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Abstract. The main goal of this work is to prove the existence and in some cases the
uniqueness of positive solutions for some nonhomogeneous systems of Lane–Emden type.
The nonhomogeneous part must satisfy a suitable positiveness condition, but it may change
sign.
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1. Introduction and statement of the results

In the past years, a special attention has been devoted to the extension from equa-

tions to systems of known results concerning existence, uniqueness and multiplic-

ity of solutions, as well as other qualitative properties of the solutions. Closely

related to the problems treated in this paper, we cite the results in [13], [6], [20]

concerning nonhomogeneous equations, and the results in [5], [7], [12], [14], [15],

[17], [18], [19] either about homogeneous or about nonhomogeneous systems.

Let W be a smooth bounded domain in RN with Nb 1. We consider a non-

homogeneous elliptic system of the form

�Du ¼ auþ bvþ vp þ ef ðxÞ in W;

�Dv ¼ cuþ dvþ uq þ egðxÞ in W;

u; v > 0 in W;

u; v ¼ 0 on qW;

8>>><
>>>: ð1:1Þ

*The author would like to thank Prof. D. G. de Figueiredo and the referee of this paper for their help-
ful suggestions and comments. The author also thanks the members of the Laboratoire Jacques-Louis
Lions, where part of this work was performed, for their kind hospitality. This work was supported by
FAPESP granta 03/07581-7 and by CAPES granta 4316/07-0.



which turns to be of Hamiltonian type in the case that a ¼ d. Here a, b, c, d are

constants, p and q are positive powers, e > 0 is a parameter, f ; g a C1ðWÞ and we

are concerned with the existence of at least one classical solution for the system

(1.1).

Throughout in this paper we denote the 2� 2 matrix

a b

c d

� �
by A. Here l1 and j1 stand for the first eigenvalue of

�
�D;H 1

0 ðWÞ
�
and the first

positive eigenfunction of
�
�D;H 1

0 ðWÞ
�
with

Ð
j1 dx ¼ 1, respectively. When nec-

essary, we will write l1 ¼ l1;W and j1 ¼ j1;W to ensure that we are referring to l1
and j1 as above and to emphasize their dependence on W.

In the next three paragraphs we assume that AC 0 in the system (1.1).

Collecting the results from this paper and from [14], [15] and comparing them

with the results in [6] concerning the equation

�Du ¼ luþ up þ ef ðxÞ in W;

u > 0 in W;

u ¼ 0 on qW

8><
>: ð1:2Þ

with l ¼ 0, one can classify the system (1.1) with AC 0 as: sublinear if pq < 1 and

superlinear if pq > 1.

The case pq < 1 is fully treated in this paper.

Some contributions to the case pq > 1 can be found here and also in [14], [15],

but some questions still remain as open problems. For example, in the case where

one of the powers p or q belongs to ð0; 1Þ, the nonexistence of solution for e > 0

large enough is a conjecture.

Once we are interested on positive solutions, it is natural to impose some

positiveness condition on the nonhomogeneous part. For that, given a function

h a C1ðWÞ, we denote by uh the solution of

�Duh ¼ hðxÞ in W;

uh ¼ 0 on qW:

�

In this work we assume:

(P) f ; g a C1ðWÞ are not simultaneously identically zero and uf ; ugb 0 in W:

The matrix A, which appears in (1.1), plays the role that l plays in (1.2). Here

we assume:

(H1) A is cooperative, that is, b; cb 0.

(H2) The eigenvalues of A are smaller than l1.
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The hypothesis l a ð�l; l1Þ appears in [13] in the study of (1.2). It is precisely

the necessary and su‰cient condition for the existence of a strong maximum prin-

ciple for the linear equation

�Du ¼ luþ f ðxÞ in W;

u ¼ 0 on qW;

�
ð1:3Þ

in the case with f b 0 in W.

In the case that A is cooperative, that is, when (H1) is satisfied, it is proved in

[11] that the hypothesis (H2) is precisely the necessary and su‰cient condition for

the existence of a strong maximum principle for the linear cooperative system

�Du ¼ auþ bvþ f ðxÞ in W;

�Dv ¼ cuþ dvþ gðxÞ in W;

u; v ¼ 0 on qW;

8><
>: ð1:4Þ

in the case with f ; gb 0 in W.

In this way, the hypothesis (H2) on the cooperative matrix A for the study of

the system (1.1) is just the natural extension of the hypothesis l a ð�l; l1Þ for the
study of the equation (1.2).

In Section 2, we will see that if one replaces the condition f b 0 in W by the

condition uf b 0 in W, then a maximum principle for (1.3) is not valid for every

l a ð�l; l1Þ. In addition to that, we will also see that a maximum principle for

(1.4) does not hold true under (H1), (H2) and (P).

At this point we can state our first result.

Theorem 1.1. Assume (P), (H1)–(H2), p; q > 1 and

(H3) ab 0 if f changes sign; db 0 if g changes sign

are satisfied. Then there exists e� a ð0;þlÞ such that: the system (1.1) has a

minimal positive solution ðue; veÞ for 0 < e < e� and it has no solution for e > e�.
Furthermore, ðue; veÞ a C2;aðWÞ � C2;aðWÞ for all a a ð0; 1Þ.

Theorem 1.1 extends a result in [5], [17] and the hypothesis p; q > 1, with no

surprise, makes possible the application of the method of subsolution and

supersolution. Besides other arguments, our proof for Theorem 1.1 is based on

the continuation of l1 with relation to W as presented in [4], [8]. We stress that

such proof allows us to obtain all the results in [13] concerning (1.2), replacing

the conditions f b 0 in W and f C 0 on qW, which are imposed in [13], by weaker

conditions, namely: uf b 0 in W for l a ½0; l1Þ; f b 0 in W for l a ð�l; 0Þ. Such

proof also extends the application of the method of subsolution and supersolution,

since we present a new class of supersolutions for certain problems. For example,
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for some problems in [1], [9], [10] and for the problem (1.2). At such examples, it

is important to note that 1
je1jl

< l1, with e1 as defined at the beginning of Section 4

in this paper.

The next result, which deals with the system (1.1) with AC 0, presents some-

thing more interesting. With the hypothesis pq > 1, we show that it is possible to

treat it by means of the method of subsolution and supersolution. In this way,

cases where one of the equations is sublinear and the other is superlinear are

included.

Theorem 1.2. Assume that p; q > 0, pq > 1, (P) holds and that AC 0.

(i) If p; qb 1, then there exists e� a ð0;þlÞ such that for each 0 < e < e� the sys-
tem (1.1) has a minimal positive solution ðue; veÞ and it has no solution for e > e�.
Furthermore, ðue; veÞ a C2;aðWÞ � C2;aðWÞ for all a a ð0; 1Þ.

(ii) If p < 1 or q < 1, then there exists e� > 0 such that for each 0 < e < e� the sys-
tem (1.1) has a minimal positive solution ðue; veÞ. Furthermore, ðue; veÞ a
C2;aðWÞ � C2;aðWÞ with a ¼ minfp; qg.

For the system (1.1) with AC 0, pq > 1 and in the case that one of the powers

p, q belongs to ð0; 1Þ, the question about the nonexistence of solution for e > 0

large enough still remains as an open problem, but we conjecture that e� < þl
at item (ii) in Theorem 1.2.

We have one more result concerning (1.1), now in the case that AC 0 and

pq < 1. In such case, the system (1.1) has a sublinear behavior and the next theo-

rem extends some of the results in [18] and [19].

Theorem 1.3. In addition to (P) suppose that p; q > 0, pq < 1 and that AC 0.

Then for each e > 0, the system (1.1) has a unique solution ðu; vÞ. Furthermore,

ðu; vÞ a C2;aðWÞ � C2;aðWÞ with a ¼ minfp; qg.

For the context of this paper it is important to know that functions f , g satis-

fying (P) are not necessarily nonnegative. For instance, see [2], [3], [14] and also

Section 2 in this paper.

In Section 2, we show some results concerning the existence of a maximum prin-

ciple either for the equation (1.3) under uf b 0 inW or for the system (1.4) under (P).

In Sections 3–5, we present the proofs for Theorems 1.1–1.3, respectively.

2. On the maximum principle

In this section we discuss about necessary and su‰cient conditions for the exis-

tence of a maximum principle, either for the equation (1.3) with uf b 0 in W or

for the cooperative system (1.4) under the positiveness hypothesis (P).
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2.1. The scalar case. In the case with f b 0 in W, it is well known that a strong

maximum principle exists for the equation (1.3) if and only if l a ð�l; l1Þ.
Here we investigate for which values of l the condition uf b 0 in W implies that

the solution u of the equation (1.3) is such that ub 0 in W. Actually we prove:

Proposition 2.1. If l a ½0; l1Þ, then for every f a C1ðWÞ such that uf b 0 in W, the

solution u of the equation (1.3) satisfies ub 0 in W. The converse is also true.

Proof. Suppose that l a ½0; l1Þ. Given f a C1ðWÞ such that uf b 0 in W, let u be

the classical solution of (1.3). So

�Dðu� uf Þ ¼ lðu� uf Þ þ luf in W;

u� uf ¼ 0 on qW:

�

Since luf b 0 in W, by the classical maximum principle, one has that u� uf b 0 in

W, which implies that uðxÞb uf ðxÞb 0 for all x a W.

On the other hand, suppose that l has the following property: given any

f a C1ðWÞ with uf b 0 in W, the equation (1.3) has a solution u and it satisfies

ub 0 in W. It is shown in the lines below show that l must necessarily be in

½0; l1Þ.
If l has such property, then for f ¼ j1 one has that

l1

ð
uj1 dx ¼

ð
ð�DuÞj1 dx ¼

ð
ðluj1 þ j2

1Þ dx > l

ð
uj1 dx:

And the last inequality implies that l < l1. Now, by contradiction, suppose that

l < 0. Fix u0 a ClðWÞnf0g such that u0b 0 in W, u0C 0 on qW and u0ðx0Þ ¼ 0

for some x0 a W. Take f ¼ �Du0 and let u be the solution of the equation (1.3)

associated to such f . So

�Dðu� u0Þ ¼ lðu� u0Þ þ lu0 in W;

u� u0 ¼ 0 on qW:

�

Since lu0a 0 in W, by the classical strong maximum principle, one gets that

u� u0 < 0 in W. In particular, uðx0Þ < u0ðx0Þ ¼ 0, which is a contradiction. r

2.2. The system case. Let M ¼ ðmijÞ be an n� n cooperative matrix and

F ¼ ð fiÞni¼1, such that each fi stands for a regular function defined on W. The

linear system

�DU ¼ MU þ FðxÞ in W;

U ¼ 0 on qW;

�
ð2:1Þ
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with U ¼ ðuiÞni¼1, was studied in [11] by de Figueiredo–Mitidieri. Theorem 2.1 in

[11] gives the necessary and su‰cient conditions for the existence of a maximum

principle for the system (2.1), in the case with fi b 0 in W for all i ¼ 1; . . . ; n. With

n ¼ 2, such conditions are equivalent to (H1) and (H2) in this paper.

Here we first present a su‰cient condition for the existence of a maximum

principle for the system (1.4) with the positiveness condition (P) satisfied.

Proposition 2.2. Assume (H1)–(H2) and that a; db 0. Then for every pair ð f ; gÞ
satisfying (P), the solution pair ðu; vÞ of the system (1.4) satisfies u; vb 0 in W.

Proof. Let ðu; vÞ be the solution of (1.4). Then

�Dðu� uf Þ ¼ aðu� uf Þ þ bðv� ugÞ þ auf þ bug in W;

�Dðv� ugÞ ¼ cðu� uf Þ þ dðv� ugÞ þ cuf þ dug in W;

u� uf ; v� ug ¼ 0 on qW:

8><
>: ð2:2Þ

Since a; b; c; db 0, one has that auf þ bug; cuf þ dugb 0 in W. Then Theorem 2.1

in [11] guarantees that u� uf b 0, v� ugb 0 in W and so that ub uf b 0,

vb ugb 0 in W. r

Theorem 2.1 in [11] guarantees that (H2) is a necessary condition for the exis-

tence of a maximum principle for the cooperative system (1.4), that is when (H1)

is satisfied, in the case that the nonhomogeneous part satisfies (P). We strongly

believe that the condition a; db 0 is also necessary. This feeling arises from the

examples below. But before that, note if b ¼ 0 or c ¼ 0, then the system (1.4) de-

couples and Proposition 2.1 guarantees the necessity of a; db 0. So, from now to

the end of this section we can assume that b; c > 0.

Example 2.3. Suppose that (H1), (H2), a; d < 0 and ad � bc > 0 are satisfied.

Then for a suitable pair ð f ; gÞ satisfying (P), the solution ðu; vÞ of the system (1.4)

is such that u and v assume negative values.

Proof. The conditions a; d < 0 and ad � bc > 0 guarantee the existence of posi-

tive numbers s such that aþ bs < 0 and cþ ds < 0. Fix such a number s > 0.

Let u0 be as in the proof of Proposition 2.1, take f ¼ �Du0 and g ¼ sf . Then

uf ¼ u0 and ug ¼ su0. Let ðu; vÞ be the solution of (1.4) associated to such pair

ð f ; gÞ. Since (H1)–(H2) are satisfied and aþ bs < 0, cþ ds < 0, one can apply

to the system (2.2) the Theorem 2.1 in [11]. It guarantees that u� u0 < 0,

v� su0 < 0 in W. In particular uðx0Þ; vðx0Þ < 0. r

Example 2.4. Suppose (H1)–(H2), a; d < 0 and ad � bc ¼ 0. Then for a suitable

pair ð f ; gÞ satisfying (P), the solution ðu; vÞ of the system (1.4) is such that v as-

sumes negative values.

352 E. M. dos Santos



Proof. From the above hypotheses, there exists l < 0 such that c ¼ la and

d ¼ lb. Fix s > � a
b
, let u0 be as in the proof of Proposition 2.1, f ¼ �Du0,

g ¼ sf and let ðu; vÞ be the solution of the system (1.4) associated to such pair

ð f ; gÞ. From the definition of l, one has that

�Dðv� luÞ ¼ ðs� lÞf in W;

v� lu ¼ 0 on qW

�

and so that

v� lu ¼ ðs� lÞu0: ð2:3Þ

On the other hand,

�D vþ a

b
u

� �
¼ ðlbþ aÞ vþ a

b
u

� �
þ sþ a

b

� �
f in W

vþ a

b
u ¼ 0 on qW:

Since lbþ a < 0 and sþ a
b
> 0, arguing as in the proof of Proposition 2.1, one

obtains that vðx0Þ < � a
b
uðx0Þ. Applying the identity (2.3) to the last inequality

one concludes that vðx0Þ < 0. r

We have no general counterexample for the remaining case that remains to be

analyzed, namely the case under the following hypotheses:

ðH1Þ; ðH2Þ; and b; c > 0; ad � bc < 0 with a < 0 or d < 0: ð2:4Þ

Just to make it clear, a < 0 or d < 0 in (2.4) means that at least one of the two

numbers a, d is negative.

In one-dimensional case, we have some counterexamples in such case. But

even in dimension one, our counterexamples do not cover all the range that (2.4)

involves.

Before we present more counterexamples, let us discuss about some general as-

pects concerning the system (1.4). Suppose that (H2) is satisfied. In particular, for

each pair ð f ; gÞ a C1ðWÞ � C1ðWÞ the system (1.4) admits a unique classical solu-

tion ðu; vÞ. Furthermore, if u (resp. v) assumes negatives values in W, then u1 (resp.

v1) or u2 (resp. v2) assumes negative values in W, where ðu1; v1Þ and ðu2; v2Þ are the
solutions of

�Du1 ¼ au1 þ bv1 þ f ðxÞ in W;

�Dv1 ¼ cu1 þ dv1 in W;

u1; v1 ¼ 0 on qW;

8><
>: and

�Du2 ¼ au2 þ bv2 in W;

�Dv2 ¼ cu2 þ dv2 þ gðxÞ in W;

u2; v2 ¼ 0 on qW:

8><
>:
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Therefore, in order to find counterexamples we can restrict ourselves to simpler

systems.

On the other hand, suppose that one is interested on the sign of ðu; vÞ, the so-

lution of the system

�Du ¼ auþ bvþ f ðxÞ in W;

�Dv ¼ cuþ dvþ sf ðxÞ in W;

u; v ¼ 0 on qW;

8><
>: ð2:5Þ

under the following conditions:

• (H2), ad � bc < 0, b; c > 0;

• uf b 0 in W, f A 0 and sb 0.

Associating the system (2.5) to one equation, one has that for every y a Rnf0g

�Dðuþ yvÞ ¼ ðaþ ycÞuþ b

y
þ d

� �
yvþ ð1þ ysÞ f ðxÞ in W;

uþ yv ¼ 0 on qW:

8<
:

On the other hand, the condition b; c > 0 guarantees the existence of yþ, y�, the
two solutions of

aþ yc ¼ b

y
þ d;

which are explicitly given by

yþ ¼
�ða� dÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� dÞ2 þ 4bc

q
2c

; y� ¼
�ða� dÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� dÞ2 þ 4bc

q
2c

:

Observe that yþ > 0, y� < 0 and

aþ yþc ¼ lþðAÞ; aþ y�c ¼ l�ðAÞ;

where lþðAÞ and l�ðAÞ stand for the two eigenvalues of A. The condition

ad � bc < 0 implies that lþðAÞ > 0 and l�ðAÞ < 0. Arguing as in the proof

of Proposition 2.1, by means of the classical maximum principle one obtains

that:

• if 0as < 1
�y� , then

v > suf in W;

uf � yþðv� suf Þ < u < uf � y�ðv� suf Þ in W;

�

354 E. M. dos Santos



• if s ¼ 1
�y� , then u > uf , v > suf in W;

• if s > 1
�y� , then

u > uf in W;

suf � 1
yþ
ðu� uf Þ < v < suf þ 1

�y� ðu� uf Þ in W:

�

Based on such inequalities we present some more counterexamples, but now in

dimension one.

Example 2.5. Assume all the conditions given by (2.4) and W ¼ ð0; 1Þ.

• Let ðu; vÞ be the solution of

�u 00 ¼ auþ bvþ f ðxÞ in ð0; 1Þ;
�v 00 ¼ cuþ dv in ð0; 1Þ;
u; v ¼ 0 on f0; 1g:

8><
>:

If ap2 < ad � bc, then for a suitable f a C1ð½0; 1�Þ with uf b 0 in ð0; 1Þ, the
component u assumes negative values on ð0; 1Þ.

• Let ðu; vÞ be the solution of

�u 00 ¼ auþ bv in ð0; 1Þ;
�v 00 ¼ cuþ dvþ gðxÞ in ð0; 1Þ;
u; v ¼ 0 on f0; 1g:

8><
>:

If dp2 < ad � bc, then for a suitable g a C1ð½0; 1�Þ with ugb 0 in ð0; 1Þ, the
component v assumes negative values on ð0; 1Þ.

Proof. It is well known that the eigenvalues of

�u 00 ¼ lu in ð0; 1Þ;
u ¼ 0 on f0; 1g;

�

are lk ¼ ðkpÞ2, all they are simple and they have jkðtÞ ¼ sinðkptÞ as associated

eigenfunctions.

In order to find an appropriated function f , consider the identity

sinð2nptÞ ¼ 2n sinðptÞ
Yn�1

k¼0

cosð2kptÞ; ð2:6Þ

which holds true for all nb 1.
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For each nb 1, let fnðtÞ :¼ sinðptÞ þ 2n sinð2nptÞ. From the identity (2.6), one

obtains that fn changes sign in ð0; 1Þ, but ufn > 0 in ð0; 1Þ.
Now, suppose a < 0. For each nb 1, let ðun; vnÞ be the solution of

�u 00
n ¼ aun þ bvn þ fnðxÞ in ð0; 1Þ;

�v 00n ¼ cun þ dvn in ð0; 1Þ;
un; vn ¼ 0 on f0; 1g:

8><
>:

By a straightforward calculation, one obtains that

unðtÞ ¼ sinðptÞ
� p2 � d

ðp2 � aÞðp2 � dÞ � bc

þ 24np2 � 22nd

ð22np2 � aÞð22np2 � dÞ � bc

Yn�1

k¼0

cosð2kptÞ
�
:

From the explicit formula for un, it follows that un assume negative values in ð0; 1Þ
if and only if

p2 � d

ðp2 � aÞðp2 � dÞ � bc
<

24np2 � 22nd

ð22np2 � aÞð22np2 � dÞ � bc
; ð2:7Þ

which is equivalent to

p2
�
ap2 � ðad � bcÞ

�
24n þ

�
�ap4 þ dðad � bcÞ

�
22n þ ðp2 � dÞðad � bcÞ < 0: ð2:8Þ

Let pðtÞ :¼ p2
�
ap2 � ðad � bcÞ

�
t2 þ

�
�ap4 þ dðad � bcÞ

�
tþ ðp2 � dÞðad � bcÞ.

So, un assumes negative values in ð0; 1Þ if and only if pð22nÞ < 0.

If ap2b ad � bc, then one can check that pð22nÞ > 0 for all n a N.

On the other hand, the condition ap2 < ad � bc says that the leader coe‰cient

of the second order polynomial pðtÞ is negative and so pð22nÞ < 0 for n su‰ciently

large.

For the case with dp2 < ad � bc, a counterexample is found in the same way,

by analyzing the sign of the component vn, where ðun; vnÞ stands for the solution of

�u 00
n ¼ aun þ bvn in ð0; 1Þ;

�v 00n ¼ cun þ dvn þ fnðxÞ in ð0; 1Þ;
un; vn ¼ 0 on f0; 1g:

8><
>:

The matrices

�1 3

1 �2

� �
;

i 1

1 �i

� �
and

�i 1

1 i

� �
for i ¼ 1; . . . ; 9
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satisfy all the conditions given by (2.4) with W ¼ ð0; 1Þ. Furthermore, for such

matrices, either ap2 < ad � bc or dp2 < ad � bc.

On the other hand, still with W ¼ ð0; 1Þ, the matrices

�e b

c 0

� �
;

0 b

c �e

� �
with b; c > 0; bc ¼ p4; e a ð0; p2Þ;

also satisfy all the conditions given by (2.4). Unfortunately, we have not found

any counterexample for such matrices.

Remark 2.6. Consider the system (1.4) with (H1) and (H2) satisfied. Grouping

the results of this subsection, a maximum principle for (1.4) in the case with (P)

satisfied:

• does exist, if a; db 0;

• does not exist, if:

– a < 0 or d < 0 and with b ¼ 0 or c ¼ 0;

– a; d < 0 and ad � bcb 0;

– ad � bc < 0, in dimension one, provided: ap2 < ad � bc or dp2 < ad � bc.

To end this section, we state the following proposition, which can be proved by

an argument similar to that employed in the proof of Proposition 2.2.

Proposition 2.7. Assume (H1)–(H3) and (P). Let ðu; vÞ be the system (1.4). Then

u; vb 0 in W.

3. The proof of Theorem 1.1

To ease the reading of the proof of Theorem 3.2 below, we introduce:

Lemma 3.1. Assume (H1)–(H3) and (P). Let ðu; vÞ be a classical solution pair of

the system

�Du ¼ auþ bvþ vp þ ef ðxÞ in W;

�Dv ¼ cuþ dvþ uq þ egðxÞ in W;

u; v ¼ 0 on qW;

8><
>: ð3:1Þ

with u; vb 0 in W. Then u; v > 0 in W, that is, ðu; vÞ is a solution pair for (1.1).

Proof. It is a straightforward application of Theorem 2.1 in [11]. For that, it is

enough to analyze the systems that are satisfied by the pairs:
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– ðu; vÞ, if f ; gb 0 in W;

– ðu� euf ; vÞ, if f changes sign in W and gb 0 in W;

– ðu; v� eugÞ, if f b 0 in W and g changes sign in W;

– ðu� euf ; v� eugÞ, if f and g change sign in W. r

The following theorem will be employed in the proof of all theorems stated at

the first section of this paper.

Theorem 3.2. Assume (P), (H1)–(H3) and that p; q > 0. If the system (1.1) has a

subsolution pair ðus; vsÞ and a supersolution pair ðuS; vSÞ such that 0a usa uS,

0a vsa vS in W and us; vs; uS; vS a C2ðWÞ, then (1.1) has a classical solution pair

ðu; vÞ such that usa ua uS, vsa va vS in W. Furthermore, u; v a C2;aðWÞ for:

a ¼ minfp; qg, if p < 1 or q < 1; all a a ð0; 1Þ, if p; qb 1.

Proof. Let ðu0; v0Þ :¼ ðus; vsÞ. For each nb 1, let ðun; vnÞ be the solution of

�Dun � aun ¼ bvn�1 þ v
p
n�1 þ ef ðxÞ in W;

�Dvn � dvn ¼ cun�1 þ u
q
n�1 þ egðxÞ in W;

un; vn ¼ 0 on qW:

8><
>:

From (H1) and (H2) one has that a; d < l1. Such inequalities combined with (H1)

allow one to prove that

usa una uS; vsa vna vS; un�1a un; vn�1a vn in W; for all nb 1:

By Lemma 9.17 in [16], un, vn are bounded in H 2ðWÞ and therefore in H 1
0 ðWÞ.

Hence there exist u; v a H 2ðWÞBH 1
0 ðWÞBLlðWÞ and a subsequence of ððun; vnÞÞ,

here also denoted by ððun; vnÞÞ, such that

un * u; vn * v in H 2ðWÞ and H 1
0 ðWÞ;

un ! u; vn ! v in L2ðWÞ;
un ! u; vn ! v almost everywhere in W:

Hence, by the Lebesgue’s dominated convergence theorem,

uq
n ! uq; vpn ! vp in LrðWÞ; for all rb 1:

Taking the limit as n ! l in the identities
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ð
ð‘un‘j� aunjÞ dx ¼

ð
ðbvn�1 þ v

p
n�1Þj dxþ e

ð
f ðxÞj dx;ð

ð‘vn‘c� dvncÞ dx ¼
ð
ðcun�1 þ uq

n Þc dxþ e

ð
gðxÞc dx;

which hold true for all j, c H 1
0 ðWÞ-functions, one gets

ð
‘u‘j dx ¼

ð
ðauþ bvþ vpÞj dxþ e

ð
f ðxÞj dx;ð

‘v‘c dx ¼
ð
ðcuþ dvþ uqÞc dxþ e

ð
gðxÞc dx:

That is, u; v a H 2ðWÞBH 1
0 ðWÞBLlðWÞ is a solution for the system (3.1) in the

sense of H 1
0 ðWÞ. Hence u; v a W 2; rðWÞ for all 1a r < þl, by Lemma 9.17 in

[16]. Hence, from the Sobolev embeddings, u; v a C1; gðWÞ for all 0 < g < 1. By

Lemma 6.36 (see also p. 53 and Theorem 9.15 in [16]) in [16] and Schauder’s

estimates, one gets that u; v a C2;aðWÞ for: a ¼ minfp; qg, if p < 1 or q < 1; all

a a ð0; 1Þ, if p; qb 1. Finally, by Lemma 3.1, one concludes that ðu; vÞ is a solu-

tion of (1.1). r

Besides other facts, the proof of Theorem 1.1 is based on the continuity of l1
with respect to W. To be more explicit, we employ the fact that: given l < l1;W
there exists a smooth bounded domain W 0 HRN such that WHHW 0 and l <

l1;W 0 < l1;W.

For each t a R, consider the 2� 2 matrix

BðtÞ :¼ �c t� d

t� a �b

� �
:

The following lemma is the key for the proof of Theorem 1.1.

Lemma 3.3. If (H1) and (H2) are satisfied, then there exists a smooth bounded do-

main W 0 such that WHHW 0 and Bðl1;W 0 Þ has a positive eigenvalue with associated

eigenvectors of entries of the same sign.

Proof. From (H1) and (H2) one obtains that

a; d < l1;W and ðl1;W � aÞðl1;W � dÞ � bc > 0:

Hence, the biggest eigenvalue of Bðl1;WÞ, denoted here by ll1;W and for short by

l, is explicitly given by
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l ¼ ll1;W ¼
�ðbþ cÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ cÞ2 þ 4

�
ðl1;W � aÞðl1;W � dÞ � bc

�q
2

;

l > 0 and its associated eigenvectors are of the form

ðs; yÞ ¼ s;
l1;W � a

ll1;W þ b
s

� �
; s a R:

By the continuity of l1 with respect to W, there exists a smooth bounded do-

main W 0 HRN such that WHHW 0 and all the above inequalities are verified if

one replaces l1;W by l1;W 0 . r

Proof of Theorem 1.1. By means of Theorem 3.2, it is enough to find a subsolution

pair ðus; vsÞ and a supersolution pair ðuS; vSÞ such that 0a usa uS, 0a vsa vS in

W and us; vs; uS; vS a C2ðWÞ.
If f ; gb 0 in W, then ðus; vsÞ :¼ ð0; 0Þ is a subsolution pair. If f changes sign

but gb 0 in W, then by (H1) and (H3), ðus; vsÞ :¼ ðeuf ; 0Þ is a subsolution pair. If

f b 0 but g changes sign in W, then by (H1) and (H3), ðus; vsÞ :¼ ð0; eugÞ is a sub-

solution pair. Finally, if f and g change sign in W, then (H1) and (H3) guarantee

that ðus; vsÞ :¼ ðeuf ; eugÞ is a subsolution pair.

Fix W 0 as in Lemma 3.3 and set ðuS; vSÞ ¼ ðsj1;W 0 ; yj1;W 0 Þ, where ðs; yÞ stands
for an eigenvector of Bðl1;W 0 Þ with positive entries and associated to the positive

eigenvalue l ¼ ll1;W 0 .

It is obvious that jðs; yÞj can be taken as small as one wants. In order to

ðsj1;W 0 ; yj1;W 0 Þ be a supersolution pair for (1.1), one imposes that

l1;W 0 ðsj1;W 0 Þ ¼ �Dðsj1;W 0 Þb aðsj1;W 0 Þ þ bðyj1;W 0 Þ þ ðyj1;W 0 Þp þ ef ðxÞ in W;

l1;W 0 ðyj1;W 0 Þ ¼ �Dðyj1;W 0 Þb cðsj1;W 0 Þ þ dðyj1;W 0 Þ þ ðsj1;W 0 Þq þ egðxÞ in W;

(

that is,

lðyj1;W 0 Þ � ðyj1;W 0 Þp ¼
�
ðl1;W 0 � aÞs� by

�
j1;W 0 � ðyj1;W 0 Þpb ef ðxÞ in W;

lðsj1;W 0 Þ � ðsj1;W 0 Þq ¼
�
�csþ ðl1;W 0 � dÞy

�
j1;W 0 � ðsj1;W 0 Þqb egðxÞ in W;

(

since ðs; yÞ is an eigenvector of Bðl1;W 0 Þ associated to l.

The above inequalities are satisfied if

lðyj1;W 0 Þ � ðyj1;W 0 Þpb ej f jl in W;

lðsj1;W 0 Þ � ðsj1;W 0 Þqb ejgjl in W:

(

But the last inequalities are trivially verified for e > 0 small enough and jðs; yÞj
suitable small, since p; q > 1 and j1;W 0 b a > 0 in W for some constant a.
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On the other hand, one needs uS b us and vS b vs on W. Suppose that the case

‘‘ f and g change sign’’ is being treated. Such inequalities are easier obtained in

the other cases. Hence, it needs to be shown that sj1;W 0 b euf and yj1;W 0 b eug
in W. But such inequalities are also verified for e > 0 su‰ciently small because

j1;W 0 b a > 0 in W.

In conclusion, Theorem 3.2 guarantees the existence of a classical solution

ðu; vÞ for (1.1), provided e > 0 is small enough.

Denote by ðue; veÞ the above obtained solution pair. It is the minimal solution

pair for (1.1). In fact, firstly note that any solution ðu; vÞ of (1.1) satisfies u > us
and v > vs in W, with ðus; vsÞ as above, depending whether f , g change sign or not.

From u > us and v > vs in W, one shows that u > un and v > vn in W, where

ðun; vnÞ stands for any element of the sequence constructed by a monotonic itera-

tion applied to the subsolution pair ðus; vsÞ. See the proof of Theorem 3.2 for the

precise monotonic iteration. Consequently, taking the limit, ub ue and vb ve in

W, since one has pointwise convergence.

The condition (P) guarantees that

ð�
f ðxÞ þ gðxÞ

�
j1 dx ¼

ð
ð‘uf þ ‘ugÞ‘j1 dx ¼ l1

ð
ðuf þ ugÞj1 dx > 0:

On the other hand, (H1) and (H2) guarantee that the function jðt; sÞ :¼
ðl1 � aÞt� tq þ ðl1 � dÞs� sp, defined on ½0;þlÞ � ½0;þlÞ, is bounded

from above and its maximum value is ap;q ¼ ðl1 � aÞq=ðq�1Þ q�1

qq=ðq�1Þ þ
ðl1 � dÞp=ðp�1Þ p�1

pp=ð p�1Þ .

If (1.1) has a solution, then using j1 as a multiplier and integrating (1.1) by

parts, one gets by (H1) that

ð�
ðl1 � aÞu� uq þ ðl1 � dÞv� vp

�
j1 dxb e

ð�
f ðxÞ þ gðxÞ

�
j1 dx;

and so that

ea
ap;qÐ �

f ðxÞ þ gðxÞ
�
j1 dx

:

Set

e� ¼ supfe > 0 : ð1:1Þ has a solutiong: ð3:2Þ

The above estimate gives an upper bound for e�. Furthermore, one shows that the

system (1.1) has a minimal positive solution for 0 < e < e� and it has no solution

for e > e�. For that, thanks by Theorem 3.2, it is possible to argue similarly as in
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the proof of Lemma 3.1 in [6], with a slight change concerning the argument re-

lated to the subsolution, which depends on whether f , g change sign or not. r

4. The proof of Theorem 1.2

In order to apply the method of subsolution and supersolution to the problems

treated in this paper, the part that requires some work concerns the existence of a

supersolution. We stress that we carry out this task even in the case (ii) of Theo-

rem 1.2, where one of the equations of the system (1.1) is sublinear and the other

one is superlinear.

To prove the existence of a supersolution, our technique is based on some ideas

adopted in [9], [10]. To present it, the following notation is used:

�De1 ¼ 1 in W;

e1 ¼ 0 on qW;

�
�De2 ¼ e

p
1 in W;

e2 ¼ 0 on qW;

�
�De3 ¼ e

q
1 in W;

e3 ¼ 0 on qW;

�

and

�De4 ¼ up
g in W;

e4 ¼ 0 on qW;

�
�De5 ¼ u

q
f in W;

e5 ¼ 0 on qW:

�

With the aim of bringing our procedure to light, first we consider a particular

case of the system (1.1), namely:

�Du ¼ vp in W;

�Dv ¼ uq þ egðxÞ in W;

u; v > 0 in W;

u; v ¼ 0 on qW:

8>>><
>>>: ð4:1Þ

The reason for that is that the system (4.1) can be rewritten as

�D
�
ð�DuÞ1=p

�
¼ uq þ egðxÞ in W;

u;�Du > 0 in W;

u;�Du ¼ 0 on qW:

8><
>: ð4:2Þ

Once more, ðus; vsÞ and ðuS; vSÞ stand for candidates to be a subsolution and a

supersolution respectively, either for (4.1) or for (1.1) according to the hypotheses

of Theorem 1.2.

It is clear that ðus; vsÞ :¼ ð0; eugÞ is a subsolution pair for (4.1). As an addi-

tional comment, 0 may not be a subsolution for (4.2), but one can check that

epe4 is indeed a subsolution for (4.2).
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To find a supersolution pair for (4.1) we deal with (4.2) and we adapt the ideas

of the authors of [9], [10], where they work with the problem

�Du ¼ hðuÞ in W;

u ¼ 0 on qW:

�
ð4:3Þ

In order to find a supersolution for (4.3), under certain hypotheses on h, they im-

pose that

inf
hðuÞ
u

: u > 0

� 	
<

1

je1jl
;

and they find a supersolution in the form of w ¼ M
je1jl

e1, provided M satisfies
hðMÞ
M

< 1
je1jl

.

It leads us to look for a supersolution of (4.2) in the form of uS ¼ mpe2, which

induces a supersolution pair for (4.1) in the form of ðuS; vSÞ ¼
�
uS; ð�DuSÞ1=p

�
¼

ðmpe2;me1Þ. For that, the inequality mb ðmpe2Þq þ eg ¼ mpqe
q
2 þ eg in W needs

to be satisfied, which is certainly the case if

mð1�mpq�1je2jqlÞb ejgjl: ð4:4Þ

On the other hand, the inequalities uS b us, vS b vs, that is, mpe2b 0,

me1b eug in W must also be satisfied. The second one is obtained imposing that

�Dðme1 � eugÞ ¼ m� egb 0 in W. This holds provided

mb ejgjl: ð4:5Þ

It is easy to see that if (4.4) holds true, then (4.5) does. Furthermore, the in-

equality (4.4) is satisfied for certain values of m, provided

ea e0; with e0 ¼ max
mð1�mpq�1je2jqlÞ

jgjl
: m > 0

� 	
;

since pq > 1. Note that the superlinearity hypothesis pq > 1 is enough to guaran-

tee the validity of (4.4). There is no need to suppose p; q > 1.

From the above calculation, ðus; vsÞ ¼ ð0; eugÞ is a subsolution pair and

ðuS; vSÞ ¼ ðmpe2;me1Þ is a supersolution pair for (4.1), for certain values of m,

provided ea e0.

Following the ideas presented above, Theorem 3.2 can be applied to construct

a solution of (4.1) provided ugb 0 in W, pq > 1 and 0 < ea e0.
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Remark 4.1. Suppose 0 < r < 1
p
< q, gðxÞb a > 0 for all x a W, where a stands

for a constant. Then the above method also works if one replaces in (4.2) egðxÞ
by egðxÞur. In such case (4.2) becomes a problem of concave-convex type.

In fact, let E ¼ W 2; ðpþ1Þ=pðWÞBW
1; ðpþ1Þ=p
0 ðWÞ and denote by j1;p a func-

tion in E satisfying the following conditions: j1;p > 0, �Dj1;p > 0 in W,Ð
jj1;pj

ðpþ1Þ=p
dx ¼ 1 and

l1;p :¼ inf
u AEnf0g

Ð
jDujðpþ1Þ=p

dxÐ
jujðpþ1Þ=p

dx

is attained by j1;p.

So, j1;p is a solution of the eigenvalue problem

�D
�
ð�Dj1;pÞ

1=p� ¼ l1;pj
1=p
1;p in W;

j1;p;�Dj1;p > 0 in W;

j1;p;�Dj1;p ¼ 0 on qW:

8><
>:

Then the subsolution has the form of us :¼ yj1;p. To show that us is in fact a

subsolution, the hypotheses gðxÞb a > 0 for all x a W and 0 < r < 1
p
< q play an

important role. The supersolution has the form of uS :¼ mpe2.

Now we return to problem (1.1) according to the hypotheses of Theorem 1.2.

Proof of Theorem 1.2. First case: qb 1. The candidates to be subsolution and

supersolution are

us ¼ euf ; vs ¼ eug; uS ¼ mpe2 þ euf and vS ¼ me1:

It is clear that ðus; vsÞ is a subsolution. The candidate to be supersolution is in

fact a supersolution if e is su‰ciently small. For that,

�DuS ¼ mpe
p
1 þ ef ðxÞ ¼ ðvSÞp þ ef ðxÞ in W;

�DvS ¼ mb ðuSÞq þ egðxÞ ¼ ðmpe2 þ euf Þq þ egðxÞ in W;

�

where the last inequality has been imposed to be satisfied.

The following remains to be checked: usa uS, vsa vS and ðuS; vSÞ is a super-

solution pair. The last requirement is satisfied if

mb ðmpje2jl þ ejuf jlÞq þ ejgjl: ð4:6Þ

Since qb 1, ðaþ bÞ1=qa a1=q þ b1=q for all a; bb 0. In this way, (4.6) is cer-

tainly satisfied if m1=qbmpje2jl þ ejuf jl þ e1=qjgj1=ql , which is satisfied if and

only if

m1=qð1�mðpq�1Þ=qje2jlÞb ejuf jl þ e1=qjgj1=ql : ð4:7Þ
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Therefore, (4.6) is satisfied whenever (4.7) is. On the other hand, one needs

uS b us and vS b vs, that is, m
pe2 þ euf b euf and me1b eug. For that, one im-

poses �Dðme1 � eugÞ ¼ m� egb 0, which certainly holds true for

mb ejgjl: ð4:8Þ

But (4.8) is satisfied whenever (4.7) is. In this way, for the purpose of proving

the above requirements on ðuS; vSÞ it su‰ces to guarantee the validity of (4.7). But

(4.7) is trivially verified for certain values of m, provided e is su‰ciently small. To

be more precise, if 0 < ea e0 where e0 is such that

e0juf jl þ ðe0Þ1=qjgj1=ql ¼ maxfm1=qð1�mðpq�1Þ=qje2jlÞ : m > 0g:

Second case: pb 1. One can proceed exactly as in the case qb 1, but now taking

us ¼ euf ; vs ¼ eug; uS ¼ me1 and vS ¼ mqe5 þ eug:

In both cases, pb 1 or qb 1, the Theorem 3.2 can be applied to guarantee

that, under the hypotheses of Theorem 1.2, the system (1.1) has a solution for

e > 0 su‰ciently small.

To finish, one defines e� by (3.2). r

5. The proof of Theorem 1.3

The condition pq < 1 implies that the positive parameter e is not important in this

case. The proof of Theorem 1.3 presented below shows this fact clearly. For this

reason, without loss of generality, we take e ¼ 1.

To prove the uniqueness we adapt an argument that we found in [19]. To

prove the existence of a solution for the system (1.1), under the conditions of The-

orem 1.3, we employ an iterative method based on the following: starting from an

obvious subsolution, we employ an iterative method to construct an increasing se-

quence of subsolutions. We prove that such a sequence is bounded from above by

a constant and so, by some Sobolev embeddings, we prove that such sequence con-

verges to a solution of the problem. The argument just described is based on some

calculation that we found in [18]. A proof for Theorem 1.3 in the homogeneous

case, that is, with f C gC 0, can be found in [18].

5.1. Uniqueness. In the case with p; q < 1 we can derive uniqueness by a very

simple argument, similar to the one employed by the authors of [6] to treat a sub-

linear equation. In the general case, pq < 1, we adapt an argument found in [19].

Once more, we stress that to simplify our notation we consider e ¼ 1.
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Here we prove the following theorem:

Theorem 5.1. Under the hypotheses of Theorem 1.3, if a solution for (1.1) exists,

then it must be unique.

The proof of this theorem is split into six steps and is presented in the following

six lemmas.

Lemma 5.2. Assume all the hypotheses of Theorem 1.3. If ðu; vÞ is a solution of

(1.1), then u� uf ; v� ug > 0 in W and
qu

qh
;
q

qh
ðu� uf Þ;

qv

qh
;
q

qh
ðv� ugÞ < 0 on qW.

Proof. If ðu; vÞ is a solution of (1.1), then

�Dðu� uf Þ ¼ vp þ f ðxÞ � f ðxÞ ¼ vp > 0 in W;

�Dðv� ugÞ ¼ uq þ gðxÞ � gðxÞ ¼ uq > 0 in W;

u� uf ; v� ug ¼ 0 on qW:

8><
>:

Then by the classical strong maximum principle u� uf ; v� ug > 0 in W and by

the Hopf ’s Lemma
q

qh
ðu� uf Þ < 0,

q

qh
ðv� ugÞ < 0 on qW.

On the other hand, uf ; ugb 0 in W and uf ; ugC 0 on qW imply that

quf

qh
;
qug

qh
a 0 on qW. Hence

qu

qh
;
qv

qh
< 0 on qW. r

Now, suppose that ðu; vÞ, ð~uu; ~vvÞ are two solutions for the system (1.1) (recall

that AC 0 and e ¼ 1). Let

S 0 ¼ fs > 0 : u > sðqþ1Þ=q~uu; v > sðpþ1Þ=p~vv in Wg and s� :¼ supS 0:

To prove the uniqueness result, it is su‰cient to show that S 0 is not empty and

that s�b 1.

For that, we consider the auxiliary set

S ¼ fs > 0 : u� uf > sðqþ1Þ=qð~uu� uf Þ; v� ug > sðpþ1Þ=pð~vv� ugÞ in Wg:

The next step is:

Lemma 5.3. Let w; ~ww a C2ðWÞBC1ðWÞ be such that w; ~ww > 0 in W, w; ~wwC 0 on

qW and
qw

qh
;
q~ww

qh
< 0 on qW. Then, for t > 0 su‰ciently small, w > t~ww in W.
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Proof. Let

a ¼ min
qW

q~ww

qh
; b ¼ max

qW

qw

qh
:

Then a; b < 0. Fix t > 0 such that ta� b > 0. Then

q

qh
ðt~ww� wÞ > 0 on qW:

Since t~ww� w ¼ 0 on qW, it follows that t~ww� w < 0 in a certain neighborhood of

qW. Let KHHW be the compact set, the complement in W of such neighborhood.

It is obvious that, for t > 0 even small if necessary, t~ww� w < 0 on K . In this way,

for t > 0 su‰ciently small, t~ww� w < 0 in W. r

As a consequence:

Lemma 5.4. S 0 is not empty.

Proof. It is a straightforward consequence of Lemmas 5.2 and 5.3. r

Lemma 5.5. If s� < 1, then S 0 ¼ SB ð0; 1Þ.

Proof. If s� < 1, then S 0 H ð0; 1Þ. Furthermore, if s a S 0, then

�D
�
u� uf � sðqþ1Þ=qð~uu� uf Þ

�
¼ vp � sðqþ1Þ=q~vvp > ð1� sð1�pqÞ=qÞvp > 0 in W;

�D
�
v� ug � sðpþ1Þ=pð~vv� ugÞ

�
¼ uq � sðpþ1Þ=p~uuq > ð1� sð1�pqÞ=pÞuq > 0 in W;

u� uf � sðqþ1Þ=qð~uu� uf Þ; v� ug � sðpþ1Þ=pð~vv� ugÞ ¼ 0 on qW:

8><
>:

ð5:1Þ

Therefore, by the classical strong maximum principle one obtains that s a S.

On the other hand, it follows directly from the definitions of S and S 0 that�
SB ð0; 1Þ

�
HS 0. r

Lemma 5.6. If s� < 1, then S 0 is an open interval.

Proof. From the definition of S 0, it is clear that if s a S 0, then ð0; sÞHS. Such

property implies that S 0 is an interval open from the left. Hence one just needs

to show that for each s a S 0 there exists t > 0 such that sþ t a S 0. Suppose

s� < 1. If s a S 0, then from (5.1) one gets by the Hopf ’s Lemma that

q

qh

�
u� uf � sðqþ1Þ=qð~uu� uf Þ

�
< 0

and
q

qh

�
v� ug � sðpþ1Þ=pð~vv� ugÞ

�
< 0 on qW:
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Then Lemma 5.2 and Lemma 5.3 guarantee the existence of t > 0 such that

sþ t < 1 and sþ t a S. Therefore, by Lemma 5.5, sþ t a S 0. r

Lemma 5.7. If s� < 1, then s� a S 0.

Proof. If s� < 1, then

�D
�
u� uf � sðqþ1Þ=q

� ð~uu� uf Þ
�
¼ vp � sðqþ1Þ=q

� ~vvpb vp � sðqþ1Þ=q
�

1

s
pþ1
�

vp

¼ ð1� sð1�pqÞ=q
� Þvp > 0;

�D
�
v� ug � sðpþ1Þ=p

� ð~vv� ugÞ
�
¼ uq � sðpþ1Þ=p

� ~uuq
b uq � sðpþ1Þ=p

�
1

s
qþ1
�

uq

¼ ð1� sð1�pqÞ=p
� Þuq > 0:

Taking in addition to this the fact that such functions vanish on qW, the classi-

cal strong maximum principle guarantees that s� a S and therefore in S 0, by

Lemma 5.5. r

It is clear that Lemma 5.6 and Lemma 5.7 contradict each other. Hence we

conclude that s�b 1 and the proof of Theorem 5.1.

5.2. Existence. First of all, ðu0; v0Þ :¼ ðuf ; ugÞ is a subsolution for (1.1) (recall

that AC 0 and e ¼ 1).

Now, for each nb 0, set inductively ðunþ1; vnþ1Þ as the solution of

�Dunþ1 ¼ vpn þ f ðxÞ in W;

�Dvnþ1 ¼ uq
n þ gðxÞ in W;

unþ1; vnþ1 ¼ 0 on qW:

8><
>:

As claimed in the proof of Theorem 3.2, one has that una unþ1, vna vnþ1 in W

for all nb 0.

Once the sequence ðun; vnÞ is constructed, the next step in proving the existence

of solution is given by the following lemma.

Lemma 5.8. There exists a constant C > 0 such that 0a un; vn < C in W for all

nb 0.

Proof. Suppose by contradiction that the above claim is not true. From the sym-

metry of the system (1.1) with AC 0, one can suppose that an ¼ junjl ! þl as

n ! þl. It is important to remember that ðanÞ is non-decreasing.
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For each n a N, let bn ¼ a
ðqþ1Þ=ðpþ1Þ
n , write un ¼ anUn and vn ¼ bnVn. Then

�DUnþ1 ¼
1

anþ1
ð�Dunþ1Þ ¼

1

anþ1

�
vpn þ f ðxÞ

�
¼ 1

anþ1

�
ðbnVnÞp þ f ðxÞ

�
;

�DVnþ1 ¼
1

bnþ1

ð�Dvnþ1Þ ¼
1

bnþ1

�
uq
n þ gðxÞ

�
¼ 1

bnþ1

�
ðanUnÞq þ gðxÞ

�
:

ð5:2Þ

Let y :¼ pq�1
pþ1 < 0. Since an and bn do not decrease with n

1

anþ1

�
ðbnVnÞp þ f ðxÞ

�
a

j f jl
anþ1

þ a
pðqþ1Þ=ðpþ1Þ
n V p

n

anþ1

a
j f jl
an

þ aðpqþp�p�1Þ=pþ1
n V p

n ¼ j f jl
an

þ ay
nV

p
n ð5:3Þ

and

1

bnþ1

�
ðanUnÞq þ gðxÞ

�
a

jgjl
bn

þ aq�ðqþ1Þ=ðpþ1Þ
n U q

n ¼ jgjl
bn

þ ay
nU

q
n 


!n!þl

0 ð5:4Þ

because jUnjl ¼ 1 and an; bn ! þl as n ! þl. From (5.4) and the second

equation of (5.2) it follows that jVnjl ! 0 as n ! þl. Hence, from (5.3) and

the first equation of (5.2), it follows that jUnjl ! 0, which is a contradiction. r

The above boundedness is employed to construct the solution, arguing exactly

as in the proof of Theorem 3.2.
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