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Spectral asymptotics on sequences of elliptically
degenerating Riemann surfaces

Daniel Garbin and Jay Jorgenson

Abstract. In this article we study the spectral theory associated to families of hyperbolic
Riemann surfaces obtained through elliptic degeneration, in particular the behavior of
several spectral invariants. Some of these invariants, such as the Selberg zeta function
and the spectral counting functions associated to small eigenvalues below 1/4, converge
to their respective counterparts on the limiting surface. Other spectral invariants, such as
the spectral zeta function and the logarithm of the determinant of the Laplacian, diverge.
In these latter cases, we identify diverging terms and remove their contributions, thus
regularizing convergence of these spectral invariants. Our study is motivated by a result
from [Hej3], which D. Hejhal attributes to A. Selberg, proving spectral accumulation for the
family of Hecke triangle groups. In this article, we obtain a quantitative result to Selberg’s
remark.
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1. Introduction

In the last section of the monumental second volume of Selberg trace formula
for PSL.2;R/ , D. Hejhal proves a statement, which he attributes to A. Selberg,
concerning the behavior of the zeros and poles of the scattering determinant for
the Eisenstein series associated to the Hecke triangle groups GN as N goes
to in�nity. Namely, for the Hecke triangle groups GN which are subgroups
of PSL.2;R/ generated by the fractional linear transformations z 7! �1=z and
z 7! z C 2 cos.�=N/ for 3 � N � 1 , the parabolic Eisenstein series associated
to the cusp at in�nity has the following Fourier expansion

EN .zI s/ D y
s
C �N .s/y

1�s
CO.e�2�y/;
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where the function �N .s/ is referred to as the determinant of the scattering matrix
(a 1-1 matrix in this case). �e behavior for the zeros and the poles of �N .s/ are
the last two results in Hejhal’s second volume on the trace formula, with zeros
accumulating to the right of the critical line and the poles to the left of it. �e
precise statements of �eorem 7.11 and Corollary 7.12 in [Hej3] are as follows:

Given t0 2 R and 0 < ı < 1 , the rectangle Œ1
2
; 1
2
C ı� � Œt0 � ı; t0 C ı� must

contain zeros of �N .s/ and the rectangle Œ1
2
� ı; 1

2
�� Œt0 � ı; t0C ı� must contain

poles of �N .s/ when N is su�ciently large.
�e latter result appears in the ending remarks of Selberg’s Göttingen lectures

part 2. Hejhal also promises to explore this topic in a third volume on the trace
formula, a volume that unfortunately has not yet been published. Motivated by this
remark, we are set to provide the quanti�cation of the rate of accumulation of the
poles of the scattering determinant for the Hecke triangle groups. Furthermore, the
Hecke triangle groups is one instance of a family of hyperbolic Riemann surfaces
which is elliptically degenerating. In the setting of the Hecke groups GN , Hejhal
shows that the Eisenstein series and the scattering determinants converge through
degeneration.

�e present paper is motivated by the goal of establishing a quantitative
formulation of the above mentioned result. More generally, we will de�ne a
(discrete) sequence of hyperbolic Riemann surfaces that we deem to be elliptically
degenerating. We denote by ¹Mqº to be a sequence of �nite volume hyperbolic
Riemann surface parametrized by the vector q which consists of the orders
of some of the torsion points corresponding to �nite order elements in the
fundamental group. By letting these orders approach in�nity one obtains an
elliptically degenerating family of surfaces, with the limiting surface M1 having
q additional cusps corresponding to each degenerating torsion point. Let us
summarize some of the main results below. After establishing the de�nition of
elliptic degeneration, we then investigate the behavior of such spectral invariants
in the setting of elliptic degeneration of hyperbolic Riemann surfaces. We list
below some of the results we have derived.

For T � 0 , let NMq ;w.T / denote a weighted spectral counting function. In
the compact case, NMq ;w.T / is given by the formula

NMq ;w.T / D
X

�n;q<T

.T � �n;q/
w ;

where w � 0 denotes the weight and the �n;q s are discrete eigenvalues of the
Laplace operator. For the non-compact case, we refer the reader to Section 5.
One of the main results of this paper describes the behavior through elliptic
degeneration of the weight zero spectral counting function. Namely, �eorem 5.7
shows that as q approaches in�nity, then
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NMq ;0.T / D c0.T / log.Q/CO
��

log.Q/
�3=4�

;

where Q denotes of the product of the orders of degenerating torsion points
and c0.T / is some constant depending on T only. �is in turn, when applied to
the special case of Hecke triangle groups (where Q D N ), describes the rate of
accumulation of the poles of the scattering determinant.

Another result concerns the behavior of the spectral zeta function through
elliptic degeneration given in �eorem 6.2. For ˛ 2 .0; 1=4/ we denote by �.˛/Mq

.s/

the ˛ -truncated spectral zeta function, which in the compact case is de�ned by
the series

�
.˛/
Mq
.s/ D

X
�n;q�˛

��sn;q

for Re.s/ > 1 . Denote by DtrKMq .t/ the contribution of the degenerating elliptic
elements to the trace of the heat kernel on Mq . If ˛ is not an eigenvalue of
M1 , then for any s 2 C , we have

lim
q!1

"
�
.˛/
Mq
.s/ �

1

�.s/

Z 1
0

DtrKMq .t/t s
dt

t

#
D �

.˛/
M1

.s/:

�e result is valid in the compact as well as non-compact �nite volume setting.
In the compact case, the Hurwitz spectral zeta function is represented via the

Dirichlet series

�M .s; z/ D
X
�n>0

.z C �n/
�s;

for z; s 2 C with Re.z/ > 0 and Re.s/ > 1 . �e behavior through elliptic
degeneration of the Hurwitz spectral zeta function is given in �eorem 6.4.
Namely for any s 2 C and Re.z/ > �1=4 we have

lim
q!1

"
�
.˛/
Mq
.s; z/ �

1

�.s/

Z 1
0

DtrKMq .t/e�zt t s
dt

t

#
D �

.˛/
M1

.s; z/:

As with the spectral zeta, the result also applies to the non-compact �nite volume
setting.

�e Selberg zeta function is de�ned by the product

ZM .s/ D
Y

2H.�/

1Y
nD0

�
1 � e�.sCn/`

�
;

with convergence for Re.s/ > 1 . �e behavior of the Selberg zeta function through
elliptic degeneration is given by Corollary 7.2, namely for any s with Re.s/ > 1
or Re.s2 � s/ > �1=4 , we have
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lim
q!1

ZMq .s/ D ZM1
.s/:

In addition to this, at s D 1 , we have that

lim
q!1

Z0Mq .1/ D Z
0
M1

.1/:

For a compact surface M , the determinant of Laplacian �M is formally de�ned
as the in�nite product

det�M D
Y
�n>0

�n;

which is regularized as a special value of the derivative of the spectral zeta
function, namely

log det�M D ��0M .0/:

Let ˛ 2 .0; 1=4/ be any number that is not an eigenvalue of M1 and de�ne the
˛ -truncated determinant det .˛/�M by

det .˛/�M D exp.��.˛/M
0.0//:

Corollary 7.3 describes the behavior of the determinant in both the compact and
non-compact �nite volume settings, namely

lim
q!1

"
log det.˛/�Mq C

Z 1
0

DtrKMq .t/
dt

t

#
D log det.˛/�M1

:

Our analysis follows a pattern of study undertaken in the setting of �nite volume
hyperbolic manifolds of dimension two and three which are degenerating by pinch-
ing geodesics; see [JLu1], [Wol], [JLu2], [JLu3], [HJL] and references therein. In
all settings, one needs to establish convergence results for the associated sequence
of heat kernels through degeneration. �is technical undertaking is identical in the
study of degenerating hyperbolic Riemann surfaces and degenerating hyperbolic
three manifolds, as one can see by comparing [JLu3] and [DJ]. �e heat kernel
convergence results in the present setting are, again, identical in their conclusion
and in their proofs. We refer the interested reader to [GJ] for details. We note
that all of the heat kernel convergence results are somewhat expected, so, in that
sense, we deem it appropriate to proceed with applications, which we develop
in this paper. Speci�cally, we will study convergence results of the Selberg zeta
function, determinants of the Laplacian, small eigenvalues and spectral counting
function. Interestingly, some of the convergence results in this paper di�er from
the setting of hyperbolic degeneration.

�e paper is organized as follows. In Section 2 we describe the setting of
elliptic degeneration. In Section 3 we de�ne various traces of the heat kernel, an
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instance of the Selberg trace formula, and describe the behavior through elliptic
degeneration of the so called regularized trace. In Sections 4 and 5 we present
the behavior of spectral measures in general and spectral counting functions in
particular, the latter of the two sections containing the result about accumulation of
the poles of the scattering determinant for the Hecke triangle groups. In Section 6
we present the behavior of the spectral and Hurwitz spectral zeta functions while
in Section 7 we study the Selberg zeta and the determinant of the Laplacian.
Section 8 concludes the paper with some remarks concerning the behavior for
other integral kernels.

2. Geometry of elliptic degeneration

Heuristically, our point of view of a sequence of elliptically degenerating
Riemann surfaces is as follows. First, one begins with a smooth, compact Riemann
surface with a prescribed open cover by unit discs, coordinate functions, and
transition maps. As such, the uniformization theorem asserts the existence of a
unique hyperbolic metric which is compatible with the complex structure and
has constant negative curvature equal to �1 . Next, choose a �nite number of
open discs within the cover and remove its origin and corresponding point on the
manifold. Again, the uniformization theorem asserts the existence of a complete
hyperbolic metric, and the removed points are considered “points at in�nity.” For
another �nite set of open discs within the cover, replace the local coordinate
on the manifold by its n -th root, where n is positive integer which will vary
from open to disc to open disc. �is procedure yields a Riemann surface with
a �nite number of points at in�nity and a �nite number of elliptic points, and,
again, the uniformization theorem provides a unique, complete hyperbolic metric.
Finally, for each elliptic point constructed above, let its rami�cation order n tend
to in�nity, possibly at varying rates. �e resulting sequence of Riemann surfaces,
with their hyperbolic metrics, is an elliptically degenerating sequence. Along the
way, one is allowed to change the local data associated to charts which do not
yield cusps or elliptic points, but one does so in a “bounded” manner. Let us
now make this construction precise.

Let M be a connected hyperbolic Riemann surface of �nite volume, either
compact or non-compact. For simplicity, let us assume that M is connected, so
then M can be realized as the quotient manifold �nH , where H is the hyperbolic
upper half space and � is a discrete subgroup of SL.2;R/=¹˙1º . A non-identity
element  2 � is called hyperbolic, parabolic, or elliptic, if  is conjugated
in SL.2;R/ to a dilation, horizontal translation, or rotation respectively. �is
is analogous to jTr./j being greater than, equal, or less than 2, respectively.
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Furthermore, an element  is called primitive, if it is not a power other than
˙1 of any other element of the group. With this in mind, a primitive hyperbolic,
parabolic, or elliptic element  is conjugated to 

e`=2 0

0 e�`=2

!
;

 
1 w

0 1

!
; or

 
cos.�=q / sin.�=q /
� sin.�=q / cos.�=q /

!
respectively. Here ` is the length of the simple closed geodesic on the surface
M in the homotopy class of  , w denotes the width of the cusp �xed by  ,
and 2�=q is the angle of the conical point �xed by  . �e positive integer q
is the order of the centralizer subgroup of the elliptic element  . We will say
that the corresponding elliptic �xed point has order q :

For a given positive integer q , let Cq denote the in�nite hyperbolic cone of
angle 2�=q . One can realize Cq as a half-in�nite cylinder

(2.1) Cq D
®
.�; �/ W � > 0; � 2 Œ0; 2�/

¯
:

equipped with the Riemannian metric

(2.2) ds2 D d�2 C q�2 sinh2.�/d�2;

having volume form

(2.3) d� D q�1 sinh.�/d�d�:

A fundamental domain for Cq in the hyperbolic unit disc model is provided by a
sector with vertex at the origin and with angle 2�=q . In these coordinates, we can
write a fundamental domain for Cq as ¹˛ exp.i�/ W 0 � ˛ < 1; 0 � � < 2�=qº .
�e hyperbolic metric on Cq is the metric induced onto the fundamental domain
viewed as a subset of the unit disc endowed with its complete hyperbolic metric.
�e isotropy group which corresponds to this fundamental domain consists of the
set of numbers ¹exp.2�ik=q/ W k D 1; 2; : : : ; qº acting by multiplication. Let
Cq;" denote the submanifold of Cq obtained by restricting the �rst coordinate of
.�; �/ to 0 � � < cosh�1.1 C "q=2�/ . A fundamental domain for Cq;" in the
unit disc model is obtained by adding the restriction that ˛ < ."q=.4� C "q//1=2:
An elementary calculation shows that the volume of this manifold vol.Cq;"/ D " ,
and the length of the boundary of Cq;" is .4�"=qC "2/1=2 . For "1 < "2 one can
show that the distance between the boundaries of the two nested cones Cq;"1 and
Cq;"2 is

dH.@Cq;"1 ; @Cq;"2/ D log
 
"2q C 2� C

p
"2q.4� C "2q/

"1q C 2� C
p
"1q.4� C "1q/

!
:

Let C1 denote an in�nite cusp. A fundamental domain for C1 in the upper
half-plane is given by the set ¹xC iy W y > 0; 0 < x < 1º . A fundamental domain
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for C1 in the upper half-plane is obtained by identifying the boundary points iy
with 1Ciy . �e isotropy group that corresponds to the above fundamental domain
consists of Z acting by addition. As before, let C1;" denote the submanifold of
C1 obtained by restricting the y coordinate of the fundamental domain given
above to y > 2=" . Elementary computations show that vol.C1;"/ D "=2 , and the
length of the boundary of C1;" is also "=2 .

In its quintessential form, elliptic degeneration turns a cone of �nite order q
into a cone of in�nite order, i.e. a cusp. To view this, we realize the positive
angle cone Cq as the half-in�nite cylinder ¹.x; y/ W x 2 Œ0; 1/; y 2 .0;1/º , by
changing the .�; �/ coordinates in (2.1) as � D 2�x and � D 2 tanh�1.e�˛y/ ,
where ˛ D 2�=q: In .x; y/ coordinates, Cq is a cone of angle ˛ D 2�=q with
apex at y D1 , equipped with the Riemannian metric

ds2q D
dx2 C dy2

˛�2 sinh2.˛y/
:

As the order q goes to in�nity, or equivalently as the angle ˛ goes to zero, the
cone Cq converges to the cusp C1 with metric given by

ds21 D
dx2 C dy2

y2
:

To develop several cones into cusps, we proceed as follows. Let q D

.q1; q2; : : : ; qm/ , with each integer qi � 2 , be a vector of the orders of el-
liptic �xed points. In this case we de�ne Cq D [

m
kD1

Cqk . We similarly de�ne
Cq;" D [

m
kD1

Cqk ;" . We say that the vector q approaches in�nity if and only if
the minimum of the qi ’s approach in�nity. With these in mind, let us make the
following de�nition.

De�nition 2.1. A family of �nite volume hyperbolic surfaces ¹Mqº is elliptically
degenerating to M1 as q approaches in�nity, if for any " 2 .0; 1=2/ the following
properties hold (see Fig. 1):

(a) Cq;" embeds isometrically into Mq and [m
kD1

C1;" embeds isometrically
into M1 ;

(b) �ere exists a sequence of homeomorphisms fq;" W MqnCq;" ! M1n [
m
kD1

C1;" such that for x; y 2M1n [mkD1 C1;"

lim
q!1

dhyp;Mq
�
f �1q;" .x/; f

�1
q;" .y/

�
D dhyp;M1

.x; y/:

(c) �e convergence above is uniform on compact subsets of M1n [mkD1 C1;" .
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2�
q1

2�
q2

2�
q3

q !1

Mq M1

Figure 1
Elliptic degeneration of q1 and q2

Remark 2.2. As notations get cumbersome, we feel that suppressing some of it
would lead to an easier reading. For instance, we may write C1;" in place of
[m
kD1

C1;" as well as C1 in place of [m
kD1

C1 . In a slight abuse of notation, we
will also write x 2M1n[mkD1C1;" in place of f �1q;" .x/ . Additionally, if "1 < "2 ,
one can set fq;"2 D fq;"1 when the latter map is restricted to MqnCq;"2 , so one
can assume the functions ¹fq;"º satisfy such relations. As such, the pre-image of
x on MqnCq;" is unambiguous.

�e volume forms induced by the converging metrics also converge uniformly
on compact subsets of MqnCq;" , and all such measures are absolutely continuous
with respect to each other. In general, the hyperbolic volume form occurring in an
integral will be denoted by d� with an appropriate subscript when needed (for
example, d�q ). �e description of the degeneration of Mq to the limit surface
M1 also applies to the degeneration of Cq and Cq;ı (with " < ı ) to their limit
surfaces, C1 and C1;ı respectively.

In rough terms, the idea with De�nition 2.1 follows the established notion
of hyperbolic degeneration which combines the algebraic-geometric construction
from [Fa] together with the hyperbolic geometric results of [Ab]. �e main
theorem of [Jud2] may be viewed as the elliptic analog to the results in [Ab]. It
implies that given a �nite volume hyperbolic surface M1 with p cusps, there
exists a family of hyperbolic surfaces ¹Mqº , with p � m cusps indexed by the
m -tuple q such that limq!1Mq DM1 .

3. Asymptotics of heat kernels and traces

In this paper we consider hyperbolic surfaces having conical singularities,
surfaces realized as the action of discrete groups � of PSL.2;R/ acting on H .
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�e conical singularities are present once the group � contains elements (other
than the identity) having �xed points. Such is the case with the full modular
group PSL.2;Z/ . In particular, let M be a compact hyperbolic surface, having
n marked points ¹ciºniD1: �e hyperbolic metric g on M is called conically
singular if and only if for every i D 1; : : : ; n there exists a chart .Ui ; �i / about
the point ci that maps Ui isometrically to a hyperbolic cone with angle ˛i .
�e hyperbolic metric is the unique metric with curvature equal to �1 and is
compatible with the underlying complex structure.

�e surfaces under consideration have conical points and possibly cusps, so
the function space on which the Laplace operator acts has to be extended in
order to obtain an operator which is self-adjoint and acts on a Hilbert space of
functions. �e details by which one obtains such extension, called the Friedrichs
extension, are described thoroughly in [LP]. We refer the interested reader to
this reference for the discussion. For the sake of space, we will state, as on
page 17 of [Ven], the following. Since the spaces in question have conical points,
there is a range of possible self-adjoint extensions of the Laplacian. �e choice
of extension is important; however, from our point of view, we will utilize the
commonly chosen Friedrichs extension, as in [Ven], referring to [LP] for details
regarding its construction and further properties.

Let �M denote the Laplace operator on the surface M . Consider the heat
operator �M C @t acting on functions u W M � RC 7! R which are C 2.M/

and C 1.RC/ . �en the heat kernel associated to M is the minimal integral
kernel which inverts the heat operator. Namely, the heat kernel is a function
KM W R �M �M 7! R satisfying the following conditions. For any bounded
function f 2 C 2.M/ consider the integral transform

u.t; x/ D

Z
M

KM .t; x; y/f .y/d�M .y/:

�en the following di�erential and initial time conditions are met:

�xuC @tu D 0 and f .x/ D lim
t!0C

u.t; x/:

If M is compact, then the spectrum of the Laplace operator is discrete, consisting
of eigenvalues 0 D �0 < �1 � �2 � ! 1 counted with multiplicity. Associated
to these eigenvalues there is complete system ¹�n.x/º

1
nD0 of orthonormal

eigenfunction of the Laplace operator on M: For t > 0 and x; y 2 M , the
heat kernel has the following realization

KM .t; x; y/ D

1X
nD0

e��nt�n.x/�n.y/;(3.1)

and the sum converges uniformly on Œt0;1/�M �M for �xed t0 > 0 (see [Ch]).
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If M is not compact, the spectrum has a discrete part as well as a continuous
part in the real interval Œ1=4;1/ . �e continuous spectrum comes from the
parabolic Eisenstein series EparIM;P .z; s/ associated to the each cusp P of M .
In such case, the spectral expansion has the following form (see [Hej3])

(3.2) KM .t; x; y/ D
X

discrete
e��nt�n.x/�n.y/

C
1

2�

X
cusps P

Z 1
0

e�.1=4Cr
2/tEparIM;P .x; 1=2C ir/EparIM;P .y; 1=2C ir/dr:

Let KH.t; Qx; Qy/ denote the heat kernel on the upper half-plane. Recall that
KH.t; Qx; Qy/ is a function of t and the hyperbolic distance d D dH. Qx; Qy/ between
Qx and Qy , so

KH.t; Qx; Qy/ D KH.t; d/:

Quoting from page 246 of [Ch], we have for d > 0

(3.3) KH.t; d/ D

p
2e�t=4

.4�t/3=2

Z 1
d

ue�u
2=4tdu

p
coshu � cosh d

while for d D 0

(3.4) KH.t; 0/ D
1

2�

Z 1
0

e�.1=4Cr
2/t tanh.�r/rdr:

Remark 3.1. It is possible to extend the heat kernel to complex valued time. For
time z 2 C , write z D t C is with t > 0 . �en we have

KH.z; d/ D

p
2e�z=4

.4�z/3=2

Z 1
d

ue�u
2=4zdu

p
coshu � cosh d

;

and setting � D jzj2=t , yields the bound

jKH.z; d/j �

p
2e�t=4

.4�/3=2.t2 C s2/3=4

Z 1
d

ue�u
2=4�du

p
coshu � cosh d

� es
2=4t t�3=2.t2 C s2/3=4KH.�; d/:

For any hyperbolic Riemann surface M ' �nH , one can express the heat
kernel as a periodization of the heat kernel of the hyperbolic plane. Let x and
y denote points on M with lifts Qx and Qy to H . �en we can write the heat
kernel on M as

(3.5) KM .t; x; y/ D
X
2�

KH

�
t; dH. Qx;  Qy/

�
:
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Denote by H.�/; P.�/ , and E.�/ complete sets of � -inconjugate primitive
hyperbolic, parabolic, and elliptic elements, respectively, of the group � . If M
is compact, then P.�/ is empty. Let � denote the centralizer of  2 � . If
 is a hyperbolic or a parabolic element then � is isomorphic to the in�nite
cyclic group. If  is elliptic then its centralizer is isomorphic to the �nite cyclic
group of order q . In each instance, the centralizer is generated by a primitive
element. We can use elementary theory of Fuchsian groups (see [McK]) to write
the periodization (3.5) as

KM .t; x; y/ D KH.t; Qx; Qy/C
X

2P.�/

1X
nD1

X
�2�n�

KH.t; Qx; �
�1n� Qy/

C

X
2H.�/

1X
nD1

X
�2�n�

KH.t; Qx; �
�1n� Qy/

C

X
2E.�/

q�1X
nD1

X
�2�n�

KH.t; Qx; �
�1n� Qy/:

Using the above decomposition we de�ne the parabolic contribution (i.e. the
contribution coming from the parabolic elements) to the trace of the heat kernel
by

PKM .t; x/ D
X

2P.�/

1X
nD1

X
�2�n�

KH.t; Qx; �
�1n� Qx/

and in a similar manner we de�ne the hyperbolic contribution and elliptic
contribution which we denote by HKM .t; x/ and EKM .t; x/ respectively.

De�nition 3.2. For a connected hyperbolic surface M , we de�ne the regularized
or standard heat trace StrKM .t/ by

STrKM .t/ D HTrKM .t/C ETrKM .t/C vol.M/KH.t; 0/;

where the hyperbolic and elliptic traces HTrKM .t/ and ETrKM .t/ are given by

HTrKM .t/ D
Z
M

HKM .t; x/d�.x/ and ETrKM .t/ D
Z
M

EKM .t; x/d�.x/;

respectively. If M is a hyperbolic Riemann surface of �nite volume, but not
connected, each trace can be de�ned as the sum of the traces associated to each
connected component of M .

�e following result due to Selberg [Sel] evaluates the integral representation
that de�nes the hyperbolic trace, namely



172 D. Garbin and J. Jorgenson

(3.6) HTrKM .t/ D
e�t=4
p
16�t

X
2H.�/

1X
nD1

`

sinh.n`=2/
e�.n` /

2=4t :

We refer the reader to �eorem 1.3 of [JLu3] for an elementary proof. An integral
representation for the elliptic heat trace is

ETrKM .t/ D
X

2E.�/

q�1X
nD1

e�t=4

2q sin.n�=q /

Z 1
�1

e�2�nr=q�tr
2

1C e�2�r
dr(3.7)

and can be found in [Hej1] on page 351 or [Kub] on pages 100-102. �e elliptic
trace may also be expressed as

(3.8) ETrKM .t/ D
e�t=4
p
16�t

X
2E.�/

q�1X
nD1

1

q

Z 1
0

e�u
2=4t cosh.u=2/

sinh2.u=2/C sin2.n�=q /
du:

One can use the Parseval formula to show that the expressions (3.7) and (3.8) for
EtrKM .t/ are equal.

Remark 3.3. In the case M is compact, the standard trace STrKM .t/ is simply
the trace of the heat kernel. One immediately obtains from (3.1) the spectral
aspect of the standard trace,

STrKM .t/ D
Z
M

KM .t; x; x/d�.x/ D

1X
nD0

e��nt :(3.9)

On the other hand, De�nition 3.2 and the various aforementioned integral
representations ((3.4), (3.6), (3.7)), give the geometric side of the standard trace,
namely

STrKM .t/ D
vol.M/

4�

Z 1
�1

e�.r
2C1=4/t tanh.�r/rdr(3.10)

C

X
2H.�/

1X
nD1

`

sinh.n`=2/
e�t=4
p
16�t

e�.n` /
2=4t

C

X
2E.�/

q�1X
nD1

e�t=4

2q sin.n�=q /

Z 1
�1

e�2�nr=q�tr
2

1C e�2�r
dr :

�e combination of (3.9) and (3.10) yields an instance of the Selberg trace
formula as applied to the function f .r/ D e�tr

2 and its Fourier transform
Of .u/ D .4�t/�1=2e�u

2=4t .
One can use this special case to generalize the trace formula to a larger class

of functions as follows. First, denote by rn the solutions to �n D 1=4C r
2
n . �e

non-negativity of the eigenvalues imply that for each n there are two solutions
rn which are either opposite real numbers or complex conjugate numbers in the
segment Œ�i=2; i=2� .
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Let h.t/ be any measurable function for which h.t/e.1=4C"/t is in L1.R/ for
some " > 0 : Multiply the right-hand side of (3.9) and (3.10) by h.t/et=4 and
integrate from 0 to 1 with respect to t: Set

H.r/ D

Z 1
0

h.t/e�r
2tdt :

By rewriting the absolute integrand of H.r/ as jh.t/e.1=4C"/t /j � je�.r2C1=4C"/t /j
and recalling the imposed conditions on h.t/ , it follows that H.r/ is analytic
inside the horizontal strip jIm.r/j � 1=2C "0 for some "0 > 0 depending on ":

�e Fourier transform of H.r/ has the form

OH.u/ D

Z 1
0

h.t/
1
p
4�t

e�u
2=4tdt :

Putting these facts together yields the Selberg trace formula in the compact case,
namely X

rn

H.rn/ D
vol.M/

4�

Z 1
�1

H.r/ tanh.�r/rdr(3.11)

C

X
2H.�/

1X
nD1

`

2 sinh.n`=2/
OH.n` /

C

X
2E.�/

q�1X
nD1

1

2q sin.n�=q /

Z 1
�1

H.r/
e�2�nr=q

1C e�2�r
dr ;

where the sum on the left is taken over rn 2 .0;1/[ Œ0; i=2�: We note that (3.11)
above agrees with the formula in �eorem 5.1 of [Hej1], with � being the trivial
character of the group � .

In the case M is non-compact, the regularized trace equals the trace of the
heat kernel minus the contribution of the parabolic conjugacy classes. While the
geometric side of the regularized trace is precisely as in (3.10), the spectral side
has the following presentation

STrKM .t/ D
X
C.M/

e��nt �
1

4�

Z 1
�1

e�.r
2C1=4/t �

0

�
.1=2C ir/dr(3.12)

C
p

2�

Z 1
�1

e�.r
2C1=4/t �

0

�
.1C ir/dr

�
1

4

�
p � Tr ˆ.1=2/

�
e�t=4 C

p log.2/
p
4�t

e�t=4;

where C.M/ denotes a set of eigenvalues associated to L2 eigenfunctions on
M , �.s/ the determinant of the scattering matrix ˆ.s/ , �.s/ the Euler Gamma
function, while p the number of cusps of M (see page 313 of [Hej3]).
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One can use the same argument as in the compact case to obtain the formal
Selberg trace formula in the non-compact case. While the geometric side doesn’t
change (see the right-hand side of (3.11), the spectral side is as follows:

spectral side D
X
rn

H.rn/ �
1

4�

Z 1
�1

H.r/
�0

�
.1=2C ir/dr(3.13)

C
p

2�

Z 1
�1

H.r/
� 0

�
.1C ir/dr

�
1

4

�
p � Tr ˆ.1=2/

�
H.0/C p log.2/ OH.0/:

Remark 3.4. Returning to the special case of the trace formula given by (3.10),
we note the following. For the �rst term in the right hand side of (3.10), the
identity contribution, we can write

ITrKM .t/ D
vol.M/e�t=4

4t

Z 1
0

e�tr
2sech2.�r/dr;

using integration by parts. Furthermore, for any t � 0 , the integral can be bounded
as follows Z 1

0

e�tr
2sech2.�r/dr �

Z 1
0

sech2.�r/dr D
1

�

with equality when t D 0: It then follows that the identity trace has the following
asymptotics

ITrKM .t/ D

8̂<̂
:

vol.M/

4�t
CO.1/; as t ! 0

O.e�t=4/; as !1:
(3.14)

�e hyperbolic trace, the second term in the geometric side of the trace (3.10),
has the following asymptotics

(3.15) HTrKM .t/ D
´
O.e�c=t /; as t ! 0

O.e�t=4/; as t !1:

For a detailed account of these see �eorem 1.1 in [JLu3]. To continue, the
integrals in the elliptic trace can be bounded as follows. For any primitive elliptic
element  2 E.�/ and 1 � n < q , we haveZ 1
�1

e�tr
2�2�nr=q

1C e�2�r
dr D

Z 1
0

e�tr
2�2�nr=q

1C e�2�r
dr C

Z 1
0

e�tr
2C2�nr=q

1C e2�r
dr

�

Z 1
0

e�tr
2�2�.n=q /rdr C

Z 1
0

e�tr
2�2�.1�n=q /rdr:
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Now for b > 0 , the function Gb.t/ given by the Gaussian integral

Gb.t/ D

Z 1
0

e�tr
2�brdr

is de�ned for any t � 0 . Furthermore, since the limits of Gb.t/ at t D 0 and
at t D1 are b�1 and 0 respectively, the integrals in the elliptic trace are �nite
for all t � 0 . Consequently, the elliptic trace has the following behavior

(3.16) ETrKM .t/ D
´

O.1/; as t ! 0

O.e�t=4/; as t !1:

Putting all these together, the combination of (3.9), (3.10), (3.14), (3.15), and
(3.16) give the asymptotic behavior for the standard trace of the heat kernel in
the compact setting. Namely when t ! 0 , we have

StrKM .t/ D
1X
nD0

e��nt D
vol.M/

4�t
CO.1/;(3.17)

while

(3.18) StrKM .t/ D 1CO.e�ct /

for some positive constant c , as t ! 1: Furthermore, if we denote by
N.�/ D card¹�n W �n � �º , then we can write the above expansion as followsZ 1

0

e��tdN.�/ D
vol.M/

4�t
CO.1/ at t D 0:

�e Tauberian–Karamata theorem then gives an instance of Weyl’s law as applied
in the setting of hyperbolic Riemann surfaces

(3.19) N.�/ �
vol.M/

4�
�

as � D1 .

�e next result presents the behavior through degeneration of the heat kernel
and its derivatives. Namely, we have the following theorem. For brevity, we only
state the result. For details, we refer the reader to [JLu1] and �eorem 1.3 of
[JLu2] which one can easily adapt to the elliptic degeneration setting.
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�eorem 3.5. Let Rq denote either Mq or Cq . For i D 1; 2 , let �i D �i .q/ be
a tangent vector of unit length based at xi 2 Rq which converges as q ! 1 .
Denote by @�i ;xi the directional derivative with respect to the variable xi in the
direction �i . Assume that either x1 or x2 is not a degenerating conical point.
�en

lim
q!1

KRq .z; x1; x2/ D KR1
.z; x1; x2/(3.20)

lim
q!1

@�i ;xiKRq .z; x1; x2/ D @�i ;xiKR1
.z; x1; x2/ for i D 1; 2(3.21)

lim
q!1

@�1;x1@�2;x2KRq .z; x1; x2/ D @�1;x1@�2;x2KR1
.z; x1; x2/:(3.22)

(a) Let A be a bounded set in the complex plane with infz2A Re.z/ > 0: For
any " > 0 , the convergence is uniform on A �RqnCq;" �RqnCq;" .

(b) We de�ne D";"0 to be an "0 neighborhood of the diagonal of RqnCq;" �
RqnCq;" . �at is,

D";"0 D ¹.x1; x2/ 2 RqnCq;" �RqnCq;" W d.x1; x2/ < "
0
º:

Let B be a bounded set in the complex plane with infz2B Re.z/ � 0 . For
any " > 0 and "0 > 0 , the convergence is uniform on B � ..RqnCq;" �

RqnCq;"/nD";"0/ .

To continue, let us de�ne the degenerating trace of the heat kernel. Denote
by DE.�/ a subset of the elliptic conjugacy classes E.�/ , corresponding to the
cones we wish to degenerate into cusps. It then follows that the degenerating heat
trace DtrKM .t/ can be expressed as

(3.23) DTrKM .t/ D
e�t=4
p
16�t

X
2DE.�/

q�1X
nD1

1

q

Z 1
0

e�u
2=4t cosh.u=2/

sinh2.u=2/C sin2.n�=q /
du:

A staple ingredient in this paper is the convergence through elliptic degeneration of
the regularized trace minus the degenerating trace on Mq to the regularized trace
on the limiting surface M1: To prove �eorem 3.6 below, one can follow similar
arguments as in �eorem 0.2 of [JLu2] in the setting of hyperbolic degeneration
in 2 dimensions or �eorem 8.1 of [DJ] in the setting of 3-manifolds. For a
detailed proof we refer the reader to [GJ].

�eorem 3.6. Let Mq denote an elliptically degenerating family of compact
or non-compact hyperbolic Riemann surfaces of �nite volume converging to the
non-compact hyperbolic surface M1:
(a) (Pointwise) For �xed z D t C is with t > 0 , we have

lim
q!1

ŒHTrKMq .z/C ETrKMq .z/ �DTrKMq .z/� D HTrKM1
.z/C ETrKM1

.z/:



Spectral asymptotics 177

(b) (Uniformity) For any t > 0 , there exists a constant C (depending on t )
such that for all s 2 R and all q , we have the bound

jHTrKMq .z/C ETrKMq .z/ �DTrKMq .z/j � C.1C jsj/3=2:

As a consequence of �eorem 3.6, we have the following corollary, which
describes the small time behavior for the regularized trace of the heat kernel.
While the arguments involved in the proof of �eorem 3.6 above can be easily
reconstructed from the corresponding theorems in the hyperbolic degeneration
settings, for the next result we feel more appropriate to provide all the pertinent
details.

Corollary 3.7. Let Mq denote an elliptically degenerated family of compact or
non-compact hyperbolic Riemann surfaces of �nite volume which converges to
the non-compact hyperbolic surface M1 . �en for any �xed ı > 0 , there exists
a positive constant c such that for all 0 < t < ı , we have

HTrKMq .t/C ETrKMq .t/ �DTrKMq .t/ D O
�
t�1

�
uniformly in q .

Proof. Assuming that Mq is compact, let us show that for 0 < t < 1 , there is
a constant C > 0 , independent of the degenerating parameter q , such that the
following inequality

jHTrKMq .z/C ETrKMq .z/ �DTrKMq .z/j � Ct�2.1C jsj/3=2;(3.24)

holds. Derivation on the group side of the Selberg trace formula (see for instance
[McK]) allows us to formally write for su�ciently small " and t > 0

.HTrKMq C ETrKMq �DTrKMq /.t C is/(I)

D

Z
MqnCq;"

.KMq �KH/.t C is; x; x/d�.x/

C

Z
Cq;"

.KMq �KCq /.t C is; x; x/d�.x/(II)

�

Z
CqnCq;"

.KCq �KH/.t C is; x; x/d�.x/;(III)

provided all intervals converge.
For integral (I), we have by Proposition 2.1 of [JLu2], the maximum modulus

principle, and the Gauss–Bonnet formula the following bound
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j I j �
Z
MqnCq;"

jKH.t C is; x; x/jd�.x/C

Z
MqnCq;"

jKMq .t C is; x; x/jd�.x/

(3.25)

� 2�.2g � 2C r/
�
jKH.t C is; 0/j C max

xq2@Cq;"
jKMq .t; xq; xq/j

�
with g denoting the genus of the family and r denoting the number of distinct
conical points. Next we can write directly from (3.4), which extends for complex
time z D t C is , that

jKH.t C is; 0/j �
1

2�

Z 1
0

e�.1=4Cr
2/t tanh.�r/rdr �

1

4�t
:(3.26)

Additionally, we recall that for t approaching zero, for any positive integer N ,
there exist constants b0; : : : ; bn such that

KM .t; x; x/ D
1

4�t
C

NX
nD0

bnt
n
CO.tNC1/;(3.27)

see formula (0.2) of [JLu1] and the references therein. �e combination of (3.25),
(3.26), and (3.25) yields

j I j � 4�.2g � 2C r/
�
1

4�t
C C

�
;(3.28)

for some positive constant C .
For integral (II), we can apply similar arguments as in �eorem 3.4 of [JLu2]

and while paying close attention to dependence on t in formulas (3.14), (3.16),
and (3.17) therein, we see that

j II j � Ct.1C jsj/3=2:(3.29)

For integral (III), we can use arguments similar to those in �eorem 3.1 of [JLu2]
to show that for any " > 0 and z D t C is with t > 0 , we have the bound

ˇ̌̌̌
ˇ ZCqnCq;".KCq �KH/.z; x; x/d�.x/

ˇ̌̌̌
ˇ � e�t=4p

�jzj

� "
2�

��2� �
�Q.1C 2�/C �

�
;

(3.30)

where

� D
t

4.t2 C s2/
and  D log

�
1C

� "
2�

�2�
;

and �Q denoting the Riemann zeta function. With "1 > max¹2�; "º we split
integral (III) as
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III D
Z
CqnCq;"1

.KCq �KH/.z; x; x/d�.x/C

Z
Cq;"1nCq;"

.KCq �KH/.z; x; x/d�.x/;

referring to the two integrals above as (III.1) and (III.2) respectively. Applying
(3.30), for integral (III.1) we obtain the bound

j III.1 j �
1p
jzj

�
�Q.1C 2�/C �

�
;

with � D t=.4.t2 C s2// and  D log.1C ."1=2�/2/ . If s ¤ 0 , then 2� & 0 as
t & 0 ; consequently �Q.1C 2�/ � .2�/

�1 and

j III.1 j �
1

p
t2 C s2

�
2.t2 C s2/

 t
C c

�
D .t2 C s2/3=4

�
c

t2
C

2

 t

�
(3.31)

� C t
�2.1C jsj/3=2:

For integral (III.2), we use the same arguments as for integral (II) and the inclusion
of heat kernels to obtain

j III.2 j �
Z
Cq;"1

.KMq �KH/.t; x; x/d�.x/ � Ct.1C jsj/
3=2:(3.32)

�e combination of the bounds in (3.28), (3.29), (3.31), and (3.32) complete the
proof of (3.24) for the small complex time behavior of the trace. To complete
the proof in the compact case, we look at the special case s D 0 . Noting that
integral (I) is O.t�1/ while integrals (II) and (III.2) are O.1/ , we only need to
revisit integral (III.1). In this direction, since 2� D =.2t/ ! 1 as t & 0 it
follows that �Q.1C 2�/ � 1C .2�/

�1 and consequently

j III.1 j �
1
p
t

�
2t


C c

�
� C t

�1=2;

which completes the proof in the compact setting.

In the non-compact setting, aside from the m degenerating conical points, each
surface in the family has p cusps. Consequently, we need to consider integrals
involving cusps since we have
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.HTrKMq C ETrKMq �DTrKMq /.t C is/(I)

D

Z
Mqn.Cq;"[ C1;"/

.KMq �KH/.t C is; x; x/d�.x/

C

Z
Cq;"

.KMq �KCq /.t C is; x; x/d�.x/(II)

�

Z
CqnCq;"

.KCq �KH/.t C is; x; x/d�.x/(III)

C

Z
C1;"

.KMq �KC1
/.t C is; x; x/d�.x/(IV)

�

Z
C1nC1;"

.KC1
�KH/.t C is; x; x/d�.x/:(V)

�e behaviors of integrals (IV) and (V) is similar those of integrals (II) and (III)
respectively, so that similar arguments may be employed.

Aside from the asymptotics near t D 0 , we also need the behavior of the trace
for large values of the time parameter t . In this direction, we need the following
de�nition.

De�nition 3.8. Let Mq be an elliptically degenerating family of compact or
non-compact hyperbolic Riemann surfaces of �nite volume which converge to the
non-compact hyperbolic surface M1 . Let 0 � ˛ < 1=4 be such that ˛ is not an
eigenvalue of M1 . We de�ne the ˛ -truncated hyperbolic and elliptic trace by

HTrK.˛/Mq
.t/C ETrK.˛/Mq

.t/ D HTrKMq .t/C ETrKMq .t/ �
X

�q;n�˛

e��q;nt :

�e next result describes the behavior of the trace when the time parameter t
goes o� to in�nity. �e theorem may be proved using similar arguments to those
found in �eorem 3.1 of [JLu3] in the setting of hyperbolic degeneration in
2 dimensions and �eorem 9.1 of [DJ] in 3 dimensions.

�eorem 3.9. Let Mq be an elliptically degenerating family of compact or non-
compact hyperbolic Riemann surfaces of �nite volume which converge to the
non-compact hyperbolic surface M1 . Let ˛ be given according to the De�nition
3.8 above. �en for any c < ˛ , there exist a constant C such that the boundˇ̌

HTrK.˛/Mq
.t/C ETrK.˛/Mq

.t/ �DTrKMq .t/
ˇ̌
� Ce�ct

holds for all t � 0 and uniformly in q .
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4. Asymptotics of spectral measures

We start the section with some general remarks on the Laplace transforms
of a function. �is material can also be found in [HJL]. However, to make the
reading self contained we present the material below.

For any function f .t/ de�ned on the positive real line, we formally de�ne
the Laplace transform and cumulative distribution function to be

L.f /.z/ D

Z 1
0

e�ztf .t/dt and F.t/ D

Z t

0

f .u/du:

�e Laplace transform L.f /.z/ exists, if say f .t/ is a piecewise continuous,
real-valued function for 0 � t <1 and for some constants M and a0 we have
that jf .t/j � Mea0t . �en the Laplace transform will make sense in the right
half-plane Re.z/ > a0 . �e inversion formula for the Laplace transform allows
us to write

f .t/ D
1

2�i

Z aCi1

a�i1

etzL.f /.z/dz and F.t/ D
1

2�i

Z aCi1

a�i1

etzL.f /.z/
dz

z
;

which holds for any a > a0 .

Remark 4.1. We will assume that f is such that its Laplace transform exists
and the inversion formula holds. Furthermore, we will need the following basic
assumption Z aCi1

a�i1

.1C jsj/3=2jL.f /.z/jjezT j
jdzj

jzj
<1

where z D t C is and a is some positive number.

As an application of the convergence of the regularized trace of the heat
kernel, we have the following theorem which is the elliptic degeneration analog
of �eorem 2.1 of [HJL] in the context of hyperbolic degeneration.

�eorem 4.2. Let Mq be an elliptically degenerating family of compact or
non-compact hyperbolic Riemann surfaces of �nite volume converging to the non-
compact hyperbolic surface M1 . Let f be any function which satis�es the above
assumption. Let z D t C is with t > 0 and denote by

NMq .f /.T / D
1

2�i

Z aCi1

a�i1

L.f /.z/StrKMq .z/ezT
dz

z

and

NMq ;D.f /.T / D
1

2�i

Z aCi1

a�i1

L.f /.z/DtrKMq .z/ezT
dz

z
:
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�en

lim
q!1

ŒNMq .f /.T / �NMq ;D.f /.T /� D NM1
.f /.T /:

Proof. Consider the sequence of functions gq.z/ given by

gq.z/ D L.f /.z/
�
StrKMq .z/ �DtrKMq .z/

� ezT
z

g1.z/ D L.f /.z/StrKM1
.z/
ezT

z
:

We need to show that

lim
q!1

1

2�i

Z aCi1

a�i1

gq.z/dz D
1

2�i

Z aCi1

a�i1

g1.z/dz:

As q approaches in�nity, using part (a) of �eorem 3.6, gq.z/ converges pointwise
to g1.z/ whenever t D Re .z/ > 0: Using part (b) of the very same theorem,
we also get that the functions are bounded uniformly, that is

jgq.z/j � jL.f /.z/j.1C jsj/
3=2

ˇ̌̌̌
ezT

z

ˇ̌̌̌
:

Furthermore, the assumption on f coming from Remark 4.1 requires that the right-
hand side of the above inequality is integrable on vertical lines. All the hypotheses
of the dominated convergence theorem are met, so that we can interchange the
limit and the integration.

5. Convergence of spectral counting functions and small eigenvalues

In this section, we will make use of the �eorem 4.2 as applied to a particular
family of test functions which come from analytic number theory and spectral
theory. In this particular case, the functions mentioned in �eorem 4.2 are called
spectral weighted counting functions with parameter w � 0 . For these functions
and their associated degenerating component, we can explicitly determine the
asymptotic behavior for �xed T > 0 and all w � 0 .

Consider the following family of functions with parameter w � 0

fw.t/ D .w C 1/t
w :

It follows immediately that the corresponding Laplace transform and cumulative
distribution are given by

L.fw/.z/ D
�.w C 2/

zwC1
and Fw.t/ D t

wC1
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respectively. With these remarks in mind, we can now de�ne the regularized
weighted spectral counting function on a hyperbolic Riemann surface M by

NM;wC1.T / D NM .fw.t//.T / D
1

2�i

Z aCi1

a�i1

�.w C 2/

zwC1
StrKM .z/ezT

dz

z
:

In a similar fashion, we de�ne the degenerating elliptic weighted spectral counting
functions on the family Mq , by using DtrKMq .z/ instead of StrKMq .z/: By
�eorem 3.6, these weighted spectral counting functions are de�ned for values of
the parameter w > 3=2 .

If the surface M is compact, the regularized trace equals the trace of the heat
kernel (see the Remark 3.3). Using the spectral side of the Selberg trace formula
(see Equation (3.9)) together with the mechanism of the inversion formula for the
Laplace transforms, one can show that

NM;w.T / D
X
�n�T

.T � �n/
w :(5.1)

In the non-compact case, the regularized trace equals the trace of the heat kernel
minus the contribution to the trace of the parabolic conjugacy classes. Using the
spectral side of the trace as given by equation (3.12) together with the inversion
formula, we obtain

NM;w.T / D
X
�n�T

.T � �n/
w
�

1

4�

Z pT�1=4
�
p
T�1=4

.T � 1=4 � r2/w
�0

�
.1=2C ir/dr

(5.2)

C
p

2�

Z pT�1=4
�
p
T�1=4

.T � 1=4 � r2/w
� 0

�
.1C ir/dr

�
1

4
.p � Trˆ.1=2//.T � 1=4/w

C
p log.2/ �.w C 1/
p
4��.w C 3=2/

.T � 1=4/wC1=2;

whenever T > 1=4 , and

NM;w.T / D
X
�n�T

.T � �n/
w

if T � 1=4:
As a direct application of �eorem 4.2 we have the following result.

�eorem 5.1. Let Mq denote an elliptically degenerating family of compact or
non-compact hyperbolic Riemann surfaces of �nite volume converging to the
non-compact hyperbolic surface M1: For any w > 3=2 de�ne

GMq ;w.T / D NMq ;D.fw�1.t//.T / D
1

2�i

Z aCi1

a�i1

�.w C 1/

zw
DtrKMq .z/ezT

dz

z
:
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�en for T > 0 we have that

lim
q!1

ŒNMq ;w.T / �GMq ;w.T /� D NM1;w.T /:

�e next result establishes the asymptotic behavior of the function GMq ;w.T /
for �xed T > 1=4 and weight w � 0 .

Proposition 5.2. Let Mq denote an elliptically degenerating family of compact
or non-compact hyperbolic Riemann surfaces of �nite volume converging to the
non-compact hyperbolic surface M1: For any degenerating elliptic representative
 2 DE.�q/ let q denote the order of the corresponding �nite cyclic subgroup.
(a) For any w � 0 and T > 1=4 we have

GMq ;w.T /

D

X
2DE.�q/

q�1X
nD1

1

2q sin.n�=q /

p
T�1=4Z

�
p
T�1=4

.T � 1=4 � r2/w
e�2�nr=q

1C e�2�r
dr:

(b) For any w � 0 and T � 1=4 we have GMq ;w.T / D 0 , independently of q .
(c) For �xed w � 0 and T > 1=4 we have

GMq ;w.T /

D
1

�
log

� Y
2DE.�/

q

� p
T�1=4Z

�
p
T�1=4

.T � 1=4 � r2/w
1

1C e�2�r
dr CO.1/

as the q s tend to in�nity.

Proof. We are studying the inverse Laplace transform of

DtrKMq .t/ D
X

2DE.�q/

q�1X
nD1

e�t=4

2q sin.n�=q /

Z 1
�1

e�2�nr=q�tr
2

1C e�2�r
dr:

Using the de�nition of the degenerating elliptic spectral counting function together
with the mechanism of the Laplace inversion formula allows us to write

GMq ;w.T / D
X

2DE.�q/

q�1X
nD1

1

2q sin.n�=q /

p
T�1=4Z

�
p
T�1=4

.T � 1=4 � r2/w
e�2�nr=q

1C e�2�r
dr

provided that T > 1=4 . In the case T � 1=4 , the properties of inverse
Laplace transform imply that the integral over the vertical line equals zero,
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hence GMq ;w.T / D 0 . Recall that, from the de�nition of the weighted spectral
counting function, we know that such functions are only de�ned for w > 3=2:

However, the above formula is de�ned for any w � 0 . �is in turn, allows us to
extend the de�nition of the degenerating (as well as elliptic) weighted spectral
counting function to any non-negative weights w . �is proves parts (a) and (b)
of the theorem.

To prove part (c), we start by �xing T > 1=4 . We note that e�2�nr=q D
1CO.r=q / if r2 � T � 1=4 , so then

GMq ;w.T / D
X

2DE.�q/

q�1X
nD1

1

2q sin.n�=q /

p
T�1=4Z

�
p
T�1=4

.T � 1=4 � r2/w
1

1C e�2�r
dr

(5.3)

C

X
2DE.�q/

q�1X
nD1

1

2q2 sin.n�=q /

p
T�1=4Z

�
p
T�1=4

.T � 1=4 � r2/w
O.r/

1C e�2�r
dr:

To continue, we focus on estimating the sum

S.q / D

q�1X
nD1

1

2q sin.n�=q /

as q ! 1 , since such an estimate would apply to estimate the function
GMq ;w.T / .

Let us write

S.q / D

Œq=4�X
nD1

1

2q sin.n�=q /
C

Œ3q=4�X
nDŒq=4�C1

1

2q sin.n�=q /

C

q�1X
nDŒ3q=4�C1

1

2q sin.n�=q /
:

We recognize the middle sum as a Riemann sum. As such we can write its
limiting value as

Œ3q=4�X
nDŒq=4�C1

1

2q sin.n�=q /
!

1

2�

3�=4Z
�=4

dx

sin x
D O.1/ as q !1:

Using the identity sin.x/ D sin.� � x/ , we then have that

S.q / D

Œq=4�X
nD1

1

q sin.n�=q /
CO.1/ as q !1:
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For x 2 Œ0; �=4� , we have that x � x3=6 � sin x � x , so then
1

x
�

1

sin x
�

1

x � x3=6
for x 2 Œ0; �=4�

which further implies

0 �
1

sin x
�
1

x
�

1

x � x3=6
�
1

x
D

x

6.1 � x2=6/
for x 2 Œ0; �=4�:

With all this, we take x D n�=q with 1 � n � Œq=4� and arrive at the bounds

0 �
1

q

Œq=4�X
nD1

 
1

sin.n�=q /
�

1

n�=q

!
�

1

q

Œq=4�X
nD1

n�=q

6.1 � .n�=q /2=6/
:

�is upper sum is also recognizable as a Riemann sum, so then we can write

1

q

Œq=4�X
nD1

n�=q

6.1 � .n�=q /2=6/
!

1

�

�=4Z
0

x

6.1 � x2=6/
dx as q !1:

�e above integral is clearly �nite. �erefore, we have shown that

S.q / �
1

�

Œq=4�X
nD1

1

n
D O.1/ as q !1:

It is elementary to show that
Œq=4�X
nD1

1

n
D log.q /CO.1/ as q !1:

�us the �rst inner sum in the right-hand side of equation (5.3) has the asymptotic

S.q / D
1

�
log.q /CO.1/ as q !1:

Consequently, the second inner sum in the right-hand side of (5.3), namely
q�1 S.q / approaches zero as q approaches in�nity. Applying these estimates to
equation (5.3) completes the proof.

Our next task is to study the behavior of the weighted spectral counting
functions MMq ;w.T / for weights 0 � w � 3=2 in both compact and non-compact
cases. We start by making the following observations coming from Proposition 5.2.
Consider the integral in the formula for GMq ;w.T /

cw.T / D
1

�

p
T�1=4Z

�
p
T�1=4

.T � 1=4 � r2/w
e�2�nr=q

1C e�2�r
dr:
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Let f .T; r/ denote the integrand above. Since f .T; r/ as well as the limits of
integration are C 1 in both variables we have that

d

dT
cwC1.T / Df

�
T;
p
T � 1=4

� d

dT

�p
T � 1=4

�
(5.4)

� f
�
T;�

p
T � 1=4

� d

dT

�
�
p
T � 1=4

�
C
1

�

p
T�1=4Z

�
p
T�1=4

d

dT

"
.T � 1=4 � r2/.wC1/

e�2�nr=q

1C e�2�r

#
dr

D.w C 1/cw.T /;

for any w � 0 . Setting Q D
Q
q , where the product runs over all the

degenerating elliptic elements of �q , we can write

GMq ;w.T / D cw.T / log.Q/CO.1/(5.5)

as the q tends to in�nity. Furthermore, in the special case w D 0 , we can apply
the mean value theorem to estimate the integral the de�nes c0.T / . Namely, for
some value c in the domain of integration, we get

c0.T / D
e�2�nc=q

1C e�2�c
�
2
p
T � 1=4

�
:

�is allows to rewrite the behavior of the weight 0 degenerating elliptic counting
function as

GMq ;0.T / D
2C
p
T � 1=4

�
log.Q/CO.1/;

as q tends to in�nity and for some 0 < C < 1 .
We continue by making the following observation. For w > 1=2 , the expression

for the weighted counting function associated to the compact family Mw as given
by (5.1) implies

1

w C 1
�
d

dT
NMq ;wC1.T / D

X
�n;q<T

.T � �n;q/
w :

�e left-hand side above is de�ned since w C 1 > 3=2 . It is also clear that
the right-hand side above is a well de�ned function. �is allows us to de�ne
NMq ;w.T / for values of the weight above 1=2 , namely,

NMq ;w.T / D
1

w C 1
�
d

dT
NMq ;wC1.T /:(5.6)



188 D. Garbin and J. Jorgenson

By repeating the above argument, we can extend NMq ;w.T / to any w � 0 .
In particular, NMq ;0.T / counts with multiplicity the eigenvalues of the Laplace
operator on Mq which are less than T . With the above remarks in mind, we
are now ready to give the behavior of the counting function NMq ;w.T / for any
weight 0 � w � 3=2 in the compact case.

�eorem 5.3. Let Mq denote an elliptically degenerating family of compact
hyperbolic Riemann surfaces of �nite volume. �en for T > 1=4 and 0 � w � 3=2
we have that

NMq ;w.T / � cw.T / log.Q/

as q tends to in�nity.

Proof. Given any w � 0 , the counting function NMq ;w.T / is increasing for
T > 0 . Choose any " > 0 . �e mean value theorem applied to NMq ;w.T / on the
interval ŒT; T C "� together with the di�erential equation satis�ed by the counting
functions (see Formula (5.6)) as well as the monotonicity imply

NMq ;w.T / �
1

w C 1

NMq ;wC1.T C "/ �NMq ;wC1.T /

"
� NMq ;w.T C "/:(5.7)

Now �x a weight w > 1=2 . �en we can write the inequalities in (5.7) above as

NMq ;w.T /

log.Q/
�

1

w C 1

NMq ;wC1.T C "/= log.Q/ �NMq ;wC1.T /= log.Q/
"

(5.8)

�
NMq ;w.T C "/

log.Q/
:

Taking the limit as q goes to in�nity in (5.8), together with the convergence
of counting functions of weight w > 3=2 (see �eorem 5.1) and the asymptotic
coming from (5.5) applied to the middle term imply that

lim sup
q!1

NMq ;w.T /

log.Q/
�

1

w C 1

cwC1.T C "/ � cwC1.T /

"
(5.9)

� lim inf
q!1

NMq ;w.T C "/

log.Q/
:

Letting " go to zero and using the di�erential equation satis�ed by cwC1.T /

(coming from (5.4)), to obtain

lim sup
q!1

NMq ;w.T /

log.Q/
� cw.T / � lim inf

q!1

NMq ;w.T /

log.Q/
:(5.10)

�is proves that for weights w > 1=2 we have
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lim
q!1

NMq ;w.T /

log.Q/
D cw.T /:

Fix w � 0 and repeat the above argument to extend the result to any non-negative
weight w:

Let us continue by investigating the behavior of the counting functions for
weights 0 � w � 3=2 associated to the non-compact family Mq . In this case,
the spectrum of the Laplace operator has both a discrete part and a continuous
part. �e distinction between the spectral counting functions in the compact and
non-compact settings is re�ected in the Formulas (5.1) and (5.2) respectively.
Consequently, the arguments in the compact setting do not apply in the non-
compact case.

�eorem 5.4. Let Mq denote an elliptically degenerating family of non-compact
hyperbolic Riemann surfaces of �nite volume. �en for T > 1=4 and 0 � w � 3=2
we have that

NMq ;w.T / � cw.T / log.Q/

as q tends to in�nity.

Proof. We need to show that for �xed T > 1=4 and 0 � w � 3=2 the following
limit holds

lim
q!1

NMq ;w.T /

log.Q/
D cw.T /:(5.11)

Recall that for T > 1=4 and w > 3=2 , the spectral counting function NMq ;w.T /

is given by Formula (5.2). Let us look at the 5 terms that amount the counting
function. For the third term we have thatˇ̌̌̌

� 0

�
.1C ir/

ˇ̌̌̌
�

ˇ̌̌̌
� 0

�
.1/

ˇ̌̌̌
D � 0.1/ D 

where  denotes the Euler–Mascheroni constant (see p. 114 [JL1]). �is shows
that this term in the expression of the spectral counting function is �nite and
independent of q . Consequently, the contribution of this term to the limit (5.11)
is zero. �e fourth term in (5.2) involves the trace of the scattering matrix at
s D 1=2 . �e p � p matrix A D ˆ.1=2/ is orthogonal and symmetric ([Kub]).
�en A2 D Id which implies that the only eigenvalues of the matrix A are ˙1 .
Since the trace of the matrix equals the sum of its eigenvalues, it follows that
jTr ˆ.1=2/j � p . Consequently, the fourth term in (5.2) is bounded independently
of q , so that its contribution to the limit (5.11) is zero. �e contribution of the
�fth term of the spectral counting function to the above limit is clearly zero.
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So far we have shown that only the �rst two terms in the right-hand side of
equation (5.2) have a signi�cant contribution to the spectral counting function.
To this end, let us de�ne

3NM;w.T / D
X
�n�T

.T � �n/
w
�

1

4�

Z pT�1=4
�
p
T�1=4

.T � 1=4 � r2/w
�0

�
.1=2C ir/dr:

(5.12)

By the previous remarks, it remains to show that

lim
q!1

4NMq ;w.T /
log.Q/

D cw.T /:(5.13)

Quoting Lemma 5.3 of [HJL] (see pp. 160 of [Hej3]), we have the following
result

�
�0

�
.1=2C ir/ �

NX
kD1

1 � sk;q

.sk;q � 1=2/2 C r2
� 2 log.qMq / > 0;

where 1=2 < sk;q � 1 and qMq > 1: �is allows to write

3NM;w.T / D
X
�n�T

.T��n/
w(5.14)

�
1

4�

Z pT�1=4
�
p
T�1=4

.T � 1=4�r2/w

 
�0

�
.1=2C ir/C

NX
kD1

1 � sk;q

.sk;q � 1=2/2 C r2

!
dr

C
1

4�

Z pT�1=4
�
p
T�1=4

.T � 1=4�r2/w
NX
kD1

1 � sk;q

.sk;q � 1=2/2 C r2
dr:

Consequently, the hat spectral counting function, as given by (5.14), is increasing
whenever w � 0 and T > 0 . Furthermore, the hat function (5.12) satis�es the
di�erential equation as in (5.6). For w > 3=2 , the result of the �eorem 5.1
applies. Fix a weight w > 1=2 and proceed as in (5.7) through (5.10) to show
that

lim
q!1

4NMq ;w.T /
log.Q/

D cw.T /:

Repeating the argument, but now with w � 0 �xed, completes the proof.

As an immediate consequence of �eorem 5.1 and Proposition 5.2 together
with the fact that these counting functions extend to any non-negative weight, we
obtain the following corollary.
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Corollary 5.5. Let Mq denote an elliptically degenerating family of compact
or non-compact hyperbolic Riemann surfaces of �nite volume converging to the
non-compact hyperbolic surface M1: �en for T � 1=4 and w > 0 we have
that

lim
q!1

NMq ;w.T / D NM1;w.T /:

In addition to this, if T is not an eigenvalue of M1 , we get that

lim
q!1

NMq ;0.T / D NM1;0.T /:

In the case T � 1=4 , the weighted spectral counting functions for Mq in both
compact and non-compact case (see Equations (5.1) and (5.2)) turn out to be

NMq ;w.T / D
X

�n;q<T

.T � �n;q/
w :

�e above corollary implies the convergence of these small eigenvalues through
elliptic degeneration. In particular, if the eigenvalue �n;q has multiplicity one,
then we have

lim
q!1

�n;q D �n;1:

Remark 5.6. We note that �eorems 5.3 and 5.4 present the asymptotic behavior
of the counting function NMq ;w.T / for T > 1=4 and weights 0 � w � 3=2 ,
in both the compact and non-compact case. �ese two results only mention the
behavior of the leading term and nothing about the error term. Modi�cations in
the course of the proof of the two theorems can lead to results about the error
term. To get such results, one needs to assume something extra about the rate at
which " approaches zero. More precisely, " should approach zero at a rate that
depends on the degenerating parameter q . A similar situation had been studied
in [HJL] in the context of hyperbolic degeneration.

From �eorem 5.1, we have that for w > 1=2 , T > 1=4 , and arbitrarily large
values of the degenerating parameter q

NMq ;wC1.T / D NM1;wC1.T /CGMq ;wC1.T /CO.f .q//;

for some function f .q/ which approaches zero when q approaches in�nity.
Choose ".q/ > 0 . Applying the mean value theorem on the interval ŒT; T C ".q/�
allows us to write

NMq ;w.T / �
1

w C 1

NM1;wC1

�
T C ".q/

�
�NM1;wC1.T /

".q/

C
1

w C 1

GMq ;wC1
�
T C ".q/

�
�GMq ;wC1.T /

".q/
CO

�
f .q/

".q/

�
:
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Using a linear approximation for the �rst two terms in the middle of the above
inequality gives

NMq ;w.T / � NM1;w.T /C ".q/
d

dT
NM1;w.T1/

CGMq ;w.T /C ".q/
d

dT
GMq ;w.T2/CO

�
f .q/

".q/

�
;

for some T1; T2 2 ŒT; T C ".q/�: In a similar fashion, by applying the mean value
theorem this time on the interval ŒT � ".q/; T � , it follows that

NMq ;w.T / � NM1;w.T /C ".q/
d

dT
NM1;w.T3/

CGMq ;w.T /C ".q/
d

dT
GMq ;w.T4/CO

�
f .q/

".q/

�
;

for some T3; T4 2 ŒT � ".q/; T �: �eorems 5.3 and 5.4 applied to the derivative
terms imply the following asymptotic formula

NMq ;w.T / D NM1;w.T /CGMq ;w.T /CO .".q/ log.Q//CO
�
f .q/

".q/

�
:

One needs to optimize the way in which ".q/ approaches zero so that the amount
of error is minimized, namely by setting ".q/ D

p
f .q/= log.Q/: Optimizing the

error in the case w > 1=2 allows then for the improvement of the error in the
case w � 0:

�eorem 5.7. Let Mq denote an elliptically degenerating family of compact
or non-compact hyperbolic Riemann surfaces of �nite volume converging to the
non-compact hyperbolic surface M1: �en

NMq ;0.T / D c0.T / log.Q/CO
��

log.Q/
�3=4�

:

Proof. �e proof uses two applications of Remark 5.6. In the �rst step we set
w D 1 . Following the computations of Proposition 5.2, we can take f .q/ D 1 .
In this case, Remark 5.6 begins with

NMq ;2.T / D NM1;2.T /CGMq ;2.T /CO.1/

and ends with

NMq ;1.T / D NM1;1.T /CGMq ;1.T /CO
�
".q/ log.Q/

�
CO

�
1

".q/

�
:

Minimizing the error term implies ".q/ D
�
log.Q/

��1=2 .



Spectral asymptotics 193

In the second step, Remark 5.6 starts with

NMq ;1.T / D NM1;1.T /CGMq ;1.T /CO
��

log.Q/
�1=2�

and ends with

NMq ;0.T / D NM1;0.T /CGMq ;0.T /CO
�
".q/ log.Q/

�
CO

 �
log.Q/

�1=2
".q/

!
:

Minimizing the error term implies ".q/ D
�
log.Q/

��1=4 . Consequently,

NMq ;0.T / D NM1;0.T /CGMq ;0.T /CO
��

log.Q/
�3=4�

:

By Formula (5.5) together with �eorems 5.3 and 5.4, the �rst two terms on the
right-hand side above grow like c0.T / log.Q/ .

Remark 5.8. Let GN be the Hecke triangle group, which is the discrete group
generated by

z 7! �1=z and z 7! z C 2 cos.�=N/

for any integer N � 3 . �e group is commensurable with PSL.2;Z/ only in the
three cases when N D 3; 4; 6 . In all other instances, the non-arithmetic nature
of GN is such that certain precise, theoretical computations may be impossible.
However, the explicit nature of the group theoretic de�nition of GN is such that
numerical methods can be employed (see for example [Hej4]). It can be shown
that for each N , the quotient space GN nH has genus zero with one cusp and two
elliptic points of order 2 and N respectively (see [Hej3], [Hej4], and references
therein). As such, the results in the present paper apply. Speci�cally, �eorem 5.7
determines the accumulation of the spectral densities as a function of N , a result
which is attributed to Selberg (see p. 579 of [Hej3]). In other words, �eorem 5.7
above can be viewed as providing precise quanti�cation of Selberg’s result.

6. Spectral functions

In this section, we investigate the behavior through degeneration of the spectral
zeta function and Hurwitz spectral zeta function, the former being a special case
of the latter. After we recall de�nitions, we present the analytic properties these
functions posses as well as describe their behavior on a family of elliptically
degenerating surfaces. �e main ingredient in the process is the analysis of the
various integral transforms of the trace of the heat kernel that realize these spectral
functions.
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6.1. Spectral zeta function. Let us assume �rst that the surface M is compact
(with one connected component). In this case, the spectrum of the Laplace
operator consists of a discrete sequence of �nite multiplicity real eigenvalues
0 D �0 < �1 � �2 � : : : that accumulate at in�nity. �e positive eigenvalues can
be used to form a Dirichlet series, the spectral zeta function �M .s/ which is
de�ned by

�M .s/ D
X
�n>0

��sn :

By Weyl’s law (3.19), the series converges absolutely and uniformly for Re.s/ > 1 .
Hence �M .s/ is an analytic function in this right half-plane.

Furthermore, we can write

�.s/�M .s/ D
X
�n>0

��sn �.s/ D
X
�n>0

��sn

Z 1
0

e�t t s
dt

t

D

Z 1
0

X
�n>0

e��nt t s
dt

t
D

Z 1
0

ŒStrKM .t/ � 1�t s
dt

t
:

�e behavior of StrKM .t/ near t D 0 and t D 1 (see (3.17) and (3.18)
respectively) shows that the above integral is de�ned for Re.s/ > 1 . Parenthetically,
if the surface had cM connected components, then the value 1 (coming from the
zero eigenvalue) in the above integrand would be replaced by cM . For simplicity
of notation, we assume that cM D 1 . �at said, the above manipulations show that
the spectral zeta function is (up to a multiplicative factor) the Mellin transform
of the standard trace of the heat kernel. More precisely, one has

�M .s/ D
1

�.s/

Z 1
0

ŒStrKM .t/ � 1�t s
dt

t
:(6.1)

Proposition 6.1. Suppose that M is a compact hyperbolic Riemann surface. �en
the spectral zeta function �M .s/ has meromorphic continuation to all s 2 C ,
except for a simple pole at s D 1 with residue vol.M/=.4�/ .

Proof. �e proof follows from the analysis of the integral representation of the
spectral zeta from (6.1) above. We start by splitting the domain of integration as
follows

�M .s/ D
1

�.s/

Z 1

0

StrKM .t/t s�1dt �
1

�.s C 1/
C

1

�.s/

Z 1
1

ŒStrKM .t/ � 1�t s�1dt

(6.2)

D G.s/ �
1

�.s C 1/
C

1

�.s/

Z 1
1

ŒStrKM .t/ � 1�t s�1dt:
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�e second term above is entire. Since StrKM .t/ � 1 has exponential decay at
in�nity (see (3.18)), the third term is also analytic. So we only need to continue
the term containing the integral over Œ0; 1� , which we call G.s/ . For the latter,
we recall (3.18), namely at t D 0

StrKM .t/ D
b�1

t
C b0 C b1t C b2t

2
C : : :(6.3)

where for simplicity we use b�1 in place of vol.M/=.4�/ . �at said, we can
write for Re.s/ > 1

G.s/ D
1

�.s/

Z 1

0

StrKM .t/t s�1dt(6.4)

D
b�1

�.s/.s � 1/
C

1

�.s/

Z 1

0

�
StrKM .t/ �

b�1

t

�
t s�1dt:

�e �rst term in the right-hand side of (6.4) is analytic except for a simple pole
at s D 1 with residue b�1 D vol.M/=.4�/ . �e second term, call it G1.s/ , is
analytic for Re.s/ > 0 . We continue this term as follows

G1.s/ D
1

�.s/

Z 1

0

�
StrKM .t/

t
�
b�1

t2

�
t sdt(6.5)

D
b0

�.s/s
C

1

�.s/

Z 1

0

�
StrKM .t/

t
�
b�1

t2
�
b0

t

�
t sdt:

�e �rst term in the right-hand side of (6.5) is entire, while the second term,
call it G2.s/ , is analytic for Re.s/ > �1 . By the n -th iterate (n D 0; 1; 2; : : : ),
the function G.s/ satis�es the formula

G.s/ D

n�1X
kD�1

bk

�.s/.s C k/
C

1

�.s/

Z 1

0

"
StrKM .t/

tn
�

n�1X
kD�1

bk

tn�k

#
t sCn�1dt;

with the right-hand side being analytic for Re.s/ > �n . In this fashion, the
spectral zeta can be continued to all s 2 C:

If the surface M is not compact, one de�nes the spectral zeta by the Mellin
transform of the standard trace as in the formula (6.1) above. Similar arguments
may be employed to show the analytic continuation of the spectral zeta associated
to a non-compact surface.

For ˛ 2 .0; 1=4/ we de�ne the ˛ -truncated standard trace by

StrK.˛/M .t/ D StrKM .t/ �
X
�n<˛

e��nt :

By considering the Mellin transform of the standard trace we can express the
truncated spectral zeta function as
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�
.˛/
M .s/ D

1

�.s/

Z 1
0

StrK.˛/M .t/t s
dt

t
:

With these in mind, we have the following result concerning the behavior of the
truncated spectral zeta function through elliptic degeneration.

�eorem 6.2. Let Mq be an elliptically degenerating sequence of compact or
non-compact hyperbolic Riemann surfaces of �nite volume with limiting surface
M1 . Let ˛ < 1=4 be any number that is not an eigenvalue of M1 . �en for
any s 2 C , we have

lim
q!1

"
�
.˛/
Mq
.s/ �

1

�.s/

Z 1
0

DtrKMq .t/t s
dt

t

#
D �

.˛/
M1

.s/:

Furthermore, the convergence is uniform in half-planes of the form Re.s/ > C .

Proof. We have to show that

lim
q!1

1

�.s/

Z 1
0

h
StrK.˛/Mq

.t/ �DtrKMq .t/
i
t s
dt

t
D

1

�.s/

Z 1
0

StrK.˛/M1
.t/t s

dt

t
:

Recalling De�nitions (3.2) and (3.8), the bracket in the left hand side above may
be broken down as follows

(6.6) StrK.˛/Mq
.t/ �DtrKMq .t/ D vol.Mq/KH.t; 0/

C

24HtrKMq .t/C EtrKMq .t/ �
X

�q;n<˛

e��q;nt �DtrKMq .t/

35 :
For the volume containing term in the right hand side (6.6), we split the integral
as

1

�.s/

Z 1
0

vol.Mq/KH.t; 0/t
s dt

t

D
vol.Mq/

�.s/

�Z 1

0

KH.t; 0/t
s dt

t
C

Z 1
1

KH.t; 0/t
s dt

t

�
and make the following remarks. �e volume is bounded by a universal constant
depending solely on the genus and the total number � of cusps and conical ends
of the family, namely vol.Mq/ � 2�.2g � 2C �/ . By (3.14), the kernel function
KH.t; 0/ decays exponentially as t goes to in�nity, so that the integral over
Œ1;1/ is entire as a function of s . Using the same arguments as in the course
of the proof of Proposition 6.1, the integral over Œ0; 1� is analytic for Re.s/ > 1
and may be continued to all s 2 C .
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�e integral consisting of the rest of the terms in (6.6), namely

1

�.s/

Z 1
0

24HtrKMq .t/C EtrKMq .t/ �
X

�q;n<˛

e��q;nt �DtrKMq .t/

35 t s dt
t

(6.7)

can be split over Œ0; 1� and Œ1;1/ . From �eorem 3.9, the bracket in (6.7) has
exponential decay; so then the portion over Œ0; 1� is analytic for Re.s/ > 0 and
may be continued to the whole complex plane, while the part of the integral over
Œ1;1/ is entire as function of s . By the dominated convergence theorem, we can
interchange the limit and the integral. �e proof then follows by the convergence
�eorem 3.6.

6.2. Hurwitz spectral zeta function. As in the case of the spectral zeta function,
we start in the compact setting where the Hurwitz spectral zeta function is
represented via the Dirichlet series

�M .s; z/ D
X
�n>0

.z C �n/
�s;

for z; s 2 C with Re.z/ > 0 and Re.s/ > 1 .
In the case when M is compact and connected, the Hurwitz spectral zeta

function may be expressed as the Laplace–Mellin transform of the standard trace
of the heat kernel

�M .s; z/ D
1

�.s/

Z 1
0

ŒStrKM .t/ � 1�e�zt t s
dt

t
:(6.8)

�e above integral transform allows to extend the de�nition of the Hurwitz spectral
zeta function to the non-compact setting.

From Section 1 of [JL1] (see also [Sa]) we obtain the following result.

Proposition 6.3. For each z 2 C , the Hurwitz spectral zeta function extends to
a meromorphic function to all s 2 C .

Proof. Assuming �rst that z > 0 we expand the right-hand side of (6.8) as follows

�M .s; z/ D
1

�.s/

Z 1
1

ŒStrKM .t/ � 1� e�zt t s�1dt(6.9)

C
1

�.s/

Z 1

0

StrKM .t/e�zt t s�1dt

�
1

�.s/zs

�
�.s/ �

Z 1
z

e�t t s�1dt

�
:

By (3.18), the �rst term in the right hand side of (6.9) above is entire as a
function of s . For the second term, which is initially de�ned for Re.s/ > 1 ,
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we can follow the arguments starting with (6.3) in Proposition 6.1 to provide its
analytic continuation. �e third term is entire as a function of s . Consequently,
these arguments extend the Hurwitz spectral zeta function to Re.z/ > 0 .

Next, we extend the Hurwitz spectral zeta to Re.z/ > ��1 as follows:

�M .s; z/ D
1

�.s/

Z 1
0

e�1t ŒStrKM .t/ � 1� e�.zC�1/t t s�1dt

(6.10)

D

X
�n��1

.z C �n/
�s
C

1

�.s/

Z 1
0

24 X
�n>�1

e�.�n��1/t

35 e�.zC�1/t t s�1dt:
�e �rst sum in the right-hand side of (6.10) has �nitely many terms (according
to the multiplicity of �1 ). For the second term, the sum in the bracket has the
same asymptotic behavior as StrKM .t/�1 . Consequently, the second term is now
de�ned for Re.z/ > ��1 and can be continued to all s 2 C . �e process then
can be repeated to extend to Re.z/ > ��k , with �k being the �rst eigenvalue
surpassing �1 .

We end this section by presenting the behavior of the Hurwitz spectral zeta
through elliptic degeneration. For ˛ 2 .0; 1=4/ we de�ne the ˛ -truncated Hurwitz
spectral zeta function as

�
.˛/
M .s; z/ D

X
�n>˛

.z C �n/
�s
D

1

�.s/

Z 1
0

StrK.˛/M .t/e�zt t s
dt

t
:

With these in mind, we have the following result concerning the behavior of the
truncated spectral zeta function through elliptic degeneration.

�eorem 6.4. Let Mq be an elliptically degenerating sequence of compact or
non-compact hyperbolic Riemann surfaces of �nite volume with limiting surface
M1 . Let ˛ < 1=4 be any number that is not an eigenvalue of M1 . �en for
any s 2 C and Re.z/ > �1=4 , we have

lim
q!1

"
�
.˛/
Mq
.s; z/ �

1

�.s/

Z 1
0

DtrKMq .t/e�zt t s
dt

t

#
D �

.˛/
M1

.s; z/:

Furthermore, the convergence is uniform in half-planes of the form Re.s/ > C

and �xed z with Re.z/ > �1=4:

Proof. �e result follows using similar arguments as in �eorem 6.2.
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7. Selberg zeta and determinant of the Laplacian

In this section, we investigate the behavior of the Selberg zeta function and
the determinant of the Laplacian. After we recall de�nitions and some analytic
properties of these functions, we describe their asymptotics through elliptic
degeneration. It is worth mentioning that the spectral zeta, Selberg zeta, and
the determinant of the Laplacian, are very much connected. �e determinant of
the Laplacian specialized to s.s � 1/ is essentially the completed Selberg zeta
function, with additional factors coming from the volume and the conical points
([Sa], [Vor], [Koy]), while the spectral zeta function regularizes the determinant
product. �is comes with no surprise since the aforementioned functions appear
in either the spectral side or the geometric side of the trace formula.

7.1. Selberg zeta function. �e Selberg zeta function is de�ned by the product

ZM .s/ D
Y

2H.�/

1Y
nD0

�
1 � e�.sCn/`

�
:

Following an elementary argument (see for example Lemma 4 in [JLu1]), one
can estimate the number of closed geodesics of bounded length. It then follows
that the Euler product which de�nes the Selberg zeta function converges for
Re.s/ > 1 .

Following [McK], the integral representation is derived by carefully manipu-
lating the logarithmic derivative of the Selberg zeta, namely

Z0M .s/

ZM .s/
D

X
2H.�/

1X
nD0

`e
�.sCn/`

1 � e�.sCn/`
D

X
2H.�/

1X
nD0

1X
kD1

`e
�.sCn/`k

D

X
2H.�/

1X
kD1

`e
�sk`

1 � e�k`
D

X
2H.�/

1X
nD1

`

2 sinh.n`=2/
e�.s�1=2/n` :

Recalling the de�nition of the K -Bessel function

Ks.a; b/ D

Z 1
0

e�.a
2tCb2=t/t s

dt

t
;

as well as the fact that K1=2.b; a/ D K�1=2.a; b/ D .
p
�=b/e�2ab , allows us to

write
Z0M .s/

ZM .s/
D .2s � 1/

X
2H.�/

1X
nD1

`
p
16� sinh.n`=2/

K1=2.s � 1=2; n`=2/

D .2s � 1/

Z 1
0

24 X
2H.�/

1X
nD1

`e
�.t=4C.n` /

2=.4t//

p
16�t sinh.n`=2/

35 e�s.s�1/tdt:
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Using the expression for the hyperbolic heat trace (3.6), the logarithmic derivative
of the Selberg zeta function can be expressed via the integral

Z0M .s/

ZM .s/
D .2s � 1/

Z 1
0

HtrKM .t/e�s.s�1/tdt:

For ˛ < 1=4 , we de�ne the ˛ -truncated logarithmic derivative of the Selberg
zeta function, using the above integral representation minus the contribution to
the trace of the small eigenvalues. Consequently, we have

Z
.˛/0

M .s/

Z
.˛/
M .s/

D .2s � 1/

Z 1
0

HtrK.˛/M .t/e�s.s�1/tdt D
Z0M .s/

ZM .s/
�

X
�M;n<˛

2s � 1

s.s � 1/C �M;n
;

for Re.s/ > 1 or Re.s2 � s/ > �1=4 .

�eorem 7.1. Let Mq be an elliptically degenerating sequence of compact or
non-compact hyperbolic Riemann surfaces of �nite volume with limiting surface
M1 . Let ˛ < 1=4 be any number that is not an eigenvalue of M1 . �en, for
any s with Re.s/ > 1 or Re.s2 � s/ > �1=4 , we have

lim
q!1

Z
.˛/0

Mq
.s/

Z
.˛/
Mq
.s/
D
Z
.˛/0

M1
.s/

Z
.˛/
M1

.s/
:

Proof. �e proof follows from the integral representation of the logarithmic
derivative of the Selberg zeta function to which we apply similar arguments
as in �eorem 6.2.

As a direct corollary to �eorem 7.1 we obtain the following result.

Corollary 7.2. Let Mq be an elliptically degenerating sequence of compact or
non-compact hyperbolic Riemann surfaces of �nite volume with limiting surface
M1 .

(a) For any s with Re.s/ > 1 or Re.s2 � s/ > �1=4 , we have

lim
q!1

ZMq .s/ D ZM1
.s/:

(b) At s D 1 , we have

lim
q!1

Z0Mq .1/ D Z
0
M1

.1/:
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7.2. Determinant of the Laplacian. For a compact surface M , the determinant
of Laplacian �M is formally de�ned as the in�nite product

det�M D
Y
�n>0

�n;(7.1)

(see for instance [Sa], [Vor], [JL1], [JLG], [Tsu]). To give meaning to such
divergent product, we observe that if the above product converged, than the
logarithm of the determinant could be written as

� log det�M D �
X
�n>0

log.�n/ D
d

ds

X
�n>0

��sn

ˇ̌̌
sD0
D �0M .0/:

Recalling from Proposition 6.1 that the spectral zeta �M .s/ is analytic at s D 0 ,
the above formal manipulation suggests that the divergent product in (7.1) be
regularized as

det�M D exp.��0M .0//:(7.2)

For 0 < ˛ < 1=4 , we can express the derivative of ˛ -truncated spectral zeta
function as follows

d

ds
�
.˛/
M .s/ D �

� 0.s/

�.s/2

Z 1
0

StrK.˛/M .t/t s
dt

t
C

1

�.s/

d

ds

�Z 1
0

StrK.˛/M .t/t s
dt

t

�
:

At s D 0 the Gamma function has a simple pole, so that 1=�.s/ D 0 and
consequently the second term above has no contribution to the logarithmic
determinant. Directly from the Weierstrass product de�nition of the Gamma
function, it follows that

� 0

�2
.0/ D lim

s!0

� 0=�.s/

�.s/
D lim
s!0

� � 1=s

1=s
D �1;

where  denotes the Euler–Mascheroni constant. Consequently, the logarithmic
determinant can be rewritten as

log det.˛/�M D �
Z 1
0

StrK.˛/M .t/
dt

t
:(7.3)

�e integral representation (7.3) above together with �eorem 6.2 concerning the
behavior of the spectral zeta through elliptic degeneration, yield the following
result concerning the behavior of the regularized determinant.

Corollary 7.3. Let Mq be an elliptically degenerating sequence of compact or
non-compact hyperbolic Riemann surfaces of �nite volume with limiting surface
M1 . Let ˛ < 1=4 be any number that is not an eigenvalue of M1 . �en

lim
q!1

"
log det.˛/�Mq C

Z 1
0

DtrKMq .t/
dt

t

#
D log det.˛/�M1

:
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8. Integral kernels

As in the articles [HJL], [JLu2], and [JLu3], one can prove the asymptotic
behavior of numerous other spectral quantities having once established the heat
kernel convergence (see �eorem 3.5), and the regularized convergence theorem
of heat traces (see �eorem 3.6). For completeness, we list here some of the
questions that now can be answered and, for the sake of brevity, we outline the
method of proof.

�e resolvent kernel. �e resolvent kernel gM .w; x; y/ is the integral kernel
which inverts the operator � C w on the orthogonal complement of the null
space of �C w . In the case w D 0 , the resolvent kernel becomes the classical
Green’s function. For Re.w/ > 0 and x ¤ y , the resolvent kernel is de�ned by

gM .w; x; y/ D �

Z 1
0

KM .t; x; y/e
�wtdt:

If the surface is compact, we can use the spectral expansion of the heat kernel
as in Equation (3.1) to write

gM .w; x; y/ D �

1X
nD0

 
1

w C �M;n

!
�M;n.x/�M;n.y/

for Re.w/ > 0 and x ¤ y . From the above, it follows that the resolvent kernel
has a meromorphic continuation to the entire plane with poles located at the
negative eigenvalues of the Laplacian. If the surface is not compact, there is a
similar spectral expansion for the resolvent kernel, coming from Equation (3.2)
together with the above integral representation.

Let 0 < ˛ < 1=4 . �en the ˛ -truncated resolvent kernel g.˛/M .w; x; y/ is given
by

g
.˛/
M .w; x; y/ D gM .w; x; y/C

X
�M;n<˛

 
1

w C �M;n

!
�M;n.x/�M;n.y/:

It then follows that the truncated resolvent kernel inverts �Cw on the orthogonal
complement of the space spanned by the eigenfunctions that correspond to the
eigenvalues of � which are less than ˛ .

With the above remarks in mind, we have the following result.

�eorem 8.1. Let Mq be an elliptically degenerating sequence of compact or
non-compact hyperbolic Riemann surfaces of �nite volume with limiting surface
M1 . Let 0 < ˛ < 1=4 .
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(a) For all �xed w with Re.w/ > 0 , we have

lim
q!1

gMq .w; x; y/ D gM1
.w; x; y/:

�e convergence is uniform for x ¤ y bounded away from the developing
cusps and in half-planes Re.w/ > 0 .

(b) For all �xed w with Re.w/ > �˛ , we have

lim
q!1

g
.˛/
Mq
.w; x; y/ D g

.˛/
M1

.w; x; y/:

�e convergence is uniform for x ¤ y bounded away from the developing
cusps and in half-planes Re.w/ > �˛ .

Proof. Part (a) follows from the convergence of the heat kernel as in Proposi-
tion 3.5 together with the dominated convergence theorem. Part (b) is similar
to part (a) with the addition of the convergence of the small eigenvalues and
eigenfunctions from Section 5.

�e Poisson kernel. A Poisson kernel on the surface M is a smooth function
PM .w; x; y/ de�ned on RC�M�M , satisfying the following conditions. Suppose
that f is a bounded and continuous function on M and de�ne

u.w; x/ D

Z
M

PM .w; x; y/f .y/d�.y/:

�en the Poisson kernel satis�es the di�erential equation

.�x � @
2
w/u.w; x/ D 0

and the Dirac condition

f .x/ D lim
w!0C

Z
M

PM .w; x; y/f .y/d�.y/

uniformly on compact sets. For a more detailed discussion on the Poisson kernel
we refer the reader to [JL2].

�e Poisson kernel is given through the G-transform

PM .w; x; y/ D
w
p
4�

Z 1
0

KM .t; x; y/e
�w2=4t t�3=2dt:

We conclude convergence of the Poisson kernel through elliptic degeneration. By
arguing as in the case of the resolvent kernel mentioned above, the region of
de�nition extends to all w 2 C .
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�e wave kernel. From the Poisson kernel we can de�ne the wave kernel with
a rotation in the time variable w , namely

WM .w; x; y/ D PM .�iw; x; y/:

�e wave kernel WM .w; x; y/ is a fundamental solution to the wave equation

�x C @
2
w D 0:

As with the Poisson kernel, we obtain convergence of the wave kernel through
elliptic degeneration.
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