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Abstract: In this paper, we first prove the regularity and continuous dependence on

initial data for Hi-solutions (i=1, 2, 4) for large initial data and then show the large-time

behavior of Hi (i=2, 4)-global solutions for small initial data to the Cauchy problem for

the compressible Navier–Stokes equations of a one-dimensional viscous polytropic ideal

gas. Moreover, we also obtain the large-time behavior of “small” classical solutions in

the norm of classical solutions for this model.

1 – Introduction

In this paper we study the regularity, continuous dependence on initial data

and large-time behavior of H i (i=1, 2, 4) solutions to the Cauchy problem for the

compressible Navier–Stokes equations of a one-dimensional viscous polytropic

ideal gas in Lagrangian coordinates (see [21–27, 32–35, 39, 41–42, 49–50]):

ut = vx ,(1.1)

vt = σx ,

(

σ := µ
vx

u
− R

θ

u

)

(1.2)

CV θt =

[

λ
θx

u

]

x

+ σvx(1.3)
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subject to the following initial conditions

(1.4)
(

u(x, 0), v(x, 0), θ(x, 0)
)

=
(

u0(x), v0(x), θ0(x)
)

, ∀x∈R .

The equations (1.1)–(1.3) describe the motion of a one-dimensional viscous poly-

tropic ideal gas, where u, v, θ are the specific volume, velocity, and absolute

temperature, respectively; σ is the stress, µ, CV and λ are positive constants.

We introduce the following definition of H i-solutions (i=2, 4).

Definition. For a fixed constant T >0 and some positive constants ū and θ̄,

we call
(

u(t), v(t), θ(t)
)

to be an H2-generalized solution to the Cauchy problem

(1.1)–(1.4) if it satisfies the following conditions

u− ū, v, θ− θ̄ ∈ L∞
(

[0, T ], H2(R)
)

,(1.5)

ut ∈ L∞
(

(0, T ), H1(R)
)

∩ L2
(

(0, T ), H2(R)
)

,(1.6)

vt, θt ∈ L∞
(

(0, T ), L2(R)
)

∩ L2
(

(0, T ), H1(R)
)

,(1.7)

ux ∈ L2
(

(0, T ), H1(R)
)

, vx, θx ∈ L2
(

(0, T ), H2(R)
)

.(1.8)

Furthermore, in addition to (1.5)–(1.8), if the following conditions hold,

u− ū, v, θ− θ̄ ∈ L∞
(

[0, T ], H4(R)
)

,(1.9)

ut ∈ L∞
(

(0, T ), H3(R)
)

∩ L2
(

(0, T ), H2(R)
)

,(1.10)

vt, θt ∈ L∞
(

(0, T ), H2(R)
)

∩ L2
(

(0, T ), H3(R)
)

,(1.11)

utt ∈ L∞
(

(0, T ), H1(R)
)

∩ L2
(

(0, T ), H2(R)
)

,(1.12)

vtt, θtt ∈ L∞
(

(0, T ), L2(R)
)

∩ L2
(

(0, T ), H1(R)
)

,(1.13)

ux ∈ L2
(

(0, T ), H3(R)
)

,(1.14)

vx, θx ∈ L2
(

(0, T ), H4(R)
)

, uttt ∈ L2
(

(0, T ), L2(R)
)

,(1.15)

then we call
(

u(t),v(t),θ(t)
)

to be anH4-solution to the Cauchy problem (1.1)–(1.4).

Now let us recall some related results for the equations (1.1)–(1.3) in the

literature. For the one-dimensional Cauchy problem (1.1)–(1.4), Kanel [23] ob-

tained the global existence and large-time behavior (only for v, θ) of H1-solutions

(see the definition below) with small initial data; Kazhikhov and Shelukhin [26,

27] proved that if u0 − ū, v0, θ0 − θ̄ ∈ H1(R) with some positive constants ū, θ̄

and u0(x), θ0(x) > 0 on R, then there exists a unique global (large) solution
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(

u(t),v(t),θ(t)
)

with positive u(x, t) and θ(x, t) to the Cauchy problem (1.1)–(1.4)

on R×[0, +∞) such that for any T > 0,

u− ū, v, θ− θ̄ ∈ L∞
(

[0, T ], H1(R)
)

, ut ∈ L∞
(

(0, T ), L2(R)
)

,(1.16)

vt, ux, θt, uxt, vxx, θxx ∈ L2
(

(0, T ), L2(R)
)

.(1.17)

Now we call
(

u(t), v(t), θ(t)
)

verifying (1.9)–(1.10) to be an H1-generalized

solution to the Cauchy problem (1.1)–(1.4). It is noteworthy that there is no

any result on asymptotic behavior given in [26, 27]. In this case, Okada and

Kawashima [39] established the global existence and large-time behavior of clas-

sical (or H1-) solution with small initial data and Jiang [21] proved the large-time

behavior of H1-solution with weighted small initial data. For one-dimensional ini-

tial boundary value problems, we refer to the works [1–3, 11, 13, 22, 24–25, 27–28,

33–36, 39, 41–42, 47, 50]. For two or three dimensional Cauchy problems or initial

boundary value problems, the global existence and large-time behavior of smooth

solutions have been investigated for general domains only in case of “small initial

data” (see [1, 4, 12, 14, 18–21, 29–32, 40, 46–47, 49, 51]). We also note the recent

works of Feireisl, Petzeltova, Novotny and Straskraba ([5–10, 37–38, 48]) on the

large-time behavior of weak solutions to multi-dimensional compressible fluids.

For related general real gases, we refer to [41–45].

It is well-known that continuous dependence of solutions on initial data is

very important (especially when we study infinite-dimensional dynamics, which

is equivalent to that the associated semigroup is continuous with respect to initial

data or this semigroup, as an operator, is continuous for any but fixed time t).

For example, we refer to [15–17]. In [15], Hoff established the continuous depen-

dence on initial data in L2(R) for the Cauchy problem of the Navier–Stokes equa-

tions of one-dimensional compressible flow with discontinuous initial data. In this

paper, we prove both continuous dependence on initial data in H i(R) (i=1, 2, 4)

and global existence and large-time behavior in H i(R) (i=2, 4). Note that the

large-time behavior of global solutions in H4(R) implies that of solutions in

C3+1/2(R) in which the classical solution exists globally. This is a new ingre-

dient of this paper.

It is worthy to point out here that since the domain is unbounded, the

Poincaré inequality can not be applied to this domain, and further the large-

time behavior of large initial data and the decay rate can not be anticipated.

This is why we only establish the large-time behavior of solutions with “small

initial data” and no decay rate is given in our results.

The aim of this paper is to prove the global existence and continuous depen-

dence on initial data of H i(R) (i=1, 2, 4) (global) solutions for large initial data
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and then to show the large-time behavior of these H i(R) (i=2, 4) solutions for

“small initial data”.

The notation in this paper will be as follows:

Lp, 1≤ p≤+∞, Wm,p, m∈N, H1 = W 1,2, H1
0 = W 1,2

0 denote the usual

(Sobolev) spaces on R. In addition, ‖·‖B denotes the norm in the space B ; we also

put ‖ ·‖ = ‖ ·‖L2(R). We denote by Ck(I, B), k ∈N0, the space of k-times contin-

uously differentiable functions from J ⊆ R into a Banach space B, and likewise by

Lp(J, B), 1≤ p≤+∞, the corresponding Lebesgue spaces. Cβ([0, T ], B) denotes

the Hölder space of B-valued continuous functions with exponent β ∈ (0, 1] in

variable t. We use Ci (i = 1, 2, 3, 4) to denote the universal constant depending

only on min
x∈R

u0(x), min
x∈R

θ0(x), the H i(R) (i = 1, 2, 3, 4) norm of (u0− ū, v0, θ0− θ̄)

(for some positive constants ū, θ̄) and e0 or E0, E1 (see Theorem 1.3), but inde-

pendent of any length of time T > 0.

We are now in a position to state our main theorems.

Theorem 1.1. Assume that u0 − ū, v0, θ0 − θ̄ ∈ H2(R) with some positive

constants ū, θ̄ and u0(x) > 0, θ0(x) > 0 on R and the compatibility conditions

hold. Then for any but fixed constant T > 0, the Cauchy problem (1.1)–(1.4)

admits a unique H2-generalized global solution
(

u(t), v(t), θ(t)
)

on QT verifying

(1.5)–(1.8) and the following estimates hold for any t ∈ [0, T ],

0 < C−1
1 (T ) ≤ θ(x, t) ≤ C1(T ) on R×[0, T ] ,(1.18)

0 < C−1
1 (T ) ≤ u(x, t) ≤ C1(T ) on R×[0, T ] ,(1.19)

‖u(t) − ū‖2
H2 + ‖u(t) − ū‖2

W 1,∞ + ‖ut(t)‖2
H1 + ‖v(t)‖2

H2 + ‖v(t)‖2
W 1,∞(1.20)

+ ‖vt(t)‖2 + ‖θ(t) − θ̄‖2
H2 + ‖θ(t) − θ̄‖2

W 1,∞ + ‖θt(t)‖2

+

∫ t

0

[

‖ux‖2
H1 + ‖ux‖2

L∞ + ‖ut‖2
H2 + ‖vx‖2

H2 + ‖vx‖2
W 1,∞

+ ‖vt‖2
H1 + ‖θx‖2

H2 + ‖θx‖2
W 1,∞ + ‖θt‖2

H1

]

(τ) dτ ≤ C2(T ) .

Moreover, the H i-generalized global solutions (i = 1, 2) are continuously depen-

dent on initial data in the sense that

∥

∥

∥

(

u1(t) − u2(t), v1(t) − v2(t), θ1(t) − θ2(t)
)∥

∥

∥

Hi
≤(1.21)

≤ Ci(T )
∥

∥

∥

(

u01 − u02, v01 − v02, θ01 − θ02

)∥

∥

∥

Hi
, i = 1, 2 ,
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where
(

uj(t), vj(t), θj(t)
)

(j =1, 2) is the H i-generalized global solution (i=1, 2)

to the Cauchy problem (1.1)–(1.4) with the initial datum (u0j , v0j , θ0j) ∈
H i(R)×H i(R)×H i(R) satisfying u0j−ū, v0j , θ0j−θ̄ ∈ H i(R), u0j(x)>0, θ0j(x)>0

on R and the compatibility conditions (j = 1, 2). This property implies the

uniqueness of H i-generalized global solution (i = 1, 2).

Theorem 1.2. Assume that u0 − ū, v0, θ0 − θ̄ ∈ H4(R) with some positive

constants ū, θ̄ and u0(x) > 0, θ0(x) > 0 on R and the compatibility conditions

hold. Then for any but fixed constant T > 0, the Cauchy problem (1.1)–(1.4)

admits a unique H4-global solution
(

u(t), v(t), θ(t)
)

on QT verifying (1.9)–(1.15)

and (1.18)–(1.19), and the following estimates hold for any t ∈ [0, T ],

‖u(t) − ū‖2
H4 + ‖u(t) − ū‖2

W 3,∞ + ‖ut(t)‖2
H3 + ‖utt(t)‖2

H1(1.22)

+ ‖v(t)‖2
H4 + ‖v(t)‖2

W 3,∞ + ‖vt(t)‖2
H2 + ‖vtt(t)‖2

+ ‖θ(t) − θ̄‖2
H4 + ‖θ(t) − θ̄‖2

W 3,∞ + ‖θt(t)‖2
H2 + ‖θtt(t)‖2 ≤ C4(T ) ,

∫ t

0

(

‖ux‖2
H3 + ‖ut‖2

H4 + ‖utt‖2
H2 + ‖uttt‖2 + ‖ux‖2

W 2,∞(1.23)

+ ‖vx‖2
H4 + ‖vt‖2

H3 + ‖vtt‖2
H1 + ‖vx‖2

W 3,∞

+ ‖θx‖2
H4 + ‖θt‖2

H3 + ‖θtt‖2
H1 + ‖θx‖2

W 3,∞

)

(τ) dτ ≤ C4(T ) .

Moreover, the H4-global solutions is continuously dependent on initial data in

the sense of (1.21) with i = 4.

Remark 1.1. We know that H2-generalized global solution
(

u(t), v(t), θ(t)
)

obtained in Theorem 1.1 is not classical one. By the embedding theorem (the

Morrey theorem), we have u0 − ū, v0, θ0 − θ̄ ∈ C1+ 1

2 (R). If we impose on the

higher regularities of v0, θ0− θ̄ ∈ C2+γ(R), γ ∈ (0, 1), then the global existence

of classical solutions was obtained in [27].

Remark 1.2. From Remark 1.1 we know that the H2-generalized global

solution
(

u(t), v(t), θ(t)
)

obtained in Theorem 1.1 can be understood as a

generalized (global) solution between the classical (global) solution and the

H1-generalized (global) solution.

Remark 1.3. The similar results in Theorems 1.1–1.2 with θ̄ = 0 hold for

the initial boundary value problem (1.1)–(1.3) with the boundary conditions

v|x=0,1 = θ|x=0,1 = 0.
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Theorem 1.3. Assume that u0− ū, v0, θ0− θ̄ ∈ H i(R) (i = 2, 4) with some

positive constants ū, θ̄ and u0(x) > 0, θ0(x) > 0 on R and the compatibility con-

ditions hold. Define

e0 := ‖u0− ū‖2
L∞ +

∫

R

(1+x2)α
[

(

u0(x)− ū
)2

+ v2
0(x) +

(

θ0(x)− θ̄
)2

+ v4
0(x)

]

dx

with α > 1
2 being an arbitrary but fixed constant, and

El =
∥

∥

∥

(

log(ρ0/ρ̄), log(v0), log(θ0/θ̄)
)∥

∥

∥

Hl
, (l = 0, 1), ρ0 = 1/u0, ρ̄ = 1/ū .

Then there exists a constant ǫ0 ∈ (0, 1] such that if e0 ≤ ǫ0 or E0E1 ≤ ǫ0, then

the H i-global solution
(

u(t), v(t), θ(t)
)

(i = 2, 4) obtained in Theorems 1.1–1.2

to the Cauchy problem (1.1)–(1.4) verifies

0 < C−1
1 ≤ θ(x, t) ≤ C1 on R×[0, +∞) ,(1.24)

0 < C−1
1 ≤ u(x, t) ≤ C1 on R×[0, +∞)(1.25)

and for i = 2, estimates (1.5)–(1.8) with T = +∞ and the following inequality

hold

‖u(t) − ū‖2
H2 + ‖u(t) − ū‖2

W 1,∞ + ‖ut(t)‖2
H1 + ‖v(t)‖2

H2(1.26)

+ ‖v(t)‖2
W 1,∞ + ‖vt(t)‖2 + ‖θ(t) − θ̄‖2

H2 + ‖θ(t) − θ̄‖2
W 1,∞ + ‖θt(t)‖2

+

∫ t

0

[

‖ux‖2
H1 + ‖ux‖2

L∞ + ‖ut‖2
H2 + ‖vx‖2

H2 + ‖vx‖2
W 1,∞ + ‖vt‖2

H1

+ ‖θx‖2
H2 + ‖θx‖2

W 1,∞ + ‖θt‖2
H1

]

(τ) dτ ≤ C2 , ∀ t > 0 ,

and for i = 4, estimates (1.23)–(1.25) and (1.9)–(1.15) with T = +∞ and the

following inequalities hold

‖u(t) − ū‖2
H4 + ‖u(t) − ū‖2

W 3,∞ + ‖ut(t)‖2
H3 + ‖utt(t)‖2

H1(1.27)

+ ‖v(t)‖2
H4 + ‖vt(t)‖2

H2 + ‖vtt(t)‖2 + ‖vx(t)‖2
W 3,∞

+ ‖θ(t)− θ̄‖2
H4 + ‖θ(t)− θ̄‖2

W 3,∞ + ‖θt(t)‖2
H2 + ‖θtt(t)‖2 ≤ C4 , ∀ t>0 ,

∫ t

0

(

‖ux‖2
H3 + ‖ut‖2

H4 + ‖utt‖2
H2 + ‖uttt‖2 + ‖ux‖2

W 2,∞(1.28)

+ ‖vx‖2
H4 + ‖vt‖2

H3 + ‖vtt‖2
H1 + ‖vx‖2

W 3,∞

+ ‖θx‖2
H4 + ‖θt‖2

H3 + ‖θtt‖2
H1 + ‖θx‖2

W 3,∞

)

(τ) dτ ≤ C4 , ∀ t>0 .
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Moreover, the H i-(generalized) global solutions (i = 1, 2, 4) are continuously

dependent on initial data in the sense that

∥

∥

∥

(

u1(t)− u2(t), v1(t)− v2(t), θ1(t)− θ2(t)
)
∥

∥

∥

Hi
≤(1.29)

≤ Ci

∥

∥

∥

(

u01− u02, v01− v02, θ01− θ02

)
∥

∥

∥

Hi
, i = 1, 2 ,

where
(

uj(t), vj(t), θj(t)
)

(j =1, 2) has the same sense as in (1.21).

Finally, for the H2-global solution
(

u(t), v(t), θ(t)
)

, as t → +∞,

‖ut(t)‖H1 + ‖ut(t)‖L∞ + ‖vt(t)‖ + ‖θt(t)‖ → 0 ,(1.30)

∥

∥

(

u(t), v(t), θ(t)
)

− (ū, 0, θ̄)
∥

∥

W 1,∞ +
∥

∥

(

ux(t), vx(t), θx(t)
)∥

∥

H1 → 0(1.31)

and for the H4-global solution
(

u(t), v(t), θ(t)
)

, as t → +∞,

∥

∥

(

ux(t), vx(t), θx(t)
)
∥

∥

H3 + ‖ut(t)‖H3 + ‖ut(t)‖W 2,∞(1.32)

+ ‖vt(t)‖H2 + ‖vt(t)‖W 1,∞ + ‖θt(t)‖H2 + ‖θt(t)‖W 1,∞ → 0 ,

‖utt(t)‖H1 + ‖vtt(t)‖ + ‖θtt(t)‖ +
∥

∥

(

ux(t), vx(t), θx(t)
)∥

∥

W 2,∞ → 0 .(1.33)

Corollary 1.1. The H4-global solution
(

u(t), v(t), θ(t)
)

obtained in Theo-

rem 1.2 is a classical one. Moreover, under assumptions in Theorem 1.3,

we have the following large-time behavior of classical solution
(

u(t), v(t), θ(t)
)

:

as t → +∞,

∥

∥

(

ux(t), vx(t), θx(t)
)∥

∥

C2+1/2 + ‖ut(t)‖C2+1/2(1.34)

+
∥

∥

(

vt(t), θt(t)
)∥

∥

C1+1/2 + ‖utt(t)‖C1/2 → 0 .

2 – Global Existence in H2(R)

In this section we complete the proof of Theorem 1.1. We begin with the

following lemma on the estimates in H1(R).

Lemma 2.1. If the assumptions of Theorem 1.1 are valid, then (1.16)–(1.17)

hold and the H1-generalized global solution
(

u(t), v(t), θ(t)
)

to the Cauchy prob-
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lem (1.1)–(1.4) verifies (1.18)–(1.19) and for any t ∈ [0, T ],

‖u(t)− ū‖2
H1 + ‖v(t)‖2

H1 + ‖θ(t)− θ̄‖2
H1 + ‖ut(t)‖2(2.1)

+

∫ t

0

(

‖vx‖2
H1 + ‖θx‖2

H1 + ‖ux‖2 + ‖vt‖2 + ‖θt‖2
)

(τ) dτ ≤ C1(T ) ,

‖u(t)− ū‖2
L∞ + ‖v(t)‖2

L∞ + ‖θ(t)− θ̄‖2
L∞(2.2)

+

∫ t

0

(

‖ut‖2
H1 + ‖vx‖2

L∞ + ‖θx‖2
L∞

)

(τ) dτ ≤ C1(T ) .

Proof: Estimates (1.18)–(1.19) and (2.1) were obtained in [26, 27]. By the

interpolation inequality, we infer that

(2.3) ‖u(t)− ū‖L∞ ≤ C ‖u(t)− ū‖1/2 ‖ux(t)‖1/2 ≤ C ‖u(t)− ū‖H1

here and hereafter C > 0 stands for a generic absolute positive constant indepen-

dent of T > 0, any length of time.

Similarly,

‖v(t)‖L∞ ≤ C ‖v(t)‖H1 , ‖θ(t)− θ̄‖L∞ ≤ C ‖θ(t)− θ̄‖H1 ,(2.4)

‖vx(t)‖L∞ ≤ C ‖vx(t)‖H1 , ‖θx(t)‖L∞ ≤ C ‖θx(t)‖H1 .(2.5)

By (1.1), we get

(2.6) ‖ut(t)‖H1 = ‖vx(t)‖H1 .

Thus estimate (2.2) follows from (2.1) and (2.3)–(2.6). The proof is complete.

Lemma 2.2. Under the assumptions in Theorem 1.1, the following estimates

hold for any t ∈ [0, T ],

‖θt(t)‖2 + ‖vt(t)‖2 +

∫ t

0

(

‖vxt‖2 + ‖θxt‖2
)

(τ) dτ ≤ C2(T ) ,(2.7)

‖vx(t)‖2
L∞ + ‖vxx(t)‖2 + ‖θx(t)‖2

L∞ + ‖θxx(t)‖2 ≤ C2(T ) ,(2.8)

‖u(t)− ū‖2
H2 + ‖v(t)‖2

H2 + ‖θ(t)− θ̄‖2
H2 + ‖ut(t)‖2

H1 ≤ C2(T ) .(2.9)
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Proof: Differentiating (1.2) with respect to t, then multiplying the resulting

equation by vt in L2(R), and using Lemma 2.1, we get

d

dt
‖vt(t)‖2 + C−1

1 (T ) ‖vxt(t)‖2 ≤

≤ 1

2 C1(T )
‖vxt(t)‖2 + C2(T )

(

‖vx(t)‖3 ‖vxx(t)‖ + ‖θt(t)‖2 + ‖vx(t)‖2
)

(2.10)

≤ 1

2 C1(T )
‖vxt(t)‖2 + C2(T )

(

‖vx(t)‖2 + ‖θt(t)‖2 + ‖vxx(t)‖2
)

which, together with Lemma 2.1, yields

‖vt(t)‖2 +

∫ t

0
‖vxt‖2(τ) dτ ≤ C2(T ) + C1(T )

∫ t

0

(

‖vx‖2 + ‖θt‖2 + ‖vxx‖2
)

(τ) dτ

≤ C2(T ) .(2.11)

Hence, by (1.2), Lemma 2.1, the embedding theorem and Young’s inequality, we

have

‖vxx(t)‖ ≤ C1(T )
(

‖vt(t)‖ + ‖vx(t)‖ + ‖ux(t)‖ + ‖vx(t)‖1/2 ‖vxx(t)‖
)

≤ 1

2
‖vxx(t)‖ + C1(T )

(

‖vt(t)‖ + ‖vx(t)‖ + ‖ux(t)‖
)

which, combined with (2.11) and (2.1)–(2.2), leads to

‖vxx(t)‖ ≤ C1(T )
(

‖vt(t)‖+‖vx(t)‖+‖ux(t)‖
)

≤ C2(T ) , ∀ t∈ [0,T ] ,(2.12)

‖vx(t)‖2
L∞ ≤ C1(T ) ‖vx(t)‖ ‖vxx(t)‖ ≤ C2(T ) , ∀ t∈ [0, T ] .(2.13)

Similarly, by (1.3) and (2.13), we deduce

d

dt
‖θt(t)‖2 + C−1

1 (T ) ‖θxt(t)‖2 ≤(2.14)

≤ 1

2 C1(T )
‖θxt(t)‖2 + C2(T )

(

‖θx(t)‖2 +‖vx(t)‖2 +‖θt(t)‖2 +‖vtx(t)‖2
)

which, combined with Lemma 2.1, gives

(2.15) ‖θt(t)‖2 +

∫ t

0
‖θxt‖2(τ) dτ ≤ C2(T ) , ∀ t∈ [0, T ] .

Similarly to (2.12), by equation (1.3), Lemma 2.1, (2.15) and the interpolation

inequality, we obtain

‖θxx(t)‖ ≤ C1(T )
(

‖θt(t)‖ + ‖θx(t)‖1/2 ‖θxx(t)‖1/2 ‖ux(t)‖

+ ‖vx(t)‖3/2 ‖vxx(t)‖1/2 + ‖vx(t)‖
)

≤ C1(T )
(

‖θt(t)‖ + ‖θx(t)‖ + ‖vx(t)‖ + ‖vxx(t)‖
)

+
1

2
‖θxx(t)‖
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whence

‖θxx(t)‖ ≤ C1(T )
(

‖θt(t)‖+‖θx(t)‖+‖vx(t)‖+‖vxx(t)‖
)

≤ C2(T ) ,(2.16)

‖θx(t)‖2
L∞ ≤ C1(T ) ‖θx(t)‖ ‖θxx(t)‖ ≤ C2(T ) .(2.17)

Thus estimates (2.7)–(2.9) follow from (1.1), (2.11)–(2.13) and (2.15)–(2.17) and

Lemma 2.1. The proof is complete.

Lemma 2.3. Under the assumptions in Theorem 1.1, the following estimates

hold for any t ∈ [0, T ],

‖uxx(t)‖2 + ‖ux(t)‖2
L∞ +

∫ t

0

(

‖uxx‖2 + ‖ux‖2
L∞

)

(τ) dτ ≤ C2(T ) ,(2.18)

∫ t

0

(

‖vxxx‖2 + ‖θxxx‖2
)

(τ) dτ ≤ C2(T ) .(2.19)

Proof: Differentiating (1.2) with respect to x, and using equation (1.1),

we get

µ
∂

∂t

(

uxx

u

)

+
Rθuxx

u2
=(2.20)

= vtx +
Rθxx

u
+

2µvxxux − 2Rθxux

u2
+

2Rθu2
x − 2µvxu2

x

u3
.

Multiplying (2.20) by uxx/u in L2(R), and using Lemmas 2.1–2.2, we deduce that

d

dt

∥

∥

∥

uxx

u
(t)

∥

∥

∥

2
+ C−1

1 (T ) ‖uxx(t)‖2 ≤(2.21)

≤ 1

2C1(T )
‖uxx(t)‖2 + C2(T )

(

‖θx(t)‖2+‖ux(t)‖2+‖vxx(t)‖2+‖θxx(t)‖2+‖vtx(t)‖2
)

which, together with Lemma 2.2, implies that for any t ∈ [0, T ],

‖uxx(t)‖2 +

∫ t

0
‖uxx‖2(τ) dτ ≤ C2(T ) ,(2.22)

‖ux(t)‖2
L∞ ≤ C ‖ux(t)‖ ‖uxx(t)‖ ≤ C2(T ) ,(2.23)

∫ t

0
‖ux(t)‖2

L∞(τ) dτ ≤ C

∫ t

0

(

‖ux(t)‖2 +‖uxx(t)‖2
)

(τ) dτ ≤ C2(T ) .(2.24)
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Differentiating (1.2) and (1.3) with respect to x respectively, using Lemmas

2.1–2.2 and (2.23), we deduce that for any t ∈ [0, T ],

‖vxxx(t)‖ ≤ C2(T )
(

‖vt(t)‖ + ‖vtx(t)‖ + ‖vxx(t)‖ + ‖uxx(t)‖ + ‖vx(t)‖(2.25)

+ ‖θxx(t)‖ + ‖θx(t)‖ + ‖ux(t)‖
)

,

‖θxxx(t)‖ ≤ C2(T )
(

‖θt(t)‖ + ‖θtx(t)‖ + ‖θxx(t)‖ + ‖uxx(t)‖ + ‖vxx(t)‖(2.26)

+ ‖θx(t)‖
)

.

Thus estimates (2.18)–(2.19) follow from (2.22)–(2.26) and Lemmas 2.1–2.2.

The proof is complete.

Lemma 2.4. Under the assumptions in Theorem 1.1, the Cauchy problem

(1.1)–(1.4) admits a unique H2-generalized global solution
(

u(t), v(t), θ(t)
)

satis-

fying that for any t ∈ [0, T ],

(2.27)
∥

∥

∥

(

u(t)− ū, v(t), θ(t)− θ̄
)
∥

∥

∥

H2
≤ C2(T ) .

Moreover, H i-generalized global solutions (i = 1, 2) are continuously dependent

on initial data in the sense of (1.21).

Proof: Obviously we infer estimate (2.27) from Lemmas 2.1–2.3. Thus global

existence of H2-generalized solutions follows. Now we prove estimate (1.21).

For i = 1 in (1.21), we assume that u0j − ū, v0j , θ0j − θ̄ ∈ H1(R), u0j(x) > 0,

θ0j(x) > 0 on R and the compatibility conditions hold (j =1, 2). We denote

by u = u1− u2, v = v1− v2, θ = θ1− θ2 and u0 = u01− u02, v0 = v01− v02,

θ0 = θ01− θ02. Subtracting the corresponding equations (1.1)–(1.3) satisfied by

(u1, v1, θ1) and (u2, v2, θ2), we obtain

ut = vx ,(2.28)

vt = µ

(

vx

u1
− v2xu

u1u2

)

x

+ R

(

θ2u − θu2

u1u2

)

x

,(2.29)

CV θt = λ

[

θx

u1
− θ2xu

u1u2

]

x

+
1

u1

[

µvx−Rθ
]

v1x +
[

µv2x−Rθ2

] u2vx− v2xu

u1u2
,(2.30)

t = 0: u = u0 , v = v0 , θ = θ0 .
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By Lemma 2.1, we know that for any t ∈ [0, T ],

∥

∥

∥

(

uj(t)− ū, vj(t), θj(t)− θ̄
)∥

∥

∥

2

H1
+(2.31)

+

∫ t

0

(

‖ujx‖2 +‖vjx‖2
H1 +‖θjx‖2

H1 +‖vjt‖2 +‖θjt‖2
)

(τ) dτ ≤ C1(T ) , j =1, 2

where C1(T ) > 0 denotes the universal constant depending only on the H1 norm

of (u0j − ū, v0j , θ0j − θ̄) and min
x∈R

u0j(x), min
x∈R

θ0j(x) (j =1, 2) and T > 0.

Multiplying (2.28), (2.29) and (2.30) by u, v and θ respectively, adding the

results up and integrating the results over R, and using Lemmas 2.1–2.3 and

(2.31), we deduce that for any small ǫ > 0,

1

2

d

dt

(

‖u(t)‖2 + ‖v(t)‖2 + CV ‖θ(t)‖2
)

+

∫

R

µv2
x + λθ2

x

u1
dx ≤

≤ ǫ
(

‖vx(t)‖2 + ‖θx(t)‖2
)

+ C1(T )H1(t)
(

‖u(t)‖2 + ‖v(t)‖2 + ‖θ(t)‖2
)

where H1(t) = ‖v1xx(t)‖2 +‖v2xx(t)‖2 +‖θ2xx(t)‖2 +1 satisfies
∫ T
0 H1(τ) dτ ≤C1(T ).

This, by taking ǫ small enough, implies

d

dt

(

‖u(t)‖2 +‖v(t)‖2 +CV ‖θ(t)‖2
)

+ C−1
1 (T )

(

‖vx(t)‖2 +‖θx(t)‖2
)

≤(2.32)

≤ C1(T )H1(t)
(

‖u(t)‖2 +‖v(t)‖2 +‖θ(t)‖2
)

.

By Lemmas 2.1–2.3 and the interpolation inequality, we get

‖vxx(t)‖2 ≤ C1(T )
[

‖vt(t)‖2 + ‖vx(t)‖2
L∞ + ‖θ(t)‖2

H1 + ‖v2xx(t)‖2 ‖u(t)‖2
H1

]

≤ 1

2
‖vxx(t)‖2 + C1(T )

(

‖vt(t)‖2 + ‖θ(t)‖2
H1 + ‖vx(t)‖2

)

+ C1(T ) ‖v2xx(t)‖2 ‖u(t)‖2
H1

implying

(2.33) ‖vxx(t)‖2 ≤ C1(T ) ‖vt(t)‖2 +C1(T )H1(t)
(

‖vx(t)‖2+‖u(t)‖2
H1+‖θ(t)‖2

H1

)

.

Differentiating (2.28) with respect to x, multiplying the result by ux in L2(R)

and using (2.35), we obtain that for any δ > 0,

d

dt
‖ux(t)‖2 ≤ δ‖vxx(t)‖2 +

1

δ
‖ux(t)‖2

≤ C1(T ) δ‖vt(t)‖2 + C1(T ) δ−1H1(t)
(

‖vx(t)‖2 +‖u(t)‖2 +‖θ(t)‖2
)

.(2.34)
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Multiplying (2.29) by vt in L2(R), and using Lemmas 2.1–2.3 and (2.32), we

obtain

d

dt

∥

∥

∥

∥

vx√
u1

(t)

∥

∥

∥

∥

2

+ C−1
1 (T ) ‖vt(t)‖2 ≤(2.35)

≤ C1(T )H1(t)
(

‖vx(t)‖2 + ‖u(t)‖2
H1 + ‖θ(t)‖2

H1

)

.

Similarly, multiplying (2.30) by θt in L2(R), we obtain

d

dt

∥

∥

∥

∥

θx√
u1

(t)

∥

∥

∥

∥

2

+ C−1
1 (T ) ‖θt(t)‖2 ≤(2.36)

≤ C1(T )H1(t)
(

‖vx(t)‖2 + ‖u(t)‖2
H1 + ‖θ(t)‖2

H1

)

.

Adding up (2.32) and (2.34)–(2.36), and then taking δ small enough, we finally

conclude

d

dt
G1(t) ≤ C1(T )H1(t)

(

‖vx(t)‖2 + ‖u(t)‖2
H1 + ‖θ(t)‖2

H1

)

(2.37)

≤ C1(T )H1(t)G1(t)

where

G1(t) = ‖u(t)‖2 + ‖ux(t)‖2 + ‖v(t)‖2 +

∥

∥

∥

∥

vx√
u1

(t)

∥

∥

∥

∥

2

+ CV ‖θ(t)‖2 +

∥

∥

∥

∥

θx√
u1

(t)

∥

∥

∥

∥

2

satisfies

C−1
1 (T )

(

‖u(t)‖2
H1 + ‖v(t)‖2

H1 + ‖θ(t)‖2
H1

)

≤(2.38)

≤ G1(t) ≤ C1(T )
(

‖u(t)‖2
H1 + ‖v(t)‖2

H1 + ‖θ(t)‖2
H1

)

.

Thus Gronwall’s inequality and (2.37)–(2.38) yield that for any t ∈ [0, T ],

‖u(t)‖2
H1 + ‖v(t)‖2

H1 + ‖θ(t)‖2
H1 ≤ C1(T )G1(0) exp

(

C1(T )

∫ T

0
H1(τ) dτ

)

≤ C1(T )
(

‖u0‖2
H1 + ‖v0‖2

H1 + ‖θ0‖2
H1

)

which is estimate (1.21) with i = 1.

For i = 2 in (1.21), we further assume that u0j− ū, v0j , θ0j− θ̄ ∈ H2(R) with

u0j(x) > 0, θ0j(x) > 0 on R, (j =1, 2).

Similarly to (2.33), by Lemmas 2.1–2.3, we have

(2.39) ‖θxx(t)‖2 ≤ C1(T )
(

‖θt(t)‖2+H1(t)G1(t)
)

≤ C2(T )
(

‖θt(t)‖2+G1(t)
)
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where C2(T ) > 0 denotes the universal constant depending only on the H2 norm

of (u0j − ū, v0j , θ0j − θ̄) and min
x∈R

u0j(x), min
x∈R

θ0j(x) (j =1, 2) and T .

Differentiating (2.29) with respect to x, we see that

(2.40)
µvxxx

u1
+

Rθ2uxx

u1u2
= vtx +

2µvxxu1x

u2
1

+ R(x, t)

where

R(x, t) =
µ(uv2x)xx − R(2θ2xux + θ2xxu) + R(u2θ)xx

u1u2

+ 2
[

µ(uv2x)x − R(θ2u − u2θ)x

]

(

1

u1u2

)

x

− µvx

(

1

u1

)

x

+
[

µuv2x − R(θ2u − u2θ)
]

(

1

u1u2

)

xx

.

By Lemmas 2.1–2.3 and the embedding theorem, we easily obtain

(2.41) ‖R(t)‖2 ≤ C2(T )
(

1 + ‖v2xxx(t)‖2
)(

‖u(t)‖2
H2 + ‖θ(t)‖2

H2 + ‖vxx(t)‖2
)

.

On the other hand, we conclude from (2.40)–(2.41) and the interpolation inequal-

ity that

‖vxxx(t)‖2 ≤ C1(T ) ‖vtx(t)‖2 + C2(T )
(

‖uxx(t)‖2 + ‖vxx(t)‖2
L∞ + ‖R(t)‖2

)

≤ 1

2
‖vxxx(t)‖2 + C1(T ) ‖vtx(t)‖2

+ C2(T )
(

1 + ‖v2xxx(t)‖2
)(

‖vxx(t)‖2 + ‖u(t)‖2
H2 + ‖θ(t)‖2

H2

)

whence

‖vxxx(t)‖2 ≤ C1(T ) ‖vtx(t)‖2

+ C2(T )
(

1+‖v2xxx(t)‖2
)(

‖vxx(t)‖2 +‖u(t)‖2
H2 +‖θ(t)‖2

H2

)

.(2.42)

Using (2.28), (2.40) and Lemmas 2.1–2.3, noting that utxx = vxxx, vxxx/u1 =

(uxx/u1)t + uxxv1x/u2
1, multiplying (2.40) by uxx/u1 in L2(R), we see that

d

dt

∥

∥

∥

uxx

u1
(t)

∥

∥

∥

2
+ C−1

1 (T ) ‖uxx(t)‖2 ≤(2.43)

≤ C1(T ) ‖vtx(t)‖2 + C2(T )H2(t)
(

‖u(t)‖2
H2 + ‖vxx(t)‖2 + ‖θ(t)‖2

H2

)

≤ C1(T ) ‖vtx(t)‖2 + C2(T )H2(t)
(

‖u(t)‖2
H2 + ‖v(t)‖2

H2 + ‖θ(t)‖2
H2 + ‖vt(t)‖2

)
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where H2(t) = 1 + ‖v2xxx(t)‖2 + ‖v2tx(t)‖2 satisfies
∫ T
0 H2(s) ds ≤ C2(T ).

Similarly, differentiating (2.29) and (2.30) with respect to t, multiplying the

results by vt and θt in L2(R) respectively, and using Lemmas 2.1–2.3, we finally

deduce that

d

dt
‖vt(t)‖2 + C−1

1 (T ) ‖vtx(t)‖2 ≤(2.44)

≤ C2(T )H2(t)
(

‖vt(t)‖2 + ‖θt(t)‖2 + ‖u(t)‖2
H1 + ‖v(t)‖2

H1 + ‖θ(t)‖2
H1

)

,

d

dt
‖θt(t)‖2 + C−1

1 (T ) ‖θtx(t)‖2 ≤(2.45)

≤ C1(T ) ‖vtx(t)‖2

+ C2(T )H2(t)
(

‖vt(t)‖2 + ‖θt(t)‖2 + ‖u(t)‖2
H1 + ‖v(t)‖2

H1 + ‖θ(t)‖2
H1

)

.

Now multiplying (2.44) by 2C2
1 (T ), then adding up the result to (2.43) and (2.45),

we arrive at

d

dt
G2(t) ≤ C2(T )H2(t)

(

‖vt(t)‖2 +‖θt(t)‖2 +‖u(t)‖2
H2 +‖θ(t)‖2

H1 +‖v(t)‖2
H1

)

≤ C2(T )H2(t)
(

G1(t) + G2(t)
)

(2.46)

where G2(t) =
∥

∥

uxx
u1

(t)
∥

∥

2
+ 2C2

1 (T ) ‖vt(t)‖2 + ‖θt(t)‖2.

Thus adding (2.46) to (2.37) gives

(2.47)
d

dt
Ĝ(t) ≤ C2(T )H2(t) Ĝ(t)

where Ĝ(t) = G1(t) + G2(t).

Similarly to (2.33) and (2.39), we infer from (2.30)–(2.31)

‖vt(t)‖2 + ‖θt(t)‖2 ≤ C2(T )
(

‖u(t)‖2
H1 + ‖v(t)‖2

H2 + ‖θ(t)‖2
H2

)

which with (2.39) implies

(2.48) Ĝ(t) ≤ C2(T )
(

‖u(t)‖2
H2 + ‖v(t)‖2

H2 + ‖θ(t)‖2
H2

)

.

On the other hand, we deduce from (2.33) and (2.38)–(2.39) that

Ĝ(t) ≥ C−1
1 (T )

(

‖u(t)‖2
H1 + ‖v(t)‖2

H1 + ‖θ(t)‖2
H1

)

+ C−1
2 (T )

(

‖uxx(t)‖2 + ‖vt(t)‖2 + ‖θt(t)‖2
)

≥ C−1
1 (T )

(

‖u(t)‖2
H1 + ‖v(t)‖2

H1 + ‖θ(t)‖2
H1

)

+ C−1
2 (T )

[

‖uxx(t)‖2 +
(

‖vt(t)‖2 + G1(t)
)

+
(

‖θt(t)‖2 + G1(t)
)]

≥ C−1
2 (T )

(

‖u(t)‖2
H2 + ‖v(t)‖2

H2 + ‖θ(t)‖2
H2

)
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which together with (2.48) gives

C−1
2 (T )

(

‖u(t)‖2
H2 + ‖v(t)‖2

H2 + ‖θ(t)‖2
H2

)

≤(2.49)

≤ Ĝ(t) ≤ C2(T )
(

‖u(t)‖2
H2 + ‖v(t)‖2

H2 + ‖θ(t)‖2
H2

)

.

Thus it follows from Gronwall’s inequality, (2.38) and (2.49) that

‖u(t)‖2
H2 +‖v(t)‖2

H2 +‖θ(t)‖2
H2 ≤ C2(T ) Ĝ(t)

≤ C2(T ) Ĝ(0) exp

(

C2(T )

∫ T

0
H2(τ) dτ

)

≤ C2(T )
(

‖u0‖2
H2 +‖v0‖2

H2 +‖θ0‖2
H2

)

, ∀ t∈ [0,T ] ,

which is estimate (1.21) with i = 2 and implies the uniqueness of H2-generalized

global solutions. Thus the proof is complete.

Till now we have completed the proof of Theorem 1.1.

3 – Global Existence in H4(R)

In this section we derive estimates in H4(R) and complete the proof of

Theorem 1.2. The following several lemmas concern with the estimates in H4(R).

Lemma 3.1. Under the assumptions of Theorem 1.2, the following estimates

hold for any t ∈ [0, T ],

‖vtx(x, 0)‖ + ‖θtx(x, 0)‖ ≤ C3(T ) ,(3.1)

‖vtt(x, 0)‖ + ‖θtt(x, 0)‖ + ‖vtxx(x, 0)‖ + ‖θtxx(x, 0)‖ ≤ C4(T ) ,(3.2)

‖vtt(t)‖2 +

∫ t

0
‖vttx‖2(τ) dτ ≤ C4(T ) + C4(T )

∫ t

0
‖θtxx‖2(τ) dτ ,(3.3)

‖θtt(t)‖2 +

∫ t

0
‖θttx‖2(τ) dτ ≤ C4(T ) + C4(T )

∫ t

0

(

‖θtxx‖2 +‖vtxx‖2
)

(τ) dτ .(3.4)

Proof: We easily infer from (1.2) and Lemmas 2.1–2.4 that

(3.5) ‖vt(t)‖ ≤ C2(T )
(

‖vx(t)‖H1 + ‖ux(t)‖ + ‖θx(t)‖
)

.



ON THE CAUCHY PROBLEM FOR A VISCOUS IDEAL GAS 103

Differentiating (1.2) with respect to x and exploiting Lemmas 2.1–2.4, we have

‖vtx(t)‖ ≤ C2(T )
(

‖vx(t)‖ + ‖vxxx(t)‖ + ‖θx(t)‖H1 + ‖ux(t)‖H1

)

(3.6)

or

‖vxxx(t)‖ ≤ C2(T )
(

‖vx(t)‖ + ‖ux(t)‖H1 + ‖θx(t)‖H1 + ‖vtx(t)‖
)

.(3.7)

Differentiating (1.2) with respect to x twice, using Lemmas 2.1–2.4 and the em-

bedding theorem, we have

‖vtxx(t)‖ ≤ C2(T )
(

‖ux(t)‖H2 + ‖vx(t)‖H3 + ‖θx(t)‖H2

)

(3.8)

or

‖vxxxx(t)‖ ≤ C2(T )
(

‖ux(t)‖H2 + ‖vx(t)‖H2 + ‖θx(t)‖H2 + ‖vtxx(t)‖
)

.(3.9)

In the same manner, we deduce from (1.3) that

‖θt(t)‖ ≤ C2(T )
(

‖θx(t)‖H1 + ‖vx(t)‖ + ‖ux(t)‖
)

,(3.10)

‖θtx(t)‖ ≤ C2(T )
(

‖θx(t)‖H2 + ‖vx(t)‖H1 + ‖uxx(t)‖
)

(3.11)

or

‖θxxx(t)‖ ≤ C2(T )
(

‖θx(t)‖H1 + ‖vx(t)‖H1 + ‖uxx(t)‖ + ‖θtx(t)‖
)

(3.12)

and

‖θtxx(t)‖ ≤ C2(T )
(

‖ux(t)‖H2 + ‖vx(t)‖H2 + ‖θx(t)‖H3

)

(3.13)

or

‖θxxxx(t)‖ ≤ C2(T )
(

‖ux(t)‖H2 + ‖vx(t)‖H2 + ‖θx(t)‖H2 + ‖θtxx(t)‖
)

.(3.14)

Differentiating (1.2) with respect to t, and using Lemmas 2.1–2.4 and (1.1),

we deduce that

(3.15) ‖vtt(t)‖ ≤ C2(T )
(

‖θx(t)‖+‖ux(t)‖+‖vxx(t)‖+‖vtx(t)‖H1+‖θxt(t)‖+‖θt(t)‖
)

which together with (3.6), (3.8) and (3.11) implies

(3.16) ‖vtt(t)‖ ≤ C2(T )
(

‖θx(t)‖H2 + ‖vx(t)‖H3 + ‖ux(t)‖H2

)

.

Analogously, we derive from (1.3) and Lemmas 2.1–2.4 that

(3.17) ‖θtt(t)‖ ≤ C2(T )
(

‖θt(t)‖+‖θx(t)‖+‖θtx(t)‖H1+‖θtxx(t)‖+‖vx(t)‖+‖vxt(t)‖
)
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which combined with (3.10)–(3.11), (3.13) and (3.6) gives

(3.18) ‖θtt(t)‖ ≤ C2(T )
(

‖θx(t)‖H3 + ‖vx(t)‖H2 + ‖ux(t)‖H2

)

.

Thus estimates (3.1)–(3.2) follow from (3.6), (3.8), (3.11), (3.13), (3.16) and

(3.18).

Now differentiating (1.2) with respect to t twice, multiplying the resulting

equation by vtt in L2(R), and using (1.1) and Lemmas 2.1–2.4, we deduce

1

2

d

dt
‖vtt(t)‖2 = −

∫

R

σttvttx dx − µ

∫

R

v2
ttx

u
dx

+ C2(T ) ‖vttx(t)‖
(

‖θtt(t)‖ + ‖vtx(t)‖ + ‖θt(t)‖ + ‖vx(t)‖
)

≤ −
(

2 C1(T )
)−1‖vttx(t)‖2

+ C2(T )
(

‖θtt(t)‖2 + ‖vtx(t)‖2 + ‖θt(t)‖2 + ‖vx(t)‖2
)

which with (3.17) implies

d

dt
‖vtt(t)‖2 + C−1

1 (T ) ‖vttx(t)‖2 ≤(3.19)

≤ C2(T)
(

‖θtxx(t)‖2+‖θxx(t)‖2+‖θtx(t)‖2+‖vx(t)‖2
H1+‖vtx(t)‖2+‖θt(t)‖2+‖ux(t)‖2

)

.

Thus estimate (3.3) follows from Lemmas 2.1–2.3, (3.2) and (3.19).

Analogously, we obtain from (1.3) that

CV

2

d

dt
‖θtt(t)‖2 ≤ −λ

∫

R

θ2
ttx

u
dx

+ C2(T ) ‖θttx(t)‖
(

‖θtx(t)‖ + ‖vtx(t)‖ + ‖vx(t)‖
)

(3.20)

+ C2(T ) ‖θtt(t)‖
(

‖σtt(t)‖ + ‖σt(t)‖ ‖vtx(t)‖L∞ + ‖vttx(t)‖
)

.

By Lemmas 2.1–2.3, and the interpolation inequality, we get

‖σt(t)‖ ≤ C2(T )
(

‖vtx(t)‖ + ‖θt(t)‖ + ‖vx(t)‖
)

,(3.21)

‖σtt(t)‖ ≤ C2(T )
(

‖vttx(t)‖ + ‖θtt(t)‖ + ‖vtx(t)‖ + ‖θt(t)‖ + ‖vx(t)‖
)

(3.22)

and

‖vtx(t)‖2
L∞ ≤ C ‖vtx(t)‖ ‖vtxx(t)‖ .(3.23)
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By virtue of (3.21)–(3.33), we infer from (3.20)

d

dt
‖θtt(t)‖2 + C−1

1 (T ) ‖θttx(t)‖2 ≤(3.24)

≤ C2(T )
(

‖θtx(t)‖2 + ‖vx(t)‖2 + ‖vtx(t)‖2 + ‖θt(t)‖2 + ‖vttx(t)‖2 + ‖θtt(t)‖2
)

+ C2(T ) ‖θtt(t)‖
(

‖vtx(t)‖ + ‖θt(t)‖ + ‖vx(t)‖)(‖vtx(t)‖ + ‖vtxx‖
)

which together with (3.2)–(3.3), (3.17) and Lemmas 2.1–2.3 yields

‖θtt(t)‖2 + C−1
1 (T )

∫ t

0
‖θttx(t)‖2(τ) dτ ≤(3.25)

≤ C4(T ) + C4(T )

∫ t

0

(

‖θtt‖2 + ‖vttx‖2
)

(τ) dτ

+ C2(T )

[
∫ t

0

(

‖θtt‖2
(

‖vtx‖2 +‖θt‖2 +‖vx‖2
)

)

(τ) dτ

]1/2

·
[
∫ t

0

(

‖vtx‖2 + ‖vtxx‖2
)

(τ) dτ

]1/2

≤ C4(T ) + C4(T )

∫ t

0
‖θtxx‖2(τ) dτ

+ C2(T ) sup
0≤τ≤t

‖θtt(τ)‖
[

1 +

(
∫ t

0
‖vtxx‖2(τ) dτ

)1/2
]

≤ 1

2
sup

0≤τ≤t
‖θtt(τ)‖2 + C4(T ) + C4(T )

∫ t

0

(

‖vtxx‖2 +‖θtxx‖2
)

(τ) dτ .

Hence taking the supremum on the right-hand side of (3.25) gives required esti-

mate (3.4). The proof is complete.

Lemma 3.2. Under the assumptions of Theorem 1.2, the following estimates

hold for any t ∈ [0, T ],

‖vtx(t)‖2 +

∫ t

0
‖vtxx‖2(τ) dτ ≤ C3(T ) ,(3.26)

‖θtx(t)‖2 +

∫ t

0
‖θtxx‖2(τ) dτ ≤ C3(T ) ,(3.27)

‖θtt(t)‖2 + ‖vtt(t)‖2 +

∫ t

0

(

‖vttx‖2 +‖θttx‖2
)

(τ) dτ ≤ C4(T ) .(3.28)
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Proof: Differentiating (1.2) with respect to x and t, multiplying the resulting

equation by vtx in L2(R), and integrating by parts, we deduce that

1

2

d

dt
‖vtx(t)‖2 ≤(3.29)

≤ −µ

∫

R

v2
txx

u
dx

+ C2(T ) ‖vtxx(t)‖
(

‖θtx(t)‖+‖vtx(t)‖+‖θt(t)‖+‖vxx(t)‖+‖θx(t)‖+‖ux(t)‖
)

≤ −
(

2 C1(T )
)−1 ‖vtxx(t)‖2

+ C2(T )
(

‖θtx(t)‖2+‖vtx(t)‖2+‖θt(t)‖2+‖vxx(t)‖2+‖θx(t)‖2+‖ux(t)‖2
)

which combined with Lemmas 2.1–2.3 and (3.2) gives estimate (3.26).

Analogously, we infer from (1.3),

CV

2

d

dt
‖θtx(t)‖2 ≤(3.30)

≤ −λ

∫

R

θ2
txx

u
dx + C2(T ) ‖θtxx(t)‖

(

‖θtx(t)‖+‖θxx(t)‖+‖ux(t)‖+‖vxx(t)‖
)

≤ −
(

2 C1(T )
)−1 ‖θtxx(t)‖2 + C2(T )

(

‖θtx(t)‖2+‖θxx(t)‖2+‖vxx(t)‖2+‖ux(t)‖2
)

which combined with Lemmas 2.1–2.3 implies estimate (3.27). Inserting (3.26)–

(3.27) into (3.3)–(3.4) yields estimate (3.28). The proof is now complete.

Lemma 3.3. Under the assumptions of Theorem 1.2, the following estimates

hold for any t ∈ [0, T ],

‖uxxx(t)‖2
H1 +‖uxx(t)‖2

W 1,∞ +

∫ t

0

(

‖uxxx‖2
H1 +‖uxx‖2

W 1,∞

)

(τ) dτ ≤ C4(T ) ,(3.31)

‖vxxx(t)‖2
H1 +‖vxx(t)‖2

W 1,∞+‖θxxx(t)‖2
H1 +‖θxx(t)‖2

W 1,∞+‖utxxx(t)‖2 +(3.32)

+ ‖vtxx(t)‖2 +‖θtxx(t)‖2 +

∫ t

0

(

‖vtt‖2 +‖θtt‖2 +‖vxx‖2
W 2,∞ +‖θxx‖2

W 2,∞

+ ‖θtxx‖2
H1 +‖vtxx‖2

H1 +‖θtx‖2
W 1,∞+‖vtx‖2

W 1,∞+‖utxxx‖2
H1

)

(τ) dτ ≤ C4(T ) ,

∫ t

0

(

‖vxxxx‖2
H1 +‖θxxxx‖2

H1

)

(τ) dτ ≤ C4(T ) .(3.33)

Proof: Differentiating (2.22) with respect to x, and using (1.1), we arrive at

(3.34) µ
∂

∂t

(

uxxx

u

)

+
Rθuxxx

u2
= E1(x, t)
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with

E1(x, t) = µ

[

vxxxux + uxxvxx

u2
− 2uxuxxvx

u3

]

− θxuxx

u2

+
2Rθuxuxx

u3
+ vtxx + Ex(x, t) ,

E(x, t) =
Rθxx

u
+

2µvxxux − 2Rθxux

u2
+

2Rθu2
x − 2µvxu2

x

u3
.

An easy calculation with Lemmas 2.1–2.4 and Lemmas 3.1–3.2 gives

(3.35) ‖E1(t)‖ ≤ C2(T )
(

‖ux(t)‖H1 + ‖vx(t)‖H2 + ‖θx(t)‖H2 + ‖vtx(t)‖H1

)

and

(3.36)

∫ T

0
‖E1‖2(τ) dτ ≤ C4(T ) .

Now multiplying (3.34) by uxxx
u in L2(R), we obtain

(3.37)
d

dt

∥

∥

∥

uxxx

u
(t)

∥

∥

∥

2
+ C−1

1

∥

∥

∥

uxxx

u
(t)

∥

∥

∥

2
≤ C1(T ) ‖E1(t)‖2

which combined with (3.36) and Lemmas 2.1–2.3 and Lemmas 3.1–3.2 yields

(3.38) ‖uxxx(t)‖2 +

∫ t

0
‖uxxx‖2(τ) dτ ≤ C4(T ) , ∀ t∈ [0, T ] .

In view of (3.7), (3.9), (3.12), (3.14) and Lemmas 2.1–2.3 and Lemmas 3.1–3.2,

we get that for any t∈ [0, T ],

‖vxxx(t)‖2 + ‖θxxx(t)‖2 +

∫ t

0

(

‖vxxx‖2
H1 + ‖θxxx‖2

H1

)

(τ) dτ ≤ C4(T ) ,(3.39)

‖vxx(t)‖2
L∞ + ‖θxx(t)‖2

L∞ +

∫ t

0

(

‖vxx‖2
W 1,∞ + ‖θxx‖2

W 1,∞

)

(τ) dτ ≤ C4(T ) .(3.40)

Differentiating (1.2) with respect to t, we infer that for any t∈ [0, T ],

‖vtxx(t)‖ ≤ C1(T ) ‖vtt(t)‖
+ C2

(

‖ux(t)‖+‖vxx(t)‖+‖vtx(t)‖+‖θx(t)‖+‖θt(t)‖+‖θtx(t)‖
)

(3.41)

≤ C4(T )

which with (3.9) gives,

(3.42) ‖vxxxx(t)‖2 +

∫ t

0

(

‖vtxx‖2 + ‖vxxxx‖2
)

(τ) dτ ≤ C4(T ) .
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Similarly, we can infer from (3.13)–(3.14) and (3.39)–(3.40) that

(3.43)

‖θtxx(t)‖2+‖θxxxx(t)‖2+

∫ t

0

(

‖θtxx‖2+‖θxxxx‖2
)

(τ) dτ ≤ C4(T ) , ∀ t∈ [0,T ] .

which combined with (3.39) and (3.42)–(3.43) implies

(3.44)

‖vxxx(t)‖2
L∞+‖θxxx(t)‖2

L∞+

∫ t

0

(

‖vxxx‖2
L∞+‖θxxx‖2

L∞

)

(τ) dτ ≤ C4(T ) , ∀t∈ [0, T ] .

Differentiating (3.44) with respect to x, we see that

(3.45) µ
∂

∂t

(

uxxxx

u

)

+
Rθuxxxx

u2
= E2(x, t)

with

E2(x, t) = µ

[

vxxuxxx + uxvxxxx

u2
− 2uxvxuxxx

u3

]

+
2Rθuxuxxx

u3
− Rθxuxxx

u2

+ E1x(x, t) .

Using Lemmas 2.1–2.3 and Lemmas 3.1–3.2, we can deduce that

‖Exx(t)‖ ≤ C4(T )
(

‖θx(t)‖H3 + ‖ux(t)‖H2 + ‖vx(t)‖H3

)

,(3.46)

‖E1x(t)‖ ≤ C4(T )
(

‖vx(t)‖H3 + ‖ux(t)‖H2 + ‖vtx(t)‖H2 + ‖θx(t)‖H3

)

,(3.47)

‖E2(t)‖ ≤ C4(T )
(

‖vx(t)‖H3 + ‖ux(t)‖H2 + ‖vtx(t)‖H2 + ‖θx(t)‖H3

)

.(3.48)

On the other hand, differentiating (1.2) with respect to t and x, we infer that

‖vtxxx(t)‖ ≤ C1(T ) ‖vttx(t)‖ + C2(T )
(

‖vxx‖H1 + ‖θx(t)‖H1 + ‖ux(t)‖H1(3.49)

+ ‖θtx(t)‖H1 + ‖θt(t)‖ + ‖vtx(t)‖H1

)

.

Similarly, we have

‖θtxxx(t)‖ ≤ C1(T ) ‖θttx(t)‖ + C2(T )
(

‖ux(t)‖ + ‖vxx‖H1 + ‖θx(t)‖H2(3.50)

+ ‖θtx(t)‖H1 + ‖θt(t)‖ + ‖vtx(t)‖H1

)

.

Thus it follows from Lemmas 2.1–2.3, Lemmas 3.1–3.2 and (3.49)–(3.50) that

(3.51)

∫ t

0

(

‖vtxxx‖2 + ‖θtxxx‖2
)

(τ) dτ ≤ C4(T ) , ∀ t∈ [0, T ] .



ON THE CAUCHY PROBLEM FOR A VISCOUS IDEAL GAS 109

By virtue of (3.38), (3.42)–(3.43), (3.48)–(3.49), Lemmas 2.1–2.3 and Lemmas

3.1–3.2, we have

(3.52)

∫ t

0
‖E2‖2(τ) dτ ≤ C4(T ) , ∀ t∈ [0, T ] .

Multiplying (3.45) by uxxxx
u in L2(R), we get

(3.53)
d

dt

∥

∥

∥

uxxxx

u
(t)

∥

∥

∥

2
+ C−1

1

∥

∥

∥

uxxxx

u
(t)

∥

∥

∥

2
≤ C1(T ) ‖E2(t)‖2

which combined with (3.52) implies

(3.54) ‖uxxxx(t)‖2 +

∫ t

0
‖uxxxx‖2(τ) dτ ≤ C4(T ) , ∀ t∈ [0, T ] .

Exploiting (3.15)–(3.18), Lemmas 2.1–2.3, Lemmas 3.1–3.2 and (3.38)–(3.44),

we derive

(3.55)

∫ t

0

(

‖vtt‖2 + ‖θtt‖2
)

(τ) dτ ≤ C4(T ) , ∀ t∈ [0, T ] .

Differentiating (1.2) with respect to x three times, and using the following esti-

mates

‖σx(t)‖ ≤ C2(T )
(

‖vxx(t)‖ + ‖θx(t)‖ + ‖ux(t)‖
)

,

‖σxx(t)‖ ≤ C2(T )
(

‖vx(t)‖H2 + ‖θx(t)‖H1 + ‖ux(t)‖H1

)

,

‖σxxx(t)‖ ≤ C2(T )
(

‖vx(t)‖H3 + ‖θx(t)‖H2 + ‖ux(t)‖H2

)

,

we deduce that

(3.56) ‖vxxxxx(t)‖ ≤ C1(T ) ‖vtxxx(t)‖+C2(T )
(

‖ux(t)‖H3+‖vx(t)‖H3+‖θx(t)‖H3

)

.

Thus we conclude from (1.1), (3.42)–(3.43), (3.51), (3.54), (3.56), and Lemmas

2.1–2.2 and Lemmas 3.1–3.2 that

(3.57)

∫ t

0

(

‖vxxxxx‖2 + ‖utxxx‖2
H1

)

(τ) dτ ≤ C4(T ) , ∀ t∈ [0, T ] .

Similarly, we can deduce that for any t ∈ [0, T ],

∫ t

0
‖θxxxxx‖2(τ) dτ ≤ C4(T ) ,(3.58)

∫ t

0

(

‖vxx‖2
W 2,∞ + ‖θxx‖2

W 2,∞

)

(τ) dτ ≤ C4(T ) .(3.59)
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Thus exploiting (1.1), (3.38)–(3.44), (3.51), (3.54)–(3.55), (3.57)–(3.58) and

the interpolation inequality, we can derive the desired estimates (3.31)–(3.33).

The proof is complete.

Lemma 3.4. Under the assumptions of Theorem 1.2, the following estimates

hold for any t ∈ [0, T ],

‖u(t)− ū‖2
H4 + ‖ut(t)‖2

H3 + ‖utt(t)‖2
H1 + ‖v(t)‖2

H4 + ‖vt(t)‖2
H2 + ‖vtt(t)‖2 +(3.60)

+ ‖θ(t)− θ̄‖2
H4 + ‖θt(t)‖2

H2 + ‖θtt(t)‖2 +

∫ t

0

(

‖ux‖2
H3 + ‖vx‖2

H4 + ‖vt‖2
H3

+ ‖vtt‖2
H1 + ‖θx‖2

H4 + ‖θt‖2
H3 + ‖θtt‖2

H1

)

(τ) dτ ≤ C4(T ) ,

∫ t

0

(

‖ut‖2
H4 + ‖utt‖2

H2 + ‖uttt‖2
)

(τ) dτ ≤ C4(T ) .(3.61)

Proof: Using (1.1), Lemmas 2.1–2.3 and Lemmas 3.1–3.3, we can derive

estimates (3.60)–(3.61). The proof is complete.

Proof of Theorem 1.2: By Lemmas 3.1–3.4, we have proved the global

existence of H4-solution to problem (1.1)–(1.4) and the uniqueness follows from

that of the H1-global solution or the H2-global solution. To complete the proof,

we need only prove that (1.21) holds for i = 4, which will be done in the next

lemma.

Lemma 3.5. Under the assumptions of Theorem 1.2, the H4-global solution

to problem (1.1)–(1.4) is continuously dependent on initial data in the sense of

(1.21) for i = 4.

Proof: Similarly to the proof of Lemma 2.4, we have equations (2.28)–(2.30),

but now we assume that u0j − ū, v0j , θ0j − θ̄ ∈ H4(R), u0j(x) > 0, θ0j(x) > 0 on R

and the corresponding compatibility conditions hold, and u, v and θ are the same

sense as in Lemma 2.4.

By Lemma 3.4, we get that for any t ∈ [0, T ],

∥

∥

∥

(

uj(t)− ū, vj(t), θj(t)− θ̄
)
∥

∥

∥

2

H4
+‖ujt(t)‖2

H3 +‖ujtt(t)‖2
H1 +‖vjt(t)‖2

H2 +(3.62)

+ ‖vjtt(t)‖2 +‖θjt(t)‖2
H2 +‖θjtt(t)‖2 +

∫ t

0

(

‖ujx‖2
H3 +‖vjx‖2

H4 +‖θjx‖2
H4 +‖vjt‖2

H3

+ ‖vjtt‖2
H1 +‖θjt‖2

H3 +‖θjtt‖2
H1 +‖ujt‖2

H4 +‖ujtt‖2
H2 +‖ujttt‖2

)

(τ) dτ ≤ C4(T ) .
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Inserting the relation vxxx/u1 = (uxx/u1)t − v1xuxx/u2
1 into (2.40), we arrive at

(3.63) µ

(

uxx

u1

)

t

+
Rθ2uxx

u1u2
= R1

where

R1(x, t) = (2µvxxu1x + µv1xuxx)/u2
1 + R(x, t) + vtx .

Differentiating (3.63) with respect to x, we arrive at

(3.64) µ

(

uxxx

u1

)

t

+
Rθ2uxxx

u1u2
= R2

with

R2(x, t) = R1x + µ

(

u1xuxx

u2
1

)

t

+
Rθ2(u1u2)xuxx

u2
1u2

2

− Rθ2xuxx

u1u2
.

By virtue of Lemmas 2.1–2.2 and Lemmas 3.1–3.4, we can infer that

‖R(t)‖2 ≤ C4(T )
(

‖u(t)‖2
H2 +‖v(t)‖2

H2 +‖θ(t)‖2
H2

)

,(3.65)

‖Rx(t)‖2 ≤ C4(T )
(

‖u(t)‖2
H3 +‖θ(t)‖2

H3 +‖v(t)‖2
H3

)

,(3.66)

‖Rxx(t)‖2 ≤ C4(T )
(

‖u(t)‖2
H4 +‖v(t)‖2

H4 +‖θ(t)‖2
H4

)

,(3.67)

‖R1x(t)‖2 ≤ C1(T ) ‖vtxx(t)‖2 +C4(T )
(

‖u(t)‖2
H3 +‖θ(t)‖2

H3 +‖v(t)‖2
H3

)

(3.68)

and

‖R1xx(t)‖2 ≤ C4(T )
(

‖vtxx(t)‖2 +‖vtxxx(t)‖2
)

+ C4(T )
(

1+‖v2xxxxx(t)‖2
)(

‖u(t)‖2
H4 +‖θ(t)‖2

H4 +‖v(t)‖2
H4

)

.(3.69)

Hence, with the help of (3.65)–(3.69), we derive that

‖R2(t)‖2 ≤ C1(T ) ‖vtxx(t)‖2(3.70)

+ C4(T )
(

‖u(t)‖2
H3 + ‖v(t)‖2

H3 + ‖θ(t)‖2
H3 + ‖vtx(t)‖2

)

and

‖R2x(t)‖2 ≤ C4(T )
(

‖vtxx(t)‖2 + ‖vtxxx(t)‖2
)

+ C4(T )
(

1 + ‖v2x(t)‖2
H4

) (

‖u(t)‖2
H4 + ‖v(t)‖2

H4 + ‖θ(t)‖2
H4

)

.(3.71)
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Differentiating (3.64) with respect to x, we find that

(3.72) µ

(

uxxxx

u1

)

t

+
Rθ2uxxxx

u1u2
= R3(x, t)

where

R3(x, t) = µ

(

u1xuxxx

u2
1

)

t

− Rθ2xuxxx

u1u2
+

R(u1u2)xθ2uxxx

u2
1u2

2

+ R2x(x, t) .

Multiplying (3.64) and (3.72) by uxxx
u1

and uxxxx
u1

in L2(R) respectively, we have

d

dt

∥

∥

∥

uxxx

u1
(t)

∥

∥

∥

2
+ C−1

1 (T )
∥

∥

∥

uxxx

u1
(t)

∥

∥

∥

2
≤ C1(T ) ‖R2(t)‖2 ,(3.73)

d

dt

∥

∥

∥

uxxxx

u1
(t)

∥

∥

∥

2
+ C−1

1 (T )
∥

∥

∥

uxxxx

u1
(t)

∥

∥

∥

2
≤ C1(T ) ‖R3(t)‖2 .(3.74)

Differentiating (2.29) with respect to t and x, we can derive

‖vtxxx(t)‖ ≤ C4(T )
(

‖vttx(t)‖ + ‖vtxx(t)‖
)

+ C4(T )
(

1 + ‖v2t(t)‖H3

)

×
(

‖u(t)‖H2 + ‖v(t)‖H2 + ‖θ(t)‖H2 + ‖θt(t)‖ + ‖vtx(t)‖
)

which with (3.71) gives

‖R3(t)‖2 ≤ C4(T )
(

‖vttx(t)‖2+‖vtxx(t)‖2
)

+ C4(T )
(

1+‖v2x(t)‖2
H4 +‖v2t(t)‖2

H3

)

×
(

‖u(t)‖2
H4 +‖v(t)‖2

H4 +‖θ(t)‖2
H4 +‖θt(t)‖2 +‖vt(t)‖2 +‖vtx(t)‖2

)

.(3.75)

On the other hand, we deduce from (2.30) that

‖θt(t)‖ ≤ C4(T )
(

‖θ(t)‖H2 + ‖u(t)‖H1 + ‖v(t)‖H1

)

,(3.76)

or

‖θxx(t)‖ ≤ C4(T )
(

‖θt(t)‖ + ‖θ(t)‖H1 + ‖u(t)‖H1 + ‖v(t)‖H1

)

(3.77)

and

‖θtx(t)‖ ≤ C4(T )
(

‖θ(t)‖H3 + ‖u(t)‖H2 + ‖v(t)‖H2

)

(3.78)
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or

‖θxxx(t)‖ ≤ C4(T )
(

‖θtx(t)‖ + ‖u(t)‖H2 + ‖v(t)‖H1 + ‖vt(t)‖(3.79)

+ ‖θ(t)‖H1 + ‖θt(t)‖
)

,

‖θxxxx(t)‖ ≤ C4(T )
(

‖u(t)‖H3 + ‖v(t)‖H1 + ‖θ(t)‖H1 + ‖vt(t)‖(3.80)

+ ‖θt(t)‖ + ‖vtx(t)‖ + ‖θtx(t)‖ + ‖θtt(t)‖
)

,

‖θtt(t)‖ ≤ C4(T )
(

‖u(t)‖H3 + ‖v(t)‖H3 + ‖θ(t)‖H4

)

,(3.81)

‖θtxx(t)‖ ≤ C1(T ) ‖θtt(t)‖ + C4(T )
(

‖u(t)‖H1 + ‖v(t)‖H1 + ‖θ(t)‖H1(3.82)

+ ‖vt(t)‖ + ‖vtx(t)‖ + ‖θt(t)‖ + ‖θtx(t)‖
)

≤ C4(T )
(

‖u(t)‖H3 + ‖v(t)‖H3 + ‖θ(t)‖H4

)

.

In the same manner, we infer from (2.29) that

‖vt(t)‖ ≤ C4(T )
(

‖u(t)‖H1 + ‖v(t)‖H2 + ‖θ(t)‖H1

)

,(3.83)

‖vxx(t)‖ ≤ C4(T )
(

‖u(t)‖H1 + ‖v(t)‖H1 + ‖vt(t)‖ + ‖θ(t)‖H1

)

,(3.84)

‖vtx(t)‖ ≤ C4(T )
(

‖θ(t)‖H2 + ‖u(t)‖H2 + ‖v(t)‖H3

)

,(3.85)

‖vxxx(t)‖ ≤ C4(T )
(

‖u(t)‖H2 + ‖v(t)‖H1 + ‖θ(t)‖H1 + ‖vt(t)‖(3.86)

+ ‖θt(t)‖ + ‖vtx(t)‖
)

,

‖vxxxx(t)‖ ≤ C4(T )
(

‖u(t)‖H3 + ‖v(t)‖H1 + ‖θ(t)‖H1 + ‖vt(t)‖(3.87)

+ ‖vtx(t)‖ + ‖vtt(t)‖ + ‖θt(t)‖ + ‖θtx(t)‖
)

,

‖vtt(t)‖ ≤ C4(T )
(

‖u(t)‖H3 + ‖v(t)‖H4 + ‖θ(t)‖H3

)

,(3.88)

‖vtxx(t)‖ ≤ C4(T )
(

‖u(t)‖H3 + ‖v(t)‖H4 + ‖θ(t)‖H3

)

.(3.89)

Differentiating (2.29) with respect to t twice, multiplying the resulting equa-

tions by vtt in L2(R), using Lemmas 2.1–2.4, Lemmas 3.1–3.4, and (3.76)–(3.89),

we deduce that

1

2

d

dt
‖vtt(t)‖2 + C−1

1 (T ) ‖vttx(t)‖2 ≤(3.90)

≤ C4(T )
(

1 + ‖v2ttx‖2
) (

‖u(t)‖2
H1 + ‖v(t)‖2

H1 + ‖θ(t)‖2
H1

+ ‖vt(t)‖2 + ‖vtx(t)‖2 + ‖vtt‖2 + ‖θt(t)‖2 + ‖θtx(t)‖2 + ‖θtt(t)‖2
)

.
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Analogously, we can derive from (2.29)–(2.30) that for any δ > 0,

CV

2

d

dt
‖θtt(t)‖2 + C−1

1 (T ) ‖θttx(t)‖2 ≤(3.91)

≤ δ‖vttx(t)‖2 + C4(T, δ)
(

1 + ‖v1ttx(t)‖2 + ‖v2ttx(t)‖2 + ‖θ2ttx(t)‖2
)

×
(

‖u(t)‖2
H1 + ‖v(t)‖2

H1 + ‖θ(t)‖2
H1 + ‖vtx(t)‖2 + ‖vtt(t)‖2

+ ‖θt(t)‖2 + ‖θtx(t)‖2 + ‖θtt(t)‖2
)

,

1

2

d

dt
‖vtx(t)‖2 + C−1

1 (T ) ‖vtxx(t)‖2 ≤(3.92)

≤ δ
(

‖vtxx(t)‖2 + ‖vttx(t)‖2 + ‖θtxx(t)‖2
)

+ C4(T, δ)
(

1 + ‖v2txxx(t)‖2
)

×
(

‖u(t)‖2
H2 +‖v(t)‖2

H1 +‖θ(t)‖2
H1 +‖vt(t)‖2+‖vtx(t)‖2+‖θt(t)‖2+‖θtx(t)‖2

)

,

CV

2

d

dt
‖θtx(t)‖2 + C−1

1 (T ) ‖θtxx(t)‖2 ≤(3.93)

≤ δ
(

‖θtxx(t)‖2 + ‖θttx(t)‖2
)

+ C4(T, δ)
(

1 + ‖θ2txxx(t)‖2
)

×
(

‖u(t)‖2
H2 + ‖v(t)‖2

H1 + ‖θ(t)‖2
H1 + ‖vt(t)‖2 + ‖vtx(t)‖2

+ ‖θt(t)‖2 + ‖θtx(t)‖2 + ‖vtt(t)‖2 + ‖θtt(t)‖2
)

.

Let

G3(t) =
1

2

(

‖vtt(t)‖2 + ‖vtx(t)‖2
)

+
CV

2

(

‖θtt(t)‖2 + ‖θtx(t)‖2
)

+ δ

(

∥

∥

∥

uxxx

u1
(t)

∥

∥

∥

2
+

∥

∥

∥

uxxxx

u1
(t)

∥

∥

∥

2
)

.

Now multiplying (3.73)–(3.74) by δ respectively, adding up the resulting equations

and (3.90)–(3.93), and picking δ > 0 small enough, we get

d

dt
G3(t) + C−1

4 (T )
(

‖vttx(t)‖2 + ‖vtxx(t)‖2 + ‖θttx(t)‖2 + ‖θtxx(t)‖2(3.94)

+ ‖uxxx(t)‖2 + ‖uxxxx(t)‖2
)

≤ C4(T )H3(t)M(t)

where

M(t) = ‖u(t)‖2
H4 + ‖v(t)‖2

H4 + ‖θ(t)|2H4 + ‖vt(t)‖2 + ‖θt(t)‖2

+ ‖vtx(t)‖2 + ‖θtx(t)‖2 + ‖vtt(t)‖2 + ‖θtt(t)‖2
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and

H3(t) = 1 + ‖v1ttx(t)‖2 + ‖v2ttx(t)‖2 + ‖θ2ttx(t)‖2

+ ‖θ2t(t)‖2
H3 + ‖v2t(t)‖2

H3 + ‖v2x(t)‖2
H4

verifies, by Lemmas 2.1–2.3 and Lemmas 3.1–3.4,

(3.95)

∫ t

0
H3(τ) dτ ≤ C4(T ) (1+ t) ≤ C4(T ) , ∀ t∈ [0, T ] .

Obviously, it follows from (3.76), (3.78), (3.81), (3.83), (3.85), (3.88) and the

definition of M(t) that

‖u(t)‖2
H4 +‖v(t)‖2

H4 +‖θ(t)‖2
H4 ≤ M(t)(3.96)

≤ C4(T )
(

‖u(t)‖2
H4 +‖v(t)‖2

H4 +‖θ(t)‖2
H4

)

.

Let

G(t) = G1(t) + G2(t) + G3(t) = Ĝ(t) + G3(t) .

Then we can infer from (3.77), (3.79)–(3.80), (3.84) and (3.86)–(3.87) that

M(t) ≤ C4(T )
(

‖u(t)‖2
H4 + ‖v(t)‖2

H1 + ‖θ(t)‖2
H1 + ‖vt(t)‖2 + ‖θt(t)‖2(3.97)

+ ‖vtx(t)‖2 + ‖θtx(t)‖2 + ‖vtt(t)‖2 + ‖θtt(t)‖2
)

≤ C4(T )G(t) .

Moreover, we find from the definition of G(t) that

G(t) ≤ C4(T )
(

‖u(t)‖2
H4 + ‖v(t)‖2

H1 + ‖θ(t)‖2
H1 + ‖vt(t)‖2 + ‖θt(t)‖2

+ ‖vtx(t)‖2 + ‖θtx(t)‖2 + ‖vtt(t)‖2 + ‖θtt(t)‖2
)

≤ C4(T )M(t)

which with (3.95)–(3.96) implies

C−1
4 (T )

(

‖u(t)‖2
H4 + ‖v(t)‖2

H4 + ‖θ(t)‖2
H4

)

≤ G(t) ≤(3.98)

≤ C4(T )
(

‖u(t)‖2
H4 + ‖v(t)‖2

H4 + ‖θ(t)‖2
H4

)

.

Adding (2.41) to (3.94) yields

(3.99)
d

dt
G(t) ≤ C4(T )H3(t)G(t) .



116 YUMING QIN, YUMEI WU and FAGUI LIU

Thus using (3.97) and Gronwall’s inequality, we deduce from (3.99),

‖u(t)‖2
H4 + ‖v(t)‖2

H4 + ‖θ(t)‖2
H4 ≤ C4(T )G(t)

≤ C4(T )G(0) exp

(

C4(T )

∫ t

0
H3(τ) dτ

)

≤ C4(T )
(

‖u0‖2
H4 + ‖v0‖2

H4 + ‖θ0‖2
H4

)

which implies (1.21) with i = 4. The proof is complete.

Till we have finished the proof of Theorem 1.2.

4 – Proof of Theorem 1.3

In this section, we finish the proof of Theorem 1.3. In order to study the large-

time behavior of the H i-global solutions (i = 2, 4), obviously all the estimates

established in Section 2 and Section 3 will no longer work because those estimates

depend heavily on T > 0, any given length of time. Thus we have to derive the

uniform estimates in H i(R) (i = 1, 2, 4) in which all the constants depend only

on min
x∈R

u0(x), min
x∈R

θ0(x), the H i(R) (i = 1, 2, 4) norm of (u0 − ū, v0, θ0 − θ̄) (and

e0 or E0, E1 (see Theorem 1.3)), but independent of any length of time T > 0.

Since for any unbounded domain, the Poincaré inequality will not be valid and

hence, unlike the corresponding initial boundary value problems of (1.1)–(1.3) in

bounded domains (see e.g. [1–3, 11–13, 21, 24, 27–28, 31–36, 39, 41–46, 50–51]),

the exponential decay of solutions will not be anticipated (see e.g. [1, 4, 14, 19,

21–23, 25–26, 29–32, 39–40, 49]). Note that H1-solutions do not possess enough

regularity and summability to allow all operations performed in Sections 2 and 3.

Now we first use some H1-estimates given in [21, 23, 26, 27, 39] to establish

uniform H1-estimates similar to (2.1)–(2.4) in the following lemma.

Lemma 4.1. Assume that u0− ū, v0, θ0− θ̄ ∈ H1(R) with some constants

ū > 0, θ̄ > 0 and u0(x) > 0, θ0(x) > 0 on R, and the compatibility conditions

hold. Then there exists a constant ǫ0 ∈ (0, 1] such that

(I) if E0E1 ≤ ǫ0, then, estimates (1.16)–(1.17) with T = +∞ hold and the

H1-generalized global solution
(

u(t), v(t), θ(t)
)

to the Cauchy problem

(1.1)–(1.4) satisfies that for any (x, t) ∈ R×[0, +∞),

0 < C−1
1 ≤ θ(x, t) ≤ C1 ,(4.1)

0 < C−1
1 ≤ u(x, t) ≤ C1(4.2)
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and for any t > 0,

‖u(t)− ū‖2
H1 + ‖v(t)‖2

H1 + ‖θ(t)− θ̄‖2
H1(4.3)

+

∫ t

0

(

‖vx‖2
H1 + ‖θx‖2

H1 + ‖ux‖2 + ‖vt‖2 + ‖θt‖2
)

(τ) dτ ≤ C1 ,

‖u(t)− ū‖2
L∞ + ‖v(t)‖2

L∞ + ‖θ(t)− θ̄‖2
L∞(4.4)

+

∫ t

0

(

‖ut‖2
H1 + ‖vx‖2

L∞ + ‖θx‖2
L∞

)

(τ) dτ ≤ C1

and as t → +∞,

(4.5)
∥

∥

∥

(

u(t)− ū, v(t), θ(t)− θ̄
)∥

∥

∥

L∞

+
∥

∥

∥

(

ux(t), vx(t), θx(t)
)∥

∥

∥
→ 0

or

(II) if e0 ≤ ǫ0, then estimates (1.16)–(1.17) with T = +∞ and (4.1)–(4.5) hold

and the H1-generalized global solution
(

u(t), v(t), θ(t)
)

satisfies that for

any (x, t) ∈ R×[0, +∞),

(4.6)
∣

∣u(x, t) − ū
∣

∣ + φ(t)
∣

∣θ(x, t) − θ̄
∣

∣ <
1

3
min(ū, θ̄)

where φ(t) = min(1, t).

Proof: Case I: From [39] (see e.g. Theorem 2.1) it follows that there exists

a constant ǫ1 ∈ (0, 1] such that if E0E1 ≤ ǫ1, then H1-generalized global solution
(

u(t), v(t), θ(t)
)

to the Cauchy problem (1.1)–(1.4) satisfies estimates (4.1)–(4.3)

and (4.5). Using the interpolation inequality: ‖f‖L∞ ≤ C ‖f‖1/2‖fx‖1/2 for any

f ∈H1(R) where C > 0 is a positive constant independent of any length of time,

we easily deduce (4.4) from (4.3).

Case II: We know from [21] (see e.g. Theorem 1.1(ii) or [22]) there is a constant

ǫ2 ∈ (0, 1] such that if e0 ≤ ǫ2, then estimates (4.5)–(4.6) and

(4.7) ‖u(t)−ū‖2+‖v(t)‖2+‖θ(t)− θ̄‖2+

∫ t

0

(

‖vx‖2+‖θx‖2
)

(τ) dτ ≤ C1 , ∀t>0

hold. Clearly, (4.2) is the direct result of (4.6). By (4.6) we get that for any

t ≥ 1,

(4.8) 0 < C−1
1 ≤ θ(x, t) ≤ C1 , ∀x∈R .

Moreover, we find from the proofs in [26, 27] that

C−1
1 e−C1t ≤ θ(x, t) ≤ C1eC1t , ∀(x, t) ∈ R×[0, +∞)
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which together with (4.8) yields estimate (4.1). In view of (1.1), we can write

(1.2) in the form

(4.9) µ

(

ux

u

)

t

= vt + R

(

θ

u

)

x

.

Multiplying (4.9) by ux/u in L2(R), using (4.1)–(4.2) and (4.7), integrating by

parts, and noting that (ux/u)t = (ut/u)x = (vx/u)x, we deduce that

µ

2

∫

R

(

ux

u

)2

dx + R

∫ t

0

∫

R

θu2
x

u3
dx dτ ≤

≤ C1 +

∫

R

v
ux

u

∣

∣

∣

t

0
dx +

∫ t

0

∫

R

v2
x

u
dx dτ + R

∫ t

0

∫

R

θxux

u2
dx dτ

≤ C1 +
R

2

∫ t

0

∫

R

θu2
x

u3
dx dτ +

µ

4

∫

R

(

ux

u

)2

dx

which, together with (4.1)–(4.2), gives

(4.10) ‖ux(t)‖2 +

∫ t

0
‖ux‖2(τ) dτ ≤ C1 , ∀t > 0 .

Multiplying (1.2) by vxx in L2(R), using (4.1)–(4.2), (4.7), (4.10), the interpola-

tion inequality and integrating by parts, we have

‖vx(t)‖2 +

∫ t

0
‖vxx‖2(τ) dτ ≤ C1 + C1

∫ t

0

(

‖vx‖‖vxx‖‖ux‖2+‖θx‖2+‖ux‖2
)

(τ) dτ

≤ C1 +
1

2

∫ t

0
‖vxx‖2(τ) dτ

whence

(4.11) ‖vx(t)‖2 +

∫ t

0
‖vxx‖2(τ) dτ ≤ C1 , ∀ t > 0 .

Analogously, from (1.3) we get

‖θx(t)‖2 +

∫ t

0
‖θxx‖2(τ) dτ ≤ C1+ C1

∫ t

0

(

‖θx‖‖θxx‖‖ux‖2+‖vx‖3‖vxx‖+‖vx‖2
)

(τ) dτ

≤ C1 +
1

2

∫ t

0
‖θxx‖2(τ) dτ

implying

(4.12) ‖θx(t)‖2 +

∫ t

0
‖θxx‖2(τ) dτ ≤ C1 , ∀ t > 0 .
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By (1.2)–(1.3), (4.1)–(4.2), (4.7) and (4.10)–(4.12), using the interpolation in-

equality, we derive

‖vt(t)‖ ≤ C1

(

‖vxx(t)‖ + ‖vx(t)‖1/2‖vxx(t)‖1/2‖ux‖ + ‖θx(t)‖ + ‖ux(t)‖
)

≤ C1

(

‖vxx(t)‖ + ‖vx(t)‖ + ‖ux(t)‖ + ‖θx(t)‖
)

,(4.13)

‖θt(t)‖ ≤ C1

(

‖θxx(t)‖ + ‖θx(t)‖1/2‖θxx(t)‖1/2‖ux(t)‖

+ ‖vx(t)‖3/2‖vxx(t)‖1/2 + ‖vx(t)‖
)

≤ C1

(

‖θxx(t)‖ + ‖vx(t)‖ + ‖θx(t)‖ + ‖vxx(t)‖
)

which, combined with (4.7) and (4.10)–(4.13) implies estimate (4.3). Taking

ǫ0 = min[ǫ1, ǫ2] ends the proof.

Since we have established in Lemma 4.1 uniform H1-estimates similar to

(2.1)–(2.4) in Lemma 2.1, we only need to repeat the same argumentations as in

Lemmas 2.2–2.4 and Lemmas 3.1–3.4 to be able to reach estimates (1.24)–(1.29)

in Theorem 1.3. Now all constants in these estimates will no longer depend on

T > 0, any length of time, i.e., Ci(+∞) = Ci (i = 1, 2, 4). In order to finish the

proof of Theorem 1.3, it suffices to prove the results on the large-time behavior

of the H i (i = 2, 4)-global solutions in Theorem 1.3. To this end, we need the

following lemma.

Lemma 4.2. Suppose y and h are nonnegative functions on [0, +∞), y′ is

locally integrable, and y, h satisfy

∀ t > 0 : y′(t) ≤ A1y2(t) + A2 + h(t) ,

∀T > 0 :

∫ T

0
y(s) ds ≤ A3 ,

∫ T

0
h(s) ds ≤ A4 ,

with A1, A2, A3, A4 being positive constants independent of t and T. Then for

any r > 0

∀ t≥ 0 : y(t+r) ≤
(

A3

r
+ A2 r + A4

)

eA1A2 .

Moreover,

lim
t→+∞

y(t) = 0 .

Proof: See, e.g. [52].
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The next two lemmas concern the large-time behavior of H2 and H4 global

solutions respectively.

Lemma 4.3. Under the assumptions in Theorem 1.3 with i = 2, if e0 ≤ ǫ0
or E0E1 ≤ ǫ0, then the H2-generalized global solution

(

u(t), v(t), θ(t)
)

obtained

in Theorem 1.1 to the Cauchy problem (1.1)–(1.4) satisfies (1.30)–(1.31).

Proof: We start from Lemma 4.1, repeat the same reasoning as derivation of

(2.10), (2.12)–(2.14), (2.16)–(2.17), (2.21) and (2.23)–(2.24) in Lemmas 2.2–2.4

and keep in mind that at this time all constants Ci(T ) (i = 1, 2, 3, 4) in Lemmas

2.2–2.4 will not depend on T > 0 to obtain

d

dt
‖vt(t)‖2 + (2C1)

−1‖vtx(t)‖2 ≤ C2

(

‖vx(t)‖2 +‖vxx(t)‖2 +‖θt(t)‖2
)

,(4.14)

d

dt
‖θt(t)‖2 + (2C1)

−1‖θtx(t)‖2 ≤ C2

(

‖vx(t)‖2 +‖θx(t)‖2 +‖θt(t)‖2(4.15)

+ ‖vtx(t)‖2
)

,

d

dt

∥

∥

∥

uxx

u
(t)

∥

∥

∥

2
+ (2C1)

−1‖uxx(t)‖2 ≤ C2

(

‖θx(t)‖2 +‖ux(t)‖2 +‖vxx(t)‖2(4.16)

+ ‖θxx(t)‖2 + ‖vtx(t)‖2
)

,

‖vxx(t)‖ ≤ C1

(

‖vt(t)‖ + ‖vx(t)‖ + ‖ux(t)‖
)

≤ C2 ,(4.17)

‖θxx(t)‖ ≤ C1

(

‖θt(t)‖ + ‖θx(t)‖ + ‖vx(t)‖ + ‖vxx(t)‖
)

≤ C2 ,(4.18)

‖vx(t)‖2
L∞ ≤ C ‖vx(t)‖ ‖vxx(t)‖ ≤ C2 ,

(4.19)
‖θx(t)‖2

L∞ ≤ C ‖θx(t)‖ ‖θxx(t)‖ ≤ C2 ,

‖ux(t)‖2
L∞ ≤ C ‖ux(t)‖ ‖uxx(t)‖ ≤ C2 .(4.20)

Applying Lemma 4.2 to (4.14)–(4.16) and using estimate (1.26), we obtain that

as t → +∞,

(4.21) ‖vt(t)‖ → 0 , ‖θt(t)‖ → 0 , ‖uxx(t)‖ → 0

which with (1.1), (4.5) and (4.17)–(4.20) implies that as t → +∞,

‖vxx(t)‖ + ‖θxx(t)‖ + ‖ut(t)‖H1 → 0 ,(4.22)

‖ut(t)‖L∞ +
∥

∥

(

ux(t), vx(t), θx(t)
)
∥

∥

L∞
→ 0.(4.23)

Thus (1.30)–(1.31) follows from (4.5) and (4.21)–(4.23). The proof is complete.
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Lemma 4.4. Under the assumptions in Theorem 1.3 with i = 4, if e0 ≤ ǫ0 or

E0E1 ≤ ǫ0, then the H4-global solution
(

u(t), v(t), θ(t)
)

obtained in Theorem 1.2

to the Cauchy problem (1.1)–(1.4) satisfies (1.32)–(1.33).

Proof: Similarly to (3.19), (3.34), (3.39)–(3.40), (3.47), (3.63) and using

(1.28), we derive

d

dt
‖vtt(t)‖2 + (2C1)

−1‖vttx(t)‖2 ≤(4.24)

≤ C2

(

‖θxx(t)‖2+‖θtx(t)‖2
H1+‖vx(t)‖2

H1+‖vtx(t)‖2+‖θt(t)‖2+‖ux(t)‖2
)

,

d

dt
‖θtt(t)‖2 + C−1

1 ‖θttx(t)‖2 ≤(4.25)

≤ C4

(

‖θtx(t)‖2+‖vtx(t)‖2
H1+‖vx(t)‖2+‖θt(t)‖2+‖vttx(t)‖2+‖θtt(t)‖2

)

,

d

dt
‖vtx(t)‖2 + C−1

1 ‖vtxx(t)‖2 ≤(4.26)

≤ C2

(

‖θtx(t)‖2+‖vtx(t)‖2+‖θt(t)‖2+‖vxx(t)‖2+‖θx(t)‖2+‖ux(t)‖2
)

,

d

dt
‖θtx(t)‖2 + C−1

1 ‖θtxx(t)‖2 ≤(4.27)

≤ C2

(

‖θtx(t)‖2 + ‖θxx(t)‖2 + ‖vxx(t)‖2 + ‖ux(t)‖2
)

,

d

dt

∥

∥

∥

uxxx

u
(t)

∥

∥

∥

2
+ C−1

1

∥

∥

∥

uxxx

u
(t)

∥

∥

∥

2
≤ C1‖E1(t)‖2 ,(4.28)

d

dt

∥

∥

∥

uxxxx

u
(t)

∥

∥

∥

2
+ C−1

1

∥

∥

∥

uxxxx

u
(t)

∥

∥

∥

2
≤ C1‖E2(t)‖2(4.29)

where, by (1.28), (3.36) and (3.52),

(4.30)

∫ t

0

(

‖E1‖2 + ‖E2‖2
)

(τ) dτ ≤ C4 , ∀ t > 0 .

Applying Lemma 4.2 to (4.24)–(4.29) and using estimates (1.28) and (4.30),

we infer that as t → +∞,

‖vtt(t)‖ → 0 , ‖θtt(t)‖ → 0 , ‖vtx(t)‖ → 0 ,(4.31)

‖θtx(t)‖ → 0 , ‖uxxx(t)‖ → 0 , ‖uxxxx(t)‖ → 0 .(4.32)
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In the same manner as (3.7), (3.9), (3.41) and using the interpolation inequality,

we deduce that

‖vxxx(t)‖ ≤ C2

(

‖vx(t)‖+‖ux(t)‖H1+‖θx(t)‖H1+‖vtx(t)‖
)

,(4.33)

‖vtxx(t)‖ ≤ C1‖vtt(t)‖ + C2

(

‖vxx(t)‖+‖ux(t)‖+‖vtx(t)‖(4.34)

+ ‖θx(t)‖+‖θt(t)‖+‖θtx‖
)

,

‖vxxxx(t)‖ ≤ C2

(

‖vx(t)‖H2+‖ux(t)‖H2+‖θx(t)‖H2+‖vtxx(t)‖
)

,(4.35)

‖vtx(t)‖2
L∞ ≤ C ‖vtx(t)‖ ‖vtxx(t)‖ ,

(4.36)
‖vt(t)‖2

L∞ ≤ C ‖vt(t)‖ ‖vtx(t)‖ ,

‖vxx(t)‖2
L∞ ≤ C ‖vxx(t)‖ ‖vxxx(t)‖ ,

(4.37)
‖vxxx(t)‖2

L∞ ≤ C ‖vxxx(t)‖ ‖vxxxx(t)‖ ,

‖uxx(t)‖2
L∞ ≤ C ‖uxx(t)‖ ‖uxxx(t)‖ ,

(4.38)
‖uxxx(t)‖2

L∞ ≤ C ‖uxxx(t)‖ ‖uxxxx(t)‖ .

Thus it follows from (1.1), (4.31)–(4.38) and Lemma 4.3 that as t → +∞,
∥

∥

(

ux(t), vx(t)
)∥

∥

H3 + ‖vt(t)‖H2 + ‖ut(t)‖H3 + ‖ut(t)‖W 2,∞(4.39)

+ ‖utt(t)‖H1 + ‖(ux(t), vx(t))‖W 2,∞ → 0 .

Analogously, we can derive that as t → +∞,

‖θx(t)‖H3 + ‖θt(t)‖H2 + ‖θt(t)‖W 1,∞ + ‖θx(t)‖W 2,∞ → 0

which together with Lemma 4.3 and (4.39) implies estimates (1.32)–(1.33).

The proof is complete.

Till now we have finished the proof of Theorem 1.3.

Proof of Corollary 1.1: Applying the embedding theorem, we readily get

estimate (1.34) and complete the proof from Theorem 1.2.
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