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Existence of solutions for degenerated problems in L1

having lower order terms with natural growth

L. Aharouch, E. Azroul and A. Benkirane

(Communicated by Miguel Ramos)

Abstract. We prove the existence of a solution for a strongly nonlinear degenerated prob-
lem associated to the equation

Auþ gðx; u;‘uÞ ¼ f ;

where A is a Leray–Lions operator from the weighted Sobolev space W
1; p
0 ðW;wÞ into its

dual W�1; p 0 ðW;w�Þ. While gðx; s; xÞ is a nonlinear term having natural growth with respect
to x and no growth with respect to s, it satisfies a sign condition on s, i.e., gðx; s; xÞ � sb 0
for every s a R. The right-hand side f belongs to L1ðWÞ.
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1. Introduction and Basic assumptions

Let W be an open bounded subset of RN , Nb 2. Let p be a real number

with 1 < p < l and let p 0 be its Hölder conjugate (i.e., 1
p
þ 1

p 0 ¼ 1). By

w ¼ fwiðxÞ j i ¼ 0; . . . ;Ng we denote a collection of weight functions on W. Con-

sider the following nonlinear elliptic degenerated problem

�div
�
aðx; u;‘uÞ

�
þ gðx; u;‘uÞ ¼ f in W;

u ¼ 0 on qW;
ð1:1Þ

where a : W� R� RN ! RN is a Carathéodory function satisfying the following

assumptions:

ðH 0
1Þ (Growth, monotonicity and degeneracy)

jaiðx; s; xÞjaw
1=p
i ðxÞ

h
kðxÞ þ s1=p 0 jsjq=p

0
þ
XN
j¼1

w
1=p 0

j ðxÞjxjjp�1
i
; 1a iaN;

ð1:2Þ



½aðx; s; xÞ � aðx; s; hÞ�ðx� hÞ > 0 for all xA h a RN ; ð1:3Þ

aðx; s; zÞzb a
XN
i¼1

wiðxÞjzijp; ð1:4Þ

for a.e. x in W, all s a R and all z a RN , where kðxÞ is a positive function in

Lp 0 ðWÞ, a is some constant strictly positive and where sðxÞ and q are the so-

called Hardy parameters (cf. hypotheses ðH0Þ below).
ðH2Þ (Sign condition and growth)

gðx; s; xÞ is a Carathéodory function satisfying

gðx; s; xÞ � sb 0; ð1:5Þ

jgðx; s; xÞja bðjsjÞ
�
cðxÞ þ

XN
i¼1

wiðxÞjxijp
�
; ð1:6Þ

where b : Rþ ! Rþ is a positive increasing function and cðxÞ is a positive

function in L1ðWÞ.

We will be concerned with some existence result for the solutions of (1.1).

We begin by recalling some previous works on nonlinear elliptic equations.

In the variational case (i.e., f belongs to W�1;p 0 ðW;w�Þ) it is well known (see

[2]) that there exists a weak solution u of (1.1) with u a W
1;q
0 ðW;wÞ.

The case where f is a function in L1ðWÞ is investigated in [3], but under the

following additional assumption on g,

jgðx; s; xÞjb g
XN
i¼1

wijxijp for jsj su‰ciently large; ð1:7Þ

and this implies that such a solution belongs to W
1;p
0 ðW;wÞ.

Note that the results of [2] and [3] are given under the following integrability of

the Hardy function s,

s1�q 0
a L1

locðWÞ; 1 < q < l: ð1:8Þ

Let us recall this integrability condition that has been used in order to prove the

existence of a solution for the approximate problem, while (1.7) plays a crucial

role in the a priori estimates. More precisely, we have proved that the solutions

un of the approximate problem are bounded in W
1;p
0 ðW;wÞ.

We are pleased to refer to [13] where the author establishes an existence result

for problem (1.1) in the non-degenerated case without assuming any coercivity
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condition on the nonlinearity g. Moreover the solution u belongs to W
1;q
0 ðWÞ for

all q <
Nðp�1Þ
N�1 , which implies that aðx; u;‘uÞ a L1ðWÞ so that it is then possible to

find a weak solution of (1.1); see [13].

The aim of this paper is to prove the existence of a solution for (1.1) in

weighted Sobolev spaces without assuming the conditions (1.7) and (1.8). For

this we will approximate f with regular functions fn and the nonlinearity g by

the sequence

gnðx; s; xÞ ¼ n
gðx; s; xÞ

1þ 1
n
jgðx; s; xÞj

T1=nðs1=qÞ:

We have considered the following approximate problem

un a W
1;p
0 ðW;wÞ;ð

W

aðx; un;‘unÞ‘v dxþ
ð
W

gnðx; un;‘unÞv dx ¼
ð
W

fnv dx; ð1:9Þ

v a W
1;p
0 ðW;wÞ

and studied the possibility to find a solution of (1.1) as limit of a subsequence ðunÞn
of solutions to (1.9). We are going to prove the existence of un by using the tech-

niques of pseudo-monotonicity.

In our framework, the boundedness of un in a weighted Sobolev space is not

guaranteed because of the non-existence of the imbedding theorems and the viola-

tion of condition (1.7). (But in the non-weighted case it is known that un is

bounded in W
1;q
0 ðWÞ for all q <

Nðp�1Þ
N�1 ; see [13].) However an a priori estimate

of the sequence
�
TkðunÞ

�
n
is always available, and by adapting the same tech-

niques introduced in [4], we can show that un converges almost everywhere to

some function u in W. Thus we can prove the strong convergence of TkðunÞ.
Note that the existence results for a weak solution of problem (1.1) in weighted

Sobolev space appear in the literature only under slightly stronger conditions. For

completeness we prove in Theorem 3.1 an existence result in the setting of our

hypotheses. Then the solution constructed via approximation methods is not

necessarily in W 1;1ðW;wÞ and has not necessarily a gradient in the usual sense.

In order to resolve this di‰culty we argue as in [4] and seek as solution a new

space T1;p
0 ðW;wÞ. This leads to the notion of entropy solution.

Our main result (Theorem 3.1) can be viewed as a continuation of the analo-

gous result in [3] in the sense of a non-coercive perturbation term and free Hardy

weight.

The present paper is organized as follows. In Section 2 we begin with some

preliminaries results. In Section 3 we present and prove our main existence result.

To conclude this section, let us mention that if we take wC 1 in our present

work, we obtain an existence result for problem (1.1) in the non-weighted case as
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in [13]. The approach is di¤erent from that in [13] and allows for some more gen-

eral coercivity of type (3.1). However, when wD 1, we do not know how to ex-

tend our approach in the case where the weaker coercivity (1.4) is assumed instead

of the stronger one (3.1); see Remarks 3.3, 3.4, 4.1 and 4.2 below.

2. Preliminaries

Let W be a bounded open subset of RN ðNb 2Þ. Let p be a real number such that

1 < p < l and let w ¼ fwiðxÞ; i ¼ 1; . . . ;Ng be a vector of weight functions, i.e.,

every component wiðxÞ is a measurable function which is strictly positive almost

everywhere in W. Further, we suppose in all our considerations that

wi a L1
locðWÞ ð2:1Þ

and

w
�1=ðp�1Þ
i a L1

locðWÞ for 0a iaN: ð2:2Þ

We define the weighted space with weight g in W as

LpðW; gÞ ¼ fuðxÞ; ug1=p a LpðWÞg

endowed with the norm

kukp; g ¼
� ð

W

juðxÞjpgðxÞ dx
�1=p

:

We denote by W 1;pðW;wÞ the weighted Sobolev space of all real-valued functions

u a LpðW;w0Þ such that the derivatives in the sense of distributions satisfy

qu

qxi
a LpðW;wiÞ for all i ¼ 1; . . . ;N:

Then W 1;pðW;wÞ is a Banach space with respect to the norm

kuk1;p;w ¼
� ð

W

juðxÞjpw0 dxþ
XN
i¼1

ð
W

���� quqxi
����
p

wiðxÞ dx
�1=p

: ð2:3Þ

W
1;p
0 ðW;wÞ is defined as the closure of Cl

0 ðWÞ with respect to the norm (2.3).

Note that Cl
0 ðWÞ is dense in W

1;p
0 ðW;wÞ and

�
W

1;p
0 ðW;wÞ; k � k1;p;w

�
is a reflexive

Banach space.
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We recall that the dual of the weighted Sobolev spaces W 1;p
0 ðW;wÞ is equiva-

lent to W�1;p 0 ðW;w�Þ, where w� ¼ fw�
i ¼ w

1�p 0

i g, i ¼ 1; . . . ;N. For more details

the reader is referred to [9].

Now we introduce the truncature operator. For a given constant k > 0 we de-

fine the cut function Tk : R ! R by

TkðsÞ ¼
s if jsja k;

k signðsÞ if jsj > k:

�
ð2:4Þ

For a function u ¼ uðxÞ, x a W, we define the truncated function Tku ¼ TkðuÞ
pointwise: for every x a W the value of ðTkuÞ at x is just Tk

�
uðxÞ

�
. We now intro-

duce the functional space that will need in our work:

T
1;p
0 ðW;wÞ ¼ fu : W ! R measurable jTkðuÞ a W

1;p
0 ðW;wÞ for all k > 0g:

The following lemma is a generalization of [4], Lemma 2.1, to weighted Sobolev

spaces (its proof is a slight modification of the original proof [4]).

Lemma 2.1. For every u a T
1;p
0 ðW;wÞ, there exists a unique measurable function

v : W ! RN such that

‘TkðuÞ ¼ vwfjuj<kg almost everywhere in W for every k > 0:

We will define the gradient of u as the function v and denote it by v ¼ ‘u.

Lemma 2.2. Let l a R and let u and v be two measurable functions which are finite

almost everywhere and which belong to T
1;p
0 ðW;wÞ. Then

‘ðuþ lvÞ ¼ ‘uþ l‘v a:e: in W;

where ‘u, ‘v and ‘ðuþ lvÞ are the gradients of u, v and uþ lv introduced in

Lemma 2.1.

The proof is similar to the proof of [7], Lemma 2.12, in the non-weighted case.

Definition 2.1. Let Y be a reflexive Banach space. A bounded operator B from Y

to its dual Y � is called pseudo-monotone if for any sequence un a Y with un * u

weakly in Y and lim supn!þl 3Bun; un � u4a 0, we have

lim inf
n!þl

3Bun; un � v4b3Bu; u� v4 for all v a Y :

Now we state the following assumption.
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ðH0Þ The expression

kuk ¼
�XN

i¼1

ð
W

���� quqxi
����
p

wiðxÞ dx
�1=p

ð2:5Þ

is a norm on W
1;p
0 ðWÞ equivalent to the norm (2.3).

There exists a weight function s strictly positive a.e. in W and a parame-

ter q, 1 < q < l, such that the Hardy inequality

� ð
W

jujqsðxÞ dx
�1=q

aC
�XN

i¼1

ð
W

���� quqxi
����
p

wiðxÞ dx
�1=p

ð2:6Þ

holds for every u a W
1;p
0 ðW;wÞ with a constant C > 0 independent of u.

Moreover, the imbedding

W
1;p
0 ðW;wÞ ,! LqðW; sÞ ð2:7Þ

determined by the inequality (2.6) is compact.

Note that
�
W

1;p
0 ðW;wÞ; kuk

�
is a uniformly convex (and thus reflexive) Banach

space.

Remark 2.1. Assume that w0ðxÞ ¼ 1 and, in addition, the integrability con-

dition holds: there exists n a N
p
;l

i h
B 1

p�1 ;l
h h

such that w�n
i a L1ðWÞ for all

i ¼ 1; . . . ;N (which is stronger than (2.2)). Then

kuk ¼
�XN

i¼1

ð
W

���� quqxi
����
p

wiðxÞ dx
�1=p

is a norm defined on W
1;p
0 ðW;wÞ. It is equivalent to (2.3). Moreover,

W
1;p
0 ðW;wÞ ,! LqðWÞ

for all 1a q < p�
1 if pn < Nðnþ 1Þ and for all qb 1 if pnbNðnþ 1Þ, where

p1 ¼
pn

nþ1 and p�
1 ¼ Np1

N�p1
¼ Npn

Nðnþ1Þ�pn
is the Sobolev conjugate of p1 (see [9]). Thus

hypothesis ðH0Þ is satisfied for sC 1.

Remark 2.2. We use the special weight functions w and s expressed in terms of

the distance to the boundary qW. Denote dðxÞ ¼ distðx; qWÞ and set

wðxÞ ¼ d lðxÞ; sðxÞ ¼ d mðxÞ:

100 L. Aharouch, E. Azroul and A. Benkirane



In this case the Hardy inequality reads

� ð
W

jujqd mðxÞ dx
�1=q

aC
� ð

W

j‘ujpd lðxÞ dx
�1=p

:

(i) For 1 < pa q < l,

l < p� 1;
N

q
�N

p
þ 1b 0;

m

q
� l

p
þN

q
�N

p
þ 1 > 0: ð2:8Þ

(ii) For 1a q < p < l,

l < p� 1;
m

q
� l

p
þ 1

q
� 1

p
þ 1 > 0: ð2:9Þ

The conditions (2.8) or (2.9) are su‰cient for the compact imbedding (2.7) to hold;

see, e.g., [8], Example 1, [9], Example 1.5, p. 34, and [16], Theorems 19.17 and

19.22.

Now we give the following technical lemmas which are needed later.

Lemma 2.3 (cf. [3, 15]). Let g a LrðW; gÞ and let gn a LrðW; gÞ, with kgnkW; ga c,

1 < r < l. If gnðxÞ ! gðxÞ a.e. in W, then gn * g weakly in LrðW; gÞ.

Lemma 2.4 (cf. [3], [11]). Assume that ðH0Þ holds. Let F : R ! R be uniformly

Lipschitzian, with Fð0Þ ¼ 0. Let u a W
1;p
0 ðW;wÞ. Then F ðuÞ a W

1;p
0 ðW;wÞ. More-

over, if the set D of discontinuity points of F 0 is finite, then

qðF � uÞ
qxi

¼ F 0ðuÞ qu
qxi

a:e: in fx a W j uðxÞ B Dg;
0 a:e: in fx a W j uðxÞ a Dg:

(

From the previous lemma we deduce the following.

Lemma 2.5. Assume that ðH0Þ holds. Let u a W
1;p
0 ðW;wÞ and let TkðuÞ be the

usual truncation, k a Rþ. Then TkðuÞ a W
1;p
0 ðW;wÞ. Moreover,

TkðuÞ ! u strongly in W
1;p
0 ðW;wÞ:

3. Main results

First we define a variant of assumption ðH 0
1Þ.
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ðH1Þ This is the same as condition ðH 0
1Þ, with (1.4) is replaced by: there exist

v0 a W
1;p
0 ðW;wÞBLlðWÞ and d a L1ðWÞ such that

aðx; s; xÞðx� ‘v0Þb a
XN
i¼1

wiðxÞjxijp � dðxÞ: ð3:1Þ

The main result of the paper is the following existence theorem.

Theorem 3.1. Assume that ðH0Þ–ðH2Þ hold and let f a L1ðWÞ. Then there exists

at least one solution of the following problem:

u a T
1;p
0 ðW;wÞ; gðx; u;‘uÞ a L1ðWÞ;ð

W

aðx; u;‘uÞ‘Tkðu� vÞ dxþ
ð
W

gðx; u;‘uÞTkðu� vÞ dx ð3:2Þ

a

ð
W

fTkðu� vÞ dx for all v a W
1;p
0 ðW;wÞBLlðWÞ and all k > 0:

Remark 3.1. Theorem 3.1 has not yet been proved for classical Sobolev spaces;

see, however, [13] for the case where v0 ¼ 0.

The following lemma plays an important rôle in the proof of our main result.

Lemma 3.1 (cf. [3], [15]). Assume that ðH0Þ and ðH1Þ hold, and let ðunÞn be a se-

quence in W
1;p
0 ðW;wÞ such that un * u weakly in W

1;p
0 ðW;wÞ and

ð
W

½aðx; un;‘unÞ � aðx; un;‘uÞ�‘ðun � uÞ dx ! 0:

Then

un ! u in W
1;p
0 ðW;wÞ:

3.1. Study of approximate problem. Put

gnðx; s; xÞ ¼
gðx; s; xÞ

1þ 1
n
jgðx; s; xÞj

ynðxÞ; ð3:3Þ

with ynðxÞ ¼ nT1=n

�
s1=qðxÞ

�
.

Note that gnðx; s; xÞ satisfies the following conditions:

gnðx; s; xÞsb 0; jgnðx; s; xÞja jgðx; s; xÞj and jgnðx; s; xÞja n:

We define an operator Gn : W
1;p
0 ðW;wÞ ! W�1;p 0 ðW;w�Þ by
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3Gnu; v4 ¼
ð
W

gnðx; u;‘uÞv dx

and

3Au; v4 ¼
ð
W

aðx; u;‘uÞ‘v dx:

Due to the Hölder inequality we have

�� ð
W

gnðx; u;‘uÞv dx
��a � ð

W

jgnðx; u;‘uÞjq
0
s�q 0=q dx

�1=q 0� ð
W

jvjqs dx
�1=q

a n
� ð

W

sq0=qs�q0=q dx
�1=q 0

kvkq;s

aCnkvk: ð3:4Þ

for all u a W
1;p
0 ðW;wÞ and all v a W

1;p
0 ðW;wÞ.

The last inequality follows from (2.5) and (2.6).

Proposition 3.1. The operator Bn ¼ Aþ Gn defined from W
1;p
0 ðW;wÞ into

W�1;p 0 ðW;w�Þ is pseudo-monotone. Moreover, Bn is coercive in the following sense:

3Bnv; v� v04

kvk ! þl if kvk ! þl; v a W
1;p
0 ðW;wÞ:

3.1.1. Proof of Proposition 3.1. From Hölder’s inequality and the growth con-

ditions (1.2), we can show that A is bounded, and by using (3.4), we have that Bn is

bounded. The coercivity follows from (1.4), (1.5) and (3.4). It remains to show

that Bn is pseudo-monotone.

Let ðukÞk a W
1;p
0 ðW;wÞ be a sequence such that uk * u weakly in W

1;p
0 ðW;wÞ

and

lim sup
k!þl

3Bnuk; uk � u4a 0: ð3:5Þ

Let v a W
1;p
0 ðW;wÞ. We will show that

lim inf
k!þl

3Bnuk; uk � v4b3Bnu; u� v4:

Since ðukÞk is a bounded sequence in W
1;p
0 ðW;wÞ, we deduce that�

aðx; uk;‘ukÞ
�
k
is bounded in

QN
i¼1 L

p 0 ðW;w1�p 0

i Þ. Then there exists a function

h a
QN

i¼1 L
p 0 ðW;w1�p 0

i Þ such that
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aðx; uk;‘ukÞ * h weakly in
YN
i¼1

Lp 0 ðW;w1�p 0

i Þ:

Similarly, it is easy to see that
�
gnðx; uk;‘ukÞ

�
k
is bounded in Lq 0 ðW; s1�q 0 Þ. So

there exists a function rn a Lq 0 ðW; s1�q 0 Þ such that

gnðx; uk;‘ukÞ * rn weakly in Łq 0 ðW; s1�q 0 Þ:

It is clear that

lim inf
k!þl

3Bnuk; uk � v4 ¼ lim inf
k!þl

3Auk; uk4�
ð
W

h‘v dxþ
ð
W

rnðu� vÞ dx

¼ lim inf
k!þl

ð
W

aðx; uk;‘ukÞ‘uk dx

�
ð
W

h‘v dxþ
ð
W

rnðu� vÞ dx: ð3:6Þ

On the other hand, by condition (1.3) we have

ð
W

�
aðx; uk;‘ukÞ � aðx; uk;‘uÞ

�
ð‘uk � ‘uÞ dxb 0;

which implies thatð
W

aðx; uk;‘ukÞ‘uk dxb�
ð
W

aðx; uk;‘uÞ‘u dxþ
ð
W

aðx; uk;‘ukÞ‘u dx

þ
ð
W

aðx; uk;‘uÞ‘uk dx:

Hence

lim inf
k!l

ð
W

aðx; uk;‘ukÞ‘uk dxb
ð
W

h‘u dx: ð3:7Þ

Combining (3.6) and (3.7) we get

lim inf
k!þl

3Bnuk; uk � v4b3hþ rn; u� v4: ð3:8Þ

Now, since v is arbitrary and lim
k!þl

3Gnuk; uk � u4 ¼ 0, we have by using (3.5) and

(3.8)
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lim
k!þl

ð
W

aðx; uk;‘ukÞ‘ðuk � uÞ dx ¼ 0:

Consequently, we get

lim
k!þl

ð
W

�
aðx; uk;‘ukÞ � aðx; uk;‘uÞ

�
‘ðuk � uÞ dx ¼ 0:

In view of Lemma 3.1, we have that ‘uk ! ‘u a.e. in W, which by (3.8) yields that

lim inf
k!þl

3Bnuk; uk � v4b3Bnu; u� v4:

This completes the proof of the proposition.

Remark 3.2. The approximation (3.3) appears necessary to prove the bounded-

ness of
�
gnðx; uk;‘ukÞ

�
k
in Lq 0 ðW; s1�q 0 Þ.

Remark 3.3. In the case where s satisfies the integrability condition s1�q 0
a

L1
locðWÞ, it su‰ces to approximate the term gðx; s; xÞ by some function involving

wWn
. Here Wn is a sequence of compact subsets converging to the bounded open

set W and wWn
is a characteristic function, i.e., gnðx; s; xÞ ¼ gðx; s;xÞ

1þ1
n
jgðx; s;xÞj wWn

.

Let us consider the approximate problem:

un a W
1;p
0 ðW;wÞ;

3Aun; v4þ
ð
W

gnðx; un;‘unÞv dxa
ð
W

fnv dx for all v a W
1;p
0 ðW;wÞ;

ð3:9Þ

where fn is a regular function such that fn strongly converges to f in L1ðWÞ.
Applying Proposition 3.1, the problem (3.9) has a solution by the classical re-

sult of [15] (cf. Theorem 8.2 Chapter 2 of [15]).

4. Some principal propositions

Proposition 4.1. Assume that ðH0Þ–ðH2Þ hold true and let un be a solution of the

approximate problem (3.9). Then for all k > 0, there exists a constant cðkÞ (which
does not depend on n) such that

ð
W

XN
i¼1

���� qTkðunÞ
qxi

����wi a cðkÞ:
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4.1.1. Proof of Proposition 4.1. Let k > 0 and let jkðsÞ ¼ segs
2
, where

g ¼ bðkÞ
a

� �2

.

It is well known that

j 0
kðsÞ �

bðkÞ
a

jjkðsÞjb
1

2
for all s a R: ð4:1Þ

Taking jk
�
Tlðun � v0Þ

�
as test function in (3.9), where l ¼ k þ kv0kl, we obtainð

W

aðx; un;‘unÞ‘Tlðun � v0Þj 0
k

�
Tlðun � v0Þ

�
dx

þ
ð
W

gnðx; un;‘unÞjk
�
Tlðun � v0Þ

�
dxa

ð
W

fnjk
�
Tlðun � v0Þ

�
dx:

Since gnðx; un;‘unÞjk
�
Tlðun � v0Þ

�
b 0 for fx a W j junðxÞj > kg it follows that

ð
fjun�v0jalg

aðx; un;‘unÞ‘ðun � v0Þj 0
k

�
Tlðun � v0Þ

�
dx

a

ð
fjunjakg

jgnðx; un;‘unÞj
��jk�Tlðun � v0Þ

��� dxþ
ð
W

fnjk
�
Tlðun � v0Þ

�
dx:

By using (1.6) and (3.1), we have

a

ð
fjun�v0jalg

XN
i¼1

wiðxÞ
���� qunqxi

����
p

j 0
k

�
Tlðun � v0Þ

�
dx

a bðjkjÞ
ð
W

�
cðxÞ þ

XN
i¼1

wiðxÞ
���� qTkðunÞ

qxi

����
p���jk�Tlðun � v0Þ

��� dx
þ
ð
W

dðxÞj 0
k

�
Tlðun � v0Þ

�
dxþ

ð
W

fnjk
�
Tlðun � v0Þ

�
dx:

Since fx a W j junðxÞja kgJ fx a W j jun � v0ja lg, c; d a L1ðWÞ and fn is

bounded in L1ðWÞ, it follows that

ð
W

XN
i¼1

wiðxÞ
���� qTkðunÞ

qxi

����
p

j 0
k

�
Tlðun � v0Þ

�
dx

a
bðkÞ
a

ð
W

XN
i¼1

wiðxÞ
���� qTkðunÞ

qxi

����
p��jk�Tlðun � v0Þ

��� dxþ Ck;

where Ck is a positive constant depending on k. This implies that
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ð
W

XN
i¼1

wiðxÞ
���� qTkðunÞ

qxi

����
p

j 0
k

�
Tlðun � v0Þ

�
� bðkÞ

a

��jk�Tlðun � v0Þ
���� �

dxaCk:

From (4.1) we deduce that

ð
W

XN
i¼1

wiðxÞ
���� qTkðunÞ

qxi

����
p

dxa 2Ck: ð4:2Þ

Remark 4.1. In the case where the Hardy parameters satisfy the condition (1.8)

with 1 < q < pþ p 0, the previous estimate can be proved easily by using the

Hölder inequality.

Indeed, using TkðunÞ as test function in (3.9), we have by (1.5)

ð
W

a
�
x;TkðunÞ;‘TkðunÞ

�
‘TkðunÞ dxaCk

and by (3.1)

akTkðunÞkp
a

ð
W

a
�
x;TkðunÞ;‘TkðunÞ

�
‘v0 dxþ C1ðkÞ:

From Hölder’s inequality, the growth condition (1.2) and 1 < q < pþ p 0 we de-

duce that

kTkðunÞkaC2ðkÞ:

Proposition 4.2. Assume that ðH0Þ–ðH2Þ are sattisfied, and let un be a solution to

the approximate problem (3.9). Then there exists a measurable function u such that

( for a subsequence still denote by un)

1) un ! u almost every where in W,

2) TkðunÞ * TkðuÞ weakly in W
1;p
0 ðWÞ for all k > 0.

4.1.2. Proof of Proposition 4.2. Let k0b kv0kl and k > k0. Taking

v ¼ Tkðun � v0Þ as a test function in (3.9), we getð
W

aðx; un;‘unÞ‘Tkðun � v0Þ dxþ
ð
W

gnðx; un;‘unÞTkðun � v0Þ dx

a

ð
W

fnTkðun � v0Þ dx: ð4:3Þ

Since gnðx; un;‘unÞTkðun � v0Þb 0 for fx a W j junðxÞj > k0g, (4.3) implies that
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ð
W

aðx; un;‘unÞ‘Tkðun � v0Þ dxa k

ð
fjunjak0g

jgnðx; un;‘unÞj dxþ kk f kL1ðWÞ;

which gives by using (1.6)ð
W

aðx; un;‘unÞ‘Tkðun � v0Þ dx

a kbðk0Þ
h ð

W

cðxÞ dxþ
ð
W

XN
i¼1

wiðxÞ
qTk0

ðunÞ
qxi

����
����
p

dx
i
þ kC: ð4:4Þ

Combining (4.2) and (4.4), we have

ð
W

aðx; un;‘unÞ‘Tkðun � v0Þ dxa k½Ck0
þ C �:

Due to (1.3) we obtain

ð
fjun�v0jakg

XN
i¼1

wiðxÞ
qun

qxi

����
����
p

dxa kC1;

where C1 is independent of k. Since k is arbitrary, we have

ð
fjunjakg

XN
i¼1

wiðxÞ
���� qunqxi

����
p

dxa

ð
fjun�v0jakþkv0klg

XN
i¼1

wiðxÞ
���� qunqxi

����
p

dxa kC2;

hence

ð
W

XN
i¼1

wiðxÞ
���� qTkðunÞ

qxi

����
p

dxa kC2: ð4:5Þ

Now we follow the lines of the proof of [4] to show that un converges to some

function u in measure (and therefore we can always assume that the convergence

is almost everywhere after passing to a suitable subsequence). To prove this, we

show that un is a Cauchy sequence in measure.

Let k > 0 be large enough. Then

kmeasðfjunj > kgBBRÞ ¼
ð
fjunj>kgBBR

jTkðunÞj dxa
ð
BR

jTkðunÞj dx

a
� ð

W

jTkðunÞjpw0 dx
�1=p� ð

BR

w
1�p 0

0 dx
�1=q 0

108 L. Aharouch, E. Azroul and A. Benkirane



aC0

� ð
W

XN
i¼1

qTkðunÞ
qxi

����
����
p

wiðxÞ dx
�1=p

aC1k
1=p:

Thus

measðfjunj > kgBBRÞa
C1

k1�1=p
: ð4:6Þ

We have, for every l > 0,

measðfjun � umj > lgÞameasðfjunj > kgÞ þmeasðfjumj > kgÞ
þmeasðfjTkðunÞ � TkðumÞj > lgÞ

ameasðfjunj > kgBBRÞ þmeasðfjumj > kgBBRÞ
þ 2measðfjxj > RgÞ
þmeasðfjTkðunÞ � TkðumÞj > lgÞ: ð4:7Þ

Since TkðunÞ is bounded in W
1;p
0 ðW;wÞ, there exists some vk a W

1;p
0 ðW;wÞ such

that

TkðunÞ * vk weakly in W
1;p
0 ðW;wÞ;

TkðunÞ ! vk strongly in LqðW; sÞ and a:e: in W:
ð4:8Þ

Consequently, we can assume that TkðunÞ is a Cauchy sequence in measure in W.

Let e > 0. Then, by (4.6), (4.7) and the fact that measðfx a W j jxj > Rg tends

to 0 as R ! þl, there exists some kðeÞ > 0 such that

measðfjun � umj > lgÞ < e for all n;mb n0
�
kðeÞ; l

�
:

This proves that ðunÞn is a Cauchy sequence in measure converging almost every-

where to some measurable function u, which together with (4.8) implies that

TkðunÞ * TkðuÞ weakly in W
1;p
0 ðW;wÞ;

TkðunÞ ! TkðuÞ strongly in LqðW; sÞ and a:e: in W:
ð4:9Þ

Proposition 4.3. Assume that ðH0Þ–ðH2Þ hold true and let un be a solution of the

approximate problem (3.9). Then, for all k > 0,

1) TkðunÞ ! TkðuÞ strongly in W
1;p
0 ðW;wÞ,

2) ‘un ! ‘u a.e. in W.
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4.1.3. Proof of Proposition 4.3. Many ideas of this proof are inspired of [12]

and [14].

Let k > 0. Since
�
TkðunÞ

�
n

is bounded in W
1;p
0 ðW;wÞ, the sequence�

a
�
x;TkðunÞ;‘TkðunÞ

��
n
is bounded in

QN
i¼1 L

p 0 ðW;w1�p 0

i Þ by (1.2). So, up to a

subsequence still denoted by un, a
�
x;TkðunÞ;‘TkðunÞ

�
converges weakly to some

function hk a
QN

i¼1 L
p 0 ðW;w1�p 0

i Þ such that

a
�
x;TkðunÞ;‘TkðunÞ

�
* hk weakly in

YN
i¼1

Lp 0 ðW;w1�p 0

i Þ: ð4:10Þ

Fix k > 0, and let wn;h ¼ T2k

�
un � v0 � Thðun � v0Þ þ TkðunÞ � TkðuÞ

�
and

wh ¼ T2k

�
u� v0 � Thðu� v0Þ

�
with h > 2k.

Define the following function

vn;h ¼ jkðwn;hÞ: ð4:11Þ

By taking vn;h as test functions in (3.9), we get

3AðunÞ; jkðwn;hÞ4þ
ð
W

gnðx; un;‘unÞjkðwn;hÞ dxa
ð
W

fnjkðwn;hÞ dx: ð4:12Þ

It follows that

ð
W

aðx; un;‘unÞ‘wn;hj
0
kðwn;hÞ dxþ

ð
W

gnðx; un;‘unÞjkðwn;hÞ dx

a

ð
W

fnjkðwn;hÞ dx: ð4:13Þ

For any fixed value of h, denote by e1hðnÞ; e2hðnÞ; . . . sequences of real numbers

which converge to zero as n tends to infinity. By the almost everywhere conver-

gence of u we have

jkðwn;hÞ * jkðwhÞ weakly� in LlðWÞ as n ! þl: ð4:14Þ

Therefore,

ð
W

fnjkðwn;hÞ dx !
ð
W

f jkðwhÞ dx as n ! þl: ð4:15Þ

On the set fx a W; junðxÞj > kg we have gðx; un;‘unÞjkðwn;hÞb 0. So by (4.13)

and (4.15),
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ð
W

aðx; un;‘unÞ‘wn;hj
0
kðwn;hÞ dxþ

ð
fjunjakg

gnðx; un;‘unÞjkðwn;hÞ dx

a

ð
W

f jkðwhÞ dxþ e1hðnÞ: ð4:16Þ

Splitting the first integral on the left-hand side of (4.16) where junja k and

junj > k, we can writeð
W

aðx; un;‘unÞ‘wn;hj
0
kðwn;hÞ dx

¼
ð
fjunjakg

aðx; un;‘unÞ‘wn;hj
0
kðwn;hÞ dx

þ
ð
fjunj>kg

aðx; un;‘unÞ‘wn;hj
0
kðwn;hÞ dx: ð4:17Þ

The first term of the right-hand side of the last inequality can be written asð
fjunjakg

aðx; un;‘unÞ‘wn;hj
0
kðwn;hÞ dx

b

ð
W

a
�
x;TkðunÞ;‘TkðunÞ

�
½‘TkðunÞ � ‘TkðuÞ�j 0

kðwn;hÞ dx

� j 0
kð2kÞ

ð
fjunj>kg

XN
i¼1

��ai�x;TkðunÞ; 0
��� ���� qTkðuÞ

qxi

���� dx: ð4:18Þ

Recall that, for i ¼ 1; . . . ;N,
��ai�x;TkðunÞ; 0

���wfjunj>kg converges to��a�x;TkðuÞ; 0
���wfjuj>kg strongly in Lp 0 ðW;w1�p 0

i Þ. Moreover, since
qTkðuÞ
qxi

��� ��� a
LpðW;wiÞ, it follows that

�j 0
kð2kÞ

ð
fjunj>kg

XN
i¼1

��ai�x;TkðunÞ; 0
��� ���� qTkðuÞ

qxi

���� dx ¼ e2hðnÞ:

For the second term of the right-hand side of (4.17) we can writeð
fjunj>kg

aðx; un;‘unÞ‘wn;hj
0
kðwn;hÞ dx

¼
ð
fjunj>k; jwn; hja2kg

aðx; un;‘unÞ‘
�
un � v0 � Thðun � v0Þ

�
j 0
kðwn;hÞ dx

�
ð
fjunj>k; jwn; hja2kg

aðx; un;‘unÞ‘TkðuÞÞj 0
kðwn;hÞ dx; ð4:19Þ
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which implies that

ð
fjunj>kg

aðx; un;‘unÞ‘wn;hj
0
kðwn;hÞ dx

¼
ð
fjunj>k; jwn; hja2k; jun�v0j>hg

aðx; un;‘unÞ‘ðun � v0Þj 0
kðwn;hÞ dx

�
ð
fjunj>k; jwn; hja2kg

aðx; un;‘unÞ‘TkðuÞj 0
kðwn;hÞ dx: ð4:20Þ

Since fx a W j jwn;hðxÞja 2kgH fx a W j junðxÞja 5k þ hg, in view of (3.1) we ob-

tain that

ð
fjunj>kg

aðx; un;‘unÞ‘wn;hj
0
kðwn;hÞ dx

b�j 0
kð2kÞ

ð
fjunj>kg

XN
i¼1

��ai�x;T5kþhðunÞ;‘T5kþhðunÞ
��� ���� qTkðuÞ

qxi

���� dx
� j 0ð2kÞ

ð
fjun�v0j>hg

dðxÞ dx: ð4:21Þ

Since
�
ai
�
x;T5kþhðunÞ;‘T5kþhðunÞ

��
n
is bounded in Lp 0 ðW;w1�p 0

i Þ for i ¼ 1; . . . ;N,

the first term on the right-hand side of (4.21) tends to zero for every h fixed.

On the other hand, since d a L1ðWÞ it is easy to see that

�j 0
kð2kÞ

ð
fjun�v0j>hg

dðxÞ dx ¼ �j 0
kð2kÞ

ð
fju�v0j>hg

dðxÞ dxþ �3hðnÞ: ð4:22Þ

Combining (4.18)–(4.22), we deduce that

ð
W

aðx; un;‘unÞ‘wn;hj
0
kðwn;hÞ dx

b

ð
W

a
�
x;TkðunÞ;‘TkðunÞ

�
½‘TkðunÞ � ‘TkðuÞ�j 0

kðwn;hÞ dx

� j 0
kð2kÞ

ð
fju�v0j>hg

dðxÞ dxþ �4hðnÞ: ð4:23Þ

This implies that
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ð
W

aðx; un;‘unÞ‘wn;hj
0
kðwn;hÞ dx

b

ð
W

	
a
�
x;TkðunÞ;‘TkðunÞ

�
� a

�
x;TkðunÞ;‘TkðuÞ

�

� ½‘TkðunÞ � ‘TkðuÞ�j 0

kðwn;hÞ dx

þ
ð
W

a
�
x;TkðunÞ;‘TkðuÞ

�
½‘TkðunÞ � ‘TkðuÞ�j 0

kðwn;hÞ dx

� j 0
kð2kÞ

ð
fju�v0j>hg

dðxÞ dxþ �4hðnÞ: ð4:24Þ

We claim that

ð
W

a
�
x;TkðunÞ;‘TkðuÞ

�
½‘TkðunÞ � ‘TkðuÞ�j 0

kðwn;hÞ dx ¼ �5hðnÞ: ð4:25Þ

Indeed, since fx a W j junðxÞja kgJ fx a W j jun � v0ja hg we haveð
W

a
�
x;TkðunÞ;‘TkðuÞ

�
½‘TkðunÞ � ‘TkðuÞ�j 0

kðwn;hÞ dx

¼
ð
W

a
�
x;TkðunÞ;‘TkðuÞ

�
‘TkðunÞj 0

k

�
TkðunÞ � TkðuÞ

�
dx

�
ð
W

a
�
x;TkðunÞ;‘TkðuÞ

�
‘TkðuÞj 0

kðwn;hÞ dx: ð4:26Þ

By the continuity of the Nemytskii operator (see [9]), we have for all i ¼ 1; . . . ;N,

ai
�
x;TkðunÞ;‘TkðuÞ

�
j 0�TkðunÞ � TkðuÞ

�
! ai

�
x;TkðuÞ;‘TkðuÞ

�
j 0ð0Þ

and

ai
�
x;TkðunÞ;‘TkðuÞ

�
! ai

�
x;TkðuÞ;‘TkðuÞ

�
strongly in Lp 0 ðW;w1�p 0

i Þ, while
qðTkðunÞÞ

qxi
*

qðTkðuÞÞ
qxi

weakly in LpðW;wiÞ, and
qðTkðuÞÞ

qxi
j 0ðwn;hÞ ! qðTkðuÞÞ

qxi
j 0ð0Þ strongly in LpðW;wiÞ. Hence it follows that

lim
n!l

ð
W

a
�
x;TkðunÞ;‘TkðuÞ

�
‘TkðunÞj 0

k

�
TkðunÞ � TkðuÞ

�
dx

¼
ð
W

a
�
x;TkðuÞ;‘TkðuÞ

�
‘TkðuÞj 0ð0Þ dx ð4:27Þ

and
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lim
n!l

ð
W

a
�
x;TkðunÞ;‘TkðuÞ

�
‘TkðuÞj 0

kðwn;hÞ dx

¼
ð
W

a
�
x;TkðuÞ;‘TkðuÞ

�
‘TkðuÞj 0ð0Þ dx: ð4:28Þ

Combining (4.27) and (4.28) we obtain (4.25), which proves the claim. From (4.24)

and (4.25) it follows thatð
W

aðx; un;‘unÞ½‘TkðunÞ � ‘TkðuÞ�j 0ðwn;hÞ dx

b

ð
W

	
a
�
x;TkðunÞ;‘TkðunÞ

�
� a

�
x;TkðunÞ;‘TkðuÞ

�

� ½‘TkðunÞ � ‘TkðuÞ�j 0ðwn;hÞ dx

� j 0
kð2kÞ

ð
fju�v0j>hg

dðxÞ dxþ �6hðnÞ: ð4:29Þ

We now turn to the second term of the left-hand side of (4.16). Using (1.6) we

have �� ð
fjunjakg

gnðx; un;‘unÞjkðwn;hÞ dx
��

a bðkÞ
ð
W

�
cðxÞ þ

XN
i¼1

wi

���� qTkðunÞ
qxi

����
p�
jjkðwn;hÞj dx

a bðkÞ
ð
W

cðxÞjjkðwn;hÞj dxþ bðkÞ
a

ð
W

dðxÞjjkðwn;hÞj

þ bðkÞ
a

ð
W

a
�
x;TkðunÞ;‘TkðunÞ

�
‘TkðunÞjjkðwnÞj dx

� bðkÞ
a

ð
W

a
�
x;TkðunÞ;‘TkðunÞ

�
‘v0jjkðwn;hÞj dx:

Invoking (4.10) and (4.14) we get

�� ð
fjunjakg

gnðx; un;‘unÞjkðwn;hÞ dx
��

a
bðkÞ
a

ð
W

a
�
x;TkðunÞ;‘TkðunÞ

�
‘TkðunÞjjkðwn;hÞj dx

þ bðkÞ
ð
W

cðxÞjjkðwhÞj dxþ bðkÞ
a

ð
W

dðxÞjjkðwhÞj dx

� bðkÞ
a

ð
W

hk‘v0jjkðwhÞj dxþ �7hðnÞ: ð4:30Þ
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The first term of the right-hand side can be written in the form

bðkÞ
a

ð
W

	
a
�
x;TkðunÞ;‘TkðunÞ

�
� aðx;TkðunÞ;‘TkðuÞ



� ½‘TkðunÞ � ‘TkðuÞ�jjkðwn;hÞj dx

þ bðkÞ
a

ð
W

a
�
x;TkðunÞ;‘TkðuÞ

�
½‘TkðunÞ � ‘TkðuÞ�jjkðwn;hÞj dx

þ bðkÞ
a

ð
W

a
�
x;TkðunÞ;‘TkðunÞ

�
‘TkðuÞjjkðwn;hÞj dx: ð4:31Þ

From Lebesgue’s theorem we conclude that

‘TkðuÞjjkðwn;hÞj ! ‘TkðuÞ
��jk�T2k

�
u� v0 � Thðu� v0Þ

���� ¼ 0

strongly in
QN

i¼1 L
pðW;wiÞ. By (4.10) this implies that the third term of (4.31)

tends to 0 as n ! l. By the same argument as in (4.25), the second term of

(4.31) tends to 0 as n ! l.

From (4.30) and (4.31) we obtain

�� ð
fjunjakg

gnðx; un;‘unÞjkðwn;hÞ dx
��

a

ð
W

	
a
�
x;TkðunÞ;‘TkðunÞ

�
� a

�
x;TkðunÞ;‘TkðuÞ

�

� ½‘TkðunÞ � ‘TkðuÞ�jjkðwn;hÞj dx

þ bðkÞ
ð
W

cðxÞjjkðwhÞj dxþ bðkÞ
a

ð
W

dðxÞjjkðwhÞj dx

� bðkÞ
a

ð
W

hk‘v0jjkðwhÞj dxþ �8hðnÞ: ð4:32Þ

Combining (4.16), (4.29) and (4.32), we obtainð
W

	
a
�
x;TkðunÞ;‘TkðunÞ

�
� a

�
x;TkðunÞ;‘TkðuÞ

�

� ½‘TkðunÞ � ‘TkðuÞ� j 0

kðwn;hÞ �
bðkÞ
a

jjkðwn;hÞj
� �

dx

a bðkÞ
ð
W

cðxÞjjkðwhj dxþ bðkÞ
a

ð
W

dðxÞjjkðwhÞj dx

� bðkÞ
a

ð
W

hk‘v0jjkðwhÞj dxþ
ð
W

f ðxÞjkðwhÞ dxþ �9hðnÞ: ð4:33Þ
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Then from (4.1) we haveð
W

	
a
�
x;TkðunÞ;‘TkðunÞ

�
� a

�
x;TkðunÞ;‘TkðuÞ

�

½‘TkðunÞ � ‘TkðuÞ� dx

a 2bðkÞ
ð
W

cðxÞjjkðwhÞj dxþ 2
bðkÞ
a

ð
W

dðxÞjjkðwhÞj dx

� 2
bðkÞ
a

ð
W

hk‘v0jjkðwhÞj dxþ 2

ð
W

f ðxÞjkðwhÞ dxþ �10h ðnÞ: ð4:34Þ

Hence, passing to the limit over n, we get

lim sup
n!l

ð
W

	
a
�
x;TkðunÞ;‘TkðunÞ

�
� a

�
x;TkðunÞ;‘TkðuÞ

�

� ½‘TkðunÞ � ‘TkðuÞ� dx

a 2bðkÞ
ð
W

cðxÞjjkðwhÞj dxþ 2
bðkÞ
a

ð
W

dðxÞjjkðwhÞj dx

� 2
bðkÞ
a

ð
W

hk‘v0jjkðwhÞj dxþ 2

ð
W

f ðxÞjkðwhÞ dx: ð4:35Þ

Now, since hðxÞ, dðxÞ, f ðxÞ and hk‘v0 belong to L1ðWÞ, by Lebesgue’s dominated

convergence theorem, all the terms on the right-hand side of the last inequality

tend to 0 as h ! þl. Consequently,

lim
n!l

ð
W

	
a
�
x;TkðunÞ;‘TkðunÞ

�
� a

�
x;TkðunÞ;‘TkðuÞ

�

½‘TkðunÞ � ‘TkðuÞ� dx ¼ 0:

Furthermore, due to Lemma 3.1, we get

TkðunÞ ! TkðuÞ strongly in W
1;p
0 ðW;wÞ for all k > 0: ð4:36Þ

For k > 0 large enough, we have

measðfj‘un � ‘uj > lgÞameasðfjunj > kgÞ þmeasðfjuj > kgÞ
þmeasðfj‘TkðunÞ � ‘TkðuÞj > lgÞ ð4:37Þ

for every l > 0. Since TkðunÞ converges strongly in W
1;p
0 ðW;wÞ, we can assume

that ‘TkðunÞ converges to ‘TkðuÞ in measure in W.

Let e > 0. As in (4.7) there exists some n0ðk; l; eÞ > 0 such that

measðfj‘un � ‘uj > lgÞ < e for all n;mb n0ðk; l; eÞ. We then have for a subse-

quence

‘un ! ‘u a:e: in W; ð4:38Þ
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which yields

aðx; un;‘unÞ ! aðx; u;‘uÞ a:e: in W;

gnðx; un;‘unÞ ! gðx; u;‘uÞ a:e: in W:
ð4:39Þ

Remark 4.2. The introduction of v0 in the used test function allows us to get rid

of the first term on the right-hand side of (4.20) (by using (3.1)), which does not

converge to 0 when n and h converge to þl.

5. Proof of Theorem 3.1

Step 1. Equi-integrability of the nonlinearities.

We need to prove that

gnðx; un;‘unÞ ! gðx; u;‘uÞ strongly in L1ðWÞ: ð5:1Þ

In particular, it is enough to prove that of gnðx; un;‘unÞ is the equi-integrable. To

this end we take T1

�
un � v0 � Thðun � v0Þ

�
(with h large enough) as test function

in (3.9) and obtain

ð
fjun�v0j>hþ1g

jgnðx; un;‘unÞj dxa
ð
fjun�v0j>hg

�
j fnj þ dðxÞ

�
dx:

Let e > 0. Then there exists hðeÞb 1 such that

ð
fjun�v0j>hðeÞg

jgðx; un;‘unÞj dx < e=2: ð5:2Þ

For any measurable subset EHW, we have

ð
E

jgnðx; un;‘unÞj dx

a

ð
E

b
�
hðeÞ þ kv0kl

��
cðxÞ þ

XN
i¼1

wi

���� qThðeÞþkv0klðunÞ
qxi

����
p�

dx

þ
ð
fjun�v0j>hðeÞg

jgðx; un;‘unÞj dx: ð5:3Þ

In view of (4.36) there exists hðeÞ > 0 such that
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ð
E

b
�
hðeÞ þ kv0kl

��
cðxÞ þ

XN
i¼1

wi

���� qThðeÞþkv0klðunÞ
qxi

����
p�

dx < e=2 ð5:4Þ

for all E such that measðEÞ < hðeÞ.
Finally, combining (5.2), (5.3) and (5.4), one easily has

ð
E

jgnðx; un;‘unÞj dx < e for all E such that measðEÞ < hðeÞ;

which implies (5.1).

Step 2. Passing to the limit.

Let v a KcBLlðWÞ. Take Tkðun � vÞ as test function in (3.9). Thenð
W

aðx; un;‘unÞ‘Tkðun � vÞ dxþ
ð
W

gnðx; un;‘unÞTkðun � vÞ dx

a

ð
W

fnTkðun � vÞ dx: ð5:5Þ

This implies thatð
fjun�vjakg

aðx; un;‘unÞ‘ðun � v0Þ dx

þ
ð
fjun�vjakg

a
�
x;TkþkvklðunÞ;‘TkþkvklðunÞ

�
‘ðv0 � vÞ dx

þ
ð
W

gnðx; un;‘unÞTkðun � vÞ dxa
ð
W

fnTkðun � vÞ dx: ð5:6Þ

By Fatou’s Lemma and the fact that

a
�
x;TkþkvklðunÞ;‘TkþkvklðunÞ

�
* a

�
x;TkþkvklðuÞ;‘TkþkvklðuÞ

�
weakly in

QN
i¼1 L

p 0 ðW;w1�p 0

i Þ one easily sees thatð
fju�vjakg

aðx; u;‘uÞ‘ðu� v0Þ dx

þ
ð
fju�vjakg

a
�
x;TkþkvklðuÞ;‘TkþkvklðuÞ

�
‘ðv0 � vÞ dx

þ
ð
W

gðx; u;‘uÞTkðu� vÞ dxa
ð
W

f Tkðu� vÞ dx: ð5:7Þ

Hence
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ð
W

aðx; u;‘uÞ‘Tkðu� vÞ dxþ
ð
W

gðx; u;‘uÞTkðu� vÞ dx

a

ð
W

f Tkðu� vÞ dx: ð5:8Þ

This proves Theorem 3.1.
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Sciences Dhar-Mahraz, B.P 1796 Atlas Fès, Morocco

E-mail: l_aharouch@yahoo.fr

120 L. Aharouch, E. Azroul and A. Benkirane

http://www.emis.de/MATH-item?0963.35068
http://www.ams.org/mathscinet-getitem?mr=1759814
http://www.emis.de/MATH-item?0974.35032
http://www.ams.org/mathscinet-getitem?mr=1814734
http://www.emis.de/MATH-item?0189.40603
http://www.ams.org/mathscinet-getitem?mr=0259693
http://www.emis.de/MATH-item?0698.26007
http://www.ams.org/mathscinet-getitem?mr=1069756

