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An example of a non-algebraizable singularity of a
holomorphic foliation

Valente Ramírez

Abstract. We say that the the germ of a singular holomorphic foliation on .C2; 0/ is
algebraizable whenever it is holomorphically conjugate to the singularity of a foliation
de�ned globally on a projective algebraic surface. �e object of this work is to construct a
concrete example of a non-algebraizable singularity. Previously only existential results were
known [GT, CS].
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1. Introduction

Let F be the germ of a holomorphic foliation on .C2; 0/ with an isolated
singularity. We are interested in understanding whether there exists or not a
complex projective algebraic surface S and a point p on it, such that F is
holomorphically conjugate to the germ at p of a globally de�ned foliation on S .
�ose germs for which such an algebraic foliation exists are called algebraizable.
�e existence of non-algebraizable singularities remained unknown until Genzmer
and Teyssier proved in [GT] the existence of countably many classes of saddle-node
singularities which are not algebraizable. �eir proof however, does not provide us
with any concrete examples of such singularities and, as far as the author knows,
no concrete examples of non-algebraizable singularities are known. Following
Casale [Cas], we split the problem into two parts: �rst, to give an example
of a germ of a non-algebraizable singularity; second, to identify algebraizable
singularities. In this paper we address the �rst question and construct explicitly
the germ of a degenerate singularity of order two (i.e. of algebraic multiplicity
two) on .C2; 0/ which is not algebraizable.
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�e strategy we shall follow to construct our example is based on the
following observation: Any algebraic singularity depends on �nitely many complex
parameters – these generate a �eld extension of Q of �nite transcendence degree.
Note, however, that an arbitrary change of coordinates need not preserve this
�niteness. In order to keep track of this transcendence degree in a coordinate
independent way, we introduce the following de�nition.

De�nition 1. Let � D ˛.x; y/ dx C ˇ.x; y/ dy be a 1-form on .C2; 0/ . Denote
by Q.�/ the �eld extension of Q obtained by adjoining to Q the coe�cients
on the power series expansion of ˛ and ˇ . We de�ne the transcendence degree
of � to be

tr: deg .�/ D min
®
tr: deg

�
Q. Q�/=Q

�
j Q� is formally conjugate to �

¯
;

where tr: deg .Q. Q�/=Q/ denotes the transcendence degree of the �eld extension
Q. Q�/=Q .

Above, and throughout this text, we say that two 1-forms � , ! on .C2; 0/ are
formally conjugate if there exists a formal change of coordinates ˆ and a unit
K 2 CJx; yK such that

ˆ�� D K!:

Remark 2. From the above de�nition it is clear that any polynomial 1-form has
�nite transcendence degree. In order to de�ne a non-algebraizable singularity, we
need only construct a 1-form of in�nite transcendence degree.

Our main result is stated below.

�eorem 3. Let �1; �2; �3 be non-rational numbers satisfying �1C�2C�3 D 1 ,
and let fj D ajxCbjy , j D 1; 2; 3 , be arbitrary di�erent linear forms in CŒx; y� .
De�ne the homogeneous quadratic 1-form

!0 D f1f2f3

3X
jD1

�j

dfj

fj

:

Let B D ¹b0; b1; : : :º be a subset of C such that the �eld extension Q.B/=Q has
in�nite transcendence degree and such that the power series

b.x/ D

1X
kD0

bkx
k

has a positive radius of convergence. �en the germ of the holomorphic foliation
on .C2; 0/ de�ned by the 1-form

(1) ! D !0 C x
2b.x/.x dy � y dx/
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has in�nite transcendence degree and thus, according to Remark 2, it is not
algebraizable.

Remark 4. In virtue of the Lindemann-Weierstrass theorem, if ¹a1; a2; : : :º is
a collection of algebraic numbers spanning an in�nite-dimensional vector space
over Q , then the set ¹ea1 ; ea2 ; : : :º generates a �eld extension of Q of in�nite
transcendence degree. �is gives us an immense amount of �exibility de�ning
the set B . In particular we can choose B � R , and we can make b.x/ as rapidly
convergent as desired. For example, de�ning

bk D e
�k
p

k; k D 0; 1; 2; : : : ;

gives rise to an entire function b.x/ D
P1

kD0 bkx
k . Under these choices the

1-form ! de�ned by (1) is analytic on all C2 .

In order to prove �eorem 3 we make use of the formal classi�cation of
non-dicritic degenerate singularities given by Ortiz-Bobadilla, Rosales-González
and Voronin in [ORV]. Indeed, we shall show in Lemma 8 that given a 1-form �

de�ned over a sub�eld K of C the formal reduction taking this 1-form to its formal
normal form is given by a map whose coe�cients also belong to K . In particular,
the coe�cients of the formal normal form belong to K . �is immediately implies
that the transcendence degree tr: deg .Q. Q�/=Q/ is minimized when Q� is a suitable
formal normal form of � (cf. Remark 9). �e formal normal form in question is
discussed in Section 2.

It is worth mentioning that, on the other hand, we do have a few criteria
for deciding algebraizability. It is known since Poincaré and Dulac that non-
degenerate planar singularities with spectrum on the so-called Poincaré domain
are analytically equivalent to foliations given by a polynomial 1-form on C2 . In
addition, Casale proved in [Cas] that the class of dicritical foliations on .C2; 0/

which are regular after a single blow-up and have a unique leaf tangent to the
exceptional divisor are algebraizable whenever they admit a meromorphic �rst
integral. More recently, Calsamiglia and Sad [CS] generalized this result to the
class of all dicritic foliations which are regular after one blow-up process, thus
removing the requirement of a single tangency with the exceptional divisor.

An interesting question is whether or not an algebraizable germ is always
conjugate to the singularity of a polynomial foliation on P 2 . It is proved in [CS]
that simple dicritic singularities with a generic meromorphic �rst integral are not
only algebraizable, but in fact, conjugate to polynomial singularities on P 2 .
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2. Formal classi�cation of non-dicritic singularities

We wish to construct a 1-form ! on .C2; 0/ of in�nite transcendence degree.
As we will see later, it is enough to construct a 1-form which is on its formal
normal form (as de�ned in [ORV]), and such that its de�ning coe�cients generate
an extension of Q of in�nite transcendence degree.

For the sake of briefness, we state the theorem on formal classi�cation
(cf. �eorem 1.1 and Corollary 1.4 in [ORV]) only for non-dicritic degenerate
singularities of order two. For our own convenience, we state their result in terms
of di�erential forms and not vector �elds; the adaptation is straightforward.

�eorem 5 ([ORV]). A generic non-dicritic 1-form � on .C2; 0/ having a
degenerate singularity of order two is formally equivalent to a formal 1-form
H of the form

(2) H D �0 C x
2b.x/.x dy � y dx/;

where �0 is the quadratic homogeneous part of � and b.x/ 2 CJxK . Such normal
form is unique up to pull-backs by homotheties and multiplication by a scalar
factor.

Let R.x; y/ D x @
@x
C y @

@y
be the radial vector �eld and let �0 denote the

quadratic homogeneous part of � as above. �e tangent cone of � is de�ned to
be the polynomial �0.R/ and, by de�nition, � is non-dicritic if �0.R/ 6� 0 .

De�nition 6. In the above theorem and throughout this text, we will say that a
1-form � having a degenerate singularity of order two is a generic singularity of
order two if it satis�es:

(i) the tangent cone T D �0.R/ is non-zero and has three simple linear factors
l1; l2; l3 ;

(ii) the residues ˛1; ˛2; ˛3 of the meromorphic 1-form

�0

T
D

3X
jD1

j̨

dlj

lj

are not rational numbers.

Remark 7. A generic tangent cone as above decomposes into three linear factors
which, by a linear change of coordinates, can be normalized to be y , x and
x � y . From now on we will assume without loss of generality that all foliations
under consideration have T .x; y/ D xy.x � y/ as tangent cone.
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3. Proof of �eorem 3

We shall prove �rst that the 1-form de�ned in �eorem 3 is not formally
equivalent to a polynomial 1-form on C2 . Once we do this it will follow easily
that such a singularity cannot be holomorphically conjugate to a singularity of a
foliation on a projective algebraic surface.

Lemma 8. Let K be a sub�eld of C and let P;Q 2 KJx; yK be formal power
series. Assume � D P dxCQdy de�nes a generic singularity of order two. �e
formal reduction taking � to its formal normal form (2) is given by a formal
map de�ned over the �eld K . In particular, � has a formal normal form de�ned
over K – that is, de�ned by a 1-form whose coe�cients belong to KJx; yK .

Remark 9. �e above lemma implies that the transcendence degree of Q. Q�/ ,
taken over all Q� formally conjugate to � , is minimized at a formal normal form
of � . Indeed, such a minimum is guaranteed to exist, say at K D Q. Q�/ . By
Lemma 8, Q� is formally equivalent to a formal normal form H de�ned over K .
We conclude that Q.H/ is a sub�eld of Q. Q�/ and so

tr: deg .Q.H/=Q/ � tr: deg .Q. Q�/=Q/:

Proof of Lemma 8. �e lemma follows almost immediately from the proof of the
formal classi�cation theorem provided in [ORV] where a pre-normalized foliation
(i.e., a foliation whose separatrix tangent to the line x D 0 has been recti�ed) is
reduced to its formal normal form.

Let us �rst show that, given the 1-form � D P dx CQdy as above, we can
rectify the separatrix tangent to x D 0 by a formal change of coordinates de�ned
over K . We proceed recursively assuming the separatrix tangent to x D 0 has
been recti�ed up to jets of order k (i.e. � ^ dxjxD0 D O.ykC1/ ), and de�ning
a formal change of coordinates �k that will rectify the separatrix up to jets of
order k C 1 . In fact, it is enough to de�ne a polynomial change of coordinates
of the form

(3) �k.x; y/ D .x C ck y
k ; y/:

A short computation shows that if the separatrix tangent to x D 0 was indeed
recti�ed up to jets of order k , then the above polynomial change of coordinates
recti�es the separatrix up to jets of order kC 1 for a suitable coe�cient ck 2 C .
�e condition that ��

k
� has a straight separatrix up to jets of order kC1 is given

by the equation
.��k �/ ^ dxjxD0 D O.y

kC2/;
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which reduces to a linear equation on ck de�ned over K . In particular, ck 2 K

and the map �k is de�ned over K . In this way, we can fully rectify the separatrix
by a sequence of maps of the form (3). To be more precise, any �nite jet of the
sequence of polynomial maps

ˆN D �N ı : : : ı �2; N D 2; 3; : : : ;

eventually stabilizes and thus we obtain a well de�ned formal map ˆ D lim
N!1

ˆN

whose Taylor coe�cients belong to the �eld K .
Because of the above paragraph we may assume without loss of generality that

the 1-form � in Lemma 8 has a straight separatrix given by x D 0 . We can thus
proceed with the formal reduction process given in [ORV]. In the aforementioned
paper, the form � is brought to its formal normal form by a sequence of maps
Hk.x; y/ followed by multiplication by functions Kk.x; y/ of the form

Hk.x; y/ D
�
x C ˛k.x; y/ ; y C ˇk.x; y/

�
; Kk.x; y/ D 1 � ık.x; y/;

where ˛k ; ˇk are homogeneous polynomials of degree k and ı is a homogeneous
polynomial of degree k � 1 . �e coe�cients of the polynomials ˛k ; ˇk; ık are
obtained by solving a linear system of equations which are evidently de�ned
over K (see Sections 2.2 and 2.3 in [ORV]). �is shows that the formal reduction
process obtained in [ORV] is given by a formal map with coe�cients in K .

Proof of �eorem 3. Let us prove �eorem 3 by contradiction. Consider the 1-form
! de�ned by equation (1). Suppose ! is locally holomorphically equivalent to a
polynomial 1-form � D P dx CQdy . Let K be the �eld generated over Q by
the (�nitely many) coe�cients of P;Q 2 CŒx; y� . �is �eld necessarily has �nite
transcendence degree over Q . By Lemma 8 there exists a formal normal form
H of � de�ned over the �eld K . Since ! and H are formally equivalent and
are in their formal normal form, �eorem 5 implies that H and ! di�er at most
by a linear change of coordinates followed by multiplication by a scalar. Namely,
there exits a linear map A 2 GL .2;C/ and a complex number � 2 C such that

(4) A�H D �!:

�is, however, is impossible since the left hand side of (4) is given by power series
with coe�cients over a �eld of �nite transcendence degree, and the right hand
side of (4) is given by power series whose coe�cients generate a �eld of in�nite
transcendence degree. We conclude that the 1-form ! cannot be holomorphically
conjugate to a polynomial 1-form on C2 .

Suppose now that there exists a foliation F on an algebraic surface S � P N

such that the germ of the singularity de�ned by ! is holomorphically conjugate
to the germ of F at a point p 2 S . �is conjugacy implies that the point p is
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a smooth point of S , hence we can �nd a linear projection f W P N ! P 2 such
that the restriction f jS W S ! P 2 is a branched covering map and p a regular
point of f . We use the local inverse f �1 W .P 2; f .p// ! .S; p/ of the local
biholomorphism f W .S; p/! .P 2; f .p// to de�ne the germ of a singularityeF D .f �1/�F ;

around f .p/ , locally given by a holomorphic (not necessarily polynomial)
1-form � . Without loss of generality, we may consider � to be a 1-form on
.C2; 0/ . Note that the map f , the foliation F and the surface S are all de�ned
by �nitely many rational functions in C.P N / . �ese rational functions are each
de�ned by �nitely many complex numbers, thus they are simultaneously de�ned
over a sub�eld K of C of �nite transcendence degree over Q . Note that if
f W S ! P 2 is de�ned over the �eld K , then the germ f �1 W .P 2; f .p//! .S; p/

is also de�ned over K , since we have a formal inverse function theorem for the
ring KJx; yK . Pulling back F by the map f �1 will result in a foliation, induced
by the 1-form � , whose de�ning coe�cients belong to K . �is implies that �
is de�ned over a �eld K � C of �nite transcendence degree over Q and is
holomorphically equivalent to ! , a contradiction.

Note that the last argument actually proves that if S is any projective surface,
p 2 S a smooth point, and F a holomorphic foliation on S with an isolated
singularity at p , then the singularity of F at p has �nite transcendence degree.
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