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Abstract. We consider a coupled nonlinear dispersive system of Korteweg-de Vries type in
the presence of a dissipative mechanism. First we prove that the Cauchy problem is glob-
ally well posed in a suitable periodic Sobolev space and our main result says that the L2 and
Ll norms of the solutions decay exponentially fast as t ! þl.
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1. Introduction

We consider a coupled dispersive system of equations of Korteweg-de Vries type

under the e¤ect of dissipative mechanisms

ut � ðHuÞx � a3ðHvÞx þ uux þ a1vvx þ a2ðuvÞx þ eLu ¼ 0;

vt � ðHvÞx � a3ðHuÞx þ vvx þ a2uux þ a1ðuvÞx þ eLv ¼ 0;
ð1:1Þ

with initial conditions

uðx; 0Þ ¼ j1ðxÞ; vðx; 0Þ ¼ j2ðxÞ ð1:2Þ

and periodic boundary conditions. In (1.1), a1, a2, a3 and e are real constants with

e > 0, u ¼ uðx; tÞ, v ¼ vðx; tÞ are real-valued functions, 0 < x < 1, t > 0, and H

and L are pseudo-di¤erential operators of orders mb 0 and hb 0, respectively,

whose symbols hðkÞ and lðkÞ satisfy appropriate conditions stated below. A dis-

tinguished special case included in (1.1) (when H ¼ L ¼ � q2

qx2) is the following

system
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ut þ uxxx þ a3vxxx þ uux þ a1vvx þ a2ðuvÞx � euxx ¼ 0;

vt þ vxxx þ a3uxxx þ vvx þ a2uux þ a1ðuvÞx � evxx ¼ 0:
ð1:3Þ

J. A. Gear and R. Grimshaw [10] derived model (1.3) with e ¼ 0 to describe

strong interactions of two long waves in a stratified fluid. System (1.3) has been

intensively studied in recent years. The Cauchy problem for (1.3) with e ¼ 0 was

studied by J. Bona et al. [8], J. Marshall Ash et al. [2] and F. Linares and M. Pan-

thee [13] (see also the references therein). In [5], E. Bisognin et al. studied the fol-

lowing generalization of system (1.3),

ut þ uxxx þ a3vxxx þ upux þ a1v
pvx þ a2ðupvÞx � euxx ¼ 0;

vt þ vxxx þ a3uxxx þ vpvx þ a2u
pux þ a1ðuvpÞx � evxx ¼ 0;

ð1:4Þ

where pb 1 is any integer, with �l < x < l and e > 0. One of the results given

in [5] is that the solutions of (1.4) decay algebraically at the same rate enjoyed by

the solutions of the generalized KdV–Burgers equation provided the initial data

are su‰ciently small, ja3j < 1 and p > 4. Nevertheless, when the nonlinearity is

as in (1.3), that is, p ¼ 1, in [5] was only showed the asymptotic stability as

t ! þl, without giving any specific rate of decay. Our main concern in this

article is to give a satisfactory answer on the uniform stabilization for the solutions

of system (1.1). Some other works on related dispersive models are [1], [3], [4],

[6], [7], [14], [15] (and the references therein). Let W ¼ fx a R j 0 < x < 1g. For

1a qal, LqðWÞ denotes the Banach space of measurable functions defined on

W which are q-th power Lebesgue integrable (essentially bounded in the case

q ¼ l). The usual norm of LqðWÞ is denoted by k � kLq . By Lq
p ðWÞ we denote

the space of real functions in LqðWÞ which are periodic of period 1 equipped with

the same norm of LqðWÞ. If sb 0 then we denote by Hs
pðWÞ the space of functions

u in L2
pðWÞ which satisfy

kuk2H s
p
¼

Xþl

k¼�l

ð1þ jkj2Þsjukj2 < þl: ð1:5Þ

Here uk are the Fourier coe‰cients of u with respect to the system fexpð2kpixÞ j
k a Zg, and Hs

pðWÞ is a Hilbert space with respect to the inner product

ðu; vÞH s
p
¼

Xþl

k¼�l

ð1þ jkj2Þsukvk;

whose norm (given by (1.5)) is equivalent to the one in the usual Sobolev space

HsðWÞ (see for instance R. Temam [17]). Notice that by Parseval’s identity
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ðu; vÞH 0
p
¼ ðu; vÞL2 for any u and v in L2

pðWÞ, where ð ; ÞL2 denotes the usual inner

product of L2ðWÞ.
We denote by _LL2

pðWÞ (resp. _HHs
pðWÞ) the space of functions u a L2

pðWÞ (resp.

Hs
pðWÞ) such that

u0 ¼
ð
W

uðxÞ dx ¼ 0:

We recall that in _HH 1
p ðWÞ Poincaré’s inequality holds, that is, there is a positive

constant cðWÞ such that

kukL2 a cðWÞkuxkL2 ;

for any u a _HH 1
p ðWÞ.

Given mb 0 and hb 0, we assume that H and L are pseudo-di¤erential oper-

ators of order m and h, respectively, defined by

HuðxÞ ¼
Xþl

k¼�l

hðkÞuk expð2kpixÞ; LuðxÞ ¼
Xþl

k¼�l

lðkÞuk expð2kpixÞ;

where the symbols hðkÞ and lðkÞ are even real-valued functions satisfying the fol-

lowing hypotheses:

There exist positive constants ci, i ¼ 1; . . . ; 4 such that

c1jkjma hðkÞa c2jkjm; c3jkjha lðkÞa c4jkjh ð1:6Þ

for all k a Z.

Remark. Note that for system (1.3) hypotheses (1.6) are satisfied with hðkÞ ¼
lðkÞ ¼ k2. Note also that we may consider in (1.3) more general dissipative terms

of type eð�1Þmq2mx u, eð�1Þmq2mx v, which correspond to the symbols lðkÞ ¼ k2m,

m a f1; 2; . . .g.

The Cauchy problem (1.1)–(1.2) will be considered in the space _HHs
p ðWÞ ¼

_HHs
pðWÞ � _HHs

pðWÞ endowed with the inner product and the norm given by

ðU ;VÞs ¼ ðu;wÞH s
p
þ ðv; zÞH s

p
and kUks ¼ ðU ;VÞ1=2s , where U ¼ ðu; vÞ, and V ¼

ðw; zÞ are in _HHs
p ðWÞ. To simplify notations we also denote by k kLq the natural

norm of LqðWÞ � LqðWÞ and by ð ; ÞL2 the usual inner product of L2ðWÞ � L2ðWÞ.
We rewrite (1.1)–(1.2) as

Ut � ðMUÞx þ FðUÞx þ eBU ¼ 0

Uðx; 0Þ ¼ jðxÞ;
ð1:7Þ
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where

U ¼ u

v

� �
; j ¼ j1

j2

� �
;

M ¼ H a3H

a3H H

� �
; B ¼ L 0

0 L

� �
;

ð1:8Þ

and the components of FðUÞ are given by F ðUÞ ¼
�
F1ðUÞ
F2ðUÞ

�
with

F1ðUÞ ¼ u2

2
þ a1

v2

2
þ a2ðuvÞ;

F2ðUÞ ¼ v2

2
þ a2

u2

2
þ a1ðuvÞ:

ð1:9Þ

Now we can describe the content of the present paper. Under the hypotheses

(1.6), we show in Section 2 that the Cauchy problem (1.7) is globally well posed in

the space _HHs
p ðWÞ, for sb s0 ¼ maxfmþ 1; hg and m, h, a3 satisfying suitable con-

ditions (see Theorems 2.5 and 2.7). We first study the linear problem associated

with (1.7) and prove the existence of a unique local solution for the Cauchy prob-

lem (1.7) by using a fixed point theorem and techniques from the theory of semi-

groups of linear operators. Then we use energy estimates to extend the local solu-

tion globally. In Section 3, we show that the energy of the global solution Uð�; tÞ
of (1.7) stabilizes exponentially. More precisely, we prove the following result: If

2a qal, then there exist positive constants C ¼ Cðq; jÞ and g such that

kUð�; tÞkLq aC expð�gtÞ for all tb 0: ð1:10Þ

Our proof of (1.10) is based on some techniques developed in the work of C.

Foias and J. C. Saut [9], adapted conveniently to model (1.7). The main point

consists in proving that the function

kðtÞ ¼
�
BUð�; tÞ;Uð�; tÞ

�
L2

kUð�; tÞk2L2

is well defined for any t > 0 if jD 0, and has a finite positive limit as t ! þl.

This is possible in our case because the system (1.7) has the backward uniqueness

property (see Lemma 3.3).

Other notations used in this paper are as follows. CðJ;XÞ denotes the space of
functions which are continuous in the real interval J and take values in the Banach

space X . We denote by C a generic constant whose value may be di¤erent from a

line or inequality to another. We also use the notation UT to indicate the trans-

pose of a vector U ¼
�
u
v

�
.
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2. Global well-posedness

In this section we shall prove that the Cauchy problem (1.7) is globally well posed

in the periodic Sobolev space _HHs
p ðWÞ for suitable values of s. First we study the

linear problem associated with (1.7)

Ut � ðMUÞx þ eBU ¼ 0;

Uðx; 0Þ ¼ jðxÞ;
ð2:1Þ

where the operators M and B are as in (1.8). We want to prove that problem (2.1)

has a unique global solution using semigroup theory. We consider the initial data

j in _HHs
p ðWÞ with sb s0 ¼ maxfmþ 1; hg, and study (2.1) as an evolution equation

in _HHs�s0
p ðWÞ. Formally, the solution of (2.1) can be written as

Uðx; tÞ ¼
Xþl

k¼�l

etAðkÞjk expð2kpixÞ;

where jk ¼
�
j1k
j2k

�
and

AðkÞ ¼ ikhðkÞA� elðkÞI with A ¼ 1 a3

a3 1

� �
and I ¼ 1 0

0 1

� �
: ð2:2Þ

Lemma 2.1. Assume that ja3j < 1 and let l1, l2 be the eigenvalues of the ma-
trix A. Then

etAðkÞ ¼ D1 D2

D3 D4

� �
¼ Dðk; tÞ;

where

D1 ¼ D4 ¼ 1
2

�
exp

�
ikhðkÞl1t

�
þ exp

�
iklðkÞl2t

��
exp

�
�elðkÞt

�
; ð2:3Þ

D2 ¼ D3 ¼ 1
2 sgn a3

�
exp

�
ikhðkÞl1t

�
� exp

�
iklðkÞl2t

��
exp

�
�elðkÞt

�
: ð2:4Þ

Proof. This follows from a straightforward calculation using (2.2). r

Lemma 2.2. Assume that (1.6) holds and let ja3j < 1, sb 0, yb 0 and h > 0.

Define

EðtÞjðxÞ ¼
Xþl

k¼�l

Dðk; tÞjk expð2kpixÞ; x a R; tb 0: ð2:5Þ
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Then there exists a positive constant C ¼ Cðy; h; c3Þ > 0 such that

kEðtÞjksþyaC½1þ ðetÞ�2y=h�1=2kjks ð2:6Þ

for all j a _HHs
p ðWÞ and t > 0.

Proof. From (1.6), (2.3) and (2.4) we obtain that

jDjðk; tÞja exp
�
�elðkÞt

�
a expð�ec3jkjhtÞ; j ¼ 1; . . . ; 4:

Thus, by (2.5) we have

kEðtÞjk2sþy ¼
Xþl

k¼�l

ð1þ jkj2ÞsþyjDðk; tÞjkj
2

a
Xþl

k¼�l

4ð1þ jkj2Þsþy expð�2ec3jkjhtÞjjkj
2

a 2yþ2 sup
k AZ

½ð1þ jkj2yÞ expð�2ec3jkjhtÞ�kjk2s ð2:7Þ

for all tb 0 whenever supk AZ½ð1þ jkj2yÞ expð�2ec3jkjhtÞ� < þl. Clearly this is

true if y ¼ 0 and (2.6) follows from (2.7) (in fact we obtain that kEðtÞjksa 2kjks
for all tb 0). If y > 0, observe that

ð1þ jkj2yÞ expð�2ec3jkjhtÞa 1þ sup
k AZ

½jkj2y expð�2ec3jkjhtÞ�

a 1þ y

c3h

� �2y=h

ðetÞ�2y=h exp � 2y

h

� �

amax 1;
y

c3h

� �2y=h
( )

½1þ ðetÞ�2y=h�

for all k a Z and tb 0. Therefore, if y > 0, then (2.6) also follows from (2.7). r

Lemma 2.3. Under the hypotheses of Lemma 2.2, let EðtÞ be as defined in (2.5), for

any j a _HHs
p ðWÞ. Then fEðtÞgtb0 is a C0 semigroup in _HHs

p ðWÞ, and the map

t a ð0;lÞ 7! EðtÞj is continuous with respect to the topology of _HHsþy
p ðWÞ for all

yb 0.

Proof. The proof is similar to the one given in Lemma 1.1 by R. J. Iorio [12]. r

As a consequence of Lemma 2.3 we obtain the following result.
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Theorem 2.4. Assume that (1.6) holds, ja3j < 1 and sb s0 ¼ maxfmþ 1; hg with

h > 0. If j a _HHs
p ðWÞ, then the Cauchy problem (2.1) has a unique solution Uð�; tÞ

such that U a C
�
½0;lÞ; _HHs

p ðWÞ
�
and Ut a C

�
½0;lÞ; _HHs�s0

p ðWÞ
�
.

Proof. Consider the linear operator Re ¼ �eBþ qxM in _HHs�s0
p ðWÞ with domain

DðReÞ ¼ _HHs
p ðWÞ and write (2.1) in _HHs�s0

p ðWÞ as

Ut ¼ ReU ; Uð�; 0Þ ¼ j: ð2:8Þ

The above choice of DðReÞ implies that DðReÞ ¼ fj a _HHs�s0
p ðWÞ jRej a

_HHs�s0
p ðWÞg. Denote by L the infinitesimal generator of the semigroup fEðtÞgtb0

in _HHs�s0
p ðWÞ. Let us show that L ¼ Re. If j a DðReÞ, then j a _HHs�s0

p ðWÞ and

there exists g a _HHs�s0
p ðWÞ such that limt!0þ

		 EðtÞj�j
t

� g
		
s�s0

¼ 0. This implies

that

lim
t!0þ





 exp
�
tAðkÞ

�
jk � jk

t
� gk






2

¼ 0 ð2:9Þ

for any k a Z, where jk ¼
�
j1k
j2k

�
and gk ¼

�
g1k
g2k

�
. On the other hand, we have that

lim
t!0þ





 exp
�
tAðkÞ

�
jk � jk

t
� gk






2

¼ lim
t!0þ




 1
t

ð t

0

�
AðkÞ exp

�
sAðkÞ

�
jk � gk

�


2 ds
¼ jAðkÞjk � gkj2 ð2:10Þ

for any k a Z. From (2.9) and (2.10) we deduce that g ¼ Rej in _HHs�s0
p ðWÞ which

together with g a _HHs�s0
p ðWÞ shows that LJRe. Using similar arguments we can

show that LKRe. Since we know that fEðtÞgtb0 is a C0 semigroup of linear op-

erators in _HHs�s0
p ðWÞ by Lemma 2.3, it follows that Uð�; tÞ ¼ EðtÞj is the unique

solution of (2.8) in the desired class. r

Now let us consider the nonlinear problem (1.7). As before, we assume that M

and B are as in (1.8) and the components of F ðUÞ are given by (1.9).

Theorem 2.5 (Local existence and regularity). Assume that (1.6) holds, ja3j < 1

and sb s0 ¼ maxfmþ 1; hg with mb 0, hb 2. If j a _HHs
p ðWÞ, then there exist

T0 > 0 and a unique solution U a C
�
½0;T0�; _HHs

p ðWÞ
�

of (1.7) such that Ut a
C
�
½0;T0�; _HHs�s0

p ðWÞ
�
. Moreover, U a C

�
ð0;T0�; _HHr

p ðWÞ
�
for all rb s.

Proof. Let T0 > 0, and consider the set of functions

Ys;T0
¼

�
U a C

�
½0;T �; _HHs

p ðWÞ
�
such that sup

0ataT0

kUð�; tÞ � EðtÞjksa 1
�
; ð2:11Þ
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endowed with the metric induced by the sup norm of C
�
½0;T0�; _HHs

p ðWÞ
�
. In the

complete metric space Ys;T0
we define the map P : Ys;T0

! Cð½0;T0�;HsÞ by

PUð�; tÞ ¼ EðtÞj�
ð t

0

Eðt� sÞqxF
�
Uð�; sÞ

�
ds

for 0a taT0. Using Lemma 2.2 with y ¼ 1 and the inequality kuvkH s
p
a

CkukH s
p
kvkH s

p
, u; v a Hs

pðWÞ, s > 1=2 (see Lemma 1.1 in [16]) we can show that

PðYs;T0
ÞHYs;T0

and P is a contraction in Ys;T0
, if T0 is chosen su‰ciently small.

In fact, if U ;V a Ys;T0
, then

kPUð�; tÞ � EðtÞjksa
ð t

0

		Eðt� sÞqxF
�
Uð�; sÞ

�		
s
ds

aC

ð t

0

½1þ e�2=hðt� sÞ�2=h�1=2
		qxF�Uð�; sÞ

�		
s�1

ds

aCð1þ 2kjksÞ
2

ð t

0

ð1þ e�1=hs�1=hÞ ds

aCð1þ 2kjksÞ
2

T0 þ e�1=h h

h� 1
T

ðh�1Þ=h
0

� �

and

kPUð�; tÞ �PVð�; tÞks

aC

ð t

0

½1þ e�2=hðt� sÞ�2=h�1=2
		qx�F�Uð�; sÞ

�
� F

�
Vð�; sÞ

��		
s�1

ds

a 2Cð1þ 2kjksÞ
2

T0 þ e�1=h h

h� 1
T

ðh�1Þ=h
0

� �
sup

0ataT0

kU � Vks;

where C is a positive constant that depends on h, c3, ja1j, ja2j and s.

Choosing T0 > 0 su‰cient small, we can see that kPUð�; tÞ � EðtÞjksa 1 and

kPUð�; tÞ �PVð�; tÞksa a sup0ataT0
kU � Vks, with 0 < a < 1. By the Fixed

Point Theorem it follows that there exists a unique U a Ys;T0
such that PU ¼ U .

This gives a unique solution of the integral equation

Uð�; tÞ ¼ EðtÞj�
ð t

0

Eðt� sÞqxF
�
Uð�; sÞ

�
ds ð2:12Þ

for any t a ½0;T0�. Since U a C
�
½0;T0�;Hs

p ðWÞ
�
(recall that DðReÞ ¼ Hs

p ðWÞ) we
can di¤erentiate (2.12) with respect to t to show that Uð�; tÞ solves (1.7) and

Ut a C
�
½0;T0�;Hs�s0

p ðWÞ
�
. The regularity result now follows from a bootstrap-
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ping argument. In fact, from (2.12) and (2.6) it is su‰cient to show that

w a C
�
ð0;T0�;Hsþt

p ðWÞ
�
for all tb 0, where

wðtÞ ¼ �
ð t

0

Eðt� sÞqxF
�
Uð�; sÞ

�
ds for all t a ½0;T0�:

Assume, without loss of generality, that t a ð0;T0Þ and t 0 > 0 are such that

tþ t 0 a ð0;T0Þ. Choosing y ¼ tþ 1 in (2.6) with t a ½0; 1Þ and proceeding as be-

fore we obtain that

kwðtþ t 0Þ � wðtÞksþtaC

ð tþt 0

t

kEðtþ t 0 � sÞqxF ðUÞksþt ds

þ
ð t

0

		�Eðtþ t 0 � sÞ � Eðt� sÞ
�
qxF ðUÞ

		
sþt

ds

aCð1þ 2kjksÞ
2

ð tþt 0

t

�
1þ

�
eðtþ t 0 � sÞ

��ð2=hÞðtþ1Þ�1=2
ds

þ
ð t

0

		�Eðtþ t 0 � sÞ � Eðt� sÞ
�
qxF ðUÞ

		
sþt

ds:

Note that the first integral in the last inequality above tends to zero as t 0 ! 0 be-

cause hb 2, and applying the dominated convergence theorem we may show that

the second term goes to zero too. Therefore, U a C
�
ð0;T0�; _HHsþt

p ðWÞ
�
for all

0a t < 1. A repetition of this argument shows that U a C
�
ð0;T0�; _HHrþ2t

p ðWÞ
�
.

Finally, by induction, it follows that U a C
�
ð0;T0�; _HHsþnt

p ðWÞ
�
for all n a N,

which concludes the proof of Theorem 2.5. r

Next we prove some a priori estimates needed to extend the local solution

Uð�; tÞ of (1.7) for all t a ½0;lÞ.

Lemma 2.6. (i) Assume the hypotheses of Theorem 2.5 and let Uð�; tÞ be a solution

of (1.7) such that U a C
�
½0;T �Þ; _HHs

p ðWÞ
�
and Ut a C

�
½0;T �Þ; _HHs�s0

p ðWÞ
�
. Then

kUð�; tÞkL2 a kjkL2 for all 0a t < T �: ð2:13Þ

(ii) Assume the hypotheses of Theorem 2.5 with hbm > 1 and hb 2. Then

there exists a positive constant C0 ¼ C0ða1; a2; a3; m; h;T �; kjkL2Þ such that

kUð�; tÞkm=2aC0; for all 0a t < T �: ð2:14Þ

Proof. First we multiply the equation in (1.7) by UT and integrate over W to

obtain
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d

dt
kUk2L2 þ 2e

ð
W

UTBU dx ¼ 0: ð2:15Þ

Integrating (2.15) in t we get

kUk2L2 þ 2e

ð t

0

ð
W

UTBU dx ds ¼ kjk2L2 : ð2:16Þ

Note that by (1.6) and Parseval’s identity

ð
W

UTBU dx ds ¼
Xþl

k¼�l

lðkÞðjukj2 þ jvkj2Þb 0:

Thus (2.13) follows from (2.16).

Next we multiply the equation in (1.7) by UTF 0ðUÞ � 2ðMUÞT and integrate

over W to obtainð
W

�
UTF 0ðUÞUt � 2ðMUÞTUt �UTF 0ðUÞðMUÞx þ 2ðMUÞTðMUÞx

þUTF 0ðUÞFðUÞx � 2ðMUÞTFðUÞx þ eUTF 0ðUÞBU

� 2eðMUÞTBU
�
dx ¼ 0: ð2:17Þ

From (2.17), after some calculations, we find

d

dt

ð
W

1

3
UTF 0ðUÞU �UTMU

� �
dxþ e

ð
W

UTF 0ðUÞBU dx� 2e

ð
W

ðMUÞTBU dx

þ
ð
W

qx
1

4
UTF 0ðUÞ2U þ ðMUÞTMU �UTF 0ðUÞMU

� �
dx ¼ 0: ð2:18Þ

Observe that the last term in (2.18) vanishes due to the periodicity of U . Thus, an

integration of (2.18) in t yields

ð
W

UTMU � 1

3
UTF 0ðUÞU

� �
dxþ 2e

ð t

0

ð
W

�
2ðMUÞTBU �UTF 0ðUÞBU

�
dx ds

¼
ð
W

jTMj� 1

3
jTF 0ðjÞj

� �
dx: ð2:19Þ

Now, by hypotheses (1.6) we have

c1ð1� ja3jÞkUk2m=2a
ð
W

UTMU dxa 2m=2c2ð1þ ja3jÞkUk2m=2: ð2:20Þ
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Moreover, using the additional hypothesis hbm > 1 and part (i) we also

have




 ð
W

UTF 0ðUÞU dx



a kUkL2kF 0ðUÞUkL2

aC1kUk2L2kUkLl aC1kjk2L2kUkm=2; ð2:21Þ



 ð

W

UTF 0ðUÞBU dx



a kUkL2kUkLlkBUkL2 a 2h=2C2kjkL2kUk2m=2 ; ð2:22Þ

and




 ð
W

ðMUÞTBU dx



a 2ðmþhÞ=2c2c4ð1þ ja3jÞkUk2m=2; ð2:23Þ

for some positive constants C1 and C2. Then from (2.20)–(2.23) and (2.19) we de-

duce that

kUk2m=2a aþ b

ð t

0

kUk2m=2 ds for all 0a t < T � ð2:24Þ

for some positive constants a and b. Therefore, (2.14) follows from (2.24) and

Gronwall’s inequality. This completes the proof of Lemma 2.6. r

Theorem 2.7 (Global existence). Assume that (1.6) holds, ja3j < 1 and sb s0 ¼
maxfmþ 1; hg with hbm > 1 and hb 2. If j a _HHs

p ðWÞ, then the Cauchy problem

(1.7) has a unique solution U a C
�
½0;lÞ; _HHs

p ðWÞ
�

such that Ut a C
�
½0;lÞ;

_HHs�s0
p ðWÞ

�
.

Proof. First observe that by the construction of T0 in Theorem 2.5 and a well-

known technique (see [11] for example), we can extend the local solution U of

(1.7) to a maximal interval of existence ½0;T �Þ such that U a C
�
½0;T �Þ; _HHs

p ðWÞ
�
,

Ut a C
�
½0;T �Þ; _HHs�h

p ðWÞ
�
, and U a C

�
ð0;T �Þ; _HHr

p ðWÞ
�
for all rb s. Moreover,

either T � ¼ þl, or if T � < þl, then limt!T �kUð�; tÞks ¼ þl. Thus, to prove

Theorem 2.7 it is su‰cient to show that kUð�; tÞks is bounded on ½0;T �Þ if

T � < þl. From (1.7), using the regularity of Uð�; tÞ on ð0;T �Þ, we obtain that

1

2

d

dt
kUk2s ¼ ðU ;UtÞs ¼

�
Ux;F ðUÞ

�
s
� ðU ;BUÞs ð2:25Þ

for 0 < t < T �. Since (1.6) holds and hb 2, then from (2.25) we have
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1

2

d

dt
kUk2s a kUxkskFðUÞks � eðU ;BUÞs

a c
�1=2
3 ðU ;BUÞ1=2s kFðUÞks � eðU ;BUÞs

a
1

c3e
kF ðUÞk2s : ð2:26Þ

Using (1.9) and the inequality kuvkH s
p
aCkukH s

p
kvkH s

p
for u; v a Hs

pðWÞ and

s > 1=2, we estimate kF ðUÞk2s as follows:

kF ðUÞk2s aCðku2k2H s
p
þ kuvk2H s

p
þ kv2k2H s

p
ÞaCkUk2m=2kUk2s : ð2:27Þ

Therefore, from (2.26), (2.27) and Lemma 2.6 (ii) it follows that

d

dt
kUk2s aCkUk2s for all 0 < t < T �: ð2:28Þ

Now, integrating the inequality (2.28) over ½d; t� with 0 < d < t < T � and then let-

ting d ! 0, we deduce that

sup
0at<T �

kUð�; tÞksaC

for some positive constant C, which depends on s, T � and kjks. This completes

the proof of Theorem 2.7. r

Theorem 2.8 (Continuous dependence). Assume the hypotheses of Theorem 2.7.

Then, for each T > 0, the map U : _HHs
p ðWÞ ! C

�
½0;T �; _HHs

p ðWÞ
�
, defined by

UðjÞ ¼ U where U ¼ Uð�; tÞ is the global solution of (1.7), is continuous.

Proof. Let U and V denote the solutions of (1.7) with initial data Uð�; 0Þ ¼ j and

Vð�; 0Þ ¼ c, respectively, and let W ¼ U � V . Then W satisfies the initial value

problem

Wt � ðMW Þx þ ½F ðUÞ � FðVÞ�x þ eBW ¼ 0:

Wð�; 0Þ ¼ j� c:

Proceeding as in the proof of Theorem 2.7, we obtain that

d

dt
kWk2s aCðeÞkFðUÞ � F ðVÞk2s ; 0 < taT : ð2:29Þ

Estimating the right-hand side of (2.29) using (1.9) with U ¼
�
u
v

�
and V ¼

�
w
z

�
we

find that
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kFðUÞ � F ðVÞk2s aCðe; ja1j; ja2j; sÞðkUks þ kVksÞ
2kWk2s : ð2:30Þ

Since U and V satisfy (2.28) for any t a ½0;T �, it follows from (2.29) and (2.30)

that

d

dt
kWð�; tÞk2s a ~CCkW ð�; tÞk2s for all 0 < taT ;

where ~CC is a positive constant depending on s, ja1j, ja2j, T , kjks, and kcks. Now,

repeating the same argument used after (2.28), we obtain the inequality

kW ð�; tÞk2s a kj� ck2s expð ~CCTÞ; 0a taT ;

which implies the continuity of U. r

3. Asymptotic behavior

Let U ¼ Uð�; tÞ denote the global solution of (1.7) obtained in Theorem 2.7. In

this section we study the asymptotic behavior of Uð�; tÞ as t ! þl. We begin

with the following results.

Proposition 3.1. Under all assumptions of Theorem 2.7 we have:

(a) limt!þl

�
BUð�; tÞ;Uð�; tÞ

�
L2 ¼ 0.

(b) limt!þlkUð�; tÞkL2 ¼ 0.

(c) limt!þlkUð�; tÞkLl ¼ 0.

Proof. From (2.16) we have

ðl
0

ðBU ;UÞL2 ds ¼
ðl
0

ð
W

UTBU dx dsa
1

2e
kjk2L2 < þl: ð3:1Þ

Multiplying the equation in (1.7) by ðBUÞT and integrating over W we obtain

d

dt
ðBU ;UÞL2 þ 2ekBUk2L2 ¼ �2

ð
W

ðBUÞTF 0ðUÞUx dx; ð3:2Þ

because the term
Ð
WðBUÞT ðMUÞx dx is equal to zero due to periodicity. Let us

estimate the right-hand side of (3.2). By Lemma 2.6 (ii) and the embedding
_HH h=2
p ðWÞ ,! _LLl

p ðWÞ, hb 2, we know that kUð�; tÞkLl aC for any tb 0. Thus




�2

ð
W

ðBUÞTF 0ðUÞUx dx



aCkBUkL2kUkLlkUxkL2 aCkBUkL2kUxkL2 : ð3:3Þ
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But, using Parseval’s identity and (1.6) we also know that

kUxð�; tÞk2L2 aC
�
BUð�; tÞ;Uð�; tÞ

�
L2 for all tb 0: ð3:4Þ

Therefore, from (3.3) and (3.4) we obtain the estimate




�2

ð
W

ðBUÞTF 0ðUÞUx dx



a ekBUk2L2 þ CðeÞðBU ;UÞL2 : ð3:5Þ

Now, integrating (3.2) over ½0; t� and using (3.5) and (3.1), we deduce that

ðBU ;UÞL2 þ e

ð t

0

kBUk2L2 dsa ðBj; jÞL2 þ CðeÞ
ðl
0

ðBU ;UÞL2 ds:

This implies that
Ðl
0 kBUð�; sÞk2L2 ds < þl. Consequently, from (3.2), (3.5) and

(3.1) we conclude that

ðl
0

d

dt
ðBU ;UÞL2










 ds < þl;

which together with (3.1) implies (a).

By Poincaré’s inequality, (3.4) and part (a) we obtain (b). Finally, using the

embedding _HH 1
p ðWÞ ,! _LLl

p ðWÞ, (3.4) and part (a) we also conclude (c). r

Next we shall show that, in fact, ðBU ;UÞL2 , kUkL2 , and kUkLl decay expo-

nentially to zero as t ! þl. To do this we first prove some auxiliary lemmas.

Lemma 3.2. Under all assumptions of Theorem 2.7 there exists a positive constant

C such that

kFðUÞxk
2
L2 aCðBU ;UÞ2L2 : ð3:6Þ

Proof. Using (1.9), the embedding _HH 1
p ðWÞ ,! _LLl

p ðWÞ and Poincaré’s inequality,

we have

kFðUÞxk
2
L2 aCkUk2LlkUxk2L2 aCkUxk4L2 : ð3:7Þ

Then (3.6) follows from (3.7), since hb 2. r

The next lemma shows that the system (1.8) has the backward uniqueness

property.

Lemma 3.3. Under all assumptions of Theorem 2.7, if Uð�; t0Þ ¼ 0 for some t0 > 0,

then Uð�; tÞ ¼ 0 for all 0a ta t0.
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Proof. Assume that Uð�; t0Þ ¼ 0 for some t0 > 0 and define t1 ¼ infft a ½0; t0� j
Uð�; tÞ ¼ 0g. Then, either (i) t1 ¼ 0 or (ii) 0 < t1a t0. Let us show that (ii) does

not occur. In fact, if (ii) holds then Uð�; tÞA 0 for all 0a t < t1 and Uð�; t1Þ ¼ 0.

Consider the function

kðtÞ ¼
�
BUð�; tÞ;Uð�; tÞ

�
L2

kUð�; tÞk2L2

; 0a t < t1: ð3:8Þ

A direct calculation gives us the identity

1

2

d

dt
kðtÞ ¼ kUk�2

L2 ½ðBU ;UtÞL2 � kðtÞðU ;UtÞL2 �

¼ kUk�2
L2

�
BU � kðtÞU ;Ut

�
L2

¼ kUk�2
L2

�
BU � kðtÞU ; ðMUÞx � FðUÞx � eBU

�
L2 : ð3:9Þ

Since ðkU ;BU � kUÞL2 ¼ 0, it follows that

ðBU � kU ;�eBUÞL2 ¼ ðBU � kU ;�eBUÞL2 þ eðkU ;BU � kUÞL2

¼ �ekBU � kUk2L2 : ð3:10Þ

We also observe that
�
BU � kU ; ðMUÞx

�
L2 ¼ 0. Thus, from (3.9) and (3.10) it

follows that

d

dt
kðtÞ þ 2e

kUk2L2

kBU � kUk2L2 ¼ 2kUk�2
L2

�
BU � kU ;�F ðUÞx

�
L2

a 2kUk�2
L2 kBU � kUkL2kFðUÞxkL2

a
e

kUk2L2

kBU � kUk2L2 þ
1

ekUk2L2

kF ðUÞxk
2
L2 :

Consequently,

d

dt
kðtÞ þ e

kUk2L2

kBU � kUk2L2 a
1

ekUk2L2

kFðUÞxk
2
L2 :

The above inequality and Lemma 3.2 imply that

d

dt
kðtÞ þ e

kUk2L2

kBU � kUk2L2 aC
ðBU ;UÞ2L2

kUk2L2

¼ CkðtÞðBU ;UÞL2 ð3:11Þ

for 0a t < t1, where C is a positive constant. From (3.11), using Gronwall’s in-

equality, we obtain that
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kðtÞakð0Þ exp

C

ðl
0

�
BUð�; sÞ;Uð�; sÞ

�
L2 ds

�
; 0a t < t1: ð3:12Þ

On the other hand, observe that for 0a t < t1,

d

dt
logkUð�; tÞk2L2 ¼

2ðU ;UtÞL2

kUk2L2

¼ �2e
ðBU ;UÞL2

kUk2L2

;

that is,

� d

dt
logkUð�; tÞk2L2 ¼ 2ekðtÞ; 0a t < t1:

Integrating this equation in t and using (3.12) we obtain that

�logkUð�; tÞk2L2 a 2eC1t1 þ jlogkjk2L2 j; 0a t < t1;

where C1 is a positive constant. This contradicts the fact that Uð�; t1Þ ¼ 0. There-

fore, (ii) does not occur. Now, since kUð�; t1ÞkL2 ¼ 0, the equation (2.16) implies

that Uð�; tÞ ¼ 0 for all 0a ta t0. r

Lemma 3.3 shows that the function kðtÞ introduced in (3.8) is well defined for

all tb 0 if jD 0. Next we study the asymptotic behavior of kðtÞ as t ! þl.

Lemma 3.4. Assume all assumptions of Theorem 2.7 and that jD 0. Then the limit

limt!þl kðtÞ ¼ l exists and is positive.

Proof. Since jD 0 then (3.11) holds for any tb 0. Let WðtÞ ¼ Uð�; tÞ
kUð�; tÞk

L2
, so that

ðBW ;WÞL2 ¼ kðtÞ. Then from (3.11) we have

d

dt
kðtÞ þ ekBW � kWk2L2 aCðBW ;WÞ2L2 ¼ CkðtÞðBU ;UÞL2 : ð3:13Þ

Fix t0 > 0. Integrating (3.13) over the interval t0asaT we obtain that

kðTÞ þ e

ðT

t0

kBW � kWk2L2 dsakðt0Þ þ C

ðT

t0

kðsÞðBU ;UÞL2 ds: ð3:14Þ

From (3.14) and Gronwall’s inequality we deduce that

kðTÞa kðt0Þ exp

C

ðT

t0

ðBU ;UÞL2 ds
�
:
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Using (3.1) and the above inequality we conclude that

lim
T!þl

kðTÞakðt0Þ exp

C

ðl
t0

ðBU ;UÞL2 ds
�
< þl: ð3:15Þ

Observe that (3.15) also implies limT!þl kðTÞa limt0!þl kðt0Þ. Consequently,

l ¼ limt!þl kðtÞ exists. To see that it is positive observe that by Poincaré’s in-

equality we have

kðtÞ ¼ ðBU ;UÞL2

kUk2L2

b
1

C

ðBU ;UÞL2

ðBU ;UÞL2

¼ 1

C
> 0:

Therefore l > 0. This completes the proof of Lemma 3.4. r

Now we can state and prove our main result in this section.

Theorem 3.5. Assume all assumptions of Theorem 2.7 and that jD 0. Then there

exist positive constants C ¼ CðkjkL2Þ and g such that

(a) kUð�; tÞkL2 aC expð�gtÞ for all tb 0,

(b)
�
BUð�; tÞ;Uð�; tÞ

�
L2 aC expð�gtÞ for all tb 0,

(c) kUð�; tÞkLl aC expð�gtÞ for all tb 0.

Proof. Since l ¼ limt!þl kðtÞ is finite by Lemma 3.4, then from (3.15) we deduce

that

kðtÞb l exp

�C

ðl
t

�
Bð�; sÞ;Uð�; sÞ

�
L2 ds

�
; t > 0: ð3:16Þ

From equation (2.15) we know that

d

dt
kUk2L2 þ 2ekðtÞkUk2L2 ¼ 0: ð3:17Þ

Combining (3.16) and (3.17) we obtain that

d

dt
kUð�; tÞk2L2 þ 2el exp


�C

ðl
t

�
BUð�; sÞ;Uð�; sÞ

�
L2 ds

�
kUð�; tÞk2L2 a 0:

Consequently

kUð�; tÞk2L2 a kjk2L2 exp

�2le

ð t

0

oðrÞ dr
�
; ð3:18Þ
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where

oðrÞ ¼ exp

�C

ðl
r

�
BUð�; sÞ;Uð�; sÞ

�
L2 ds

�
:

On the other hand, since hb 2, using equation (2.15), Proposition 3.1 (b) and

Poincaré’s inequality we deduce that

2e

ðl
t

�
BUð�; sÞ;Uð�; sÞ

�
L2 dsa kUð�; tÞk2L2

aC
�
BUð�; tÞ;Uð�; tÞ

�
L2 for all tb 0;

which together with (3.1) implies that

ð t

0

oðrÞ dr ¼ tþ
ð t

0

�
oðrÞ � 1

�
dr

b t� C

ð t

0

ðl
r

�
BUð�; sÞ;Uð�; sÞ

�
L2 ds drb t� ~CC; ð3:19Þ

where ~CC is a positive constant depending on e and kjkL2 .

Now, substituting (3.19) into (3.18), we find that

kUð�; tÞk2L2 a kjk2L2 exp
�
�2leðt� ~CCÞ

�
aC expð�2letÞ for all tb 0;

which proves (a) with g ¼ le.

Since kðtÞ is bounded, (b) follows from (a). Finally, using the embedding
_HH 1
p ðWÞ ,! _LLl

p ðWÞ, (3.4) and part (a) we obtain (c). r

Now our claim (1.10) in the introduction follows from Theorem 3.5 and inter-

polation.
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