
PORTUGALIAE MATHEMATICA

Vol. 64 Fasc. 3 – 2007

Nova Série

HOMOCLINIC SOLUTIONS OF A FOURTH-ORDER

TRAVELLING WAVE ODE

Gheorghe Morosanu, Diko Souroujon and Stepan Tersian

Recommended by Lúıs Sanchez
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Abstract: In this paper we investigate via the shooting method the existence of

homoclinic solutions of a fourth-order differential equation arising in the theory of water

waves.

1 – Introduction

In this paper we investigate the existence of homoclinic solutions of the equa-

tion

(1.1) γ uiv = u′′ + µ
(
2 uu′′ + (u′)2

)
+ u − u2, γ > 0 ,

i.e., classical solutions u = u(x) of (1.1), defined on R, which satisfy the condition

(1.2)
(
u, u′, u′′, u′′′

)
(x) → (1, 0, 0, 0) as x → ±∞ .

Equations of the form (1.1) or

(1.3) γ1viv = v′′ + µ1

(
2 vv′′ + (v′)2

)
− v − v2 ,
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appear in the theory of water waves. For instance, the ordinary differential equa-

tion
2

15
uiv− b u′′ + au +

3

2
u2 + µ

(
1

2
(u′)2 + (uu′)′

)
= 0

was derived by Craig and Groves [CG], when looking for travelling wave solutions

u = u(x − at) of the extended fifth-order KdV equation

ut =
2

15
uxxxxx − b uxxx + 3u + µ

(
1

2
(ux)2 + (uux)x

)

x

= 0 ,

which describes gravity water waves on a surface with finite depth (see [CG],

[ChG], [GMYK], [P]). Our work is inspired by the paper of Peletier, Rotariu–

Bruma and Troy [PBT], and Peletier and Troy [PT] where homoclinic solutions

are studied for the stationary extended Fisher–Kolmogorov equation

γ uiv = u′′ + f(u) , γ > 0 ,

by the shooting method. It is mentioned in [PBT] that this method can be

applied to equations of the form (1.3). Note that, under the change u(x) =

1+ v
(
x/

√
1+ 2µ

)
, (1.1) becomes

γ

(1+ 2µ)2
viv = v′′ +

µ

1+ 2µ
(2 vv′′ + v′2) − v − v2 ,

which is of the form (1.3) with

γ1 =
γ

(1+ 2µ)2
and µ1 =

µ

1+ 2µ
.

Since (1.1) is invariant to the change of u(x) with u(−x) we are looking for

even solutions on R and consider (1.1) on R
+ =

{
x ∈ R : x ≥ 0}, requiring that

u′(0) = u′′′(0) = 0. Our main results concerning even homoclinic solutions of (1.1)

are as follows:

Theorem 1. Let 0 < γ ≤ (1+ 2µ)2/4 if −1/2 < µ ≤ 1/2 or 0 < γ ≤ 2µ if

µ > 1/2. Then (1.1) has an even homoclinic solution u = u(x) which satisfies

−1/2 < u(x) < 1 for all x ∈ R , u(0) < 0 and u′(x) > 0 for all x > 0 .

The upper bound u(0) < 0 in Theorem 1 can be improved. Let m(γ, µ) be

the greatest negative zero of the polynomial

P3(s) := 8µ2s3 +
(
4µ2 + 8µ − 12 γ

)
s2 + 2(1+ 2µ) s + 1 ,

which exists since P3(−∞) =−∞ and P3(0) = 1.
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Theorem 2. Let γ and µ be as in Theorem 1. Suppose that u = u(x) is

an even, nonconstant homoclinic solution of (1.1) for which u(x)≤ 1, x ∈ R and

u′′(0)≥ 0. Then u(0) < m(γ, µ).

The paper is organized as follows. In Section 2, the shooting method for (1.1)

is developed and Theorem 1 is proved. In Section 3, Theorem 2 is proved.

2 – Proof of Theorem 1 via the shooting method

In this section we prove the existence of a homoclinic solution of the equation

(2.1) γuiv = u′′ + µ
(
2 uu′′ + (u′)2

)
+ u − u2

converging to the steady state u = 1 as x → ±∞. More precisely, we require that

(2.2)
(
u, u′, u′′, u′′′

)
(x) → (1, 0, 0, 0) as x→±∞ .

We use the shooting method to study the solutions of the initial value problem

(P ) :





γuiv = u′′ + µ
(
2 uu′′ + (u′)2

)
+ u − u2 ,

(
u, u′, u′′, u′′′

)
(0) = (α, 0, β, 0) .

We will seek for a solution of (P ) which is increasing on R
+ and require β ≥ 0.

Let f(s) = s − s2 and

F (s) =

1∫

s

f(t) dt =
1

6
(1− s)2 (1+ 2s) .

We have F (s)≥ 0 iff s ≥ −1/2.

Equation (2.1) has a prime integral (conservation law). Indeed, if we multiply

(2.1) by 2u′ and integrate over ]−∞, x[ and use (2.2) we obtain

(2.3) E(u) := 2 γ u′u′′′− γu′′2− u′2− 2 µuu′2 + 2F (u) = 0 ,

which is known as the conservation law.

We choose x = 0 in (2.3) and α in the interval I := ]−1/2, 1[ and obtain

γβ2 = 2F (α). So

β = β(α) =

√
2

γ
F (α) .
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Problem (P ) has a unique local solution u = u(x, α). If α∈ I, then β(α) > 0

and u′(x, α) > 0 in a right neighborhood of 0. Then, the number

(2.4) ξ(α) := sup
{

x > 0: u′(t, α) > 0, t∈ ]0, x[
}

is well defined for any α ∈ I.

Lemma 3. Let γ > 0. We have:

(a) ξ(α) → 0 as α→−1/2+,

(b) u
(
ξ(α), α

)
→ −1/2 as α→−1/2+.

Proof:

(a) Let α = −1/2. Then

u(0) = −1/2 , u′(0) = u′′(0) = u′′′(0) = 0
and

γ uiv(0) = −1

4
< 0 .

Therefore, there exists an ε > 0 such that

u(x,−1/2) < −1/2 , u(k)(x,−1/2) < 0, k = 1, 2, 3, ∀x∈ ]0, ε] .

Let α > −1/2. By the continuous dependence of the solution u(x, α) on α,

there exists a δ ∈ ]0, 3/2[ such that

u(ε, α) < −1/2 , − 1/2 < α <−1/2 + δ .

Since

u(0, α) = α > −1/2 , u′(0, α) = 0 , β = u′′(0, α) > 0 ,

if −1/2 < α <−1/2 + δ, it follows that

0 < ξ(α) < ε , − 1/2 < α <−1/2 + δ .

Taking ε arbitrarily small, we conclude that

ξ(α) → 0 as α → −1/2+ .

(b) By the continuous dependence of the solution u(x, α) on α, we have that

u(x, α) → u(x,−1/2) as α → −1/2+. Since u(x, α) is uniformly continuous on

compact intervals, it follows from (a) that u
(
ξ(α), α

)
→ u(0,−1/2) = −1/2 as

α → −1/2+.
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Define the shooting set

S :=

{
α̂ >−1/2: 0 < ξ(α) <∞, u

(
ξ(α), α

)
< 1, ∀α∈

]
−1

2
, α̂
[}

.

Lemma 4. If 0 < γ ≤ (1+2µ)2

4 , then

(a) u′
(
ξ(α), α

)
= 0 for all α ∈ S,

(b) ξ ∈ C1(S),

(c) S is an open set.

The proof follows exactly the same arguments as those of Lemma 2.2 in [PBT].

For the next step we need the following technical

Lemma 5. Let u ∈ C2([0, a]) and suppose that

u′(0) = 0 , u(0) ≥ 0 , u′′(x) ≥ 0 , x ∈ [0, a] ,

and u′′ is a nondecreasing function. Then

(2.5) u′2(x) ≤ 2 u(x)u′′(x) , x ∈ [0, a] .

Proof: We know several different proofs, but we prefer the shortest one which

is due to Balazs Komuves. From u′(0) = 0, u′′(x) ≥ 0 it follows that u′′(x) ≥ 0

in [0, a]. Therefore,
x∫

0

(
u′′(x) − u′′(t)

)
u′(t) dt ≥ 0 ,

which gives (2.5).

Now we can prove

Lemma 6. Let α∗= supS. Then −1/2 < α∗ < 0.

Proof: It is enough to prove that for α = 0

u′′(x) > 0 , u′(x) > 0 as long as u(x) ≤ 1 .
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Case 1. µ ≥ 0.

By (2.1)

γuiv(0) = u′′(0) = β =

√
2

γ
F (0) =

1√
3 γ

> 0 .

Then, there exists an ε > 0 such that uiv(x) > 0, x ∈ ]0, ε[. Since u(0) = u′(0) =

u′′′(0) = 0, this implies that u(k)(x) > 0, k = 0, 1, 2, 3, 4, in a right-neighborhood

of x = 0. Then, by (2.1)

(2.6) γuiv = (1+ 2µu)u′′ + µu′2 + u − u2 > 0 ,

and

u > 0 , u′ > 0 , u′′ > 0 , u′′′ > 0 , uiv > 0

as long as u ≤ 1. Thus, u(k)(x) > 0, k = 0, 1, 2, 3, 4, as long as u ≤ 1.

Case 2. µ ∈
]
−1

2 , 0
[
.

As in Case 1, there exists an ε > 0 such that

u′′(x) > 0 , u′′′(x) > 0 , uiv(x) > 0 , x ∈ ]0, ε[ .

Claim. u′′′(x) > 0 provided that 0 < u(x) < 1 and u′(x) > 0.

Suppose the contrary, that there exists x0 > ε, u(x0)∈ [0, 1[, u′′′(x0) = 0 and

x0 is the smallest number with these properties. By (2.3)

(2.7) 2F (u) = γu′′2 + u′2 + 2µuu′2 if x = x0 .

Since γ > 0, µ > −1
2 and 1 > 1− u(x0) > 0 we obtain by (2.7) that

(2.8)
1

3

(
1− u(x0)

) (
1+ 2u(x0)

)
> u′2(x0) .

We have by (2.1)

(2.9) γuiv = (1+ 2µu)u′′ + µu′2 + u(1− u) ≥ (1− u) (u + u′′) − 1

2
u′2 .

Suppose that u0 = u(x0) ≥ 1
4 . Then, by (2.8) and (2.9),

(2.10) γuiv(x0) > (1−u0)u0−
1

6
(1−u0) (1+2u0) =

1

6
(1−u0) (4u0−1) ≥ 0 .

Since u′′′(x) > 0 for all x∈ ]0, x0[, it is impossible to have u′′′(x0) = 0, because

by (2.10) u′′′(x) is increasing in a neighborhood of x0.
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Suppose now that u0 ∈ ]0, 1
4 [. By (2.8)

u′2(x0) <
1

2
(1− u0) <

1

2

and by (2.9) and Lemma 5:

γuiv(x0) ≥ (1− u0)
(
u0 + u′′(x0)

)
− 1

2
u′2(x0)

≥ 3

4
2
√

u0 u′′(x0) −
1

2
u′2(x0)

≥ 3

2
√

2

∣∣u′(x0)
∣∣− 1

2
u′2(x0)

>
1

2

∣∣u′(x0)
∣∣
(

3√
2
−
∣∣u′(x0)

∣∣
)

> 0 .

As before, it is impossible to have u′′′(x0) = 0, and then u′′′(x) > 0 as long as

0 < u < 1. Thus we have u′ > 0, u′′ > 0, as long as 0 < u≤ 1, which proves the

lemma.

Below we also need the Maximum principle and so called Boundary Point

Lemma [PW, p. 7] which we summarize as:

Proposition 7. Suppose that u ∈ C2
(
]a, b[

)
∩C
(
[a, b]

)
is a nonconstant solu-

tion of differential inequality u′′(x) − c u(x) ≥ 0, x ∈ ]a, b[, c > 0. Then u(x) < 0,

∀x ∈ ]a, b[. If u has a nonnegative maximum at a, then u′(a) < 0. If u has a

nonnegative maximum at b, then u′(b) > 0.

We assume µ 6= 0 in further considerations, because the case µ = 0 is consid-

ered in [PBT].

Lemma 8. Let µ > −1
2 and 0 < γ ≤ (1+2µ)2

4 if µ ≤ 1
2 and 0 < γ ≤ 2µ if

µ > 1
2 . Then

ξ(α∗) = +∞ and u(x, α∗) → 1 as x → +∞ .

Proof: Suppose for contradiction that ξ∗ := lim sup
{
ξ(α) : α → α∗

}
< +∞

and let {αj} ⊂ S be a sequence such that αj → α∗ and ξ(αj) → ξ∗ as j → +∞.

We have that

u
(
ξ(αj), αj

)
→ u(ξ∗, α∗) and u′

(
ξ(αj), αj

)
→ u′(ξ∗, α∗) as j → +∞ ,

by the continuous dependence of solutions on x and α on finite intervals.
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Claim 1. We have

(2.11) u(ξ∗, α∗) = 1 and u′(ξ∗, α∗) = 0 .

The second assertion follows by u′
(
ξ(αj), αj

)
= 0 by passing to limit as

j → +∞. As for the first assertion, if u(ξ∗, α∗) > 1 for a j sufficiently large,

u
(
ξ(αj), αj

)
> 1 which is impossible because αj ∈ S. If u(ξ∗, α∗) < 1 by continu-

ity u(ξ∗, α) < 1 in a neighborhood of α∗ which contradicts the fact that α∗ is the

supremum of S. Thus, u(ξ∗, α∗) = 1 and (2.11) is proved.

Claim 2. ξ∗ = ξ(α∗) = +∞.

To show that ξ∗< ∞ leads to a contradiction, we use Proposition 7. We set

u = 1− v and rewrite (2.1) as

(2.12) γ viv −
(
1+ 2µ(1− v)

)
v′′ + v = v2 − µv′2 .

Case 1. µ > 0.

Let µ1 = −µ
γ v + µ10 and µ2 = µ20 where

µ10 =
1+ 2µ +

√
∆

2 γ
, µ20 =

1+ 2µ −
√

∆

2 γ
,

∆ = (1+ 2µ)2 − 4 γ ≥ 0 ,

are the roots of the equation γz2 − (1+2µ)z +1 = 0, which are real and positive

if µ > −1
2 and 0 < γ ≤ (1+2µ)2

4 . Equation (2.12) can be rewritten as the system

(S1) :





v′′− µ1v = w ,

w′′− µ2 w =
µ

γ
v′2 +

(
1− µµ20

γ

)
v2 .

We have

µ1 = −µ

γ
v + µ10 > 0 , if x ∈ [0, ξ∗]

and

1 − µµ20 > 0 .

Indeed, since u ∈ ]− 1
2 , 1], v ∈ [0, 3

2 [, we obtain that

µ10 =
1+ 2µ +

√
(1+ 2µ)2 − 4 γ

2 γ
≥ 2

µ

γ
>

3

2

µ

γ
>

µ

γ
v > 0
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and

µ1 = µ10 −
µ

γ
v > 0 ,

because

1+ 2µ +
√

(1+ 2µ)2 − 4 γ ≥ 4 µ ⇐⇒
√

(1+ 2µ)2 − 4 γ ≥ 2µ − 1 .

The last inequality holds if either µ ∈ ]0, 1
2 ] and 0 < γ ≤ (1+2µ)2

4 or µ > 1
2 and

0 < γ ≤ 2µ. Note that in the last case it follows that γ ≤ (1+2µ)2

4 . Since µ10 > 0

the inequality 1− µµ20 > 0 is equivalent to

µ

γ
= µµ10 µ20 < µ10 =

1+ 2µ +
√

(1+ 2µ)2 − 4 γ

2 γ
,

which is satisfied because µ > 0.

Now, we can apply Proposition 7 to system (S1). We have for x ∈ [0, ξ∗[

µ

γ
v′2 +

1 − µµ20

γ
v2 > 0 ,

and

w(0) = −u′′(0) − µ1(0) (1− α∗)

= −β −
(

µ10 −
µ

γ
(1− α∗)

)
(1− α∗) < 0 ,

w(ξ∗) = v′′(ξ∗) − µ1(ξ
∗) v(ξ∗) = −u′′(ξ∗) = 0 ,

since 1− α∗ > 0 and u′′2(ξ∗) = 2
γ F
(
u(ξ∗)

)
= 2

γ F (1) = 0.

Then, by Proposition 7 it follows that w(x) < 0, x ∈ ]0, ξ∗[. Hence, again by

Proposition 7, applied to the first equation of (S1) and v(0) = 1−α∗ > 0, v(ξ∗) = 0

we obtain that v′(ξ∗) < 0. Then u′(ξ∗) =−v′(ξ∗) > 0, which contradicts u′(ξ∗) = 0.

Thus ξ∗ cannot be finite, so ξ∗ = +∞.

Case 2. µ ∈ ] − 1
2 , 0[.

In this case, (2.12) is equivalent to the system

(S2) :





v′′− µ1v = w ,

w′′− µ2 w =
1

γ

(
(1− 2 µµ10)v

2 − µ v′2
)

,

where µ1 = µ10 and µ2 = −2µ
γ v + µ20 ,

µ10 =
1+ 2µ +

√
∆

2 γ
, µ20 =

1+ 2µ −
√

∆

2 γ
, ∆ = (1+ 2µ)2− 4 γ ≥ 0 ,
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are the roots of the equation γz2 − (1+2µ)z +1 = 0, which are real and positive

if µ >−1
2 and 0 < γ ≤ (1+2µ)2

4 . Next, we have

µ1 = µ10 > 0 , µ2 = −2µ

γ
v + µ20 > 0 , if x ∈ [0, ξ∗]

and
1 − 2 µµ10 > 0 .

Moreover,

w(0) = −β − µ10 (1− α∗) < 0 ,

w(ξ∗) = v′′(ξ∗) − µ10 v(ξ∗) = 0 ,

by v(ξ∗) = 1− u(ξ∗) = 0 and u′′2(ξ∗) = 2
γ F (u(ξ∗)) = 2

γ F (1) = 0, v′′(ξ∗) =−u′′(ξ∗).

Then, by Proposition 7 applied to the second equation of (S2), it follows that

w(x) < 0, x∈ ]0, ξ∗[. Again by Proposition 7, applied to the first equation of (S2),

and v(0) = 1− α∗ > 0, v(ξ∗) = 0, we obtain that v′(ξ∗) < 0. Thus u′(ξ∗) =−v′(ξ∗)

> 0, which contradicts u′(ξ∗) = 0. So, ξ∗= +∞ in the second case as well, which

proves Claim 2.

Claim 3. We have u(x, α∗) → 1 as x → +∞.

There exists the limit l= limx→+∞ u(x,α∗)≤ 1 by u(x,α∗) < 1 and u′(x,α∗) > 0.

We will prove that the cases (i) l ≤ 0 and (ii) 0 < l < 1 are impossible, so l = 1.

Case (i.1) l ≤ 0, µ ∈ ]− 1
2 , 0[.

For brevity, by u(x) or u we mean u(x, α∗). We have

µu′2(x) < 0 , u(x) < l ≤ 0 , 1+ 2µu(x) ≥ 1 , u′′(0) > 0

and there exists a sequence ξn→+∞ such that u′′(ξn)→ 0 as n→+∞. Suppose

that u′′(ξn) ≥ 0 for infinitely many ξn. Then, by Proposition 7, applied to v = u′′

in

γ uiv− (1+ 2µu)u′′ = µu′2 + u − u2 < 0 , u′′(0) > 0 , u′′(ξn)≥ 0 ,

we obtain that u′′(x) > 0, x ∈ R
+. Suppose now, by contradiction, that there

exists an η > 0 such that u′′(η) = 0, u′′(x) < 0, x > η and u′′(x)→ 0 as x→+∞.

Then u′′(x) has a minimum point ξ0 in [η,∞) in which u′′(ξ0) < 0, uiv(ξ0)≥ 0 and

hence γ uiv(ξ0) −
(
1+ 2µu(ξ0)

)
u′′(ξ0) > γ uiv(ξ0) ≥ 0, which is a contradiction.
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So, we have u′′(x) > 0, x ∈ R
+ and then u(x) > u(ξn) + u′(ξn)(x− ξn) which

implies that u(x) → +∞ as x → +∞, a contradiction.

Case (i.2) l ≤ 0, µ > 0.

We obtain integrating (2.1) from 0 to x

(2.13) γ u′′′− (1+ 2µu)u′ =

∫ x

0

(
−µu′2(t) + u(t) − u2(t)

)
dt .

Denote

r1(x) := −µu′2(x) + u(x) − u2(x) < 0 , r(x) :=

∫ x

0
r1(t) dt .

We have integrating (2.13) from 0 to x

γ u′′(x) − γ u′′(0) − u(x) − µu2(x) + u(0) + µu2(0) =

∫ x

0
r(t) dt .

Hence,

(2.14) γ u′′(x) = γ u′′(0) − α∗ − µα∗2 + u(x) + µu2(x) +

∫ x

0
r(t) dt .

Since r is negative and strictly decreasing on R
+,

∫ x
0 r(t)dt → −∞ as x → +∞

and because l ≤ 0, the right hand side of (2.14) tends to −∞ as x → +∞. This

contradicts the existence of the sequence ξn → +∞ such that u′′(ξn) → 0 as

n → +∞.

Case (ii.1) 0 < l < 1, µ ∈ ]− 1
2 , 0[.

In this case r1(x) = −µu′2(x) + u(x) − u2(x) ≥ C > 0 for sufficiently large x,

and

r(x) =

∫ x

0
r1(t) dt ≥ Cx − C1 ,

∫ x

0
r(t) dt ≥ C

x2

2
− C1x .

Then, by (2.14)

γ u′′(x) ≥ C
x2

2
− C1x − C2 ,

so limx→+∞ u′′(x) = +∞, which as before leads to a contradiction.

Case (ii.2) 0 < l < 1, µ > 0.

We will show that limx→+∞ u′(x) = 0, which gives r1(x) = −µu′2(x) +

u(x) − u2(x) ≥ C > 0 for sufficiently large x, and we can proceed as in previ-

ous case. We will prove that u′′(x) < 0 for sufficiently large x. Then, the asser-

tion limx→+∞ u′(x) = 0 follows from the fact that there exists a sequence (ηk)k :

ηk → +∞, u′(ηk) → 0.
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By (2.1)

γ uiv − (1+ 2µu)u′′ = µu′2 + u − u2 > 0

for sufficiently large x, because u(x) → l ∈ ]0, 1[ as x → +∞ and l− l2 > 0.

Suppose that u′′ oscillates and has infinitely many zeros tending to +∞. Let

η1 and η2 be two subsequent zeros. Since 1+2 µu(x) > 0 for sufficiently large x,

by Proposition 7 it follows that u′′(x) < 0, x ∈ ]η1, η2[. Then, either u′′(x) < 0

or u′′(x) > 0 for sufficiently large x. If u′′(x) > 0, x > R, by u′(x) > 0 we get a

contradiction with u(x) < l, x > R. Thus there exists R > 0, u′′(x) < 0, x > R.

Therefore, the only possible case is l = 1, which proves Claim 3 and ends the

proof of Lemma 8.

Proof of Theorem 1: We will prove that the solution u(x) = u(x, α∗),

constructed in Lemma 8 satisfies as well

(
u′, u′′, u′′′

)
(x) → (0, 0, 0) as x → +∞ .

Case 1. µ > 0.

By Claim 3 in the proof of Lemma 8, there exists R > 0 such that u′′(x) < 0,

∀x > R and therefore limx→+∞ u′(x) = 0.

Then, by differentiation of γ uiv− (1+ 2µu)u′′ = µu′2 + u − u2, we have

γ uv − (1+ 2µu)u′′′ = u′(1− 2u + 4µu u′′) < 0

for x > R1 > R, where R1 is sufficiently large. By Proposition 7, as in Claim 3,

u′′′(x) is either positive or negative for large x. In fact, the case u′′′(x) < 0

is impossible because then u′′(x) < 0 and u′′(x) is decreasing then there is no

sequence ξn→+∞ such that u′′(ξn)→ 0 as n→+∞. Thus u′′′(x) > 0 and hence

u′′(x) is an increasing function and by u′′(ξn)→ 0 as n→+∞ it follows u′′(x)→ 0

as x → +∞. Then, by (2.1) we infer uiv(x) → 0 as x → +∞. As for u′′′, by

Taylor’s formula

hu′′′(x) = u′′(x+h) − u′′(x) − h2

2
uiv(ξ) , ξ ∈ ]x, x+h[ ,

for a fixed h, letting x → +∞, we obtain that u′′′(x) → 0 as well.

Case 2. µ ∈ ]− 1
2 , 0[.

Since r1(x) = −µu′2(x) + u(x) − u2(x) > 0 for large x, r(x) =
∫ x
0 r1(t) dt

is strictly increasing for large x. There exists a sequence ξn → +∞ such that
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u′′(ξn) → 0 as n → +∞ and by

γ u′′(x) − γ u′′(0) − u(x) − µu2(x) + u(0) + µu2(0) =

∫ x

0
r(t) dt

for x = ξn, it follows that

lim
n→∞

∫ ξn

0
r(t) dt < +∞ .

Since r(x) is an increasing function, the integral
∫
∞

0 r(t) dt is convergent, and

then limx→∞ u′′(x) exists and limx→∞ u′′(x) = 0 since u′′(ξn) → 0. By Taylor’s

formula and limx→∞ u(x) = 1 it follows limx→∞ u′(x) = 0, and as in Case 1

limx→∞ uiv(x) = limx→∞ u′′′(x) = 0, which ends the proof of Theorem 1.

3 – Proof of Theorem 2

Let

h(s, µ) :=
f2(s)

(1+ 2µs)2F (s)
=

6 s2

(1+ 2µs)2 (1+ 2s)

and for γ > 0, let m(γ, µ) be the greatest negative root of the equation

6 s2

(1+ 2µs)2 (1+ 2s)
=

1

2 γ
, s > −1

2
,

or the greatest negative zero of the polynomial

P3(s) := 8µ2s3 + 4(µ2 + 2µ − 3 γ)s2 + 2(2µ +1)s + 1 .

Lemma 9. We have:

(a) m(γ, µ) = inf
{

s0 < 0: h(s, µ) < 1
2γ , s0 < s < 0

}
.

(b) m(γ, µ)→−1
2

+
as γ → 0+ if µ∈ ]− 1

2 , 1] and m(γ, µ)→− 1
2µ

+
as γ → 0+

if µ > 1.

(c) lim
γ→0+

1

γ

(
m(γ, µ) +

1

2

)
=

3

2(1−µ)2
, µ ∈ ]− 1

2 , 1[ ;

lim
γ→0+

1

γ

(
m(γ, 1) +

1

2

)3

=
3

8
, µ = 1 ;

lim
γ→0+

(
1

γ

(
m(γ, µ) +

1

2µ

)2
)

=
3

4 µ3 (µ−1)
, µ > 1 .
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Proof:

Claim. The function h(s, µ) is decreasing in s for µ∈ ]− 1
2 , 1], s∈ ]− 1

2 , 0[

and for µ > 1, s ∈ ]− 1
2µ , 0[.

Indeed, by

h′

s(s, µ) =
12s (s + 1 − 2 µs2)

(1+ 2µs)3 (1+ 2s)2
,

it follows that h′

s(s, µ) < 0 if either µ∈ ]− 1
2 , 0[, s∈ ]− 1

2 , 0[ or µ > 1, s∈ ]− 1
2µ , 0[.

Note that, the factor s+1−2µs2 is positive if s∈
]

1
4µ(1−√

1+8µ), 1
4µ(1+

√
1+8µ)

[

and 1
4µ

(
1−√

1+8µ
)
<−1

2 , − 1
2µ <−1

2 for 0 < µ < 1. Hence h′

s(s, µ)< 0 if µ∈ ]0,1[,

s ∈ ]− 1
2 , 0[.

Some graphs of functions h(s, µ) are presented on Figure 1.

Obviously, (a) follows from the Claim. To prove (b) and (c) we consider the

cases µ∈ ]− 1
2 , 1] and µ > 1.
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Figure 1 – Graphs of functions h(s, µ) =
6s2

(1+ 2µs)2 (1+ 2s)
.

Left: µ =−0.4 +(k−1) 0.2, k = 1, ..., 7, − 1

2
< s < 0 ;

Right: µ = 1, ..., 7, − 1

2µ
< s < 0.

Case 1. µ ∈ ]− 1
2 , 1].

We have

h(s, µ) →
{

0 , s → 0− ,

+∞ , s → −1
2

+
.

By the Claim, for every ε ∈ ]0, 1
2 [ there exists a number Mε > 0 such that

h(−1
2 +ε, µ) = Mε and h(s,µ)<Mε if s∈ ]− 1

2 +ε, 0[. Moreover Mε→∞ as ε→ 0.
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Then h(s, µ) < 1
2γ if s∈ ]− 1

2 +ε, 0[ and 0 < γ < 1
2Mε

. Hence m(γ, µ)→−1
2

+
as

γ → 0+.

We have

lim
s→−

1

2

+

(
s +

1

2

)
h(s, µ) = lim

s→−
1

2

+

3s2

(1+ 2µs)2
=

3

4(1−µ)2

and thus

lim
γ→0+

(
m(γ, µ) +

1

2

)
h
(
m(γ, µ), µ

)
= lim

γ→0+

(
m(γ, µ) +

1

2

)
1

2 γ
=

3

4(1−µ)2
=⇒

=⇒ lim
γ→0+

1

γ

(
m(γ, µ) +

1

2

)
=

3

2(1−µ)2
.

If µ = 1, a direct calculation shows that

lim
s→−

1

2

+

(
s +

1

2

)3

h(s, µ) =
3

16

and then

lim
γ→0+

(
m(γ, 1) +

1

2

)3

h
(
m(γ, 1), 1

)
= lim

γ→0+

(
m(γ, 1) +

1

2

)3 1

2γ
=

3

16
=⇒

=⇒ lim
γ→0+

1

γ

(
m(γ, 1) +

1

2

)3

=
3

8
.

Case 2. µ > 1.

We have

h(s, µ) →
{

0 , s → 0− ,

+∞ , s → − 1
2µ

+
,

and by the Claim, for every ε ∈ ]0, 1
2µ [ there exists a number M ′

ε > 0 such that

h
(
− 1

2µ +ε, µ) = M ′

ε and h(s, µ) < M ′

ε if s∈ ]− 1
2µ +ε, 0[ . Moreover M ′

ε→∞ as

ε→0. Then h(s,µ)< 1
2γ if s∈ ]− 1

2µ +ε, 0[ and 0<γ < 1
2M ′

ε

. Hence m(γ,µ)→− 1
2µ

+

as γ → 0+ and as before we obtain

lim
γ→0+

(
1

γ

(
m(γ, µ) +

1

2µ

)2
)

=
3

4 µ3 (µ − 1)
.
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Remark. Let uγ be a family of even homoclinic solutions of (2.1). It follows

from Theorem 2 and Lemma 9 that

uγ(0) ∼





−1

2
+

3 γ

2(1−µ)2
for µ ∈ ]− 1

2 , 1[ ,

−1

2
+

(
3 γ

8

)1/3

for µ = 1 ,

− 1

2µ
+

(
3 γ

4 µ3 (µ−1)

)1/2

for µ > 1 .

as γ → 0+.

Define

x1(α) := sup
{

x > 0: u(t, α) < 1, t ∈ [0, x[
}

and

A :=
{

α̂ < 1: u′′′(x, α) > 0 on ]0, x1(α)[ for all α̂ < α < 1
}

.

By the proof of Lemma 6 if u(0) = 0 for µ > −1
2 , then

(3.1) u′ > 0, u′′ > 0, u′′′ > 0 as long as u ≤ 1 .

The same arguments work for α ∈ [0, 1[ and (3.1) holds. Then A is well defined

and [0, 1[⊂A. It follows by continuity that A is an open set. Let α∗ := inf A.

It is clear that A = ]α∗, 1[. Let u(x, α0) be a solution of problem (2.1), (2.2), which

is bounded above by u = 1. Because u′′(x, α) > 0 on ]0, x1(α)[ for any α ∈ A it

is clear that u(x, α) can not be bounded above by u = 1 if α ∈ A. Therefore

α0 ≤ α∗. We will prove that

α∗ < m(γ, µ) .

Assume on the contrary that α∗ ≥ m(γ, µ). We have

Claim 1. x1(α∗) < ∞ and u′′′(x, α∗) ≥ 0 for all x ∈ ]0, x1(α∗)[.

Let {αj} ⊂ A be a decreasing sequence such that αj → α∗. Then, by the con-

tinuous dependence on the initial data, u(k)(x, αj) → u(k)(x, α∗), k = 0, 1, 2, 3.

Hence

u′′′(x, α∗) ≥ 0 for all x, 0≤ x < x1(α∗) =: x1 ,

and

u′′(x, α∗) ≥ u′′(0, α∗) = β(α∗) > 0 for all x, 0≤ x < x1 ,
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which implies that x1 < ∞ and

u′
(
x1(α), α

)
> 0 for all α ∈ [α∗, 1[ .

Claim 2. x1(α) < ∞ for all α ∈ [α∗, 1[ and there exists x̂ ∈ ]0, x1(α∗)[ :

u′′′(x̂, α∗) = 0.

Suppose that u′′′(x, α∗) > 0 for all x, 0 < x≤ x1(α∗). By continuity, there

exists a sufficiently small δ > 0 such that u′′′(x, α) > 0 for all α ∈ ]α∗− δ, α∗[.

This is a consequence of the following facts. Observe that u′′′(0, α∗) = 0 and

uiv(0,α∗) > 0 by (2.1). At the other end point x1= x1(α∗) of the interval [0, x1(α∗)]

we have u′′′(x1, α∗) ≥ 0. In fact, we have u′′′(x1, α∗) > 0. Indeed, if µ > 0, by

(2.1),

γ uiv = (1+ 2µu)u′′ + µu′2 > 0 at x = x1 ,

because u(x1, α∗) = 1, 1+ 2µu(x1, α∗) = 1+ 2µ > 0, u′′(x1, α∗) > 0 by Claim 1.

Hence uiv(x1, α∗) > 0. If u′′′(x1, α∗) = 0, then u′′′< 0 in a left neighborhood of x1

which contradicts Claim 1. If µ ∈ ]− 1
2 , 0[, by the conservation law (2.3) we have

γ u′′2 + (1+ 2µu)u′2 = 0 at x = x1 ,

because u(x1, α∗) = 1, u′′′(x1, α∗) = 0 and 1+ 2µ > 0. Then (u′, u′′, u′′′)(x1) = 0,

which by uniqueness property implies that u ≡ 1, which is a contradiction. Hence

u′′′(x1,α∗) > 0. So u′′′(x,α) > 0 for all α∈ ]α∗− δ, α∗[ and for all x, 0 < x≤ x1(α∗),

but this contradicts the definition of α∗= inf A. Thus, there exists x̂ ∈ ]0, x1(α)[

such that u′′′(x̂, α∗) = 0.

Now, we will prove that the assertion of Claim 2, that the function u′′′(x, α∗)

vanishes at an interior point of the interval [0, x1(α)] is impossible. Define the

function

(3.2) H(x, α) := 2 γ
u′′′(x, α)

u′(x, α)
− 1 − 2 µu(x, α) .

By l’Hôpital’s rule it follows that

lim
x→0+

γ
u′′′(x, α)

u′(x, α)
=

= lim
x→0+

γ
uiv(x, α)

u′′(x, α)

= lim
x→0+

γ
1

u′′(x,α)

((
1+ 2µu(x,α)

)
u′′(x,α) + u(x,α) − u2(x,α) + µu′′2(x,α)

)

=
1

β

(
(1+ 2µα)β + α − α2

)
,
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and

H(0, α) = 2(1+ 2µα) +
2

β
(α−α2) − 1 − 2 µα

= 1+ 2µα +
2

β
(α−α2)

= 1+ 2µα +
2
√

3 γ α√
1+ 2α

.

By the assumption α∗ ≥ m(γ, µ) and Lemma 9 it follows that

h(α, µ) =
6 α2

(1+ 2µα)2 (1+ 2α)
<

1

2 γ
, α ∈ ]α∗, 1[ .

Hence

|1+ 2µα| >
2
√

3 γ |α|√
1+ 2α

, α ∈ ]α∗, 1[ .

If |µ| < 1
2 , by α ∈ ]− 1

2 , 1[ we have 1+ 2 µα > 0. If µ ≥ 1 and α ∈ ]− 1
2µ , 1[,

m(γ, µ) > − 1
2µ and if 0 < µ < 1, m(γ, µ) > −1

2 > − 1
2µ . So

α∗ ≥ m(γ, µ) > max

{
−1

2
,− 1

2µ

}
, µ > 0 ,

and

(3.3) 1+ 2α∗ > 0 and 1+ 2µα∗ > 0 , µ > 0 .

Hence

1+ 2µα > 0 for all α∈ [α∗,1[ and µ >−1

2
, µ 6= 0 ,

and

H(0, α) > 0 , α∈ [α∗, 1[ .

Claim 3. H(x, α) > 0 for all x ∈ [0, x1(α)[ and α ∈ [0, 1[.

By the proof of Lemma 6, if u(0) = α ≥ 0 and µ > −1
2 , µ 6= 0, it follows

u′ > 0 , u′′ > 0 , u′′′ > 0 as long as u≤ 1 .

By (2.1),

(u′H)′ = 2 γ uiv− (1+ 2µu)u′′− 2 µu′2

= (1+ 2µu)u′′ + 2(u−u2) > 0 ,



HOMOCLINIC SOLUTIONS OF A FOURTH-ORDER TRAVELLING WAVE ODE 299

because u(x)≥ u(0) = α ∈ [0, 1), 1+ 2µu > 1−u > 0, u−u2 and u′′> 0. Hence

u′(x, α)H(x, α) > u′(0, α)H(0, α) ≥ 0 for all x∈ [0, x1(α)[ and α∈ [0, 1[ .

Since u′(x, α) > 0, we have H(x, α) > 0 for all x ∈ [0, x1(α)) and α ∈ [0, 1[.

Claim 4. H
(
x1(α), α

)
> 0 for all α ∈ [α∗, 1[.

If α ∈ ]α∗, 1[, then α ∈ A and u′′′(x, α) > 0, ∀x ∈ ]0, x1(α)[, so u′′(x, α) > 0

and u′(x, α) > 0 ∀x ∈ ]0, x1(α)]. If α = α∗, by Claim 1, u′′′(x, α∗) ≥ 0 and

u′
(
x1(α), α

)
> 0 if α ∈ [α∗, 1[. Since u

(
x1(α), α

)
= 1 and F (1) = 0, it follows

by (2.3) that

u′2H = 2 γ u′u′′′− (1+ 2µu)u′2 = γ u′′2 > 0

at x = x1(α), α ∈ [α∗, 1[ and by u′
(
x1(α), α

)
> 0 one gets H(x1

(
α), α

)
> 0.

End of the proof of Theorem 2: Define

T :=
{

α̂ ∈ (α∗, 1) : H(x, α) > 0 for all x∈ [0, x1(α)] and α∈ ]α̂, 1[
}

.

By Claim 3, we have [0, 1[⊂T , and by Claim 2 it follows that

H(x̂, α∗) = −1 − 2 µu(x̂, α∗) < 0 ,

because since u( · , α∗), u′( · , α∗), u′′( · , α∗) are increasing functions, u(x̂, α∗) >

u(0, α∗) = α∗, and 1+ 2µu(x̂, α∗) > 1+ 2µα∗ > 0 by (3.3). Hence α∗ /∈ T and

T ⊂ A . By continuous dependence on parameters, T is an open subset of A
and let α̃ := inf T . Then α∗ < α̃ < 0 and H(x, α̃) ≥ 0 for all x ∈ [0, x1(α̃)].

By Claims 3 and 4, there exists an interior minimum point x̃ ∈ [0, x1(α̃)] of

the function H and

H(x̃, α̃) = Hx(x̃, α̃) = 0 .

Next calculations are done for (x, α) = (x̃, α̃). We have

0 = Hx =
2 γ

u′2

(
uivu′− u′′′u′′

)
− 2 µu′

=
2

u′2

(
γ uivu′− γ u′′′u′′− µu′3

)
,

and by (2.1),

γ uiv =
γ u′′′u′′

u′
+ µu′2 = (1+ 2µu)u′′ + µu′2 + u − u2 ,

γ u′′′u′′

u′
= (1+ 2µu)u′′ + u − u2 ,
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so

(3.4) γ u′′′ = (1+ 2µu)u′ + (u − u2)
u′

u′′
.

Moreover,

(3.5) 0 = H ⇐⇒ 2 γ u′′′ = (1+ 2µu)u′

and by the conservation law (2.3) it follows that

γ u′′2 =
1

3
(1− u)2 (1+ 2u) .

We obtain by (3.4) and (3.5)

1

2
(1+ 2µu)u′ = (1+ 2µu)u′ + (u − u2)

u′

u′′
⇐⇒

(3.6) 2(u−u2) = −(1+ 2µu)u′′

and hence

h(u, µ) =
6 u2

(1+ 2µu)2 (1+ 2u)
=

1

2 γ
.

Since u < 1, 1+ 2µu > 0 and u′′ > 0 by definition of A, from (3.6) it follows that

u < 0. Then, by the definition of m(γ, µ), it follows u(x̃, α̃) ≤ m(γ, µ). Since

u is increasing on [0, x1(α̃)] and α̃ ∈ A, we obtain α∗< α̃ = u(0, α̃) < u(x̃, α̃) ≤
m(γ, µ), which contradicts the original assumption α∗ ≥ m(γ, µ) and ends the

proof of Theorem 2.
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