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Special divisors of large dimension on curves
with many points over finite fields
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Abstract. We prove a non-existence result for special divisors of large dimension on curves
over finite fields with many points. We also give a family of examples where such divisors
exist under less stringent hypotheses.
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1. Introduction

The purpose of this note is to study a hypothesis of Ben-Aroya and Ta-Shma [2]

on the existence of special divisors of large dimension on curves with many points

over finite fields. Their work was motivated by an application to the construction

of binary error correcting codes with good properties by concatenating codes from

large alphabets (such as algebraic geometry codes) with a Hadamard code. They

remarked that, if divisors with certain properties could be constructed on curves

meeting the Drinfeld–Vladut bound ([4], Theorem 9.37) their construction could

be improved. Unfortunately, we show in this note that such divisors do not

exist. We also give a construction of special divisors on modular curves which,

although not quite reaching the demands of Ben-Aroya and Ta-Shma, do have

large dimension and might be useful for similar constructions. This example also

restricts how much our result can be improved. In the course of our proof we

also obtain a version of Castelnouvo’s genus bound valid for all curves in arbitrary

characteristic.

*I would like to thank Amnon Ta-Shma for asking me about this question and various conversations
and Gabor Wiese for many pointers to the literature. I would also like to acknowledge the support of my
research by NSA grant MDA904-H98230-09-1-0070.



By a curve we always mean an irreducible projective algebraic curve over a

field. When talking about genus or rational points on a curve, we mean the cor-

responding notions on a smooth model of the curve. By a strange curve, we mean

a curve embedded in some projective space all of whose tangents at smooth points

pass through a fixed point of the ambient space.

2. Main result

Lemma 2.1. Let X be a curve, D a positive divisor on X such that the linear system

defined by D embeds X in Pn as a strange curve, for some n > 1. Then 2D embeds

X in Ps where sb 2n� 1 and such that the image is not a strange curve.

Proof. Recall that, by definition, all tangents of a strange curve pass through

a fixed point, called its nucleus. Replacing, if necessary, D by a linearly equi-

valent divisor, we may assume that the nucleus of the image of X in Pn is

ð0 : 1 : 0 : . . . : 0Þ, so the embedding is given by ð1 : x : y2 : . . . : ynÞ, where x is

a separating variable on X and dyi=dx ¼ 0 for all i, as follows from the condi-

tion that the tangents pass through the nucleus. I claim that the elements

1; x; y2; . . . ; yn; xy2; . . . ; xyn of Lð2DÞ are linearly independent. Indeed, if that

is not the case, there exists a linear combination yA 0 of y2; . . . ; yn such that

xy ¼ aþ bxþ
P

ci yi with a, b, ci constants. Di¤erentiating this equation gives

y ¼ b contradicting the fact that 1; x; y2; . . . ; yn are linearly independent. This

shows the first claim. If the image were strange, so is the curve traced out by

1; x; y2; . . . ; yn; xy2; . . . ; xyn and its nucleus has to be of the form ð0 : 1 : 0 : . . . :

0 : b2 : . . . : bnÞ for some constants bi and the condition that the tangents all go

through the nucleus gives dðxyiÞ=dx ¼ bi. But dðxyiÞ=dx ¼ yi and they cannot

be constants, as noted above. This completes the proof. r

Remark 2.2. If the characteristic is not 2, then we could include x2 among the list

of linearly independent elements of Lð2DÞ, with a similar proof and conclude

sb 2n.

Corollary 2.3. The genus g of X satisfies gamðm� 1Þðn� 1Þ þmð2rþ 1Þ, where
d � 1 ¼ mðn� 1Þ þ r, 0a ra n� 2.

Proof. We have the Castelnuovo bound ([4], Theorem 7.111, [5], Theorem 2.9)

which states that, if Y is a curve embedded in Pn of degree k, not contained in a

hyperplane, not strange, and k � 1 ¼ mðn� 1Þ þ r, 0a ra n� 2, then the genus

of Y is at most mðm� 1Þðn� 1Þ=2þmr. Applying this bound to X HPs as in the

lemma proves the corollary. r

Consider now a curve of genus g and a divisor D on it with degD ¼ d,

lðDÞ ¼ nþ 1, nb 0. By the Riemann–Roch theorem we have nb d � g. When

104 J. F. Voloch



n > d � g, then D is called a special divisor and we must have da 2g� 2 and

n ¼ 0 or na d=2 (Cli¤ord’s theorem). In this note we want to consider special

divisors for which n is large, namely n=d is bounded below by some constant.

We are particularly interested in curves over finite fields of large genus with

many points in the sense of approaching the Drinfeld–Vladut bound.

We use the Vinogradov notation f f g to mean f a cg for some constant

c > 0 where f , g are positive functions of some parameters. Naturally, gg f

means f f g. The symmetrical nature of the notation makes it preferable here

to the common alternative f ¼ OðgÞ.

Theorem 2.4. Suppose that we have a sequence qi of prime powers such that,

for each q ¼ qi, we are given a curve of genus g over Fq such that g=
ffiffiffi
q

p ! l
as i ! l and such that the curve has Ng g

ffiffiffi
q

p
points over Fq, and a divisor D

with degD ¼ d, lðDÞ ¼ nþ 1 satisfying d=nf 1. Then gf n. In particular, if

nf g=
ffiffiffi
q

p
, then q is bounded.

Remark 2.5. Ben-Aroya and Ta-Shma ([2], Hypothesis 12) specifically ask for a

situation as in the theorem. The condition d=nf 1 translates to their requirement

that the divisors are c-dense for some c > 0. They also require N=d > bq for some

b > 0 (a bq gap). This forces g large (unless d is uniformly bounded, which they

exclude). Under these conditions, g
ffiffiffi
q

p
gN > dbq > nbq, so nf g=

ffiffiffi
q

p
. They

also require q unbounded. The theorem implies that this is not possible. In a

personal communication, Ta-Shma noted that interesting results can still be

obtained under a less stringent hypothesis. We o¤er some examples below but

it’s unclear how they impact the constructions envisaged in [2].

Proof. Let X be the curve postulated in the theorem. The divisor D defines a map

f : X ! Pn and we let Y be the image of f. If s is the degree of the induced map

X ! Y , then Y has degree k ¼ d=s. As na k since Y is not contained in a hyper-

plane, we get sf 1 under our assumptions, so NfaYðFqÞf qþ gY
ffiffiffi
q

p
, where

gY is the genus of Y , by the Weil bound. We consider two possibilities, gY a
ffiffiffi
q

p

or not. If gY a
ffiffiffi
q

p
then Nf q, which by our hypothesis that Ng g

ffiffiffi
q

p
, gives

gf
ffiffiffi
q

p
, contradicting another of our hypotheses. So, gY >

ffiffiffi
q

p
and Nf gY

ffiffiffi
q

p
.

Now we apply the Castelnuovo bound (or the corollary above, if Y is strange),

noting that ma ðk � 1Þ=ðn� 1Þf 1, so gY f n, therefore Nf gY
ffiffiffi
q

p
f n

ffiffiffi
q

p
.

Hence, if we assume that Ng g
ffiffiffi
q

p
, we get gf n, as claimed. The second state-

ment clearly follows from the first and this proves the theorem. r

3. Examples

Ben-Aroya and Ta-Shma use, in [2], the Fermat curve of degree pþ 1 over Fp2 .

This curve has genus pðp� 1Þ=2, p3 þ 1 rational points and, for each ka p, the
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divisor kH, where H is the intersection of the curve with the line at infinity, has

dimension kþ2
2

� �
.

Now we provide some examples of curves with many points and special divi-

sors of large dimension based on the following proposition. Let X0ðlÞ (where l is

a prime number) denote as usual the modular curve parametrising elliptic curves

together with a subgroup of order l.

Proposition 3.1. Let g be the genus of X0ðlÞ, lC�1 mod 12. Then X0ðlÞ has a
divisor D with degD ¼ g� 1 which satisfies, for any fixed e > 0, lðDÞg l1=2�e.

Proof. The proposition is a consequence of the results of Hecke [3]. (For a modern

exposition, valid in arbitrary characteristic, see [6]). Namely, consider dihedral

modular forms of weight one attached to unramified extensions of the imaginary

quadratic field of discriminant l. These are cusp forms for G1ðlÞ of weight one, so
sections of a line bundle on X1ðlÞ of degree g1 � 1, where g1 is the genus of X1ðlÞ.
They are also Hecke eigenforms, so linearly independent. Additionally, there are

at least as many forms as the class number of Qð
ffiffiffiffiffiffiffi
�l

p
Þ minus one, so the number

of forms isg l1=2�e, as follows from the Brauer-Siegel theorem.

These dihedral forms can be viewed as cusp forms for G0ðlÞ of weight one and
quadratic character ð�l j �Þ, Now, we fix one such form f0 and look at f = f0 for f

varying among these dihedral forms. As the forms all have the same character,

their ratio descends to a function on X0ðlÞ. As X1ðlÞ ! X0ðlÞ is unramified under

our assumptions, we get that these functions are in LðDÞ for some divisor D of

degree g� 1 on X0ðlÞ and, from the above, lðDÞg l1=2�e. r

Remark 3.2. The space of cusp forms of weight one on X0ðlÞ often contains

forms other than those constructed in the proof of the proposition. However,

these extra forms are not expected to be enough to change the asymptotic be-

haviour of the dimension. For liftable forms, a precise conjecture is made in [1],

conjecture 1.1, where also some results towards that conjecture are obtained.

Non-liftable forms seem to be even rarer, see e.g. the numerical evidence in [6].

We know that g is ðlþ 1Þ=12 and that X0ðlÞ has at least g
ffiffiffi
q

p
points over Fq if

q ¼ p2, where pA l is another prime. The condition g=
ffiffiffi
q

p ! l can be satisfied

with suitable choices of p, l. However, for the divisor constructed in the proposi-

tion, d=n is not expected to be bounded above, so our theorem should not apply.

In itself, our theorem is not strong enough to bound the number of non-liftable

forms.
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