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Symmetry and bifurcation of periodic solutions
in Neumann boundary value problems
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Abstract. We study a vector-valued reaction-di¤usion equation with Neumann boundary
conditions ðu : ½0; p� ! R2Þ. Unlike what is observed for scalar equations, where no hetero-
clinic connections involving periodic solutions occur, we find that steady-state/Hopf and
Hopf/Hopf mode interactions produce heteroclinic solutions connecting at least one solu-
tion of standing wave type. This is achieved by restricting a problem with periodic bound-
ary conditions and equivariant under Oð2Þ symmetry to a suitable fixed-point space.

For completeness, we include a description of the solutions for Hopf bifurcation and
mode interactions involving Hopf bifurcation, namely, steady-state/Hopf and Hopf/Hopf.
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1. Introduction

Consider a reaction-di¤usion equation on ½�p; p� given by

_uu ¼ D
q2u

qx2
þ f ðu; lÞ;

where u ¼ u
�
u1ðxÞ; u2ðxÞ

�
, D is a 2� 2 matrix, f : R2 � R ! R2 is a nonlinear

mapping and l is the bifurcation parameter as usual. We say that this problem

has periodic boundary conditions (PBC) if uð�pÞ ¼ uðpÞ and u 0ð�pÞ ¼ u 0ðpÞ. We

define Neumann boundary conditions (NBC) on the smaller interval ½0; p� if

u 0ð0Þ ¼ u 0ðpÞ ¼ 0.
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Crawford et al. [3] proved that a solution u : ½0; p� ! R to a NBC problem

can be reflected about the origin and extended periodically to produce an even

solution ~uu to the corresponding PBC problem on ½�p; p�. This extension is done

by defining

~uuðxÞ ¼ uðxÞ if xb 0;

uð�xÞ if x < 0:

�

The natural domain for these solutions is the space of 2p-periodic functions. The

converse is also trivially true, that is, the restriction of an even 2p-periodic solution

u of a PBC from ½�p; p� to ½0; p� is a solution to the corresponding NBC (since u

is smooth and even, NBC are automatically satisfied on ½0; p�). Observe also that

an even solution is a solution in FixðkÞ where k � x ¼ �x, x a R. This rules out the

existence of rotating waves, and all periodic solutions are standing waves. The

natural symmetries for PBC are then those of the domain ½�p; p� which, when
the ends are identified, is a circle. See, for instance, Golubitsky and Stewart [6].

Hence, the natural setting for extracting information from a problem with PBC

to one with NBC is that of Oð2Þ symmetry.

Several authors (see Gomes and Stewart [8], [9] and Crawford et al. [3]) have

pursued the study of bifurcation problems with boundary conditions on rectangu-

lar domains. It was shown that hidden symmetries and change of genericity in

solutions may occur. In Gomes and Stewart [8] the concern is about the solutions

arising from Hopf bifurcation, including mode interactions. In this paper, we

extend this study to Neumann boundary conditions and the case where the

problem has Oð2Þ symmetry. This setting can explain some patterns arising in the

Taylor–Couette experiment, as remarked by Crawford et al. [3] and Golubitsky

and Stewart [6].

In the next section, we use the solutions to the PBC problem with Oð2Þ symme-

try to swiftly obtain solutions to the NBC case. We consider single Hopf bifurca-

tion as well as mode interactions of the types Hopf/steady-state and Hopf/Hopf,

respectively, thus extending the study of reaction-di¤usion equations with PBC to

those with NBC. Our results are obtained by restricting the information concern-

ing PBC to the appropriate fixed-point space and therefore proofs are omitted.

The results obtained show how boundary conditions constrain the solutions. The

use of amplitude-phase equations further simplifies the problem: the amplitude

equations are equivariant under the action of a smaller group. Solutions to the

original problem are obtained by restoring the phase. Even though the results

are obtained through what can be considered an exercise, we believe that their pre-

cise statement provides a useful reference.

The final and main section concerns the existence of heteroclinic connections

between periodic solutions. We prove the existence of connections involving at

least one standing wave in steady-state/Hopf and Hopf/Hopf mode interactions.
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This shows that the asymptotic behaviour of solutions to vector-valued reaction-

di¤usion equations with NBC is richer than that observed in the scalar case. In

fact, as observed by Fiedler et al. [4], among others, in the scalar case heteroclinic

orbits can only connect equilibria when NBC are present.

2. Symmetry and bifurcations

In this section we address the way symmetry a¤ects NBC problems in what con-

cerns several types of bifurcation. This completes studies by Gomes and Stewart

[8] in that it addresses NBC, and by Armbruster and Dangelmayr [1], by consider-

ing Hopf bifurcation and mode interactions involving Hopf bifurcations. As re-

marked above, this is done by restricting previously established results by other

authors. The tables below are obtained by restricting these results to the fixed-

point space of even solutions.

The results concerning single Hopf bifurcation are obtained from chapter XVII

in Golubitsky et al. [7]. The case of steady-state/Hopf bifurcation is obtained

from chapter XX in [7] and Hill and Stewart [10]. Finally, Hopf/Hopf mode

interaction is based again on chapter XX in [7] and Melbourne et al. [11].

We consider a system of di¤erential equations given in normal form on an

appropriate space, which we specify below in each instance,

_xxþ Xðx; lÞ ¼ 0; ð1Þ

where X is smooth and group equivariant, for the suitable action, and l is the

bifurcation parameter.

It is well known (see [7], for example) that either a Lyapunov–Schmidt reduc-

tion or the calculation of normal forms on a centre manifold produce natural tem-

poral symmetries where a Hopf bifurcation is concerned. Hence, the action we

want to consider is that of Oð2Þ � S1 when one Hopf mode is involved, and that

of Oð2Þ � T2 if there are two Hopf modes. It will be clear from the normal form

calculations below that the results by Chossat and Golubitsky [2] apply and either

reduction method provides the same equation up to cubic order, which is enough

for our purposes. More importantly, these results guarantee not only that the

existence of equilibrium solutions of the reduced equation correspond to solutions

of the original problem, but also that the stability and asymptotic dynamics are

preserved by the reduction (see also [6]).

2.1. The group action. We consider the restriction of problems equivariant

under the appropriate group action in each case. The occurrence of an Oð2Þ-
equivariant Hopf bifurcation requires the group action not to be absolutely

irreducible. Therefore, we consider, for each Hopf mode, an action on the

4-dimensional space C2.
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In each case we indicate those fixed-point spaces and respective isotropy sub-

groups that are contained in the fixed-point space where even solutions to the PBC

problem exist. These are obtained by restriction of the isotropy lattice for the PBC

problem (see again the references above).

The actions and representations we use are the following.

Single Hopf. We choose coordinates on C2 so that the action is given by

yðz1; z2Þ ¼ ðeiyz1; eiyz2Þ; y a S1;

fðz1; z2Þ ¼ ðe�ifz1; e
ifz2Þ; f a SOð2Þ;

kðz1; z2Þ ¼ ðz2; z1Þ; k ¼ flip in Oð2Þ:

Solutions to the NBC problem are found in FixðZ2aZc
2Þ ¼ fðz; zÞ : z a Cg,

where Z2aZc
2 ¼ 3k; ðp; pÞ4. In this subspace, we have only two orbit types,

namely, the trivial solution with full isotropy and periodic solutions of standing

wave type.

Steady-state/Hopf mode interactions. In this case, the action is on C3 and all

eigenvalues are double. We choose coordinates so that the action of Oð2Þ � S1

is generated by

yðz0; z1; z3Þ ¼ ðz0; eiyz1; eiyz2Þ; y a S1;

fðz0; z1; z3Þ ¼ ðeimfz0; e
ilfz1; e

�ilfz2Þ; f a SOð2Þ;
kðz0; z1; z3Þ ¼ ðz0; z2; z1Þ; k ¼ flip in Oð2Þ:

The integers l and m are the mode numbers (we follow the notation of Golubitsky

et al. [7]; Hill and Stewart [10] interchange the mode numbers and name the gen-

erators for the group action di¤erently). The isotropy subgroups depend on these

mode numbers. We consider three cases: when both mode numbers are equal to

one, when m is odd and when m is even. In the two last instances, we assume that

l and m are coprime. The information in Table 1 is obtained from chapter XX,

2.3, in [7] and also from results in Hill and Stewart [10].

Solutions to NBC problems are found in fðx; z; zÞ : x a R; z a Cg. This corre-

sponds to Fix
�
Z2ðkÞ

�
if l ¼ m ¼ 1 or if m is odd. If m is even then it corresponds

to the fixed-point space of Z2ðkÞ � Z2ðp; lpÞ.
The isotropy subgroup Z2ðkÞ � S1 corresponds to a branch of steady-states

and Z2ðkÞaZc
2 to a branch of periodic solutions. As in the single mode case,

these periodic solutions are standing waves. There may also be a mixed-mode

branch with isotropy Z2ðkÞ.
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Hopf/Hopf mode interactions. We consider two representations for the action

of Oð2Þ � T2, one on C3 and the other on C4. In the latter representation both

eigenvalues are double. Coordinates are chosen so that the action is given by

fðz0; z1; z2Þ ¼ ðz0; eifz1; e�ifz2Þ; f a SOð2Þ;

kðz0; z1; z2Þ ¼ ðz0; z2; z1Þ; k ¼ flip in Oð2Þ;

ðy;cÞðz0; z1; z2Þ ¼ ðeiyz0; eicz1; eicz2Þ; ðy;cÞ a T2;

in the 6-dimensional case. In the 8-dimensional case, we have

fðz1; z2; z3; z4Þ ¼ ðeilfz1; e�ilfz2; e
imfz3; e

�imfz4Þ; f a SOð2Þ;

kðz1; z2; z3; z4Þ ¼ ðz2; z1; z4; z3Þ; k ¼ flip in Oð2Þ;

ðy;cÞðz1; z2; z3; z4Þ ¼ ðeiyz1; eiyz2; eicz3; eicz4Þ; ðy;cÞ a T2:

We factor out the kernel of the action of Oð2Þ on C4 and assume that l and m are

coprime.

The 6-dimensional case. In this case the symmetry is such that a decomposition

into amplitude-phase equations, from the start, very much simplifies the study of

the mode interaction. Defining rj ¼ jzjj, the amplitude equations produce an ordi-

nary di¤erential equation on R3 whose zeros are in one-to-one correspondence

with the periodic solutions of the original mode interaction problem. This equa-

tion is defined by a Z2 �D4-equivariant map, where Z2 is generated by k0 and D4

is generated by three other elements of order two as follows:

Table 1. Isotropy subgroups and fixed-point spaces for the action of Oð2Þ � S1 on C.
The isotropy subgroup S1 is Z2ðkÞ � S1, Z2ðkÞ _þþ Z2

�
2p
m
; p
�
, or Z2ðkÞ _þþ Z2

�
2p
m
; 0
�
� S1 �

Z2ðp; lpÞ depending on whether l ¼ m ¼ 1, m is odd or m is even, respectively. Analo-
gously, S2 is Z2ðkÞaZc

2, Z2ðkÞ _þþ Z2

�
p
l
; p
�

or Z2ðkÞ _þþ Z2

�
p
l
; p
�
� Z2ðp; lpÞ and S3 is

Z2ðkÞ, Z2ðkÞ or Z2ðkÞ � Z2ðp; lpÞ. We use _þþ to represent the semi-direct product.

Isotropy subgroup S FixðSÞ

Oð2Þ � S1 fð0; 0; 0Þg

S1 fðx; 0; 0Þ : x a Rg

S2 fð0; z; zÞ : z a Cg

S3 fðx; z; zÞ : x a R; z a Cg
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k0ðr0; r1; r2Þ ¼ ðr0; r1; r2Þ;
k1ðr0; r1; r2Þ ¼ ð�r0;�r1;�r2Þ;
k2ðr0; r1; r2Þ ¼ ðr0; r1;�r2Þ;
kðr0; r1; r2Þ ¼ ðr0; r2; r1Þ:

Solutions to the NBC problem belong to Fix
�
Z2ðkÞ

�
¼ fðr0; r1; r1Þ : r0; r1 a Rg.

Table 2 contains information about isotropy subgroups and fixed-point spaces

obtained from data in [7], chapter XX.

The 8-dimensional case. We are interested in solutions in

fðz1; z1; z3; z3Þ : z1; z3 a Cg. We therefore restrict the information provided by

Golubitsky et al. [7] and Melbourne et al. [11] to this space to obtain the corre-

sponding information contained in Table 2. We use the notation of [7] for the iso-

tropy subgroups, that is, Zðf; y;cÞ ¼ 3ðf; y;cÞ4H SOð2Þ � T2 and Sðk; l;mÞ ¼
fðky; ly;myÞ : y a S1g.

2.2. Invariant theory and normal forms. We present a sequence of lemmas

which provide the necessary information for the construction of normal forms

for X in (1). In the mode interaction cases, we use l to denote the bifurcation

parameter and any necessary unfolding parameters. Hence, l may be multi-

dimensional. As before, these results are obtained by restricting results in Golubit-

sky et al. [7] and Hill and Stewart [10] to the appropriate space. Specific references

are provided for each lemma.

Table 2. Isotropy subgroups and fixed-point spaces for each group action in Hopf/Hopf
mode interaction. The first half concerns the symmetry group of the amplitude equations
for the 6-dimensional representation. The second half describes the isotropy subgroups
and their fixed-point spaces for the 6-dimensional representation.

Representation Isotropy subgroup S FixðSÞ

Z2 �D4 fð0; 0; 0Þg

D4 fðr0; 0; 0Þ : r0 a Rg
6-dimensional

Z2ðk0Þ � Z2ðkÞ fð0; r1; r1Þ : r1 a Rg

Z2ðkÞ fðr0; r1; r1Þ : r0; r1 a Rg

Oð2Þ � T2 fð0; 0; 0Þg

Sð0; 0; 1Þ � Z2ðkÞ � Zðp=l; p; 0Þ fðz1; z1; 0; 0Þ : z1 a Cg
8-dimensional

Sð0; 1; 0Þ � Z2ðkÞ � Zðp=m; 0; pÞ fð0; 0; z3; z3Þ : z3 a Cg

Z2ðkÞ � Zðp; lp;mpÞ fðz1; z1; z3; z3Þ : z1; z3 a Cg
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Lemma 2.1 ([7], Proposition XVII, 2.1). In the case of single mode Hopf bifurca-

tion,

(a) every Oð2Þ � S1-invariant germ f has the form f ðz; zÞ ¼ PðNÞ, where

N ¼ 2jzj2, and
(b) every Oð2Þ � S1-equivariant vector field X has the form

Xðz; z; lÞ ¼ ðpþ iqÞðz; zÞT ;

where p and q are Oð2Þ � S1-invariant germs, depending on l, and the superscript T

denotes the transpose.

For the steady-state/Hopf mode interaction we have the following result which

puts together, and restricts, several results in [10].

Lemma 2.2 (Hill and Stewart [10]). (a) A basis for the Oð2Þ � S1-invariant is given

by N0 ¼ x2, N1 ¼ 2jzj2 and T ¼ xajzj2b , where a ¼ 2l and b ¼ m when m is odd,

while a ¼ l and b ¼ m=2 when m is even.

(b) Every Oð2Þ � S1-equivariant vector field has the form

Xðx; z; lÞ ¼ c1ðx; 0; 0Þ þ c3ðxa�1jzj2bÞ

þ ðp1 þ iq1Þð0; z; zÞ þ ðp3 þ iq3Þð0; xajzj2bz�1; xajzj2bz�1Þ;

where ci, p1 and qi depend on the invariants and the bifurcation parameters.

For the 6-dimensional Hopf/Hopf mode interaction, we have

Lemma 2.3 ([7], Theorem XX, 3.1). Vector fields commuting with Oð2Þ � T2 have

the form

Xðz0; z1; z1; lÞ ¼ ðp0 þ iq0Þðz0; 0; 0ÞT þ ðp1 þ iq1Þð0; z1; z1ÞT ;

where pi and qi are functions of the parameters and of r ¼ jz0j2 and N ¼ 2jz1j2.

Finally, the invariant theory for the 8-dimensional Hopf/Hopf mode interac-

tion is given in

Lemma 2.4 ([7], Theorem XX, 3.2). Any Oð2Þ � T2-equivariant vector field X has

normal form given by

Xðz1; z1; z3; z3; lÞ ¼
�
ðp1 þ iq1Þz1 þ ðr1 þ is1Þjz1j2mz1�1jz3j2l ;

ðp1 þ iq1Þz1 þ ðr1 þ is1Þjz1j2mz1�1jz3j2l ;

ðp3 þ iq3Þz3 þ ðr3 þ is3Þjz1j2mjz3j2lz3�1;

ðp3 þ iq3Þz3 þ ðr3 þ is3Þjz1j2mjz3j2lz3�1
�
;
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where pi, qi, ri and si are functions of the parameters and of Ni ¼ 2jzij2 and

b ¼ jz1j2mjz3j2l .

2.3. Bifurcations. Using the Birkho¤ normal form of the vector field X obtained

in the previous subsection, we state conditions on the coe‰cients that guarantee

that the required Hopf bifurcations occur. Similarly to the 6-dimensional Hopf/

Hopf mode interaction, we shall use amplitude-phase equations to further simplify

the normal forms. The amplitude equations are equivariant under the action

of groups smaller than the original one. The study of the amplitude equations

provides a lower-dimensional setting for the problem and reduces its bifurcation

analysis, including bifurcation diagrams, to previously studied problems. Results

for the original problem are obtained by restoring the phase as described below.

Single Hopf. We assume that pð0Þ ¼ 0, qð0Þ ¼ 1 and plð0ÞA 0 to ensure ge-

nericity of the bifurcation. The branch of standing waves is given by

l ¼ � 2pNð0Þ
plð0Þ

a2 þ higher-order terms;

where the subscripts indicate derivatives and a a R refers to the orbit representa-

tive for standing-waves which is ða; aÞ. Writing z ¼ xeic, where x a R is the am-

plitude and c the phase, we obtain the following amplitude-phase equations

_xxþ hðx; lÞ ¼ 0;

_ccþ qðx; lÞ ¼ 0;

with hðx; lÞ ¼ pðx; lÞx. Up to degree two, we have dh ¼ 2pNð0Þx2, meaning that

the stability of the branch of standing waves is uniquely determined by the sign of

pNð0Þ (pNð0Þ > 0 corresponds to a supercritical stable branch and pNð0Þ < 0 to a

subcritical unstable one). This is all the information required to draw the bifurca-

tion diagram in the non-degenerate case.

Furthermore, we can study the degenerate case by observing that the ampli-

tude equation possesses symmetry Z2 and thus the solutions are those of the

Z2-symmetric problems presented by Golubitsky and Schae¤er in [5], chapter VI.

Note that the branches of solutions are to be interpreted as branches of periodic

solutions, after having restored the phase.

Steady-state/Hopf mode interaction. The Birkho¤ normal form, as remarked

above, depends on the mode numbers l and m. We assume that c1ð0Þ ¼ 0,

p1ð0Þ ¼ 0 and q1ð0Þ ¼ 1. Nondegeneracy conditions can be found in Table XX,

2.6 of Golubitsky et al. [7]. We divide this section according to the mode numbers

as before.
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Mode numbers lFmF 1. If we write x0 ¼ x and x1e
ic ¼ z, where x1 is the am-

plitude and c the phase, we obtain the following amplitude-phase equations

_xx0 þ ðc1 þ c3x
2
1Þx0 ¼ 0;

_xx1 þ ðp1 þ p3x
2
0Þx1 ¼ 0;

_ccþ q1 þ q3x
2
0 ¼ 0:

The above amplitude equations have Z2aZ2 symmetry. The study of problems

equivariant under this group is the content of chapter X in Golubitsky and

Schae¤er [5]. When interpreting the solutions obtained by Golubitsky and

Schae¤er, the phase needs to be restored. We remark that even the most generic

normal form possesses modal parameters which condition the bifurcation

diagrams. For all parameter values, both a branch of steady-state solutions and

a branch of periodic, standing wave solutions are present. For certain regions in

modal parameter space, mixed-mode branches can be found and a secondary

Hopf bifurcation may take place along the mixed-mode branch.

Mode numbers m and l coprime. If m is odd then the amplitude equations again

have Z2aZ2 symmetry. This case is therefore analogous to the previous one,

with mode numbers both equal to unity. If m is even, the amplitude equations are

_xxþ p1xþ p3x
l�1ym ¼ 0;

_yyþ q1yþ q3x
lym�1 ¼ 0:

These equations are Z2aZ2 symmetric with additional symmetry-breaking terms

given by p3x
l�1ym and q3x

lym�1. Such problems have been studied by Armbrus-

ter and Dangelmayr in [1], with the mode numbers interchanged. Here, again,

modal parameters appear in the least degenerate normal form producing a rich

variety of bifurcation diagrams.

We finish what concerns steady-state/Hopf mode interactions with the obser-

vation, made by Hill and Stewart [10], that if the mode numbers are ðm; lÞ ¼
ð2; 1Þ there is a tertiary Hopf bifurcation from the branch of standing waves, for

some values of the unfolding parameter. This is preserved under the restriction on

the boundary.

Hopf/Hopf mode interactions. We divide this paragraph according to the di-

mension of the representation for the group action. We assume non-resonance

of the eigenvalueseio0 andeio1, that is, we assume that o0=o1 is irrational.

The 6-dimensional case. In order to guarantee the occurrence of the Hopf/Hopf

mode interaction, we assume p0ð0Þ ¼ 0, p1ð0Þ ¼ 0, q0ð0Þ ¼ o0 and q1ð0Þ ¼ o1.
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Writing z0 ¼ xeix and z1 ¼ yeiz, we obtain the following amplitude-phase equa-

tions

_xxþ p0x ¼ 0;

_yyþ p1y ¼ 0;

_xxþ q0 ¼ 0;

_zzþ q1 ¼ 0:

The amplitude equations possess Z2aZ2 symmetry and can be studied from

Chapter X in [5]. Note that the mixed-mode solutions correspond to motion on

a 2-torus.

The 8-dimensional case. Changing to amplitude-phase equations, by writing

z1 ¼ xeix and z3 ¼ yeiz, we obtain

_xxþ ðp1 þ r1x
2m�2y2lÞx ¼ 0;

_yyþ ðp3 þ r3x
2my2l�2Þy ¼ 0;

_xxþ q1 þ s1x
2m�2y2l ¼ 0;

_zzþ q3 þ s3x
2my2l�2 ¼ 0:

These amplitude equations again have Z2aZ2 symmetry.

3. Heteroclinic connections

This section addresses the existence of heteroclinic connections between two pe-

riodic solutions or between a periodic solution and an equilibrium. We stress

that neither type of heteroclinic connection is possible in scalar problems with

NBC (see Fiedler et al. [4] who address this type of connection between rotat-

ing waves in PBC problems). We prove the existence of heteroclinic connections

involving periodic solutions in steady-state/Hopf mode interactions with both

mode numbers equal to unity and in Hopf/Hopf mode interactions. Recall that

reducing to amplitude-phase equations leads to a Z2aZ2-equivariant bifurcation

problem for the amplitude equations. We use the approach of Melbourne et al.

[11].

Theorem 3.1. For the NBC problems described above, there exists an open set of

values for the coe‰cients in the normal form of X, such that the asymptotic behav-

iour of solutions is described by a heteroclinic connection between
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• a standing wave and a steady-state in the case of a steady-state/Hopf mode

interaction;

• two standing waves in the case of a Hopf/Hopf mode interaction.

Proof. According to Theorem X, 2.4 in Golubitsky and Schae¤er [5], the non-

degenerate normal form for a Z2aZ2-equivariant problem is

_xx ¼ ðe2lþmy2 þ e1x
2Þx;

_yy ¼ ðe4lþ e3y
2 þ nx2Þy;

where m and n are modal parameters, ei ¼e1 and the mode interaction may be

unfolded by adding e4sy to the second equation and small perturbations to the

modal parameters. The equilibria for this normal form are the origin, one equilib-

rium on the horizontal axis, one on the vertical axis and, for certain parameter

values, equilibria outside the axes corresponding to mixed-mode solutions.

In these coordinates, the fixed-point spaces of the two non-trivial isotropy

subgroups of Z2aZ2 are the coordinate axes. For parameter values such that

there are no mixed-mode branches, these axes are adjacent (i.e., there is no other

invariant line in a wedge region defined by them; see Definition 2.2 in [11]) and

there are no equilibria outside of them. Then, provided that the origin is unstable

and solutions remain bounded inside the region defined by the fixed-point spaces,

the Poincaré–Bendixson Theorem guarantees the existence of a connection from

the equilibrium in one axis to the equilibrium in the other.

In order to prove boundedness of solutions, we use Proposition 2.6 in

Melbourne et al. [11]. Note that, due to the di¤erent way in which di¤erential

equations are written by Golubitsky and Schae¤er [5] (using _xxþ f ðx; lÞ ¼ 0) and

Melbourne et al. [11] (using _xx ¼ f ðx; lÞ), the correspondence between the coe‰-

cients used in Proposition 2.6 in [11] and the normal form in [5] is as follows:

a1 ¼ �e2, b1 ¼ �e1, c1 ¼ �m, a2 ¼ �e4, b2 ¼ �e3 and c2 ¼ �n. Thus, case A in

[5] considers values for the coe‰cients so that Proposition 2.6 in [11] applies and

solutions are bounded provided mþ n > �2. This defines an open set of parame-

ters in the modal plane in which a heteroclinic trajectory connects those solutions

(saddle-sink connection) that correspond to the non-trivial equilibria on the coor-

dinate axes. After restoring the phase, these solutions are steady-states on the hor-

izontal axis and standing waves on the vertical axes, in the steady-state/Hopf

mode interaction, and two standing waves in either instance of the Hopf/Hopf

mode interaction.

The heteroclinic connections just described exist in the original PDE. In fact,

they are structurally stable connections taking place inside a (invariant) fixed-

point space and therefore they persist under transformations which preserve the

symmetry. r
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We do not address the existence of connections involving mixed-mode solu-

tions or secondary branches. Also notice that the heteroclinic cycles found by

Melbourne et al. [11] do not occur in NBC problems due to the simplicity of the

isotropy lattice. Nevertheless, the theorem above shows how di¤erently solutions

to NBC problems behave when going from the scalar to the simplest vector-valued

case.
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