{u}_{r}^{-}}\right\}$is the unique minimal set of $\Gamma$-homogeneous binomial generators of $I_{L}$ so that $x_{i}$ divides each monomial $\boldsymbol{x}^{\boldsymbol{u}_{i}^{-}}$for $i=1, \ldots, r$. Then by [10], Lemma $8.4, M=\left\langle\boldsymbol{x}^{\boldsymbol{u}_{1}^{+}}, \ldots, \boldsymbol{x}^{\boldsymbol{u}_{r}^{+}}\right\rangle$is the reverse lexicographic initial ideal of $I_{L}$ with $x_{i}$ smallest. It is easy to show that $I_{L}+\left\langle x_{i}\right\rangle=M+\left\langle x_{i}\right\rangle$. Therefore using the properties of tensor product, we can show that $\mathbb{k}\left[x_{i}\right] \otimes_{\mathbb{k}}\left(S / I_{L}+\left\langle x_{i}\right\rangle\right) \simeq S / M$. Since $x_{i}$ is a nonzero divisor on $S / I_{L}$, it follows that the minimal free resolution of $S / M$ over $S$ is obtained from the minimal free resolution of $S / I_{L}$ by setting $x_{i}=0$ in the matrices of differential. If we prove that the face poset of $\Delta_{M}$ is isomorphic to the face poset of $\Delta_{L}^{0}$, we get the result. To this end, we note that since the Scarf complex $\boldsymbol{F}_{M}$ is contained in the minimal free resolution of $S / M$ over $S$, the above argument shows that $f\left(\Delta_{L}^{0}\right) \geq f\left(\Delta_{M}\right)$, where the inequality is component-wise comparison of $f$-vectors. The vertex sets of $\Delta_{L}^{0}$ and $\Delta_{M}$ are $\mathscr{V}:=\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{r}\right\}$ and $\mathscr{V}^{+}:=$ $\left\{\boldsymbol{u}_{1}^{+}, \ldots, \boldsymbol{u}_{r}^{+}\right\}$, respectively. If $J \in \Delta_{L}^{0}$, then $\max (\bar{J}) \neq \max \left(\bar{J}^{\prime}\right)$ for all $J^{\prime} \subseteq \mathscr{V}$ other than $J$, or equivalently $\max \left(J^{+}\right) \neq \max \left(J^{\prime+}\right)$ for all $J^{\prime+} \subseteq \mathscr{V}^{+}$other than $J^{+}$, which is also equivalent to $J^{+} \in \Delta_{M}$. So we have the inclusion $\Delta_{L}^{0} \hookrightarrow \Delta_{M}$ defined by $J \mapsto J^{+}$. In view of $f\left(\Delta_{L}^{0}\right) \geq f\left(\Delta_{M}\right)$ this gives us the result.

Corollary 3.2 (Yanagawa). All initial monomial ideals of a non-complete intersection codimension 2 lattice ideal are Scarf monomial ideals.

Proof. Let $I_{L}$ be a non-complete intersection codimension 2 lattice ideal and $M$ be an initial ideal of $I_{L}$ with respect to any term order represented by a generic weight vector $\lambda$. Following Peeva and Sturmfels [10], Algorithm 8.2, we construct a lattice ideal $I_{\tilde{L}}$ in $S[t]=\mathbb{K}\left[x_{1}, \ldots, x_{n}, t\right]$ which is the flat deformation of $I_{L}$ with respect to $\lambda$ and whose image under substitution $t=1$ and $t=0$ are $I_{L}$ and $M$. Now the ideal $I_{\tilde{L}}$ is a $t$-full Scarf lattice ideal. Thus by Theorem 3.1, we get the result.

Example 3.3. The codimension 2 lattice ideal $I_{L}=\left\langle x_{1} x_{3}-x_{2}^{2}, x_{1} x_{4}-x_{2} x_{3}, x_{2} x_{4}\right.$ $\left.-x_{3}^{2}\right\rangle \subset S=\mathbb{k}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ is the defining ideal of the twisted cubic curve $(s, t) \mapsto\left(s^{3}, s^{2} t, s t^{2}, t^{3}\right)$ in $\mathbb{P}^{3}$ and is $x_{2}$-full Scarf lattice ideal. It has eight distinct
initial ideals [13], and seven of them are not generic (in the sense of [9], Definition 6.5). If $\lambda$ denotes the degree reverse lexicographic order with $x_{2}$ smallest, then $M=\operatorname{in}_{\lambda}\left(I_{L}\right)=\left\langle x_{1} x_{3}, x_{1} x_{4}, x_{3}^{2}\right\rangle$, which is not generic. Setting $\boldsymbol{u}_{1}=(1,-2,1,0)$, $\boldsymbol{u}_{2}=(1,-1,-1,1), \boldsymbol{u}_{3}=(0,-1,2,-1)$, we see that the facets of $\Delta_{M}$ are $\left\{\boldsymbol{u}_{1}^{+}, \boldsymbol{u}_{2}^{+}\right\}$ and $\left\{\boldsymbol{u}_{1}^{+}, \boldsymbol{u}_{3}^{+}\right\}$. By Theorem 3.1, the facets of $\Delta_{L}^{0}$ are $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right\}$ and $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{3}\right\}$ and $M$ and $I_{L}$ are resolved minimally by $\Delta_{M}$ and $\Delta_{L}^{0}$, respectively.

## 4. Some algebraic properties

By Serre's criterion, a Noetherian ring is normal if and only if it satisfies Serre's conditions $S_{2}$ and $R_{1}$. On the other hand, Hochster's theorem states that every normal toric ring is Cohen-Macaulay. The $S_{2}$ condition alone is not sufficient for Cohen-Macaulayness as an example due to Hochster (cf. [4], Exercise 6.2.7) shows. However, Goto, Watanabe and Suzuki [4], Exercise 6.2 .8 (c), proved that for simplicial toric ring being Cohen-Macaulay is equivalent to satisfying $S_{2}$ condition. In this section, we will present a homological proof for a result due to Yanagawa which states that for Scarf toric rings, being Cohen-Macaulay is equivalent to satisfying $S_{2}$ condition. The combinatorially inclined reader may refer to [8], Proposition 2.6.1, for a very nice combinatorial proof of this result.

Motivated by Hochster's theorem, Sturmfels asked and conjectured the finer question that if a toric ideal is Cohen-Macaulay, does it have a Cohen-Macaulay initial ideal? In [8], Matusevich showed that for a Cohen-Macaulay generic toric ideal $I_{A}$, the initial ideals $\operatorname{in}_{-e_{i}}\left(I_{A}\right)(i=1, \ldots, n)$, are Cohen-Macaulay. In this section, we will prove a similar result for Cohen-Macaulay codimension 2 toric ideals.

Lemma 4.1. Let $I_{L}$ be a Scarf lattice ideal and $p=\operatorname{proj}-\operatorname{dim}_{S}\left(S / I_{L}\right)=\operatorname{dim} \Delta_{L}^{0}+1$. Then the Krull dimension of $\operatorname{Ext}_{S}^{p}\left(S / I_{L}, S\right)$ is equal to $n-p$ or $n-p-1$.

Proof. By [4], Corollary 3.5.11, we have $\operatorname{dim} \operatorname{Ext}_{S}^{p}\left(S / I_{L}, S\right) \leq n-p$. Let $e \in\left(\boldsymbol{F}_{L}\right)_{p}$ be a generator of $\boldsymbol{F}_{L}$ in homological degree $p$ corresponding to a highest minimal syzygy of $S / I_{L}$ over $S$, and let $e^{*} \in \boldsymbol{F}_{L}^{*}$ be its dual. Since $e^{*}$ is a cocycle of $\boldsymbol{F}_{L}^{*}$, we have the corresponding element $\overline{e^{*}} \in \operatorname{Ext}_{S}^{p}\left(S / I_{L}, S\right)$. Setting $J=\operatorname{ann}\left(\overline{e^{*}}\right)$, we see that $S / J \simeq S \cdot \overline{e^{*}} \subset \operatorname{Ext}_{S}^{p}\left(S / I_{L}, S\right)$. By the construction of $\boldsymbol{F}_{L}$ we have $\partial(e)=$ $\sum_{i=1}^{p+1} m_{i} \cdot e_{i}$, where each $m_{i}$ is a nonconstant monomial and each $e_{i}$ is a generator of $\boldsymbol{F}_{L}$ in homological degree $p-1$. It is easy to show that $J^{\prime}:=\left\langle m_{1}, \ldots, m_{p+1}\right\rangle$ $\supset J$. Since by Krull's theorem we have $\operatorname{dim} S / J^{\prime} \geq n-p-1$, we conclude that $\operatorname{dim} \operatorname{Ext}_{S}^{p}\left(S / I_{L}, S\right) \geq n-p-1$.

Theorem 4.2 (Yanagawa). Let $I_{L}$ be a Scarf lattice ideal. Then $S / I_{L}$ satisfies Serre's condition $S_{2}$ if and only if it is Cohen-Macaulay.

Proof. The "if" part is obvious. To prove the "only if" part, suppose, on the contrary, that $S / I_{L}$ is not Cohen-Macaulay. Then $p:=\operatorname{proj}^{-\operatorname{dim}_{S}\left(S / I_{L}\right)>}$ $\operatorname{codim}\left(I_{L}\right)$. Since $S / I_{L}$ satisfies Serre's condition $S_{2}$, we have $\operatorname{dim} \operatorname{Ext}_{S}^{j}\left(S / I_{L}, S\right) \leq$ $n-j-2$ for all $j>\operatorname{codim}\left(I_{L}\right)$ by [15], Lemma 2.9 (3). In particular, we have $\operatorname{dim} \operatorname{Ext}_{S}^{p}\left(S / I_{L}, S\right) \leq n-p-2$, which contradicts Lemma 4.1.

Theorem 4.3. Let $I_{L}$ be a Scarf lattice ideal. Then $S / I_{L}$ is Gorenstein if and only if $I_{L}$ is a principal ideal.

Proof. If $I_{L}$ is principal, the result is obvious. Conversely, let $S / I_{L}$ be Gorenstein and $p=\operatorname{proj}-\operatorname{dim}_{S}\left(S / I_{L}\right)$. We have $\operatorname{Ext}_{S}^{p}\left(S / I_{L}, S\right) \simeq S^{\beta_{p}} / \operatorname{im} \partial_{p}^{T}$ where $\partial_{p}:\left(\boldsymbol{F}_{L}\right)_{p}$ $=S^{\beta_{p}} \rightarrow\left(\boldsymbol{F}_{L}\right)_{p-1}=S^{\beta_{p-1}}$ is the last differential in the minimal free resolution $\boldsymbol{F}_{L}$. Since $S / I_{L}$ is Gorenstein, we have $\operatorname{Ext}_{S}^{p}\left(S / I_{L}, S\right) \simeq S / I_{L}$ and $\beta_{p}=1$. If $p \geq 2$, then the structure of differential of $\boldsymbol{F}_{L}$ implies that $\operatorname{im} \partial_{p}^{T}$ is a monomial ideal, which is a contradiction.

We say that $S / I_{L}$ is $k$-Buchsbaum $\left(k \geq 0\right.$ is an integer) if $\mathfrak{m}^{k} H_{\mathfrak{m}}^{i}\left(S / I_{L}\right)=0$ for $i \neq \operatorname{dim} S / I_{L}$. Notice that 0 -Buchsbaum is Cohen-Macaulay.
 $k$-Buchsbaum (for some $k>0$ ), then $p=n-1$.

Proof. We assume that $\mathfrak{m}^{k} H_{\mathrm{m}}^{n-p}\left(S / I_{L}\right)=0$ for some integer $k>0$. By the local duality theorem, we have $\operatorname{Ext}_{S}^{p}\left(S / I_{L}, S\right) \simeq \operatorname{Hom}_{S}\left(H_{\mathrm{m}}^{n-p}\left(S / I_{L}\right), E\right)$, where $E$ is the injective hull of the residue field $S / \mathrm{m}$. Thus, $\mathfrak{m}^{k} H_{\mathrm{m}}^{n-p}\left(S / I_{L}\right)=0$ if and only if $\mathfrak{m}^{k} \operatorname{Ext}_{S}^{p}\left(S / I_{L}, S\right)=0$. Hence, $\operatorname{Ext}_{S}^{p}\left(S / I_{L}, S\right)$ is of finite length. Let $e, J$ and $J^{\prime}$ be as in the proof of Lemma 4.1. We see that $S / J$ and $S / J^{\prime}$ are of finite length. Thus, $\operatorname{dim} S / J^{\prime}=0$, which implies that $\operatorname{dim} S=p+1$, i.e., $p=n-1$.

Remark 4.5. Consider a codimension 2 lattice ideal $I_{L} \subset \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$. If $I_{L}$ is $k$-Buchsbaum $(k>0)$, then by Theorem 4.4 and [10], Theorem 2.3, we have $p=n-1 \leq 3$. Since in a polynomial ring whose number of variables $\leq 3, I_{L}$ is Cohen-Macaulay, we conclude that $k$-Buchsbaumness $(k>0)$ for $I_{L}$ implies that $p=n-1=3$.

In the remainder of this section we will assume that the ideal $I_{L}$ is a toric ideal of an integer $d \times n$-matrix $A$. Each column $\boldsymbol{a}_{i}$ of the matrix $A$ is identified with a monomial $\boldsymbol{t}^{\boldsymbol{a}_{i}}$ in the polynomial ring $\mathbb{k}[\boldsymbol{t}]:=\mathbb{k}\left[t_{1}, \ldots, t_{d}\right]$. Notice that $S / I_{L}=$ $\mathbb{K}_{k}[\mathbb{N} A]=\mathbb{k}\left[\boldsymbol{t}^{\boldsymbol{a}_{1}}, \ldots, \boldsymbol{t}^{\boldsymbol{a}_{n}}\right] \subset \mathbb{k}[\boldsymbol{t}]$.

Theorem 4.6. If $I_{L}$ is a Scarf toric ideal, then the Scarf toric ring $S / I_{L}$ is a Golod ring.

Proof. This was proved for generic toric ideals in [6]. Exactly the same proof remains valid for Scarf lattice ideals. The key ingredient is that the Koszul homology $\operatorname{Tor}_{*}^{S}\left(S / I_{L}, \mathbb{k}\right)$ can be computed by the minimal free resolution of $S / I_{L}$ which is the algebraic Scarf complex, and this property of generic toric ideals holds for Scarf toric ideals by their definition as well.

Remark 4.7. For a Scarf toric ring $S / I_{L}$, Golodness also implies being Gorenstein is equivalent to being hypersurface, i.e., $I_{L}$ is a principal ideal (cf. [1], Section 5.2).

Theorem 4.8. The toric ring $R=S / I_{L}$ satisfies Serre's condition $S_{2}$ if and only if the ideal $I_{L}+\left\langle x_{i}\right\rangle$ is free of embedded primes for $i=1, \ldots, n$.

Proof. Cf. [8], Proposition 2.5.2.
Theorem 4.9. Let $I_{L}$ be an $x_{i}$-full Scarf toric ideal. Then $I_{L}$ is Cohen-Macaulay if and only if $\mathrm{in}_{-e_{i}}\left(I_{L}\right)$ is Cohen-Macaulay.

Proof. First, we assume that $I_{L}$ is Cohen-Macaulay. Using the equality $I_{L}+\left\langle x_{i}\right\rangle$ $=\operatorname{in}_{-\boldsymbol{e}_{i}}\left(I_{L}\right)+\left\langle x_{i}\right\rangle$, we can see that the ideal $\operatorname{in}_{-\boldsymbol{e}_{i}}\left(I_{L}\right)$ is generated by the set $\left(I_{L}+\left\langle x_{i}\right\rangle\right) \cap \mathbb{k}\left[x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right]$ in $S$. Therefore, the ideal $\operatorname{in}_{-e_{i}}\left(I_{L}\right)$ is free of embedded primes. Now the result follows from [14], Proposition 2.9, and the well-known fact (cf. [7]) that each initial ideal of a toric ideal is equidimensional, i.e., all of its minimal primes have the same height. The "only if" part follows from the inequalities codim $\left(I_{L}\right) \leq \operatorname{proj}-\operatorname{dim}_{S}\left(S / I_{L}\right) \leq \operatorname{proj}-\operatorname{dim}_{S}\left(S / \operatorname{in}_{-e_{i}}\left(I_{L}\right)\right)$.

Corollary 4.10. Let $I_{L}$ be either a codimension 2 or a generic toric ideal. If $I_{L}$ is Cohen-Macaulay, then it admits a Cohen-Macaulay initial ideal.

Proof. If $I_{L}$ is generic, then Theorem 4.9 implies that $\mathrm{in}_{-\boldsymbol{e}_{i}}\left(I_{L}\right)$ is Cohen-Macaulay for $i=1, \ldots, n$. For a codimension 2 lattice ideal $I_{L}$, we consider the two following cases:

Case 1: $I_{L}$ is not complete intersection. In this case the ideal $I_{L}$ is Scarf. If the ideal $I_{L}$ is $x_{i}$-full, then by Theorem 4.9, we get the result. Otherwise, by [10], Proposition 8.3, there exists a reverse lexicographic term order $\prec$ with $x_{i}$ smallest such that the reduced Gröbner basis of $I_{L}$ with respect to $\prec$ is a minimal generating set. We assume that $\omega \in \mathbb{N}^{n}$ represents the term order $\prec$. Using [10], Algorithm 8.2, we construct a lattice ideal $I_{\tilde{L}}$ in $S[t]=\mathbb{k}\left[x_{1}, \ldots, x_{n}, t\right]$ which is a flat deformation of $I_{L}$ with respect to $\omega$. According to the proof of [10], Proposition 8.3, the ideal $I_{\tilde{L}}$ has the same number of minimal generators as $I_{L}$. Therefore by [10], Proposition 4.1, the ideal $I_{\tilde{L}}$ is Cohen-Macaulay. Let $\prec^{\prime}$ be a reverse lexicographic term
order on monomials in $S[t]=\mathbb{k}\left[x_{1}, \ldots, x_{n}, t\right]$ with $t$ smallest. Then by Theorem 4.9, in $\prec_{\prec^{\prime}}\left(I_{\tilde{L}}\right)$ is Cohen-Macaulay in $S[t]$ and so

$$
S / \mathrm{in}_{\prec}\left(I_{L}\right) \simeq S[t] /\left(\mathrm{in}_{\prec^{\prime}}\left(I_{\tilde{L}}\right), t\right)
$$

is Cohen-Macaulay.
Case 2: $I_{L}$ is complete intersection. Let $\prec$ be as in the previous case. Then $M=\mathrm{in}_{<}\left(I_{L}\right)$ is complete intersection and so Cohen-Macaulay.

## 5. Examples

In this section we will present several examples of Scarf lattice ideals which were obtained by exhaustive and heuristic search using $\operatorname{CoCoA}$ [5]. In particular, we will give an example of Scarf lattice ideals which is neither codimension 2 nor generic.

Example 5.1 (Scarf monomial curves in $\left.\mathbb{A}^{4}, \mathbb{A}^{5}\right)$. If we assume that $\mathscr{M}$ is the set of all monomial curves $C_{a, b, c, d}: t \mapsto\left(t^{a}, t^{b}, t^{c}, t^{d}\right)$ in $\mathbb{A}^{4}$ with $1 \leq a<b<c<$ $d \leq 100$, then exhaustive search by CoCoA shows that we have 5500 Scarf monomial curves of seven types (in terms of $f$-vector of $\Delta_{L}^{0}$ ) as in Table 1. Furthermore, by heuristic search using CoCoA we found that the monomial curve $t \mapsto\left(t^{205}, t^{210}, t^{240}, t^{246}, t^{329}\right)$ in $\mathbb{A}^{5}$ is Scarf.

Example 5.2 (A Scarf lattice ideal that is neither generic nor of codimension 2). Using CoCoA and by exhaustive search, we find that the matrix

$$
B^{T}=\left[\begin{array}{ccccc}
1 & -1 & -2 & -1 & 3 \\
0 & 1 & 1 & -3 & 1 \\
0 & -2 & 4 & -1 & -1
\end{array}\right]
$$

Table 1. Scarf monomial curves in $\mathscr{M}$.

| $f$-vector of $\Delta_{L}^{0}$ | A typical example | Numbers in $\mathscr{M}$ |
| :---: | :---: | :---: |
| $(7,12,6)$ | $C_{20,24,25,31}$ | 4701 |
| $(8,14,7)$ | $C_{36,42,47,49}$ | 386 |
| $(9,16,8)$ | $C_{35,45,48,56}$ | 289 |
| $(10,18,9)$ | $C_{39,50,51,58}$ | 77 |
| $(11,20,10)$ | $C_{51,59,72,74}$ | 21 |
| $(12,22,11)$ | $C_{56,77,79,88}$ | 25 |
| $(14,26,13)$ | $C_{79,82,89,95}$ | 1 |



Figure 1. The linked Scarf complex $\Delta_{L}^{0}$.
defines the lattice ideal

$$
\begin{aligned}
I_{L}= & \left\langle x_{2} x_{3}^{2} x_{4}-x_{1} x_{5}^{3}, x_{4}^{3}-x_{2} x_{3} x_{5}, x_{2}^{3} x_{4}^{2}-x_{1} x_{3}^{2} x_{5}^{2}, x_{2}^{4}-x_{1} x_{3} x_{4} x_{5},\right. \\
& \left.x_{2}^{2} x_{3}^{3}-x_{1} x_{4}^{2} x_{5}^{2}, x_{3}^{4}-x_{2}^{2} x_{4} x_{5}, x_{3}^{3} x_{4}^{2}-x_{2}^{3} x_{5}^{2}\right\rangle \subset S=\mathbb{k}\left[x_{1}, \ldots, x_{5}\right],
\end{aligned}
$$

which has codimension 3 and is not generic. We will show that the ideal $I_{L}$ is Scarf. The linked Scarf complex $\Delta_{L}^{0}$ can be depicted as in Figure 1.

Here each vector $\boldsymbol{u}_{i}$ corresponds to the minimal generator $\boldsymbol{x}^{\boldsymbol{u}_{i}^{+}}-\boldsymbol{x}^{\boldsymbol{u}_{i}^{-}}$in the ordering appeared in the above list of minimal generators, for instance $\boldsymbol{u}_{1}=$ $(-1,1,2,1,-3)$. The one to one correspondence $J \mapsto C_{J}:=\left\{\boldsymbol{x}^{\max (\bar{J})-\boldsymbol{u}} \mid \boldsymbol{u} \in \bar{J}\right\}$ between the facets of $\Delta_{L}^{0}$ and the set of all highest basic fibers are listed as follows:

$$
\begin{aligned}
&\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right\} \mapsto\left\{x_{2}^{3} x_{3}^{2} x_{4}^{3}, x_{1} x_{2}^{2} x_{4}^{2} x_{5}^{3}, x_{2}^{4} x_{3}^{3} x_{5}, x_{1} x_{3}^{4} x_{4} x_{5}^{2}\right\}, \\
&\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{3}, \boldsymbol{u}_{4}\right\} \mapsto\left\{x_{2}^{4} x_{3}^{2} x_{4}^{2}, x_{1} x_{2}^{3} x_{4} x_{5}^{3}, x_{1} x_{2} x_{3}^{4} x_{5}^{2}, x_{1} x_{3}^{3} x_{4}^{3} x_{5}\right\}, \\
&\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{4}, \boldsymbol{u}_{5}\right\} \mapsto\left\{x_{2}^{4} x_{3}^{3} x_{4}, x_{1} x_{2}^{3} x_{3} x_{5}^{3}, x_{1} x_{3}^{4} x_{4}^{2} x_{5}, x_{1} x_{2}^{2} x_{4}^{3} x_{5}^{2}\right\}, \\
&\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{5}, \boldsymbol{u}_{6}\right\} \mapsto\left\{x_{2}^{2} x_{3}^{4} x_{4}, x_{1} x_{2} x_{3}^{2} x_{5}^{3}, x_{1} x_{3} x_{4}^{3} x_{5}^{2}, x_{2}^{4} x_{4}^{2} x_{5}\right\}, \\
&\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{6}, \boldsymbol{u}_{7}\right\} \mapsto\left\{x_{2} x_{3}^{4} x_{4}^{2}, x_{1} x_{3}^{2} x_{4} x_{5}^{3}, x_{2}^{3} x_{4}^{3} x_{5}, x_{2}^{4} x_{3} x_{5}^{2}\right\}, \\
&\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{7}, \boldsymbol{u}_{2}\right\} \mapsto\left\{x_{2} x_{3}^{3} x_{4}^{3}, x_{1} x_{3} x_{4}^{2} x_{5}^{3}, x_{2}^{2} x_{3}^{4} x_{5}, x_{2}^{4} x_{4} x_{5}^{2}\right\} .
\end{aligned}
$$

Using this correspondences, one can completely write down the Scarf chain complex $\boldsymbol{F}_{L}$ associated to $\Delta_{L}^{0}$. It is of the form

$$
0 \rightarrow S^{6} \rightarrow S^{12} \rightarrow S^{7} \rightarrow S \rightarrow 0
$$

Comparing this complex with minimal free resolution of $S / I_{L}$ over $S$, we see that the ideal $I_{L}$ is Scarf.

## References

[1] L. L. Avramov, Infinite free resolutions. In Six lectures on commutative algebra (Bellaterra, 1996), Progr. Math. 166, Birkhäuser, Basel 1998, 1-118. Zbl 0934.13008 MR 1648664
[2] I. Bárány and H. Scarf, Matrices with identical sets of neighbors. Math. Oper. Res. 23 (1998), 863-873. Zbl 0977.90023 MR 1662422
[3] A. Björner, Face numbers of Scarf complexes. Discrete Comput. Geom. 24 (2000), 185-196. Zbl 0964.52013 MR 1756650
[4] W. Bruns and J. Herzog, Cohen-Macaulay rings. Cambridge Stud. Adv. Math. 39, Cambridge University Press, Cambridge 1993. Zbl 0788.13005 MR 1251956
[5] CoCoA System, Computations in commutative algebra. Available at http://cocoa. dima.unige.it
[6] V. Gasharov, I. Peeva, and V. Welker, Rationality for generic toric rings. Math. Z. 233 (2000), 93-102. Zbl 0958.13004 MR 1738353
[7] M. Kalkbrener and B. Sturmfels, Initial complexes of prime ideals. Adv. Math. 116 (1995), 365-376. Zbl 0877.13025 MR 1363769
[8] L. Matusevich, Combinatorial aspects of hypergeometric functions. Ph.D. thesis, University of California at Berkeley, Berkeley 2002.
[9] E. Miller and B. Sturmfels, Combinatorial commutative algebra. Graduate Texts in Math. 227, Springer-Verlag, New York 2005. Zbl 1090.13001 MR 2110098
[10] I. Peeva and B. Sturmfels, Syzygies of codimension 2 lattice ideals. Math. Z. 229 (1998), 163-194. Zbl 0918.13006 MR 1649322
[11] I. Peeva and B. Sturmfels, Generic lattice ideals. J. Amer. Math. Soc. 11 (1998), 363-373. Zbl 0905.13005 MR 1475887
[12] H. Sabzrou and F. Rahmati, Matrices defining Gorenstein lattice ideals. Rocky Mountain J. Math. 35 (2005), 1029-1042. Zbl 1084.52010 MR 2150322
[13] B. Sturmfels, Gröbner bases of toric varieties. Tohoku Math. J. (2) 43 (1991), 249-261. Zbl 0714.14034 MR 1104431
[14] K. Yanagawa, $F_{\Delta}$ type free resolutions of monomial ideals. Proc. Amer. Math. Soc. 127 (1999), 377-383. Zbl 0910.13007 MR 1610805
[15] K. Yanagawa, Notes on $C$-graded modules over an affine semigroup ring $K[C]$. Comm. Algebra 36 (2008), 3122-3146. Zbl 1165.13005 MR 2440304

Received October 3, 2010; revised July 9, 2011
H. Sabzrou, Department of Mathematics, University of Tehran, P.O. Box 14155-6455, Tehran, Iran, and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran
E-mail: hossein@ipm.ir


[^0]:    *This research was in part supported by a grant from IPM (No. 89130117).

