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Abstract. As a model for continuous curves in digital geometry, we study the Khalimsky-
continuous functions defined on the integers and with values in the set of integers or the
set of natural numbers. We determine the number of such functions on a given interval.
It turns out that these numbers are related to the Delannoy and Schröder arrays, and a
relation between these numbers is established.
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1. Introduction

After the advent of computers, Euclidean geometry is no longer suitable for image

processing: all fundamental concepts such as lines, curves and surfaces have to be

redefined. A new kind of geometry, taking into account the discrete nature of the

pixels building up the images, has to be created—digital geometry is being built

up to solve this problem. However, there is in general no unique solution to the

problems we face.

Just like the set of all functions R ! R is not a good model for curves in Eucli-

dean geometry, the set of all functions Z ! Z is not a good model for the curves

we want to study in digital geometry. We need some kind of restriction, analo-

gous to continuity or smoothness in the real case.

A suitable model are the continuous functions Z ! Z, provided that we can

define a reasonable topology on the set Z of integers. In this paper we shall do

so, choosing the Khalimsky topology, which makes the digital space Zn con-

nected; see Khalimsky et al. [5].

We shall define the Khalimsky topology on Zn in Section 1.1 in a simple way,

by just defining open subsets of Z and then going to higher dimensions using the
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product topology. After equipping the discrete space Zn with a topology, we are

able to speak about a continuous function. We will review the definition of

Khalimsky-continuous function in Section 1.2. For more information in these

subjects see Kiselman [6] and Melin [12], [10].

Some combinatorial work has already been done in digital geometry. We can

mention here the pioneering work on the number of discrete segments of slope

0a aa 1 and length L which was done by Berenstein and Lavine [2]. Work on

the number of digital straight line segments was done by Bédaride et al. [1] and

they went on to determine the number of digital segments of given length and

height 2. More information about digital straight line segments can be found in

Kiselman [6], Klette and Rosenfeld [8], [9], Melin [11], [10], and Samieinia [13].

Another combinatorial theme in digital geometry is digital curves. One of the

articles on this topic is the one by Huxley and Zunić [4], who studied the number

of di¤erent digital discs consisting of N points and showed an upper bound for it.

In earlier papers, Samieinia [13], [14], we have studied the Khalimsky-continuous

functions from a combinatorial point of view. We went on to show that these

functions, when they have two points in their codomain, yield a new example of

the classical Fibonacci sequence. For the case of three or four points in their

codomain, some new sequences were presented.

In this paper we shall first determine the number of Khalimsky-continuous

functions with codomain Z and show that it has the same recursion relation as

the Pell numbers, but with di¤erent initial values. This enumeration gives also

an example of Delannoy numbers. Then we shall determine the number of

Khalimsky-continuous functions with codomain N. In this case we obtain a se-

quence by summing up of two consecutive numbers of other sequences. We note

as a byproduct some relations between the Schröder numbers; see Corollary 3.6.

It turns out that there is a relation between the Delannoy and Schröder numbers,

studied in Section 3. We review the definition of Delannoy and Schröder numbers

as well as some of their properties in Section 1.3.

1.1. The Khalimsky topology. We present the Khalimsky topology using a to-

pological basis. For every even integer m, the set fm� 1;m;mþ 1g is open, and

for every odd integer n, the singleton set fng is open. A basis is given by

ff2nþ 1g; f2n� 1; 2n; 2nþ 1g j n a Zg:

It follows that even points are closed. A digital interval ½a; b�Z ¼ ½a; b�BZ with

the subspace topology is called a Khalimsky interval. On the digital plane Z2, the

Khalimsky topology is given by the product topology. A point with both coordi-

nates odd is open. If both coordinates are even, the point is closed. These types of

points are called pure. Points with one even and one odd coordinate are neither
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open nor closed; these are called mixed. By the Khalimsky topology we can see

easily that the mixed point m ¼ ðm1;m2Þ is connected to its four neighbors,

ðm1e 1;m2Þ and ðm1;m2e 1Þ;

whereas the pure point p ¼ ðp1; p2Þ is connected to all 8-neighbors,

ðp1e 1; p2Þ; ðp1; p2e 1Þ; ðp1 þ 1; p2e 1Þ and ðp1 � 1; p2e 1Þ:

More information on the Khalimsky plane and the Khalimsky topology can find

in the Lecture notes by Kiselman [6]. Erik Melin has worked and developed it in

the various directions [10].

1.2. Khalimsky-continuous function. When we equip Z with the Khalimsky

topology, we may speak of continuous functions Z ! Z, i.e., functions for which

the inverse image of open sets are open. It is easily proved that a continuous func-

tion f is Lipschitz with constant 1. This is however not su‰cient for continuity.

It is not hard to prove that f : Z ! Z is continuous if and only if (i) f is Lipschitz

with constant 1 and (ii) for every x, x2 f ðxÞ ðmod2Þ implies f ðxe 1Þ ¼ f ðxÞ.
For more information see [12].

We observe that the following functions are continuous:

(1) Z C x N a a Z, where a is constant;

(2) Z C x C x Nexþ c a Z, where c is an even constant;

(3) maxð f ; gÞ and minð f ; gÞ if f and g are continuous.

Actually every continuous function on a bounded Khalimsky interval can be ob-

tained by a finite succession of the rules (1), (2), (3); see Kiselman [6].

1.3. Delannoy and Schröder numbers. The Delannoy numbers di; j were intro-

duced by Henri Delannoy [3]. They satisfy

di; j ¼ di�1; j þ di; j�1 þ di�1; j�1;

with conditions d0;0 ¼ 1 and di; j ¼ 0 for i < 0 or j < 0. The numbers ðdi; iÞib0 ¼
ð1; 3; 13; 63; 321; 1683; 8989; 48639; . . .Þ (the sequence number A001850 in Sloane

[16]) are known as the central Delannoy numbers. In Section 2 we shall show

that the number of Khalimsky-continuous functions with codomain Z gives an

example of Delannoy numbers. If we consider instead such functions with codo-

main N, then we get an example of other numbers, which are called the Schröder

numbers, named for Ernst Schröder. He found these numbers while enumerating

unrestricted bracketings of words. We define these numbers by the array ri; j such
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that ri; j ¼ ri�1; j þ ri; j�1 þ ri�1; j�1 with conditions r0;0 ¼ 1 and ri; j ¼ 0 if j < 0 or

i < j. The numbers ðri; iÞib0 ¼ 1; 2; 6; 22; 90; . . . are known as the large Schröder

numbers.

Sulanke [17] presented the relation between the central Delannoy numbers and

the Schröder numbers as dn;n ¼
P

i ri;2n�i. It means that the central Delannoy

number dn;n is the sum of the ð2nþ 1Þ-st diagonal of the Schröder numbers. We

will see also another relation between these two numbers in Section 3, which is

di; j ¼ ri; j þ riþ1; j�1 þ � � � þ rn;0 for ib j.

Other work that deals with the relation between the Delannoy and the

Schröder numbers was done by Joachim Schröder [15]. He introduced generalized

Schröder numbers Schrði; j; lÞ as the number of lattice paths from ð0; 0Þ to ði; jÞ
with unit steps ð1; 0Þ, ð0; 1Þ and ð1; 1Þ, which never go below the line y ¼ lx.

We shall see in Sections 2 and 3 how these two kinds of numbers appear in

enumerating of digital continuous curves.

2. Continuous curves with codomain Z

There are connections between many mathematical problems and the Delannoy

numbers. Sulanke (2003) listed 29 di¤erent contexts where the central Delannoy

numbers appear. A classical example is the number of paths from ð0; 0Þ to ðn; nÞ
using the steps ð0; 1Þ, ð1; 0Þ, and ð1; 1Þ. The 30th example was mentioned in

Kiselman [7]. We present this example in detail in Theorem 2.2. To prove the

statements of this section we need to use some of the properties of the Khalimsky

topology which we shall state in the following lemma.

Lemma 2.1. Suppose that f s
n for jsja n is the number of Khalimsky-continuous

functions f : ½0; n�Z ! Z such that f ð0Þ ¼ 0 and f ðnÞ ¼ s. Then

f s
2k ¼

f s�1
2k�1 þ f s

2k�1 þ f sþ1
2k�1; jsj ¼ 2t for t ¼ 0; . . . ; k � 1;

f s
2k�1; jsj ¼ 2t� 1 for t ¼ 1; . . . ; k;

f 2k�1
2k�1 ; s ¼ 2k;

f �2kþ1
2k�1 ; s ¼ �2k;

8>>><
>>>:

ð1Þ

and

f s
2kþ1 ¼

f s�1
2k þ f s

2k þ f sþ1
2k ; jsj ¼ 2t� 1 for t ¼ 1; . . . ; k;

f s
2k; jsj ¼ 2t for t ¼ 0; . . . ; k;

f 2k2k ; s ¼ 2k þ 1;

f �2k
2k ; s ¼ �ð2k þ 1Þ:

8>>><
>>>:

ð2Þ
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Proof. Let f : ½0; n�Z ! Z be a continuous function with f ð2kÞ ¼ s, jsjA 2k and

even. Using the rules (1) and (2) in Section 1.2; f ð2k � 1Þ can be one of the values

s, sþ 1 or s� 1. Thus we get the first line of equation (1). The other relations can

be achieved similarly. r

Theorem 2.2. Let f s
n , jsja n, be the number of Khalimsky-continuous functions

f : ½0; n�Z ! Z such that f ð0Þ ¼ 0 and f ðnÞ ¼ s, and di; j be the Delannoy numbers.

Then we have that f s
n ¼ di; j for i ¼ 1

2 ðnþ sÞ and j ¼ 1
2 ðn� sÞ, where nþ s a 2Z and

f s
n ¼ f s

n�1 for nþ s odd.

Proof. We shall use induction to prove the result. It is easy to see that f 00 ¼
1 ¼ d0;0, f 11 ¼ 1 ¼ d1;0, f �1

1 ¼ 1 ¼ d0;1 and f 02 ¼ 3 ¼ d1;1. Suppose that the

formula is true for n < 2k. We shall show that the result is true for n ¼ 2k. We

consider s such that 2k þ s a 2Z; hence s is an even number. For jsjA 2k, the

equation (1) implies that

f s
2k ¼ f s�1

2k�1 þ f s
2k�2 þ f sþ1

2k�1: ð3Þ

By the statement we have

f s�1
2k�1 þ f s

2k�2 þ f sþ1
2k�1 ¼ di�1; j þ di�1; j�1 þ di; j�1; ð4Þ

where

2k þ s

2
¼ i and

2k � s

2
¼ j: ð5Þ

Thus by (3), (4) and (5), we get the result. Suppose now jsj ¼ 2k. Without loss of

generality we may assume that s is positive. Using equation (1) and the statement

we get f s
2k ¼ f s�1

2k�1 ¼ d2k�1;0. We can see easily that d2k�1;0 ¼ d2k;0. Hence we

have the result in this case. The proof for n ¼ 2k þ 1 can be done in the same

way. For odd nþ s, equations (1) and (2) give the result. r

Theorem 2.3. Let fn be the number of Khalimsky-continuous functions

f : ½0; n�Z ! Z such that f ð0Þ ¼ 0. Then

fn ¼ 2fn�1 þ fn�2 for nb 2: ð6Þ

Proof. Let f s
n be the number of Khalimsky-continuous function f : ½0; n�Z ! Z

such that f ð0Þ ¼ 0 and f ðnÞ ¼ s. We have fn ¼
Pn

s¼�n f
s
n , but with the
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Khalimsky topology we can conclude that we have symmetry for f s
n , that is,

f s
n ¼ f �s

n for s ¼ 1; . . . ; n. Therefore we can consider another formulation

for fn, i.e.,

fn ¼ f 0n þ 2
Xn

s¼1

f s
n : ð7Þ

Moreover, using equation (1), we see that

f s
2k ¼

f s�1
2k�1 þ f s

2k�1 þ f sþ1
2k�1; s ¼ 2t for t ¼ 1; . . . ; k � 1;

f s
2k�1; s ¼ 2t� 1 for t ¼ 1; . . . ; k;

f 2k�1
2k�1 ; s ¼ 2k;

f 02k�1 þ 2f 12k�1; s ¼ 0:

8>>><
>>>:

ð8Þ

We shall show the formula for n ¼ 2k þ 1,

f2kþ1 ¼ f 02kþ1 þ 2
X2kþ1

s¼1

f s
2kþ1 ¼ f 02kþ1 þ 2f 2kþ1

2kþ1 þ 2
Xk

t¼1

f 2t2kþ1 þ 2
Xk

t¼1

f 2t�1
2kþ1 : ð9Þ

Equation (9) comes from (7) and the simple separation of odd and even indices.

Plugging equation (2) into (9) gives us

f2kþ1 ¼ f 02k þ 2f 2k2k þ 2
Xk
t¼1

f 2t2k þ 2
Xk
t¼1

ð f 2t�2
2k þ f 2t�1

2k þ f 2t2k Þ;

and then with a simple calculation,

f2kþ1 ¼ f 02k þ 2f 2k2k þ 2
Xk

t¼1

f 2t2k þ 2
Xk
t¼1

f 2t�2
2k þ 2

Xk
t¼1

f 2t�1
2k þ 2

Xk
t¼1

f 2t2k : ð10Þ

We have

2
Xk
t¼1

f 2t�2
2k ¼ 2f 02k þ 2

Xk
t¼2

f 2t�2
2k ¼ 2f 02k þ 2

Xk�1

t¼1

f 2t2k : ð11Þ

Therefore, by putting (11) in (10) and using (7);

f2kþ1 ¼ 2f2k þ 2f 2k2k þ f 02k þ 2
Xk�1

t¼1

f 2t2k � 2
Xk

t¼1

f 2t�1
2k : ð12Þ
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Inserting (8) into (12) gives us

f2kþ1 ¼ 2f2k þ 2f 2k�1
2k�1 þ f 02k�1 þ 2f 12k�1 þ 2

Xk�1

t¼1

f 2t�1
2k�1

þ 2
Xk�1

t¼1

f 2t2k�1 þ 2
Xk�1

t¼1

f 2tþ1
2k�1 � 2

Xk
t¼1

f 2t�1
2k�1 : ð13Þ

By a simple calculation we have the two following equations,

2f 2k�1
2k�1 þ 2

Xk�1

t¼1

f 2t�1
2k�1 � 2

Xk
t¼1

f 2t�1
2k�1 ¼ 0; ð14Þ

and

2f 12k�1 þ 2
Xk�1

t¼1

f 2tþ1
2k�1 ¼ 2

Xk
t¼1

f 2t�1
2k�1 : ð15Þ

Finally, by putting (14) and (15) into (13) and by using (7), we obtain the desired

formula. r

The sequence in Theorem 2.3 is a well-known sequence, and appears as se-

quence number A078057 in Sloane’s Encyclopedia. It is given by the explicit

formula fn ¼ 1
2 ½ð1þ

ffiffiffi
2

p
Þn þ ð1�

ffiffiffi
2

p
Þn�. Actually fn has the same recursion for-

mula as the Pell numbers Pn, but with di¤erent initial values. The sequence ðPnÞ
is defined as

Pn ¼
0; n ¼ 0;

1; n ¼ 1;

2Pn�1 þ Pn�2; nb 2:

8<
:

The reader can find more information about this sequence in item (A000129)

of the encyclopedia.

From Theorem 2.3 we can easily conclude that fn tends to the Silver Ratio

1þ
ffiffiffi
2

p
as n tends to infinity.

Corollary 2.4. Let fn be the number of Khalimsky-continuous functions

f : ½0; n�Z ! Z such that f ð0Þ ¼ 0. Then fn=fn�1 ! 1þ
ffiffiffi
2

p
as n ! l.
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The following table shows the values of f s
n and fn for 0a na 9.

9 1

8 1 1

7 1 1 17

6 1 1 15 15

5 1 1 13 13 113

4 1 1 11 11 85 85

3 1 1 9 9 61 61 377

2 1 1 7 7 41 41 231 231

1 1 1 5 5 25 25 129 129 681

0 1 1 3 3 13 13 63 63 321 321

�1 1 1 5 5 25 25 129 129 681

�2 1 1 7 7 41 41 231 231

�3 1 1 9 9 61 61 377

�4 1 1 11 11 85 85

�5 1 1 13 13 113

�6 1 1 15 15

�7 1 1 17

�8 1 1

�9 1

fn 1 3 7 17 41 99 239 577 1393 3363

3. Continuous curves with codomain N

In this section we consider gs
n as the number of Khalimsky-continuous functions

g : ½0; n� ! N where gð0Þ ¼ 0, gðnÞ ¼ s and N C sa n. We put then some proper-

ties of this function in Lemma 3.1. These properties can lead us to Theorem 3.2.

Lemma 3.1. Suppose that gs
n is the number of Khalimsky-continuous functions

g : ½0; n� ! N for gð0Þ ¼ 0, gðnÞ ¼ s and s a N, sa n. Then we have that
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gs
2k ¼

gs�1
2k�1 þ gs

2k�1 þ gsþ1
2k�1; s ¼ 2t for t ¼ 1; . . . ; k � 1;

g02k�1 þ g12k�1; s ¼ 0;

g2k�1
2k�1 ; s ¼ 2k;

gs
2k�1; s ¼ 2t� 1 for t ¼ 1; . . . ; k;

8>>><
>>>:

ð16Þ

and

gs
2kþ1 ¼

gs�1
2k þ gs

2k þ gsþ1
2k ; s ¼ 2t� 1 for t ¼ 1; . . . ; k;

gs
2k; s ¼ 2t for t ¼ 0; . . . ; k;

g2k2k ; s ¼ 2k þ 1:

8><
>:

ð17Þ

Proof. Same as Lemma 2.1, the proof can be done by using the rules (1) and (2)

stated in Section 1.2. r

In the next theorem we shall see how Schröder numbers appear in the numer-

ation of Khalimsky-continuous functions with codomain N.

Theorem 3.2. Let gs
n ¼ cardfg : ½0; n� ! N j gð0Þ ¼ 0; gðnÞ ¼ sg for s a N and

sa n, and ri; j be the Schröder numbers. Then we have gs
n ¼ ri; j for i ¼ 1

2 ðnþ sÞ
and j ¼ 1

2 ðn� sÞ, where nþ s a 2N.

Proof. We shall use induction. The result for n ¼ 1; 2 can be obtained easily, i.e.,

g00 ¼ r0;0 and g11 ¼ r1;0. Suppose that the formula is true for t < 2k. We shall

show the result for t ¼ 2k. We consider s such that 2k þ s a 2N, hence s is an

even number. Using equation (16) and the statement, we see that for sA 0,

gs
2k ¼ ri�1; j þ ri; j�1 þ ri�1; j�1; where i ¼ 2k þ s

2
; j ¼ 2k � s

2
: ð18Þ

Thus for the case sA 0 we are done.

Suppose now s ¼ 0. Using again (16) and the statement imply that

g02k ¼ g02k�2 þ g12k�1 ¼ ri�1; j�1 þ ri; j�1; where i ¼ 2k

2
; j ¼ 2k

2
: ð19Þ

Since i � 1 < j, we have ri�1; j ¼ 0. Thus by adding it to the equation (19) we get

the result in this case. The proof for t ¼ 2k þ 1 can be done similarly. r

In the following theorem we see that the Delannoy numbers appear also in the

enumerating of continuous curves with codomain N. Then by Theorems 3.3 and

3.2, we conclude a relation between the Delannoy and Schröder arrays.
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Theorem 3.3. Let gs
n be the number of Khalimsky-continuous functions

g : ½0; n� ! N such that gð0Þ ¼ 0 and gðnÞ ¼ s for s a N and sa n. Let pt;n ¼Pðn�tÞ=2
i¼0 gtþ2i

n , where 0a ta n and nþ t a 2N. Then pt;n ¼ di; j , where i ¼ nþt

2
,

j ¼ n�t
2

and di; j is a Delannoy number.

Proof. We use induction to prove. For t ¼ n ¼ 0 and t ¼ n ¼ 1 the result is clear.

First we consider that n ¼ 2k and the formula in the statement is true for n < 2k.

By the statement we have

pt;2k ¼ gt
2k þ gtþ2

2k þ � � � þ g2k�2
2k þ g2k2k :

Let tA 0. Equation (16) implies that

llpt;2k ¼ gt�1
2k�1 þ gtþ1

2k�1 þ gt
2k�2 þ gtþ1

2k�1 þ gtþ3
2k�1 þ gtþ2

2k�2 þ � � �

� � � þ g2k�3
2k�1 þ g2k�1

2k�1 þ g2k�2
2k�2 þ g2k�1

2k�1 : ð20Þ

The first column in the right-hand side of equation (20) is equal to pt�1;2k�1. The

second and third columns are equal to ptþ1;2k�1 and pt;2k�2, respectively. Thus

pt;2k ¼ pt�1;2k�1 þ ptþ1;2k�1 þ pt;2k�2: ð21Þ

By the statement and (21) we have

pt;2k ¼ di�1; j þ di; j�1 þ di�1; j�1 for i ¼ nþ t

2
and j ¼ n� t

2
:

This is the result for n ¼ 2k and when tA 0. We can proceed similarly for the

other cases. r

Corollary 3.4. Let ri; j and di; j be the Schröder numbers and Delannoy numbers,

respectively. Then di; j ¼
P j

l¼0 riþl; j�l for ib j.

Proof. Theorem 3.3 leads us to the following equation for 0a ta n and

nþ t a 2N;

di; j ¼ gt
n þ gtþ2

n þ � � � þ gn
n ; where i ¼ nþ t

2
and j ¼ n� t

2
: ð22Þ

By Theorem 3.2 and equation (22) we have

di; j ¼ ri; j þ riþ1; j�1 þ � � � þ rn;0;

which is equal to
P j

l¼0 riþl; j�l . r
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The following table shows the values of pt;n and consequently we can see the

relation between these numbers and the Delannoy numbers.

t n n 0 1 2 3 4 5 6 7 8 9

0 1 3 13 63 321

1 1 5 25 129 681

2 1 7 41 231

3 1 9 61 377

4 1 11 85

5 1 13 113

6 1 15

7 1 17

8 1

9 1

Proposition 3.5. Let gs
n be the number of Khalimsky-continuous functions

g : ½0; n�Z ! N such that gð0Þ ¼ 0 and gðnÞ ¼ s for s a N and sa n. Then

g02k ¼ 2
Xk
i¼1

gi�1
2k�i�1;

g12kþ1 ¼ 2
Xk
i¼1

ðgi�1
2k�i�1 þ gi

2k�iÞ;

gs
2kþs ¼ 2

Xk
i¼1

Xs

j¼0

g
iþj�1
2k�iþj�1; 2k þ s a 2N:

Proof. The proof consists of an induction. First we prove the result for g02k.

Using (16) and (17) implies that

g02k ¼ g02k�2 þ g12k�1

¼ g02k�2 þ ðg02k�2 þ g12k�3 þ g22k�2Þ

¼ 2g02k�2 þ g12k�3 þ g22k�2; ð23Þ
and also

g22k�2 ¼ g12k�3 þ g22k�4 þ g32k�3: ð24Þ

We insert (24) into (23) to get

g02k ¼ 2g02k�2 þ 2g12k�3 þ g22k�4 þ g32k�3:
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We can continue in the same way to get

g02k ¼ 2g02k�2 þ � � � þ 2gk�3
kþ1 þ 2gk�2

k þ 2gk�1
k�1 ¼ 2

Xk
i¼1

gi�1
2k�i�1: ð25Þ

We now prove the statement for s while we assume that the formula is correct for

the natural numbers less than s.

Equations (16) and (17), and the induction assumption imply that

gs
2kþs ¼ gs�1

2kþs�1 þ gs
2kþs�2 þ gsþ1

2kþs�1

¼ 2
Xk
i¼1

Xs�1

j¼0

g
iþj�1
2k�iþj�1 þ gs

2kþs�2 þ gsþ1
2kþs�1: ð26Þ

Using again the equations (16) and (17) we get

gsþ1
2kþs�1 ¼ gs

2kþs�2 þ gsþ1
2kþs�3 þ gsþ2

2kþs�2: ð27Þ

If we insert (27) into (26), we get

gs
2kþs ¼ 2

Xk
i¼1

Xs�1

j¼0

g
iþj�1
2k�iþj�1 þ 2gs

2kþs�2 þ gsþ1
2kþs�3 þ gsþ2

2kþs�2:

If we go on until we have gkþs�1
kþsþ1 , then we get

gs
2kþs ¼ 2

Xk
i¼1

Xs�1

j¼0

g
iþj�1
2k�iþj�1 þ 2gs

2kþs�2 þ � � � þ 2gkþs�3
kþsþ1 þ gkþs�2

kþs þ gkþs�1
kþsþ1 : ð28Þ

By equations (16) and (17),

gkþs�1
kþsþ1 ¼ gkþs�2

kþs þ gkþs�1
kþs�1 þ gkþs

kþs : ð29Þ

We need just to observe the equations (28) and (29) to get the equation

gs
2kþs ¼ 2

Xk
i¼1

Xs�1

j¼0

g
iþj�1
2k�iþj�1 þ 2gs

2kþs�2 þ � � � þ 2gkþs�2
kþs þ gkþs�1

kþs�1 þ gkþs
kþs :

The definition of gs
n implies that gkþs�1

kþs�1 ¼ gkþs
kþs . Therefore

gs
2kþs ¼ 2

Xk
i¼1

Xs

j¼0

g
iþj�1
2k�iþj�1: r
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As a consequence of Proposition 3.5 and Theorem 3.2 we obtain the following

relations between the Schröder numbers:

Corollary 3.6. Let ri; j be the Schröder numbers. Then

rk;k ¼ 2
Xk
i¼1

rk�1;k�i;

rkþ1;k ¼ 2
Xk
i¼1

ðrk�1;k�i þ rk;k�iÞ;

rkþs;k ¼ 2
Xk
i¼1

Xs

j¼0

rkþj�1;k�i:

The results in Corollaries 3.4 and 3.6 can of course also be obtained by simple

induction. Here they were obtained as a byproduct of our study of digital curves.

In the following theorem we will see that the number of Khalimsky-continuous

functions with codomain N can be obtained by summing up of two consecutive

numbers of other sequences.

Theorem 3.7. Let gn be the number of Khalimsky-continuous functions

g : ½0; n� ! N such that gð0Þ ¼ 0. Let pn ¼ p0;n for n even and pn ¼ p1;n for n

odd, where pt;n are the numbers defined in Theorem 3.3. Then

gn ¼ pn þ pn�1: ð30Þ

Proof. Let gs
n ¼ cardfg : ½0; n� ! N; gð0Þ ¼ 0 and gðsÞ ¼ ng. Therefore it is clear

that

gn ¼
Xn

s¼0

gs
n: ð31Þ

Suppose that n ¼ 2k. By (31) we have

g2k ¼
Xk
t¼0

g2t2k þ
Xk
t¼1

g2t�1
2k :

By the definition of the sequence pn and equation (16),

g2k ¼ p2k þ p2k�1:

The proof for n ¼ 2k þ 1 can be obtained in the same way. r
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In the following table we can see the values of gs
n, gn and pn.

s n n 0 1 2 3 4 5 6 7 8 9 10

0 1 1 2 2 6 6 22 22 90 90 394

1 0 1 1 4 4 16 16 68 68 304 304

2 0 0 1 1 6 6 30 30 146 146 714

3 0 0 0 1 1 8 8 48 48 264 264

4 0 0 0 0 1 1 10 10 70 70 430

5 0 0 0 0 0 1 1 12 12 96 96

6 0 0 0 0 0 0 1 1 14 14 126

7 0 0 0 0 0 0 0 1 1 16 16

8 0 0 0 0 0 0 0 0 1 1 18

9 0 0 0 0 0 0 0 0 0 1 1

10 0 0 0 0 0 0 0 0 0 0 1

11 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0

gn 1 2 4 8 18 38 88 192 450 1002 2364

pn 1 1 3 5 13 25 63 129 321 681 1683
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