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Product approximations for solutions to a class of
evolution equations in Hilbert space
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Abstract. In this article we prove approximation formulae for a class of unitary evolution
operators Uðt; sÞs; t A ½0;T � associated with linear non-autonomous evolution equations of
Schrödinger type defined in a Hilbert space H. An important feature of the equations
we consider is that both the corresponding self-adjoint generators and their domains may
depend explicitly on time, whereas the associated quadratic form domains may not.
Furthermore the evolution operators we are interested in satisfy the equations in a weak
sense. Under such conditions the approximation formulae we prove for Uðt; sÞ involve
weak operator limits of products of suitable approximating functions taking values in
LðHÞ, the algebra of all linear bounded operators on H. Our results may be relevant
to the numerical analysis of Uðt; sÞ and we illustrate them by considering two typical
examples, including one related to the theory of time-dependent singular perturbations of
self-adjoint operators.
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1. Introduction and outline

Let H be an arbitrary complex Hilbert space and let LðHÞ be the algebra of all

bounded linear operators defined on H. Our purpose in this article is to prove

approximation formulae for the solutions to initial-value problems of the form

i
duðtÞ
dt

¼ HðtÞuðtÞ; 0a s < taT ;

uðsÞ ¼ v; ð1Þ

where the HðtÞ’s are given self-adjoint and positive operators in H, with

T a ð0;þlÞ arbitrary. More specifically, assuming there exists a unitary evolu-



tion system UHðt; sÞs; t A ½0;T � on H that solves (1) in a suitably weak sense, we

display a large one-parameter family of functions Ft : R
þ 7! LðHÞ such that

formulae of the form

UHðt; sÞ ¼ lim
n!þl

Y0
g¼n�1

Fsþðg=nÞðt�sÞ
t� s

n

� �
ð2Þ

hold in the weak operator topology of LðHÞ for all s; t a ½0;T � with tb s. We

carry this out under hypotheses that allow the explicit time dependence of the

domains of the HðtÞ’s, whereas the associated quadratic form domains remain

time-independent. The conditions we impose are more general than those used

previously by various authors in the context of Schrödinger equations, who typi-

cally assume that the domains of the HðtÞ’s are time-independent (see for instance

[11], [21], and also [27] along with the references therein for the analysis of more

general evolution equations). They are, in fact, related to the classic results of [16]

and [22], which play a significant rôle in the sequel regarding the existence and

various properties of unitary evolution systems Uðt; sÞs; t A ½0;T �.

An important consequence of the theorem we state below is that among all the

admissible functions Ft there are the resolvent operators

RtðtÞ :¼
�
Iþ itHðtÞ

��1 ð3Þ

where I stands for the identity in LðHÞ, and the C0-unitary semigroup

StðtÞ :¼ exp½�itHðtÞ�: ð4Þ

This establishes the validity of the formulae

UHðt; sÞ ¼ lim
n!þl

Y0
g¼n�1

Iþ i
t� s

n
H sþ g

n
ðt� sÞ

� �� ��1

¼ lim
n!þl

Y0
g¼n�1

exp �i
t� s

n
H sþ g

n
ðt� sÞ

� �� �
ð5Þ

under very general conditions. Furthermore, formulae such as (2) with the largest

possible class of Ft’s are also very useful in view of many applications since they

constitute the theoretical basis of numerical algorithms intended to compute solu-

tions to various di¤erential problems, a theme thoroughly discussed in [6]. In par-

ticular, the resolvent approximation in (5) is typically related to the so-called Euler

backward di¤erence scheme.

We shall organize the remaining part of this article in the following way: in

Section 2 we state our main result, which holds under three main hypotheses. In
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the first one we describe the topological and metric properties of the quadratic

form domains we need to carry out our estimates, while in the other two we spec-

ify the class of unitary evolutions and of approximating functions for which (2)

holds. In that section we also state a corollary where we establish the validity of

(2) and (5) when HðtÞ splits as

HðtÞ ¼ H0 _þþVðtÞ ð6Þ

in the sense of quadratic forms, with H0 and VðtÞ self-adjoint operators in H, H0

positive and time-independent and VðtÞ subordinated to H0 in some sense. This is

of course one of the typical situations encountered in the realm of certain applica-

tions, and the existence of the unitary evolution UH0þV ðt; sÞs; t A ½0;T � we need there is

guaranteed by some of the results in [16] and [22]. In this last case we also note

that (5) does not take the form of the usual Trotter product formulae in spite of

the decomposition (6), a point we shall briefly discuss at the end of Sections 2

and 3. We devote Section 3 to the proofs of our results, which rest on duality

arguments involving the quadratic form domains associated with the HðtÞ’s, and
on a natural generalization of the methods we developed in [26] and [25] for the

investigation of parabolic evolution equations. In Section 4 we illustrate our re-

sults by means of two examples. The first one relates to the evolution of a particle

in one space dimension under the influence of a finite number of time-dependent

point interactions, a special case of a model originally introduced in [8] and

recently revisited in [19] and [20], while the second one describes the motion of

a particle in three-dimensional Euclidean space subjected to a so-called time-

dependent Rollnik potential.

2. Statement of the results

In the sequel we write ð: ; :Þ for the inner product in H and k:k for the correspond-

ing induced norm. We also denote by k:kl the usual supremum-norm in LðHÞ.
For an arbitrary T a ð0;þlÞ and for each t a ½0;T � we consider initial-value

problems of the form (1), where the HðtÞ’s are self-adjoint and positive operators

defined on dense domains D
�
HðtÞ

�
which may depend explicitly on t. Let

QðtÞt A ½0;T � be the one-parameter family of closed and Hermitian sesquilinear forms

associated with the HðtÞ’s through the second representation theorem for qua-

dratic forms, densely defined on the domain DQ :¼ D
�
HðtÞ1=2

�
(see, for instance,

[14] for a discussion of this theorem). In what follows we assume that DQ is inde-

pendent of t and that QðtÞ satisfies the positivity condition

QðtÞ½v; v�b ckvk2 ð7Þ
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for some constant c a ð0;þlÞ uniformly in t for every v a DQ. As is well known,

this allows one to endow DQ with the natural unitary structure defined from the

inner products

ðv;wÞQ; t :¼ QðtÞ½v;w� ¼
�
HðtÞ1=2v;HðtÞ1=2w

�
ð8Þ

and we write HQ; t for the corresponding Hilbert spaces equipped with the induced

norms

kvkQ; t :¼ kHðtÞ1=2vk: ð9Þ

Let H�
Q; t be the adjoint space of HQ; t endowed with the usual norm

kwkQ; t;� :¼ sup
0Av AHQ; t

j3w; v4�j
kvkQ; t

; ð10Þ

where 3: ; :4� stands for the duality bracket between HQ; t and H�
Q; t. We infer from

(7), (9) and (10) that the continuous embeddings

HQ; t 7! H 7! H�
Q; t ð11Þ

hold provided we identify H with its adjoint space in the usual manner by means

of Riesz’s lemma. In this setting the vector space DQ is dense in H�
Q; t with respect

to (10) (see, for instance, [16], [17] and [23] for other typical constructions of this

kind). Moreover, the two embedding constants relative to (11) are independent

of t and furthermore we may write (10) as

kwkQ; t;� ¼ kHðtÞ�1=2
wk; ð12Þ

where HðtÞ�1=2 is the extension by continuity to H�
Q; t of the corresponding opera-

tor on H. Thus, the H�
Q; t’s inherit a Hilbert space structure as well with respect to

the inner products

ðv;wÞQ; t;� :¼
�
HðtÞ�1=2

v;HðtÞ�1=2
w
�
:

It is worth recalling here that for all s; t a ½0;T � the norms k:kQ; s and k:kQ; t are

mutually equivalent since the linear operators HðsÞ1=2HðtÞ�1=2 are bounded on H,

a simple consequence of (7), the time-independence of DQ and the closed graph

theorem. This implies in particular that the spaces HQ; t are all algebraically

and topologically identical, as are the spaces H�
Q; t. Therefore, from now on we

write HQ and H�
Q for these spaces, respectively, whenever their metric properties

are not directly involved.
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In view of the applications of Section 4 we have now to impose more stringent

conditions on the family QðtÞt A ½0;T �. Indeed, we assume that the following hypoth-

esis is valid:

(Q) There exist an additional, fixed norm k:kþ on HQ and a constant

c a ½1;þlÞ such that the inequalities

c�1kvk2þaQðtÞ½v; v�a ckvk2þ ð13Þ

hold for each t a ½0;T � and every v a HQ. Moreover, there exists a constant

c� a ð0;þlÞ such that the Lipschitz continuity estimate

jQðtÞ½v; v� �QðsÞ½v; v�ja c�jt� sj kvk2þ ð14Þ

holds for all s; t a ½0;T � and every v a HQ.

The existence of k:kþ on HQ implies the existence of an additional fixed norm

k:k� on H�
Q , namely,

kwk� :¼ sup
0Av AHQ

j3w; v4�j
kvkþ

ð15Þ

which satisfies

c�1kwk2�a kwk2Q; t;�a ckwk2� ð16Þ

for each t a ½0;T � and every w a H�
Q by virtue of (13).

Next, we consider an evolution system UHðt; sÞs; t A ½0;T � on H consisting of a

two-parameter family of linear unitary operators satisfying the usual strong conti-

nuity properties and composition laws, as for instance in [22] or [23], along with

a class of approximating functions Ft : R
þ 7! LðHÞ which satisfy the following

hypothesis:

(F) We have Ftð0Þ ¼ I and there exists a constant c a ½0;þlÞ such that the

inequalities

kFtðtÞvka exp½ct�kvk ð17Þ

and

kFtðtÞvkQ; t;�a exp½ct�kvkQ; t;� ð18Þ

hold for each t a ½0;T �, each t a Rþ and every v a H.
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For instance, it is plain that both (3) and (4) satisfy these conditions with c ¼ 0.

That is, since StðtÞ commutes with HðtÞ�1=2 and is unitary on H we have

kStðtÞvkQ; t;� ¼ kvkQ; t;�

from (12), so that the inequality

kRtðtÞvkQ; t;�a kvkQ; t;�

follows immediately by writing RtðtÞ as the Laplace transform of StðtÞ. However,

we remark that in general (18) is not a consequence of (17), nor is (17) a conse-

quence of (18).

Now let LðHQ;H
�
Q Þ be the space of all linear bounded operators from HQ

into H�
Q . In order to formulate our requirements regarding UHðt; sÞ, we introduce

the unique operator HðtÞ a LðHQ;H
�
Q Þ characterized by the relation

QðtÞ½v;w� ¼ 3HðtÞv;w4� ð19Þ

for every t a ½0;T � and all v;w a HQ. It is known that for each such t the operator

HðtÞ is an extension of the self-adjoint generator HðtÞ, and that

D
�
HðtÞ

�
¼ fv a HQ : HðtÞv a Hg

(see for instance [17]). Our hypothesis concerning UHðt; sÞ then consists of the

following three parts:

(U) We have UHðt; sÞðHQÞJHQ for all s; t a ½0;T � with tb s, that is, UHðt; sÞ
leaves HQ invariant. Moreover the following conditions are satisfied:

(a) For every v a HQ the relation

lim
t!0þ

sup
t A ½s;T �

FtðtÞ � I

t
UHðt; sÞvþ iHðtÞUHðt; sÞv

����
����
�
¼ 0 ð20Þ

holds.

(b) For all v;w a HQ the function t 7! 3UHðt; sÞv;w4� is di¤erentiable on ½0;T �
and we have

i
d

dt
3UHðt; sÞv;w4� ¼ 3HðtÞUHðt; sÞv;w4� ð21Þ

for all s; t a ½0;T � with t > s.

(c) For every v a HQ the function t 7! HðtÞUHðt; sÞv is continuous on ½0;T � in
the strong topology of H�

Q .

322 P.-A. Vuillermot and W. F. Wreszinski



What (20) does is to identify the right-derivative of t 7! FtðtÞ at the origin with

the operator �iHðtÞ in the strong topology of H�
Q , while (21) is interpreted as the

weak form of (1) we alluded to earlier, with uðtÞ ¼ UHðt; sÞv.
Under the above conditions our main result is the following.

Theorem. Assume that Hypotheses (Q), (F) and (U) hold. Then for all s; t a ½0;T �
with tb s we have

UHðt; sÞ ¼ lim
n!þl

Y0
g¼n�1

Fsþðg=nÞðt�sÞ
t� s

n

� �
ð22Þ

in the weak operator topology of LðHÞ. In particular, if the FtðtÞ’s are also uni-

tary, then (22) holds in the strong operator topology of LðHÞ.

Remark. Since the UHðt; sÞ’s are unitary we have

UHðt; sÞ ¼ U �
Hðs; tÞ

for all s; t a ½0;T �, where U �
Hðs; tÞ denotes the adjoint of UHðs; tÞ in LðHÞ. Con-

sequently, from (22) we immediately obtain

UHðt; sÞ ¼ lim
n!þl

Yn�1

g¼0

F �
tþðg=nÞðs�tÞ

s� t

n

� �

for all s; t a ½0;T � with ta s in the weak operator topology of LðHÞ. Therefore,

in the sequel we shall formulate our results only for the case tb s.

In view of the applications, a particularly interesting illustration of this theo-

rem obtains when the operators HðtÞ are of the form

HðtÞ ¼ H0 _þþVðtÞ ð23Þ

where H0 is a time-independent, self-adjoint, positive operator and VðtÞt A ½0;T � a

one-parameter family of self-adjoint operators on H, the meaning of (23) being

that of a quadratic form sum.

In order to display our result in this case we need to rephrase slightly the hy-

potheses of Corollary II.28 in [22]. Let Q0 be the closed, Hermitian and positive

sesquilinear form associated with H0 and let QV ðtÞt A ½0;T � be the one-parameter

family of closed and Hermitian sesquilinear forms associated with the VðtÞ’s.
We assume that QV ðtÞ is relatively bounded with respect to Q0 uniformly in t.

Writing H0 :¼ DðH 1=2
0 Þ for the domain of Q0, this means that the domain of
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QV ðtÞ contains H0 for every t a ½0;T � and that the following hypothesis is valid

(see, for instance, [14] for a discussion of this notion):

(V) There exist constants a a ½0; 1Þ and b a R such that the inequality

jQV ðtÞ½v; v�ja aQ0½v; v� þ bkvk2 ð24Þ

holds for each t a ½0;T � and every v a H0.

In order to realize (23) as a form sum we write

QðtÞ ¼ Q0 þQV ðtÞ ð25Þ

for every t a ½0;T �. Thus we have H0 ¼ HQ and the preceding assumptions imply

the existence of unique operators HðtÞ, H0, VðtÞ a LðHQ;H
�
Q Þ satisfying (19) and

the relations

Q0½v;w� ¼ 3H0v;w4�; ð26Þ
QV ðtÞ½v;w� ¼ 3VðtÞv;w4� ð27Þ

for every t a ½0;T � and all v;w a HQ, respectively. Consequently (24) reads

j3VðtÞv; v4�ja a3H0v; v4� þ bkvk2

and the combination of (25), (26) and (27) gives

HðtÞ ¼ H0 þ VðtÞ ð28Þ

as an equality in LðHQ;H
�
Q Þ, which is indeed the meaning of (23).

The second relevant hypothesis is the following:

(V 0) The LðHQ;H
�
Q Þ-valued function t 7! VðtÞ is strongly di¤erentiable on

½0;T � and its derivative V 0ðtÞ a LðHQ;H
�
Q Þ satisfies

j3V 0ðtÞv; v4�ja a3H0v; v4� þ bkvk2 ð29Þ

for each t a ½0;T � and every v a HQ, where a and b are as in (24).

The implication of Corollary II.28 in [22] is then that there exists a unitary

evolution system UH0þV ðt; sÞs; t A ½0;T � on H satisfying parts (b) and (c) of Hy-

pothesis (U), where HðtÞ is given by (28). What we wish to display here are

important ways in which we can approximate UH0þV ðt; sÞ.
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Corollary. Assume that Hypotheses (V), (V 0) and (F) hold. Assume furthermore

that (20) is valid. Then the conclusion of the theorem holds true for UH0þV ðt; sÞ.
In particular, for all s; t a ½0;T � with tb s we have

UH0þV ðt; sÞ ¼ lim
n!þl

Y0
g¼n�1

Iþ i
t� s

n
H sþ g

n
ðt� sÞ

� �� ��1

ð30Þ

in the weak operator topology of LðHÞ. Moreover, we also have

UH0þV ðt; sÞ ¼ lim
n!þl

Y0
g¼n�1

exp �i
t� s

n
H sþ g

n
ðt� sÞ

� �� �
ð31Þ

in the strong operator topology of LðHÞ.

Remarks. (1) The above results can all be modified in a straightforward manner

to cover the case where the HðtÞ’s are self-adjoint operators uniformly bounded

from below. Thus, everywhere in the sequel we shall only consider positive gener-

ators, a restriction that we will also apply to the two examples of Section 4.

(2) A relation similar to (31) was derived in Appendix B of [9] in a more spe-

cific context and on the basis of a technique di¤erent from the one we develop in

the next section, which provides a simple and natural framework for the proofs of

our general results.

(3) On the right-hand side of (30) and (31) the operator HðtÞ appears as a

whole, although it splits as in (23). A natural question is thus whether formulae

such as

UH0þV ðt; sÞ ¼ lim
n!þl

Y0
g¼n�1

Iþ i
t� s

n
H0

� ��1

Iþ i
t� s

n
V sþ g

n
ðt� sÞ

� �� ��1

ð32Þ

and

UH0þV ðt; sÞ ¼ lim
n!þl

Y0
g¼n�1

exp �i
t� s

n
H0

� �
exp �i

t� s

n
V sþ g

n
ðt� sÞ

� �� �
ð33Þ

are also true under our general conditions. It turns out that this problem remains

open, although there have been numerous extensions of Trotter’s original work

[24] over the years concerning the linear autonomous case, including those appear-

ing in [3]–[5], [10], [12], [15] and [18] (see for instance [7], [13] and the references

therein for a comprehensive survey of some of these and related works). The

linear non-autonomous case is more di‰cult, unless the domains of the HðtÞ’s
are independent of time and the evolution equations satisfied in a classical sense,

as in [11] or in the very last example of [25].
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We shall dwell a bit more on this at the end of the next section, by pointing out

where the di‰culties are.

3. Proof of the results

In what follows we write c for all the irrelevant constants that occur in the various

estimates unless we specify these constants otherwise. We first draw an elementary

but important consequence from the Lipschitz continuity estimate (14).

Lemma 1. Assume that Hypothesis (Q) is valid. Then there exists a constant

c a ð0;þlÞ such that the inequality

kwkQ; t;�a exp½cjt� sj�kwkQ; s;� ð34Þ

holds for all s; t a ½0;T � and every w a H�
Q .

Proof. From (13) and (14) we have

kvk2Q; t ¼ QðtÞ½v; v�a ð1þ cjt� sjÞQðsÞ½v; v�a exp½cjt� sj�kvk2Q; s

for every v a HQ, and by symmetry

kvk2Q; sa exp½cjt� sj�kvk2Q; t:

Therefore we obtain

sup
0Av AHQ

j3w; v4Q;�j
kvkQ; t

a exp½cjt� sj� sup
0Av AHQ

j3w; v4Q;�j
kvkQ; s

;

which is (34) by changing the value of c if necessary. r

Without restricting the generality we now assume that s < t < T and set

h ¼ t�s
n

for n su‰ciently large. The preceding lemma then allows us to prove the

following result.

Lemma 2. Assume that Hypothesis (Q) and (18) are valid. Then there exists a

constant c a ð0;þlÞ such that the estimate

���Ygþ1

a¼n

Fsþða�1ÞhðhÞv
���
�
a ckvk� ð35Þ

holds for each g a f1; . . . ; n� 1g and every v a H.
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Proof. According to (16) this is equivalent to proving that

���Ygþ1

a¼n

Fsþða�1ÞhðhÞv
���
Q; t;�

a ckvkQ; t;�:

For this we apply (34) and (18) alternatingly. After 2ðn� gÞ � 1 steps we obtain

���Ygþ1

a¼n

Fsþða�1ÞhðhÞv
���
Q; t;�

a exp
�
c
�
2ðn� gÞ � 1

�
h
	
kFt�ðn�gÞhðhÞvkQ; t�ðn�gÞh;� ð36Þ

since nh ¼ t� s. Furthermore, we can estimate the last factor in (36) as

kFt�ðn�gÞhðhÞvkQ; t�ðn�gÞh;�

a exp½ch�kvkQ; t�ðn�gÞh;�a exp½cðn� gþ 1Þh�kvkQ; t;� ð37Þ

by first applying (18) and then (34). Consequently, the substitution of (37) into

(36) leads to the inequality

���Ygþ1

a¼n

Fsþða�1ÞhðhÞv
���
Q; t;�

a exp½3cðn� gÞh�kvkQ; t;�a exp½3cnh�kvkQ; t;�;

which gives the desired result since nh ¼ t� saT . r

We now define the sequence
�
Pnðt; sÞ

�
HLðHÞ by

Pnðt; sÞ :¼ UHðt; sÞ �
Y1
g¼n

Fsþðg�1ÞhðhÞ ð38Þ

and establish the following useful preliminary estimate for it.

Lemma 3. Assume that Hypothesis (Q) and (18) hold. Then we have the inequality

kPnðt; sÞvk�a cn sup
r A ½s; t�

kUHðrþ h; sÞv� FrðhÞUHðr; sÞvk� ð39Þ

for every v a H.
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Proof. From the basic composition laws for the UHðt; sÞ’s, (38), and remembering

that t ¼ sþ nh we first get

Pnðt; sÞ ¼
Y1
g¼n

UH

�
sþ gh; sþ ðg� 1Þh

�
�
Y1
g¼n

Fsþðg�1ÞhðhÞ

¼
Y2
a¼n

Fsþða�1ÞhðhÞ �
�
UHðsþ h; sÞ � FsðhÞ

�

þ
Xn�1

g¼2

Ygþ1

a¼n

Fsþða�1ÞhðhÞ �
�
UH

�
sþ gh; sþ ðg� 1Þh

�
� Fsþðg�1ÞhðhÞ

�

�
Y1

b¼g�1

UH

�
sþ bh; sþ ðb � 1Þh

�

þ
�
UHðt; t� hÞ � Ft�hðhÞ

�
�
Y1

b¼n�1

UH

�
sþ bh; sþ ðb � 1Þh

�
ð40Þ

where the second equality follows from the cancellation of all but the two relevant

terms in the expression on its right-hand side. Furthermore, by repeated applica-

tions of the composition laws we have

Y1
b¼g�1

UH

�
sþ bh; sþ ðb � 1Þh

�
¼ UH

�
sþ ðg� 1Þh; s

�
ð41Þ

and

Y1
b¼n�1

UH

�
sþ bh; sþ ðb � 1Þh

�
¼ UHðt� h; sÞ ð42Þ

for the two products that appear on the right-hand side of (40). Substituting (41)

and (42) into (40), multiplying out and regrouping terms we then get

Pnðt; sÞv ¼
Xn�1

g¼1

Ygþ1

a¼n

Fsþða�1ÞhðhÞ

�
�
UHðsþ gh; sÞ � Fsþðg�1ÞhðhÞUH

�
sþ ðg� 1Þh; s

��
v

þ
�
UHðt; sÞ � Ft�hðhÞUHðt� h; sÞ

�
v ð43Þ

for every v a H since UHðs; sÞ ¼ I.
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We now proceed by estimating the norm of the first term on the right-hand side

of (43) by means of (35); we obtain

Xn�1

g¼1

���Ygþ1

a¼n

Fsþða�1ÞhðhÞ �
�
UHðsþ gh; sÞ � Fsþðg�1ÞhðhÞUH

�
sþ ðg� 1Þh; s

��
v
���
�

a c
Xn�1

g¼1

��UHðsþ gh; sÞv� Fsþðg�1ÞhðhÞUH

�
sþ ðg� 1Þh; s

�
v
��
�; ð44Þ

so that the combination of (43) and (44) gives

kPnðt; sÞvk�a c
Xn
g¼1

��UHðsþ gh; sÞv� Fsþðg�1ÞhðhÞUH

�
sþ ðg� 1Þh; s

�
v
��
�:

If we now set rg :¼ sþ ðg� 1Þh we get a fortiori

kPnðt; sÞvk�a cn max
g A f1;...;ng

kUHðrg þ h; sÞv� FrgðhÞUHðrg; sÞvk�

a cn sup
r A ½s; t�h�

kUHðrþ h; sÞv� FrðhÞUHðr; sÞvk�;

which indeed leads to (39). r

In order to estimate (39) further we now introduce two linear operators defined

on HQ, namely,

Lðh; rÞ :¼ h�1
�
I� FrðhÞ

�
� iHðrÞ ð45Þ

and

Mðh; rÞ :¼ h�1
�
I�UHðrþ h; rÞ

�
� iHðrÞ ð46Þ

where HðrÞ stands for the operator defined by (19). We can then express the

right-hand side of (39) somewhat di¤erently as in the following result, albeit

now with the additional but harmless restriction v a HQ.

Lemma 4. Assume that Hypothesis (Q) and (18) hold, along with the invariance

part of Hypothesis (U). Then we have the inequality

kPnðt; sÞvk�a c sup
r A ½s; t�

kLðh; rÞUHðr; sÞv�Mðh; rÞUHðr; sÞvk� ð47Þ

for every v a HQ.
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Proof. From (45) and (46) we obtain

hLðh; rÞUHðr; sÞv ¼ UHðr; sÞv� FrðhÞUHðr; sÞv� ihHðrÞUHðr; sÞv ð48Þ

and

hMðh; rÞUHðr; sÞv ¼ UHðr; sÞv�UHðrþ h; sÞv� ihHðrÞUHðr; sÞv; ð49Þ

respectively, where we have used the composition laws to establish (49). By sub-

tracting (49) from (48) we then get

hLðh; rÞUHðr; sÞv� hMðh; rÞUHðr; sÞv ¼ UHðrþ h; sÞv� FrðhÞUHðr; sÞv;

so that (47) indeed follows from (39) since nh ¼ t� saT . r

We are now ready for the following.

Proof of the theorem. We first show that

lim
n!þl

kPnðt; sÞvk� ¼ 0 ð50Þ

for every v a HQ. For this it is su‰cient to have

lim
n!þl

sup
r A ½s; t�

kLðh; rÞUHðr; sÞvk� ¼ 0 ð51Þ

and

lim
n!þl

sup
r A ½s; t�

kMðh; rÞUHðr; sÞvk� ¼ 0 ð52Þ

according to (47). Referring back to (48) we see that (51) is equivalent to

having

lim
n!þl

sup
r A ½s; t�

��h�1
�
UHðr; sÞv� FrðhÞUHðr; sÞv

�
� iHðrÞUHðr; sÞv

��
� ¼ 0

for every v a HQ, which is an immediate consequence of (20).

As for the proof of (52) we start from the relation

3Mðh; rÞUHðr; sÞv;w4� ¼ ih�1

ð rþh

r

dk3HðkÞUHðk; sÞv� HðrÞUHðr; sÞv;w4� ð53Þ
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valid for every w a HQ, which follows from (21) and (49). Relation (53) then

leads to

kMðh; rÞUHðr; sÞvk�a h�1

ð rþh

r

dkkHðkÞUHðk; sÞv� HðrÞUHðr; sÞvk�; ð54Þ

and since the function k 7! HðkÞUHðk; sÞv is uniformly continuous on ½r; rþ h�
with respect to the strong topology of H�

Q according to (c) of Hypothesis (U),

we conclude that for every e a ð0;þlÞ there exists he a ð0;þlÞ such that the

inequalities 0a k � ra ha he along with (54) imply the estimate

sup
r A ½s; t�

kMðh; rÞUHðr; sÞvk�a e;

which is equivalent to (52). Consequently (50) holds, which implies that

�
UHðt; sÞv;w

�
¼ lim

n!þl

Y0
g¼n�1

Fsþðg=nÞðt�sÞ
t� s

n

� �
v;w

 !
ð55Þ

for all v;w a HQ according to (15) and (38), since 3: ; :4� and ð: ; :Þ are interchange-
able on H.

In order to prove (22), it thus remains to extend (55) to all v;w a H. On the

one hand, as a vector subspace HQ is dense in H relative to the strong topology of

this latter space. On the other hand, arguing as in the proof of Lemma 2 we infer

from (17) that the estimate

Y0
g¼n�1

Fsþðg=nÞðt�sÞ
t� s

n

� �
v

�����
�����a ckvk

holds for every v a H for some c a ð0;þlÞ independent of n. Therefore, the fact

that (55) holds for all v;w a H follows from a standard density argument.

The very last statement of the theorem is obvious since the weak and strong

topologies of H coincide on the unitary group in LðHÞ. r

We now turn to the proof of the corollary, which first requires the verification

of Hypothesis (Q).

Lemma 5. Assume that Hypotheses (V) and (V 0) are valid. Then relations (13) and

(14) hold relative to the fixed norm

kvkþ :¼ kH 1=2
0 vk ð56Þ

on HQ.
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Proof. From (24), (25) and (56) we get

ð1� aÞkvk2þ � bkvk2aQðtÞ½v; v�a ð1þ aÞkvk2þ þ bkvk2

for each t a ½0;T � and every v a HQ, which leads to (13) by virtue of (7) and the

first embedding in (11).

The starting point for the proof of (14) is the relation

QðtÞ½v; v� �QðsÞ½v; v� ¼
ð t
s

dt3V 0ðtÞv; v4�;

which follows from (25), (27) and the di¤erentiability of V. We then obtain the

desired estimate

jQðtÞ½v; v� �QðsÞ½v; v�ja
ð t
s

dtj3V 0ðtÞv; v4�ja c�jt� sj kvk2þ

for all s; t a ½0;T � and every v a HQ, as a consequence of (29), (56) and the first

embedding in (11) once again. r

Remark. It is also possible to obtain the first inequality in (13) from (24) and the

condition

Q0½v; v�bkkvk2 ð57Þ

for a su‰ciently large positive k, instead of invoking (7). This is particularly use-

ful when (7) cannot easily be proved directly, as will be the case in the second

example of Section 4.

Since we know from Corollary II.28 and its proof in [22] that UH0þV ðt; sÞ sat-
isfies parts (b) and (c) of Hypothesis (U), the preceding lemma and the theorem

imply the first statement of the corollary. Moreover, we have already noted that

the resolvent operators (3) and the unitary semigroup (4) satisfy Hypothesis (F)

in a trivial way. Therefore, in order to prove (30) and (31) it remains to verify

part (a) of Hypothesis (U) for (3) and (4). For this it is necessary to consider

the C0-semigroup on H�
Q given by

StðtÞ :¼ exp½�itHðtÞ�; ð58Þ

namely, the extension by continuity of (4) to the whole of H�
Q . It is easily verified

that (58) is unitary with respect to the norm (12), and that its infinitesimal genera-

tor is indeed �iHðtÞ, considered this time as an unbounded operator in H�
Q defined

on the dense subspace HQ where HðtÞ is self-adjoint.
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We begin with the following intermediary result, valid quite generally and

independently of (28).

Lemma 6. Assume that (13) of Hypothesis (Q) holds. Then we have

lim
t!0þ

sup
t A ½0;T �

���exp½�itHðtÞ� � I
�
v
��
� ¼ 0 ð59Þ

for every v a H�
Q . Moreover, for any compact set KHH�

Q the limit (59) is uniform

in v a K.

Proof. Relation (13) implies (16). Consequently, from the properties of

exp½�itHðtÞ� and from the fact that HQ is dense in H�
Q as a vector subspace, it is

su‰cient to prove the relation

lim
t!0þ

sup
t A ½0;T �

���exp½�itHðtÞ� � I
�
v
��
� ¼ 0 ð60Þ

for every v a HQ. We first show that the identity

3exp½�itHðtÞ�v� v;w4� ¼ �i

ð t
0

ds
�
exp½�isHðtÞ�H 1=2ðtÞv;H 1=2ðtÞw

�
ð61Þ

holds for each t a ½0;þlÞ, every t a ½0;T � and all v;w a HQ.

Indeed, from a classic property of C0-semigroups we may write

3exp½�itHðtÞ�v� v;w4� ¼ �i

ð t
0

ds
�
exp½�isHðtÞ�HðtÞv;w

�

for each v a D
�
HðtÞ

�
and every w a HQ. But v a D

�
HðtÞ

�
if, and only if,

H 1=2ðtÞv a HQ; furthermore H 1=2ðtÞ commutes with exp½�isHðtÞ� on HQ and

is self-adjoint in H, so that (61) holds for each t a ½0;þlÞ and all t a ½0;T �,
v a D

�
HðtÞ

�
, w a HQ.

Therefore, in order to show the validity of (61) for all v a HQ it su‰ces to prove

that D
�
HðtÞ

�
is dense in HQ. On the one hand, the restriction of exp½�itHðtÞ� to

HQ defines a C0-semigroup there, the generator of which being consequently

densely defined in HQ. On the other hand, the domain of that generator is con-

tained in D
�
HðtÞ

�
by virtue of the first embedding in (11). We can then conclude

that D
�
HðtÞ

�
is a fortiori dense in HQ, so that (61) holds for all v a HQ.

It is now easy to derive (60) from (61), since Schwarz inequality and the fact

that exp½�itHðtÞ� is unitary in H lead to the estimate

j3exp½�itHðtÞ�v� v;w4�ja tkH 1=2ðtÞvk kH 1=2ðtÞwka ctkvkþkwkþ
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as a consequence of (9) and (13), where c is independent of t. Thus we get

sup
t A ½0;T �

sup
0Aw AHQ

j3exp½�itHðtÞ�v� v;w4�j
kwkþ

a ctkvkþ ! 0

as t ! 0þ, which is the desired result.

As for the very last assertion of the lemma, we remark that the operator norm

of exp½�itHðtÞ� � I in LðH�
Q Þ satisfies

sup
t A ½0;þlÞ

sup
t A ½0;T �

kexp½�itHðtÞ� � IkLðH�
Q Þ < þl; ð62Þ

so that the statement follows for instance from Lemma 3 in [26]. r

The preceding considerations now allow us to prove the desired assertions.

Proof of the Corollary. As already observed it remains to verify part (a) of

Hypothesis (U) for the approximating functions (3) and (4). Since the former is

the Laplace transform of the latter, we begin with (4). This means that we must

have

lim
t!0þ

sup
t A ½0;T �

exp½�itHðtÞ� � I

t
UH0þV ðt; sÞvþ iHðtÞUH0þV ðt; sÞv

����
����
�
¼ 0 ð63Þ

for each v a HQ and every s a ½0;T �, where HðtÞ is given by (28).

Remembering that exp½�itHðtÞ� and exp½�itHðtÞ� coincide on HQ we may

write

exp½�itHðtÞ� � I

t
UH0þV ðt; sÞvþ iHðtÞUH0þV ðt; sÞv

¼ � i

t

ð t
0

ds
�
exp½�isHðtÞ� � I

�
HðtÞUH0þV ðt; sÞv ð64Þ

for each t a ð0;þlÞ and every v a HQ, since �iHðtÞ is the infinitesimal generator

of exp½�itHðtÞ� in H�
Q , and since the invariance property of Hypothesis (U) holds

in this case. Therefore we obtain

exp½�itHðtÞ� � I

t
UH0þV ðt; sÞvþ iHðtÞUH0þV ðt; sÞv

����
����
�

a sup
s A ½0; t�

���exp½�isHðtÞ� � I
�
HðtÞUH0þV ðt; sÞv

��
�: ð65Þ
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Furthermore, from the proof of Corollary II.28 of [22] we already know that the

function t 7! HðtÞUH0þV ðt; sÞv is continuous on ½0;T � in the strong topology of H�
Q

for each v a HQ, so that the set

K :¼ fw a H�
Q : w ¼ HðtÞUH0þV ðt; sÞv; t a ½0;T �g

is compact in H�
Q . Relation (63) then follows from (65) and the very last state-

ment of Lemma 6.

The proof of the analogous property for (3) follows from (63) through a

Laplace transform argument and dominated convergence. Indeed we have

�
Iþ itHðtÞ

��1
v ¼

ðþl

0

ds exp½�s� exp½�istHðtÞ�v

for each t a ð0;þlÞ and every v a H as an improper H-valued Riemann inte-

gral, so that

�
Iþ itHðtÞ

��1 � I

t
UH0þV ðt; sÞvþ iHðtÞUH0þV ðt; sÞv

¼
ðþl

0

ds exp½�s�s exp½�istHðtÞ� � I

st
UH0þV ðt; sÞvþ iHðtÞUH0þV ðt; sÞv

� �

since

ðþl

0

ds exp½�s� ¼
ðþl

0

ds exp½�s�s ¼ 1:

Consequently we get

sup
t A ½0;T �

�
Iþ itHðtÞ

��1 � I

t
UH0þV ðt; sÞvþ iHðtÞUH0þV ðt; sÞv

�����
�����
�

a

ðþl

0

ds exp½�s�sAðs; tÞ ð66Þ

where we have introduced the auxiliary function

s 7! Aðs; tÞ

:¼ sup
t A ½0;T �

exp½�istHðtÞ� � I

st
UH0þV ðt; sÞvþ iHðtÞUH0þV ðt; sÞv

����
����
�
; ð67Þ
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and for any fixed s a ð0;þlÞ we have

lim
t!0þ

Aðs; tÞ ¼ 0 ð68Þ

by virtue of (63). Now, by using once again (62) and (64) we obtain from (67) the

estimate

Aðs; tÞa 1

st
sup

t A ½0;T �

ð st
0

dr
���exp½�irHðtÞ� � I

�
HðtÞUH0þV ðt; sÞv

��
�

a c sup
t A ½0;T �

kHðtÞUH0þV ðt; sÞvk� < þl

uniformly in s and t. But any finite constant is integrable on ð0;þlÞ with respect

to the measure ds exp½�s�s, so that by dominated convergence relative to this

measure along with (66) and (68) we have

lim
t!0þ

sup
t A ½0;T �

�
Iþ itHðtÞ

��1 � I

t
UH0þV ðt; sÞvþ iHðtÞUH0þV ðt; sÞv

�����
�����
�

¼ 0

for each v a HQ and every s a ½0;T �, as desired. r

Remark. Whereas the methods of this article are relevant to prove (30) and (31)

where the operator HðtÞ appears as a whole, they are not quite appropriate to de-

rive formulae such as (32) and (33). Indeed, the natural choice of approximating

functions in this case is

FtðtÞ ¼ ðIþ itH0Þ�1�
Iþ itVðtÞ

��1 ð69Þ

and

FtðtÞ ¼ exp½�itH0� exp½�itVðtÞ�; ð70Þ

respectively. In either case the problem then lies in the verification of Hypothesis

(F): whereas (17) trivially holds for both (69) and (70) with c ¼ 0, (18) can seldom

be valid. For instance, in the case of (70) and by virtue of (16) with

kwk� :¼ kH�1=2
0 wk

we have successively

kFtðtÞvk2Q; t;�a ckH�1=2
0 exp½�itVðtÞ�vk2a c2kexp½�itVðtÞ�vk2Q; t;�

336 P.-A. Vuillermot and W. F. Wreszinski



since H
�1=2
0 commutes with the unitary semigroup exp½�itH0� on H. Conse-

quently, even under the most favorable hypotheses regarding VðtÞ we end up

getting an estimate of the form

kFtðtÞvkQ; t;�a c exp½ct�kvkQ; t;�

with c a ½1;þlÞ, instead of (18). But then, it is impossible to derive the crucial

uniform estimate (35) since the number of factors in that product depends explic-

itly on n.

We devote the last section to the illustration of our results.

4. Two examples

In what follows we use the standard notations for the usual spaces of Lebesgue

integrable functions and for the corresponding Sobolev spaces of functions defined

on Euclidean space (see, for instance, [1]). All the functions are complex-valued

unless stated otherwise.

Example 1. We consider the initial-value problem in one space dimension

i
quðx; tÞ

qt
¼


� 1

2

q

qx

1

mðxÞ
q

qx
þ VðxÞ þ

XN
k¼1

skðtÞdxk
�
uðx; tÞ; ðx; tÞ a R� ðs;T �;

uðx; sÞ ¼ vðxÞ; x a R; ð71Þ

corresponding to a particle with variable mass m moving in a potential V

perturbed by time-dependent point interactions supported by a discrete set

fx1; . . . ; xNg, where N a Nþ is fixed and arbitrary (see, for instance, [8] and its

references for a physical interpretation of related models).

In this case we view (71) as an evolution problem of the form (1) inH ¼ L2ðRÞ,
with the operator HðtÞ formally given by

HðtÞ :¼ � 1

2

q

qx

1

mðxÞ
q

qx
þ VðxÞ þ

XN
k¼1

skðtÞdxk : ð72Þ

Furthermore we impose the following hypotheses:

(MV) We have 0 < 1
m
þm a LlðRÞ and 0aV a LlðRÞ.

(S) The strengths of the point interactions sk : ½0;T � 7! ½0;þlÞ are positive

and Lipschitz continuous for every k a f1; . . . ;Ng.
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Under these conditions there exists a self-adjoint realization of (72) in L2ðRÞ as
a positive operator on some time-dependent domain D

�
HðtÞ

�
, corresponding to

the closed and Hermitian sesquilinear form

QðtÞ½v;w� ¼
ð
R

dx
1

2mðxÞ v
0ðxÞw 0ðxÞ þ VðxÞvðxÞwðxÞ

� �

þ
XN
k¼1

skðtÞvðxkÞwðxkÞ ð73Þ

defined for all v;w a D
�
HðtÞ1=2

�
¼ W 1;2ðRÞ (see [2] for a variety of constructions

of this kind, based on von Neumann’s theory of self-adjoint extensions for sym-

metric operators); furthermore inequality (7) holds. We then have the following

result.

Proposition 1. Assume that Hypotheses (MV), (S), (F) and (20) are valid. Then

there exists a unique unitary evolution system UHðt; sÞs; t A ½0;T � on L2ðRÞ associated
with the above realization of (72), for which the conclusion of the theorem holds true.

In particular, UHðt; sÞ can be approximated as in (30) and (31) of the corollary.

Proof. For the fixed norm on HQ ¼ W 1;2ðRÞ we choose

kvkþ ¼

 ð

R

dxjv 0ðxÞj2
�1=2

:

Conditions (MV) and (S) together with standard one-dimensional Sobolev theory

then imply that Hypothesis (Q) holds. Moreover, (MV) and (S) also guarantee the

existence of a unique unitary evolution system UHðt; sÞs; t A ½0;T � on L2ðRÞ, which
leaves W 1;2ðRÞ invariant and satisfies parts (b) and (c) of Hypothesis (U) accord-

ing to Theorem 6.1 in [19] and its proof. Since (F) and (20) are assumed to hold,

the conclusion of the theorem follows in this case. The proofs of (30) and (31) are

identical to those given at the very end of Section 3. r

Example 2. We now consider the initial-value problem

i
quðx; tÞ

qt
¼
�
�4x þ kþ Vðx; tÞ

�
uðx; tÞ; ðx; tÞ a R3 � ðs;T �;

uðx; sÞ ¼ vðxÞ; x a R3; ð74Þ

describing the motion of a particle with constant mass in R3, subjected to a time-

dependent potential V , measurable in ðx; tÞ and satisfying Rollnik’s conditionð
R3�R3

dx dy
jVðx; tÞj jVðy; tÞj

jx� yj2
< þl ð75Þ
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for every t a ½0;T � (see [22] for a systematic analysis of Rollnik potentials and the

rôle of these in applications). Here we consider (74) as an evolution problem of

the form (1) in H ¼ L2ðR3Þ, with

HðtÞ :¼ �4x þ kþ Vðx; tÞ ð76Þ

realized as a self-adjoint operator on some time-dependent domain D
�
HðtÞ

�
. As

is well known, this is made possible by an application of the Kato-Rellich theorem

for forms, provided we define H0 :¼ �4x þ k as the self-adjoint, positive operator

on the domain

DðH0Þ ¼ W 2;2ðR3Þ;

in which case we have HQ ¼ W 1;2ðR3Þ (see, for instance, [14] or [22]). Here we

choose k positive and su‰ciently large, in relation to our remark immediately

following the proof of Lemma 5 in Section 3.

In order to illustrate our theory with this example we need additional require-

ments on V that ensure some kind of uniformity in t. For instance, we can impose

the following two hypotheses:

(R) We have

ð
R3�R3

dx dy
MðxÞMðyÞ
jx� yj2

< þl

where MðxÞ :¼ supt A ½0;T �jVðx; tÞj

(R 0) The function t 7! Vðx; tÞ is di¤erentiable on ½0;T � for almost every x and

we have

ð
R3�R3

dx dy
NðxÞNðyÞ
jx� yj2

< þl

where NðxÞ :¼ supt A ½0;T �
��qVðx; tÞ

qt

��.
Under these conditions we have indeed the following result.

Proposition 2. Assume that Hypotheses (R), (R 0), (F) and (20) are valid. Then

there exists a unique unitary evolution system UH0þV ðt; sÞs; t A ½0;T � on L2ðR3Þ associ-
ated with the above realization of (76), for which all the conclusions of the corol-

lary hold true.
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Proof. Here we choose the Sobolev norm

kvkþ ¼

 ð

R3
dxj‘vðxÞj2

�1=2

for the fixed norm on HQ ¼ W 1;2ðR3Þ, while we have H�
Q ¼ W�1;2ðR3Þ for the

corresponding adjoint space. Relation (57) is then valid for the Hermitian sesqui-

linear form Q0 associated with H0 ¼ �4x þ k, so that it is su‰cient to prove that

(V) and (V 0) hold. From a simple adaptation of the proof of Theorem I.21 in [22]

to the time-dependent case we can first infer that Hypothesis (R) implies (V),

where QV ðtÞ is the Hermitian sesquilinear form associated with the self-adjoint

operator in L2ðR3Þ corresponding to the multiplication by Vðx; tÞ. The crucial

point of this part of the argument is that the assumed uniformity in t implies the

time independence of the constants in (V).

In a similar way we claim that Hypothesis (R 0) implies (V 0). Indeed, since

QV ðtÞ½v;w� ¼ 3VðtÞv;w4� ¼
ð
R3

dxVðx; tÞvðxÞwðxÞ

for all v;w a W 1;2ðR3Þ where 3: ; :4� denotes the duality bracket betweenW 1;2ðR3Þ
and W�1;2ðR3Þ, we conclude from (R 0) and dominated convergence that the func-

tion t 7! 3VðtÞv;w4� is di¤erentiable on ½0;T � with

d

dt
3VðtÞv;w4� ¼ 3V 0ðtÞv;w4� ¼

ð
R3

dx
qVðx; tÞ

qt
vðxÞwðxÞ

since x ! NðxÞvðxÞwðxÞ a L1ðR3Þ. Moreover, as is the case for VðtÞ the operator
V 0ðtÞ is linear and bounded from W 1;2ðR3Þ into W�1;2ðR3Þ and satisfies (29).

Therefore, there does exist a unique unitary evolution system UH0þV ðt; sÞs; t A ½0;T �
on L2ðR3Þ such that all the stated conclusions hold true. r

Remarks. (1) It is plain that any kind of conditions other than (R) and (R 0) which
imply the validity of (V) and (V 0) will lead to the same statement as that of the

proposition.

(2) Since the operators UH0þV ðt; sÞ are related to the operators U�4þV ðt; sÞ
associated with the solution to the initial-value problem

i
quðx; tÞ

qt
¼
�
�4x þ Vðx; tÞ

�
uðx; tÞ; ðx; tÞ a R3 � ðs;T �;

uðx; sÞ ¼ vðxÞ; x a R3;
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by

UH0þV ðt; sÞ ¼ e�ikðt�sÞU�4þV ðt; sÞ;

it is immediate that a result similar to that of Proposition 2 holds for U�4þV ðt; sÞ.
The corresponding approximating functions simply di¤er by at most a trivial fac-

tor of modulus one.
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