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Fuchsian groups and compact hyperbolic surfaces

Yves Benoist and Hee Oh

Abstract. We present a topological proof of the following theorem of Benoist-Quint: for a
�nitely generated non-elementary discrete subgroup �1 of PSL.2;R/ with no parabolics,
and for a cocompact lattice �2 of PSL.2;R/ , any �1 orbit on �2nPSL.2;R/ is either
�nite or dense.
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1. Introduction

Let �1 be a non-elementary �nitely generated discrete subgroup with no
parabolic elements of PSL.2;R/ . Let �2 be a cocompact lattice in PSL.2;R/ .
�e following is the �rst non-trivial case of a theorem of Benoist-Quint [BQ1].

�eorem 1.1. Any �1 -orbit on �2nPSL.2;R/ is either �nite or dense.

�e proof of Benoist-Quint is quite involved even in the case as simple as
above and in particular uses their classi�cation of stationary measures [BQ2]. �e
aim of this note is to present a short, and rather elementary proof.

We will deduce �eorem 1.1 from the following �eorem 1.2. Let
� H1 D H2 WD PSL.2;R/ and G WD H1 �H2 ;
� H WD ¹.h; h/ W h 2 PSL2.R/º and � WD �1 � �2 .

�eorem 1.2. For any x 2 �nG , the orbit xH is either closed or dense.

Our proof of �eorem 1.2 is purely topological, and inspired by the recent
work of McMullen, Mohammadi and Oh [MMO] where the orbit closures of the
PSL.2;R/ action on �0nPSL.2;C/ are classi�ed for certain Kleinian subgroups
�0 of in�nite co-volume. While the proof of �eorem 1.2 follows closely the
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sections 8-9 of [MMO], the arguments in this paper are simpler because of
the assumption that �2 is cocompact. We remark that the approach of [MMO]
and hence of this paper is somewhat modeled after Margulis’s original proof of
Oppenheim’s conjecture [Mar]. When �1 is cocompact as well, �eorem 1.2 also
follows from [Rat].

Finally we remark that according to [BQ1], both �eorems 1.1 and 1.2 are
still true in presence of parabolic elements, more precisely when �1 is any non-
elementary discrete subgroup and �2 any lattice in PSL.2;R/ . �e topological
method presented here could also be extended to this case.

2. Horocyclic �ow on convex cocompact surfaces

In this section we prove a few preliminary facts about unipotent dynamics
involving only one factor H1 .

�e group PSL2.R/ WD SL2.R/=¹˙eº is the group of orientation-preserving
isometries of the hyperbolic plane H2 WD ¹z 2 C W Im z > 0º . �e isometry

corresponding to the element g D
�a b

c d

�
2 PSL2.R/ is z 7! azCb

czCd
. It is

implicit in this notation that the matrices g stand for their equivalence class ˙g
in PSL2.R/ . �is group PSL2.R/ acts simply transitively on the unit tangent
bundle T1.H2/ and we choose an identi�cation of PSL2.R/ and T1.H2/ so
that the identity element e corresponds to the upward unit vector at i . We will
also identify the boundary of the hyperbolic plane with the extended real line
@H2 D R [ ¹1º which is topologically a circle.

We recall that �1 is a non-elementary �nitely generated discrete subgroup
with no parabolic elements of the group H1 D PSL2.R/ , that is, �1 is a convex
cocompact subgroup. Let S1 denote the hyperbolic orbifold �1nH2 , and let
ƒ�1

� @H2 be the limit set of �1 . Let A1 and U1 be the subgroups of H1

given by

A1 WD ¹at D

 
et=2 0

0 e�t=2

!
W t 2 Rº and U1 WD ¹ut D

 
1 t

0 1

!
W t 2 Rº:

Since the subgroup �1 is convex cocompact, the set

(2.1) ��1
WD ¹x 2 �1nH1 W xA1 is boundedº

is a compact A1 -invariant subset and one has the equality

��1
D ¹Œh� 2 �1nH1 W h.0/; h.1/ 2 ƒ�1

º:
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In geometric words, seen as a subset of the unit tangent bundle of S1 , the set
��1

is the union of all the geodesic lines which stays inside the convex core of
S1 .

De�nition 2.2. Let K > 1 . A subset T � R is called K -thick if, for any t > 0 ,
T meets Œ�Kt;�t � [ Œt; Kt� .

Lemma 2.3. �ere exists K > 1 such that for any x 2 ��1
, the subset

T .x/ WD ¹t 2 R W xut 2 ��1
º is K -thick.

Proof. Using an isometry, we may assume without loss of generality that x D Œe� .
Since the element e corresponds to the upward unit vector at i , and since x

belongs to ��1
, both points 0 and 1 belong to the limit set ƒ�1

. Since
ut .1/ D1 and ut .0/ D t , one has the equality

T .x/ D ¹t 2 R W t 2 ƒ�1
º:

Write R �ƒ�1
as the union [J` where J` ’s are maximal open intervals. Note

that the minimum hyperbolic distance between the convex hulls in H2

ı WD inf
`¤m

d.hull.J`/; hull.Jm//

is positive, as 2ı is the length of the shortest closed geodesic of the double of
the convex core of S1 . Choose the constant K > 1 so that for t > 0 , one has

d.hullŒ�Kt;�t �; hullŒt; Kt�/ D ı=2:

Note that this choice of K is independent of t . If T .x/ does not intersect
Œ�Kt;�t �[ Œt; Kt� for some t > 0 , then the intervals Œ�Kt;�t � and Œt; Kt� must
be included in two distinct intervals J` and Jm , since 0 2 ƒ�1

. �is contradicts
the choice of K .

Lemma 2.4. Let K > 1 and let T be a K -thick subset of R . For any sequence
hn in H1 X U1 converging to e , there exists a sequence tn 2 T such that the
sequence u�tnhnutn has a limit point in U1 X ¹eº .

Proof. Write hn D

 
an bn

cn dn

!
. We compute

qn WD u�tnhnutn D

 
an � cntn .an � dn � cntn/tn C bn

cn dn C cntn

!
:

Since the element hn does not belong to U1 , it follows that the .1; 2/-entries
Pn.tn/ WD .an � dn � cntn/tnC bn are non-constant polynomial functions of tn of



192 Y. Benoist and H. Oh

degree at most 2 whose coe�cients converge to 0 . Hence, by Lemma 2.5 below,
we can choose tn 2 T going to 1 so that k � jPn.tn/j � 1 , for some constant
k > 0 depending only on K . Since the entry Pn.tn/ is bounded and since hn

converges to e , the product cntn must converge to 0 and the sequence qn has
a limit point in U1 � ¹eº .

We have used the following basic lemma :

Lemma 2.5. For every K > 1 and d � 1 , there exists k > 0 such that, for
every non-constant polynomial P of degree d with jP.0/j � k , and for every
K -thick subset T of R , there exists t in T such that k � jP.t/j � 1 .

Proof. Using a suitable homothety in the variable t , we can assume with no loss
of generality that P belongs to the set Pd of polynomials of degree at most d
such that P.1/ D max

Œ�1;1�
jP.t/j D 1 .

Assume by contradiction that there exists a sequence Pn of polynomials in Pd

and a sequence of K -thick subsets Tn of R such that sup
Tn\Œ�1;1�

jPn.t/j converge

to 0 . After extraction, the sequence Tn converges to a K -thick subset T1 and
the sequence Pn converges to a polynomial P1 2 Pd which is equal to 0 on
the set T1 \ Œ�1; 1� . �is is not possible since this set is in�nite.

We record also, for further use, the following classical lemma :

Lemma 2.6. Let UC1 be the semigroup ¹ut W t � 0º . If the quotient space
X1 WD �1nH1 is compact, any UC1 -orbit is dense in X1 .

Proof. For x 2 X1 , set xn WD xun . We then have xnu�nU
C
1 D xU

C
1 . Hence if z

is a limit point of the sequence xn in X1 , we have zU � xUC1 . By Hedlund’s
theorem [Hed], zU is dense. Hence the orbit xUC1 is also dense.

3. Proof of �eorems 1.1 and 1.2

In this section, using minimal sets and unipotent dynamics on the product
space �nG , we provide a proof of �eorem 1.2.

3.1. Unipotent dynamics. We recall the notation G WD PSL2.R/�PSL2.R/ and
� WD �1 � �2 . Set

� H1 D
®
.h; e/

¯
, H2 D

®
.e; h/

¯
, H D

®
.h; h/

¯
;

� U1 D
®
.ut ; e/

¯
, U2 D

®
.e; ut /

¯
, U D

®
.ut ; ut /

¯
;
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� A1 D
®
.at ; e/

¯
, A2 D

®
.e; at /

¯
, A D

®
.at ; at /

¯
;

� X1 D �1nH1 , X2 D �2nH2 , X D �nG D X1 �X2 .

Recall that �1 is a non-elementary �nitely generated discrete subgroup of H1

with no parabolic elements and that �2 is a cocompact lattice in H2 .
For simplicity, we write eu t for .ut ; ut / and ea t for .at ; at / . Note that the

normalizer of U in G is AU1U2 .

Lemma 3.1. Let gn be a sequence in GXAU1U2 converging to e , and let T be
a K -thick subset of R for some K > 1 . �en for any neighborhood G0 of e in
G , there exist sequences sn 2 T and tn 2 R such that the sequence eu�sn

gneu tn

has a limit point q ¤ e in AU2 \G0 .

Proof. Fix 0 < " � 1 . Write gn D .g
.1/
n ; g

.2/
n / with g

.i/
n D

 
a

.i/
n b

.i/
n

c
.i/
n d

.i/
n

!
. �en

the products qn WD eu�sn
gneu tn are given by

q.i/
n D u�sn

g.i/
n utn D

 
a

.i/
n � c

.i/
n sn .b

.i/
n � d

.i/
n sn/ � tn.c

.i/
n sn � a

.i/
n /

c
.i/
n d

.i/
n C c

.i/
n tn

!
:

Set

tn D
b

.1/
n � d

.1/
n sn

c
.1/
n sn � a

.1/
n

:

�e di�erences qn � e are now rational functions in sn of the form

qn � e D
1

c
.1/
n sn � a

.1/
n

Pn.sn/;

where Pn.s/ is a polynomial function of s of degree at most 2 with values
in M2.R/ � M2.R/ . Since the elements gn do not belong to AU1U2 , these
polynomials Pn are non-constants. In particular, the real valued polynomial
functions s 7! kPn.s/k

2 are non-constant of degree at most 4 .
Since kPn.0/k ! 0 as n!1 , it follows from Lemma 2.5 that for any 0 < � ,

we can choose sn 2 T going to 1 so that k" � kPn.sn/k � " for some constant
k > 0 depending only on K . Moreover we can deduce 1=2 � jc.1/

n sn � a
.1/
n j � 2

from the condition kPn.sn/k � " by looking at the .1; 1/ and .2; 2/ entries of
the �rst component of Pn.sn/ .

�erefore
k"=2 � kqn � ek � 2":

By construction, when " is small enough, the sequence qn has a limit point
q ¤ e in A1A2U2 \G0 .
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We claim that this limit q D .q.1/; q.2// belongs to the group AU2 . It su�ces
to check that the diagonal entries of q.1/ and q.2/ are equal. If not, the two
sequences c.i/

n sn converge to real numbers c.i/ with c.1/ ¤ c.2/ , and a simple
calculation shows that the .1; 2/- entries of q.2/

n are comparable to c.2/�c.1/

c.1/�1
sn

which tends to 1 , yielding a contradiction. Hence q belongs to AU2 .

3.2. H -minimal and U -minimal subsets. Let

� WD ��1
�X2

where ��1
� X1 is de�ned in (2.1). Note that, since �2 is cocompact, one has

the equality ��2
D X2 .

Let x D .x1; x2/ 2 �nG and consider the orbit xH . Note that xH intersects
� non-trivially. Let Y be an H -minimal subset of the closure xH with respect
to � , i.e., Y is a closed H -invariant subset of xH such that Y \� ¤ ¿ and
the orbit yH is dense in Y for any y 2 Y \� . Since any H orbit intersects
� , it follows that yH is dense in Y for any y 2 Y . Let Z be a U -minimal
subset of Y with respect to � . Since � is compact, such minimal sets Y and
Z exist. Set

Y � D Y \� and Z� D Z \�:

In the following, we assume that

the orbit xH is not closed

and aim to show that xH is dense in X .

Lemma 3.2. For any y 2 Y , the identity element e is an accumulation point of
the set ¹g 2 G XH W yg 2 xH º .

Proof. If y does not belong to xH , there exists a sequence hn 2 H such that
xhn converges to y . Hence there exists a sequence gn 2 G converging to e

such that xhn D ygn . �ese elements gn do not belong to H ; hence proving
the claim.

Suppose now that y belongs to xH . If the claim does not hold, then for
a su�ciently small neighborhood G0 of e in G , the set yG0 \ Y is included
in the orbit yH . �is implies that the orbit yH is an open subset of Y . �e
minimality of Y implies that Y D yH , contradicting the assumption that the
orbit yH D xH is not closed.
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Lemma 3.3. �ere exists an element v 2 U2 X ¹eº such that Zv � xH .

Proof. Choose a point z D .z1; z2/ 2 Z
� . By Lemma 3.2, there exists a sequence

gn in G X H converging to e such that zgn 2 xH . We may assume without
loss of generality that gn belongs to H2 .

Suppose �rst that at least one gn belongs to U2 . Set v D gn be one of those
belonging to U2 , so that the point zv belongs to xH . Since v commutes with
U and Z is U -minimal with respect to � , one has the equality Zv D zvU ,
hence the set Zv is included in xH .

Now suppose that gn does not belong to U2 . �en, since the set T .z1/ is
K -thick for some K > 1 by Lemma 2.3, it follows from Lemma 2.4 that there
exists a sequence tn ! 1 in T .z1/ such that, after extraction, the productseu�tngneu tn converge to an element v 2 U2 X ¹eº .

Since the points zeu tn belong to � , this sequence has a limit point z0 2 Z� .
Since one has the equality

z0v D lim
n!1

zeu tn.eu�tngneu tn/ D lim
n!1

.zgn/eu tn ;

the point z0v belongs to xH . We conclude as in the �rst case that the set
Zv D z0vU is included in xH .

Lemma 3.4. For any z 2 Z� , there exists a sequence gn in G X U converging
to e such that zgn 2 Z for all n .

Proof. Since the group �2 is cocompact, it does not contain unipotent elements
and hence the orbit zU is not compact. By Lemma 2.3, the orbit zU is recurrent
in Z� , hence the set Z�XzU contains at least one point. Call it z0 . Since the orbit
z0U is dense in Z , there exists a sequence eu tn 2 U such that z D lim z0eu tn .
Hence one can write z0eu tn D zgn with gn in G X U converging to e .

Proposition 3.5. �ere exists a one-parameter semi-group LC � AU2 such that
ZLC � Z .

Proof. It su�ces to �nd, for any neighborhood G0 of e , an element q ¤ e in
AU2 \ G0 such that the set Zq is included in Z ; then writing q D expw for
an element w of the Lie algebra of G , we can take LC to be the semigroup
¹exp.sw1/ W s � 0º where w1 is a limit point of the elements w

kwk
when the

diameter of G0 shrinks to 0 .
Fix a point z D .z1; z2/ 2 Z

� . According to Lemma 3.4 there exists a sequence
gn 2 G X U converging to e such that zgn 2 Z .

Suppose �rst that gn belongs to AU1U2 for in�nitely many n ; then one can
�nd eu tn 2 U such that the product qn WD gneu tn belongs to AU2 X ¹eº and zqn
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belongs to Z . Since qn normalizes U and since Z is U -minimal with respect
to � , one has the equality Zqn D zUqn D zqnU , hence the set Zqn is included
in Z .

Now suppose that gn is not in AU1U2 . By Lemmas 2.3 and 3.1, there exist
sequences sn 2 T .z1/ and tn 2 R such that, after passing to a subsequence, the
products eu�sn

gneu tn converge to an element q ¤ e in AU2 \ G0 . Since the
elements zeusn

belong to Z� , they have a limit point z0 2 Z� . Since we have

z0q D lim
n!1

zeusn
.eu�sn

gneu tn/ D lim
n!1

.zgn/eu tn ;

the element z0q belongs to Z . We conclude as in the �rst case that the set
Zq D z0qU is included in Z .

Proposition 3.6. �ere exist an element z 2 xH and a one-parameter semi-group
UC2 � U2 such that zUC2 � xH .

Proof. By Proposition 3.5 there exists a one-parameter semigroup LC � AU2

such that ZLC � Z . �is semigroup LC is equal to one of the following:
UC2 , AC or v�1

0 ACv0 for some element v0 2 U2 X ¹eº , where UC2 and AC are
one-parameter semigroups of U2 and A respectively.

When LC D UC2 , our claim is proved.
Suppose now LC D AC . By Lemma 3.3 there exists an element v 2 U2 X ¹eº

such that Zv � xH . �en one has the inclusions

ZACvA � ZvA � xHA � xH:

Choose a point z0 2 Z� and a sequence ea tn 2 A
C going to 1 . Since z0ea tn

belong to � , after passing to a subsequence, the sequence z0ea tn converges to a
point z 2 xH \� . Moreover, since the Hausdor� limit of the sets ea�tnA

C is
A , one has the inclusions

zAvA � lim
n!1

z0ea tn.ea�tnA
C/vA D z0ACvA � xH:

Now by a simple computation, we can check that the set AvA contains a one-
parameter semigroup UC2 of U2 , and hence the orbit zUC2 is included in xH

as desired.
Suppose �nally LC D v�1

0 ACv0 for some v0 in U2 X ¹eº . We can write
AC D ¹ea"t W t � 0º with " D ˙1 and v0 D .e; us/ with s ¤ 0 . A simple
computation shows that the set U 02 WD ¹.e; u"st / W 0 � t � 1º is included in
v�1

0 ACv0A . Hence one has the inclusions

ZU 02 � Zv
�1
0 ACv0A � ZA � xH:
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Choose a point z0 2 Z� and let z 2 xH be a limit of a sequence z0ea�tn with tn
going to C1 . Since the Hausdor� limit of the sets ea tnU

0
2ea�tn is the semigroup

UC2 WD ¹.e; u"st / W t � 0º , one has the inclusions

zUC2 � lim
n!1

.z0ea�tn/ea tnU
0
2ea�tn � ZU

0
2A � xH:

3.3. Conclusion.

Proof of �eorem 1.2. Suppose that the orbit xH is not closed. By Proposition
3.6, the orbit closure xH contains an orbit zUC2 of a one-parameter subsemigroup
of U2 . Since �2 is cocompact in H2 , by Lemma 2.6, this orbit zUC2 is dense
in zH2 . Hence we have the inclusions

X D zG D zH2H � zU
C
2 H � xH:

�is proves the claim.

Proof of �eorem 1.1. Let x D Œg� be a point of X2 D �2nH2 . By replacing �1

by g�1�1g , we may assume without loss of generality that g D e . One deduces
�eorem 1.1 from �eorem 1.2 thanks to the following equivalences:
�e orbit Œe�H is closed (resp. dense) in �nG ()

�e orbit �Œe� is closed (resp. dense) in G=H ()

�e product �2�1 is closed (resp. dense) in PSL2.R/ ()

�e orbit Œe��1 is closed (resp. dense) in �2nPSL2.R/ .
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