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SL2.Z/ -tilings of the torus, Coxeter–Conway friezes and
Farey triangulations
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Abstract. �e notion of SL2 -tiling is a generalization of that of classical Coxeter–Conway
frieze pattern. We classify doubly antiperiodic SL2 -tilings that contain a rectangular domain
of positive integers. Every such SL2 -tiling corresponds to a pair of frieze patterns and
a unimodular 2 � 2 -matrix with positive integer coe�cients. We relate this notion to
triangulated n -gons in the Farey graph.
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1. Introduction

Frieze patterns were introduced and studied by Coxeter and Conway, [Co, CC],
in the 70’s. A frieze pattern is an in�nite array of numbers, bounded by two
diagonals of 1’s, such that every four adjacent numbers a; b; c; d forming a “small”
square satisfy the relation ad�bc D 1 called the unimodular rule; for an example
see Figure 1. �e width of the frieze is the number of diagonals between the
bounding diagonals of 1 ’s.

�e fundamental Conway–Coxeter theorem [CC] o�ers the following classi�-
cation: frieze patterns with positive integer entries of width n�3 , are in one-to-one
correspondence with triangulations of a convex n -gon; for a simple proof see
[Hen]. More precisely, given a triangulated n -gon in the oriented plane, one con-
structs a frieze of width n�3 as follows. �e diagonal next to the diagonal of 1 ’s
is formed by the numbers of triangles incident at each vertex (taken cyclically).
�is, in particular, implies that every diagonal in a frieze of width n � 3 is
n -periodic. �roughout this paper, we will be considering frieze patterns with
positive integer entries.

�e following terminology is due to Conway and Coxeter [CC]. A sequence
of n positive integers q D .q0; : : : ; qn�1/ is called a quiddity of order n , if there
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: : :

1 2 3 1 1 1

1 2 1 2 3 1

1 1 3 5 2 1

1 4 7 3 2 1

1 2 1 1 1 1

1 1 2 3 4 1

1 3 5 7 2 1

1 2 3 1 1 1

1 2 1 2 3 1

: : :
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2

2

3

1

2

Figure 1
A 7 -periodic frieze pattern and the corresponding triangulated heptagon

exists a triangulated n -gon such that every qi is equal to the number of incident
triangles at i -th vertex. For instance, the example in Figure 1 corresponds to the
following quiddities of order 7 : .1; 3; 2; 2; 1; 4; 2/; .3; 2; 2; 1; 4; 2; 1/; : : : (cyclic
permutation).

Every quiddity of order n determines a unique positive integer frieze pattern.
Two quiddities correspond to the same positive integer frieze pattern if and only
if they di�er by a cyclic permutation. According to the Conway–Coxeter theorem,
positive integer frieze patterns can be enumerated by the Catalan numbers.

Example 1.0.1. For each case n D 3; 4 and 5 , there is a unique (up to cyclic
permutation) quiddity: .1; 1; 1/; .1; 2; 1; 2/ and .1; 3; 1; 2; 2/ , respectively.

For n D 6 , there are four di�erent quiddities:

.1; 3; 1; 3; 1; 3/; .1; 4; 1; 2; 2; 2/; .1; 2; 3; 1; 2; 3/; .1; 3; 2; 1; 3; 2/

and their cyclic permutations.
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We can also consider the “degenerate” case n D 2 , where the corresponding
“degenerate” quiddity is .0; 0/ .

Examples of frieze patterns can be constructed using the computer pro-
gram [Scha].

Among many beautiful properties of Coxeter–Conway friezes, the property of
periodicity and so-called Laurent phenomenon are particularly important. �ey
relate frieze patterns to the theory of cluster algebras developed by Fomin and
Zelevinsky, [FZ1, FZ2].

Various generalizations of Coxeter–Conway friezes have recently been intro-
duced and studied, see [CaCh, Pro, BM, ARS, MOT]. One of the generalizations,
called SL2 -tiling, was �rst considered by Assem, Reutenauer and Smith [ARS],
and further developed by Bergeron and Reutenauer [BR]. An SL2 -tiling is an
in�nite array of numbers satisfying the above unimodular rule, without the con-
dition of bounding diagonals of 1’s. Unlike the frieze patterns, SL2 -tilings are
not necessarily periodic. Nevertheless, correspondences between SL2 -tilings and
triangulations can be established, [HJ, BHJ].

�e case of .n;m/-antiperiodic, or “toric” SL2 -tilings was suggested in [BR].
In this paper, we study such tilings.

�e main results of the paper are the following.
We classify doubly antiperiodic SL2 -tilings that contain a rectangular fun-

damental domain of positive integers. We show that every such SL2 -tiling is
generated by a pair of quiddities and a unimodular 2 � 2 -matrix with positive
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Figure 2
A .4; 5/-antiperiodic SL2 -tiling with positive rectangular domain
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integer coe�cients. Although there are in�nitely many such SL2 -tilings, their
description is very explicit.

Following the original idea of Coxeter [Co], we also interpret the entries of
a doubly periodic SL2 -tiling that contain a rectangular fundamental domain of
positive integers in terms of the Farey graph of rational numbers. Every such
SL2 -tiling corresponds to a triple: an n -gon, an m -gon in the Farey graph, and
a totally positive matrix from SL2.Z/ relating them. We also obtain an explicit
formula for the entries of the tiling.

2. Farey graph and the Conway–Coxeter theorem

In this section, we give an explanation of the relation between the Coxeter
frieze patterns and triangulated n -gons.

It was already noticed by Coxeter [Co] that a Farey series (of arbitrary order
N ) de�nes a frieze pattern. Moreover, every frieze pattern corresponds to an
n -gon (i.e., an n -cycle) in the Farey graph. A Farey n -gon always carries a
triangulation; we will prove that this triangulation is precisely that of Conway–
Coxeter theorem. �is statement seems to be new and to extend the observation
illustrated in [Scha].

2.1. Farey graph, Farey series and Farey n -gons. For two rational numbers,
v1; v2 2 Q , written as irreducible fractions v1 D

a1

b1
and v2 D

a2

b2
, the Farey

“distance” is de�ned by

d.v1; v2/ WD ja1b2 � a2b1j:

Note that the above “distance” does not satisfy the triangle inequality. Recall the
de�nition of the Farey graph.

(1) �e set of vertices of the Farey graph is Q[ ¹1º , with 1 represented by
1
0
.

(2) Two vertices, v1; v2 are joined by a (non-oriented) edge .v1; v2/ whenever
d.v1; v2/ D 1 .

�e Farey graph is often embedded into the hyperbolic half-plane, the edges being
realized as geodesics joining rational points on the ideal boundary.

�e following classical properties of the Farey graph can be found in [HW]
(the proof is elementary).

Proposition 2.1.1. (i) Every 3 -cycle of the Farey graph is of the form

(2.1)
²
a1

b1

;
a1 C a2

b1 C b2

;
a2

b2

³
:
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(ii) Every edge of the Farey graph belongs to a 3 -cycle.
(iii) Edges in the Farey graph do not cross, i.e., for a quadruple v1 > v2 > v3 > v4

it is not possible to have edges .v1; v3/ and .v2; v4/ .

De�nition 2.1.2. �e Farey series (also called Farey sequence) of order N is
the sequence of irreducible fractions in Œ0; 1� whose denominators do not exceed
N .

We will write the sequences in decreasing order; see Figure 3.
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5 5 5 5
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43

1

14 3 21

013 21 1

Figure 3
�e Farey series of order 5 embedded in the Farey graph

�e following fundamental property of Farey series is also proved in [HW].
It shows that every Farey series is a cycle in the Farey graph.

Proposition 2.1.3. Every two consecutive numbers in a Farey series are joined
by an edge in the Farey graph.

�is is less elementary than Proposition 2.1.1, so we propose here a short
proof. Our proof is di�erent from the well-known one, it is based on the classical
Pick formula.

Proof. Consider two consecutive numbers a
b
> c

d
, in a Farey series of some order

N . Suppose that ad � bc � 2 . �e quantity A D 1
2
.ad � bc/ is the area of the

Euclidean triangle spanned by the vertices .0; 0/ , .a; b/ , .c; d/ . Pick’s formula
states:

A D I C
B

2
� 1;
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(0,0)

(x,y)

(c,d)

(a,b)

Figure 4
�e case of interior point

where I is the number of integer points in the interior of the triangle, and B

the number of integer points on the border. By assumption, A � 1 , and therefore
I C B

2
� 2 . It follows that there exists a point .x; y/ , which is either inside the

triangle, or on the segment between .a; b/ and .c; d/ (since the fractions a
b
and

c
d

are irreducible). One then has:

y � max.b; d/ � N and
a

b
>
x

y
>
c

d
:

�is contradicts the assumption that a
b

and c
d

are consecutive numbers in the
Farey series.

Proposition 2.1.3 is used three times to prove the following.

Corollary 2.1.4. Every Farey series forms a triangulated polygon in the Farey
graph.

Proof. We prove this statement by induction on N (the order of Farey series).
Assume that the series of order N � 1 is triangulated. �e series of order N is
obtained from that of order N � 1 by adding points of the form k

N
.

First, we observe that two points, k1

N
and k2

N
cannot be consecutive. Indeed,

d.k1

N
; k2

N
/ 6D 1 : that would contradict Proposition 2.1.3; therefore, every new point

k
N

appears between two “old” points:

(2.2)
p1

q1

>
k

N
>
p2

q2

:

Second, by Proposition 2.1.3, k
N

is joined by edges with p1

q1
and p2

q2
. �ird, p1

q1

and p2

q2
are joined by an edge, according to Proposition 2.1.3 applied to the series

of order N � 1 . We conclude that (2.2) is a triangle.
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We will be interested in n -cycles (or “n -gons”) in the Farey graph that are
more general than Farey series.

De�nition 2.1.5. (1) An n -gon in the Farey graph, or a Farey n -gon is a
decreasing sequence of rationals .v0; : : : ; vn�1/ :

1 � v0 > v1 > : : : > vn�1 � 0;

such that every pair of consecutive numbers vi ; viC1 , as well as vn�1; v0 ,
are joined by an edge.

(2) �e n -gon is called normalized if v0 D1 and vn�1 D 0 .

Since every n -gon can be embedded in a Farey series, Corollary 2.1.4 implies
the following.

Corollary 2.1.6. Every Farey n -gon is triangulated.

We thus can speak of the quiddity of a Farey n -gon.

Proof. A Farey n -gon is obtained from a Farey series which is a triangulated
polygon, by cutting along diagonals of the triangulation.

We de�ne the notion of cyclic equivalence of Farey n -gons. Given an n -gon
.v0; : : : ; vn�1/ , consider the n -cycle .v1; : : : ; vn�1; v0/ , and renormalize it using
the SL2.Z/ -action so that v1 D 1 and v0 D 0 . �e obtained n -gon is called
cyclically equivalent to the given one. For an example, see Figure 5.
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Figure 5
Two cyclically equivalent normalized heptagons in the
Farey graph corresponding to the frieze of Figure 1
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2.2. Farey n -gons and Coxeter–Conway friezes. Proposition 2.1.3 leads to the
following observation due to Coxeter [Co]: every Farey series gives rise to a
Coxeter–Conway frieze pattern of positive integers. Along the same lines, we
have the following strengthened statement.

Proposition 2.2.1. �e Coxeter–Conway frieze patterns of positive integers of
width n�3 are in one-to-one correspondence with the normalized Farey n -gons,
up to cyclic equivalence.

Proof. �e correspondence is given by considering the ratios of two consecutive
rows of the frieze patterns. �e sequence

v0 D
1

0
; v1 D

a1

1
; : : : ; vi D

ai

bi

; : : : ; vn�2 D
1

bn�2

; vn�1 D
0

1

corresponds to the frieze determined by the rows

1 a1 a2 � � � an�3 1 0

0 1 b2 � � � bn�2 1

and vice versa.

�e Conway–Coxeter theorem mentioned in the introduction provides a
relation between frieze patterns and triangulations. �e following result somewhat
“demysti�es” this relation and provides an alternative proof of the Conway–Coxeter
theorem.

�eorem 1. �e quiddity of a Farey n -gon coincides with the quiddity of the
corresponding Coxeter–Conway frieze pattern.

Proof. Consider a frieze pattern, and denote by ci;j its entries:

0 1 c1;1 c1;2 � � � c1;n�3 1 0

0 1 c2;2 � � � c2;n�2 1

: : :
: : :

: : :

where ´
ci;j D 1; i � j D 1 or 3 � n;
ci;j D 0; i � j D 2 or 2 � n:

�e quiddity of the frieze pattern reads in the n -periodic line .ci;i / .
Clearly, two consecutive rows determine the rest of the frieze; the following

formula was proved in [Co], formula (5.6):
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ci;j D c1;i�2c2;j � c1;j c2;i�2:

In particular, we have:

ci;i D c1;i�2c2;i � c1;ic2;i�2:(2.3)

�e corresponding Farey n -gon has the following vertices

v0 D
1

0
; v1 D

c1;1

1
; : : : vi D

c1;i

c2;i

; : : : vn�2 D
1

c2;n�2

; vn�1 D
0

1
:

�erefore, the expression (2.3) reads: ci;i D d.vi�2; vi / . It remains to calculate
the Farey distance between pairs of vertices vi�2 and vi in a Farey n -gon.

Lemma 2.2.2. Given a (triangulated) Farey n -gon

v0 D
1

0
; v1 D

a1

1
; : : : ; vi D

ai

bi

; : : : ; vn�2 D
1

bn�2

; vn�1 D
0

1
;

the Farey distance d.vi�1; viC1/ coincides with the number of triangles incident
at vi .

Proof. Among all the vertices of the n -gon .vi / , let us select those connected to
vi by edges of the Farey graph. Denote by ¹vi1 ; : : : ; vik º , resp. ¹vikC1

; : : : ; vikC`
º

the vertices at the left, resp. right, of vi , so that

vi1 > : : : > vik > vi > vikC1
> : : : > vikC`

;

(note that vik D vi�1 and vikC1
D viC1 ). �e number of triangles incident at vi

is then equal to k C ` � 1 .
Two consecutive selected vertices, vij and vij C1

are connected by an edge.
Indeed, this follows from the fact that every Farey polygon is triangulated.
�erefore, the vertices .vij ; vij C1

; vi / form a triangle (a 3 -cycle) in the Farey
graph. Using Eq. (2.1), we obtain by induction:

vi�1.D vik / D
ai1 C .k � 1/ai

bi1 C .k � 1/bi

; viC1.D vikC1
/ D

aikC`
C .` � 1/ai

bikC`
C .` � 1/bi

:

We have:

d.vi�1; viC1/ D ai1bikC`
�bi1aikC`

C.k�1/.aibikC`
�biaikC`

/C.`�1/.ai1bi�bi1ai/:

By assumption, vi is joined by edges with vi1 and vikC`
, hence aibikC`

�

biaikC`
D 1 , and ai1bi �bi1ai D 1 . Furthermore, .vi1 ; vi ; vikC`

/ is also a triangle,
therefore ai1bikC`

� bi1aikC`
D 1 . We have �nally:

(2.4) d.vi�1; viC1/ D k C ` � 1:

Hence the lemma.

�eorem 1 is proved.
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2.3. Entries of the frieze pattern. Coxeter’s formula (5.6) in [Co] for the
entries of the frieze pattern translates into our language as the following general
expression:

(2.5) ci;j D d.vi�2; vj /;

where, as above, .vi / is the Farey n -gon corresponding to the frieze pattern.

3. SL2 -tilings

In this section, we introduce the main notions studied in this paper.

3.1. Tame SL2 -tilings. Let us �rst recall the notion of SL2 -tiling introduced in
[BR].

(1) An SL2 -tiling, is an in�nite matrix A D .ai;j /.i;j /2Z�Z , such that every
adjacent 2 � 2 -minor equals 1 :ˇ̌̌̌

ˇ ai;j ai;jC1

aiC1;j aiC1;jC1

ˇ̌̌̌
ˇ D 1;

for all .i; j / 2 Z � Z .
(2) �e tiling is called tame if every adjacent 3 � 3 -minor equals 0 :ˇ̌̌̌

ˇ̌̌ ai;j ai;jC1 ai;jC2

aiC1;j aiC1;jC1 aiC1;jC2

aiC2;j aiC2;jC1 aiC2;jC2

ˇ̌̌̌
ˇ̌̌ D 0;

for all .i; j / 2 Z � Z .

Let us stress the fact that a generic SL2 -tiling is tame.

3.2. Antiperiodicity. �e following condition was also suggested in [BR].
An SL2 -tiling is called .n;m/-antiperiodic if every row is n -antiperiodic,

and every column is m -antiperiodic:

ai;jCn D �ai;j ;

aiCm;j D �ai;j ;

for all .i; j / 2 Z � Z .
�e following relation between .n;m/-antiperiodic SL2 -tilings and the clas-

sical Coxeter–Conway frieze patterns shows that the antiperiodicity condition for
the SL2 -tilings is natural and interesting.
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3.3. Frieze patterns and .n; n/-antiperiodic SL2 -tilings. As explained in [BR],
every Coxeter–Conway frieze pattern of width n � 3 can be extended to a tame
.n; n/-antiperiodic SL2 -tiling, in a unique way.

�e construction is as follows. One adds two diagonals of 0 ’s next to the
diagonals of 1 ’s, and then continues by antiperiodicity.

Example 3.3.1. �e frieze pattern in Figure 1 corresponds to the following .7; 7/-
antiperiodic tame SL2 -tiling.

:::
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::
:::

� � � 1 2 3 1 1 1 0 �1 �2 �3 �1 �1 � � �

� � � 0 1 2 1 2 3 1 0 �1 �2 �1 �2 � � �

� � � �1 0 1 1 3 5 2 1 0 �1 �1 �3 � � �

� � � �2 �1 0 1 4 7 3 2 1 0 �1 �4 � � �

� � � �1 �1 �1 0 1 2 1 1 1 1 0 �1 � � �

� � � �2 �3 �4 �1 0 1 1 2 3 4 1 0 � � �

� � � �3 �5 �7 �2 �1 0 1 3 5 7 2 1 � � �

� � � �1 �2 �3 �1 �1 �1 0 1 2 3 1 1 � � �

� � � 0 �1 �2 �1 �2 �1 �1 0 1 2 1 2 � � �

:::
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::
:::

For the details of the above construction and the “antiperiodic nature” of
Conway–Coxeter’s friezes; see [BR, MOST].

3.4. Positive rectangular domain. In this paper, we are considering .n;m/-
antiperiodic SL2 -tilings that contain an m � n -rectangular domain of positive
integers.

More precisely, we are interested in SL2 -tilings of the following form:

(3.1)

:::
:::

:::

� � � P �P P � � �

� � � �P P �P � � �

:::
:::

:::

where P is an m � n -matrix with entries in Z>0 . An example of such an
SL2 -tilling is presented in Figure 2.

�e following property is important for us.
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Proposition 3.4.1. An .n;m/-antiperiodic SL2 -tiling that contains a positive
m � n -rectangular domain is tame.

Proof. �is is a consequence of the Jacobi identity or Dodgson formula for
determinants:ˇ̌̌̌

ˇ̌̌� � �� � �

� � �

ˇ̌̌̌
ˇ̌̌
ˇ̌̌̌
ˇ̌̌ı ı ıı � ı

ı ı ı

ˇ̌̌̌
ˇ̌̌ D

ˇ̌̌̌
ˇ̌̌� � ı� � ı

ı ı ı

ˇ̌̌̌
ˇ̌̌
ˇ̌̌̌
ˇ̌̌ı ı ıı � �

ı � �

ˇ̌̌̌
ˇ̌̌ �

ˇ̌̌̌
ˇ̌̌ı ı ı� � ı

� � ı

ˇ̌̌̌
ˇ̌̌
ˇ̌̌̌
ˇ̌̌ı � �ı � �

ı ı ı

ˇ̌̌̌
ˇ̌̌

where the white dots represent deleted entries, and the black dots initial entries.
Since the values are non zero and the 2� 2 -minors all equal to 1 , the above

identity implies that all the 3 � 3 -minors vanish.

4. �e main theorem

In this section, we formulate our main result. �e proof will be given in
Section 6.

4.1. Classi�cation. It turns out that every SL2 -tiling corresponds to a pair of
frieze patterns and a positive integer 2� 2 -matrix M satisfying some conditions.

�eorem 2. �e set of .n;m/-antiperiodic SL2 -tilings containing a fundamental
rectangular domain of positive integers is in a one-to-one correspondence with
the set of triples .q; q0;M/ , where

q D .q0; : : : ; qn�1/; q0 D .q00; : : : ; q
0
m�1/

are quiddities of order n and m , respectively, and where M D

 
a b

c d

!
is a

unimodular 2�2 -matrix with positive integer coe�cients, such that the inequalities

(4.1) q0 <
b

a
; q00 <

c

a

are satis�ed.

Remark 4.1.1. It is important to notice that inequalities (4.1) also imply

(4.2) q0 <
d

c
; q00 <

d

b
:

Indeed, the unimodular condition ad � bc D 1 and the assumption that a; b; c; d
are positive integers imply that b

a
< d

c
and c

a
< d

b
.
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Corollary 4.1.2. For every pair of quiddities q; q0 , there exist in�nitely many
.n;m/-antiperiodic SL2 -tilings containing a fundamental rectangular domain of
positive integers.

Proof. Given arbitrary pair of quiddities q and q0 , the matrices: 
1 b

c bc C 1

!
satisfy (4.1) for su�ciently large b; c .

4.2. �e semigroup S . Consider the set of 2�2 -matrices with positive integral
entries satisfying the following conditions of positivity:

(4.3) S D

´ 
a b

c d

!
2 SL2.Z/

ˇ̌̌̌
ˇ 0 < a < b < d;0 < a < c < d:

µ
Note that the inequalities b < d and c < d are included for the sake of
completeness. �ese inequalities actually follow from a < b; a < c together with
ad � bc D 1 and the assumption that a; b; c; d are positive.

We have the following property.

Proposition 4.2.1. �e set S � SL2.Z/ is a semigroup, i.e., it is stable by
multiplication.

Proof. Straightforward.

�e semigroup S naturally appears in our context. Indeed, if n;m � 3 , then
the inequalities (4.1) imply M 2 S . Moreover every quiddity q contains a unit
entry, so that after a cyclic permutation of any quiddity one can obtain q0 D 1 .
�e inequalities (4.1) then coincide with the conditions (4.3).

4.3. Examples. Let us give two simple examples of SL2 -tilings.

Example 4.3.1. �ere is a one-to-one correspondence between .3; 3/-antiperiodic
SL2 -tilings containing a fundamental domain of positive integers and elements
of the semigroup S . Indeed, the only quiddity of order 3 is q D .1; 1; 1/ . To



84 S. Morier-Genoud, V. Ovsienko and S. Tabachnikov

every matrix (4.3) there corresponds the following SL2 -tiling:

:::
:::

:::

� � � a b b � a � � �

� � � c d d � c � � �

� � � c � a d � b d � b � c C a � � �

:::
:::

:::

It is a good exercise to check that the positivity condition d � b � c C a > 0

follows from (4.3) together with ad � bc D 1 .

Example 4.3.2. In the case n D 2 or m D 2 , the conditions (4.1) become trivial.
Consider also the simplest (degenerate) case of .2; 2/-antiperiodic SL2 -tilings.

A .2; 2/-antiperiodic SL2 -tiling containing a fundamental domain of positive
integers is of the form:

:::
:::

:::
:::

� � � a b �a �b � � �

� � � c d �c �d � � �

:::
:::

:::
:::

where
 
a b

c d

!
is an arbitrary unimodular matrix with positive integer coe�cients.

Note that this case corresponds to the “degenerate quiddity” of order 2 , namely
q D .0; 0/ .

5. Frieze patterns and linear recurrence equations

We will recall here a remarkable and well-known property of Coxeter–Conway
frieze patterns. It concerns a relation of frieze patterns and linear recurrence
equations. �e statement presented in this subsection was implicitly obtained
in [CC]; for details see [MOST]. We recall this statement without proof.

5.1. Discrete non-oscillating Hill equations.

De�nition 5.1.1. Let .ci /i2Z be an arbitrary n -periodic sequence of numbers.
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(a) A linear di�erence equation

(5.1) ViC1 D ciVi � Vi�1;

where the sequence .ci / is given (the coe�cients) and where .Vi / is unknown
(the solution), is called a discrete Hill, or Sturm-Liouville, or one-dimensional
Schrödinger equation.

(b) �e equation (5.1) is called non-oscillating if every solution .Vi / is antiperi-
odic:

ViCn D �Vi ;

for all i , and has exactly one sign change in any sequence .Vi ; ViC1; : : : ViCn/ .

In other words, every solution of a non-oscillating equation must have non-
negative intervals of length n , that is, n consecutive non-negative values:
.Vk ; : : : ; VkCn�1/:

Moreover, for a generic solution of (5.1), all the elements Vj of a non-negative
interval are strictly positive. Zero values can only occur at the endpoints: Vk D 0 ,
or VkCn�1 D 0 .

Note also that the coe�cients in a non-oscillating equation are necessarily
positive.

5.2. Frieze patterns and di�erence equations. �e relation between the equa-
tions (5.1) and Coxeter–Conway frieze patterns is as follows.

Proposition 5.2.1. Given an equation (5.1) with integer coe�cients, it is a non-
oscillating equation if and only if the coe�cients .c0; c1; : : : ; cn�1/ form a quiddity.

Proof. �is is an immediate consequence of properties established by Coxeter
and Conway. Indeed, it was proved in [Co] (see also [CC] property (17)) that the
entries in any row of the pattern (extended by antiperiodicity) form a solution of
an equation (5.1), where the coe�cients ci are given by the sequence on the �rst
non-trivial diagonal. �us, from an non-oscillating equation one can write down
a frieze, and vice versa.

: : :
: : :

: : :
: : :

: : :

1 c0 � � � 1 0 �1 � � �

1 c1 � � � 1 0 �1 � � �

1 c2 � � � 1 0 �1 � � �

: : :
: : :

: : :
: : :

: : :

Finally, the integer condition establishes the correspondence with quiddities.
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Of course, for an arbitrary non-oscillating equation (5.1), the corresponding
frieze pattern does not necessarily have integer entries. In [MOST], the space of
frieze patterns and the space of non-oscillating equation (5.1) are identi�ed in a
more general setting.

Example 5.2.2. (a) �e simplest quiddity q D .1; 1; 1/ corresponds to the non-
oscillating equation with all ci D 1 . Every solution of this equation is 3 -
antiperiodic and can be obtained as a linear combination of the following two
solutions:

.V
.1/

i / D .: : : ; 0; 1; 1; 0;�1;�1; : : :/; .V
.2/

i / D .: : : ; 1; 1; 0;�1;�1; 0 : : :/:

�is corresponds to a degenerate frieze of Coxeter–Conway of width 0.
(b) �e frieze from Figure 1 corresponds to the non-oscillating equation with
7 -antiperiodic solutions that are linear combinations of the following two:

.V
.1/

i / D .: : : ; 1; 2; 3; 1; 1; 1; 0; : : :/; .V
.2/

i / D .: : : ; 0; 1; 2; 1; 2; 3; 1; : : :/:

�e above two solutions are exactly the �rst two rows of the frieze in Figure 1.
One can of course choose di�erent rows for a basis.

Note that, in the both cases, the basis solutions .V .1/
i /; .V

.2/
i / are not generic

since they contain zeros.

6. Proof of �eorem 2

6.1. �e construction. Given a triple .q; q0;M/ as in �eorem 2, we will
construct an SL2 -tiling satisfying the above conditions. De�ne T D .ai;j / using
the following recurrence relations:

(6.1)
ai;jC1 WD qjai;j � ai;j�1;

aiC1;j WD q0iai;j � ai�1;j ;

for all i; j 2 Z , where the quiddities are periodically extended, i.e qi D qiCn; q
0
i D

q0iCm , and taking the initial conditions

(6.2)
 
a0;0 a0;1

a1;0 a1;1

!
WD

 
a b

c d

!
:

It is very easy to check that the tiling T is well-de�ned, i.e., the two recurrences
commute and the calculations along the rows and columns give the same result.
We show that the de�ned tiling T contains a fundamental rectangular domain of
positive integers.
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By Proposition 5.2.1, the de�ned tiling T is .n;m/-antiperiodic. Consider the
following m � n -subarray of T

(6.3) P D

0BBBB@
a0;0 a0;1 � � � a0;n�1

a1;0 a1;1 � � � a1;n�1

� � �

am�1;0 am�1;1 � � � am�1;n�1

1CCCCA :
�e main step of the proof of �eorem 2 is the following lemma.

Lemma 6.1.1. �e entries of P are positive integers.

Proof. It turns out that thanks to Proposition 5.2.1 we will only need to perform
“local” calculation of the elements neighboring to the initial ones:

a�1;�1 a�1;0 a�1;1

a0;�1 a b

a1;�1 c d

�e conditions (4.1) imply: a0;�1 < 0 and a�1;0 < 0: Indeed, from (6.1) and (6.2),
one has

a0;�1 D q0a � b; a�1;0 D q
0
0a � c:

Since the rows and the columns of P are solutions of non-oscillating equations,
and a is positive, this implies that all the values of the �rst row and the �rst
column of P are positive.

Furthermore, again from the recurrence (6.1), one has

a�1;�1 D q0q
0
0a � q0c � q

0
0b C d:

�e condition (4.1) then implies a�1;�1 > 0 . Indeed, one establishes

0 < q0 D aq0.d � q
0
0b/ � bq0.c � q

0
0a/ < b.d � q

0
0b/ � bq0.c � q

0
0a/

D b.q0q
0
0a � q0c � q

0
0b C d/:

Proposition 5.2.1 then guarantees that

a0;�1 < 0; : : : ; am�1;�1 < 0;

a�1;0 < 0; : : : ; a�1;n�1 < 0;

and applying again Proposition 5.2.1, we deduce that all the entries in P are
positive.
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6.2. From tilings to triples. Conversely, consider an .n;m/-periodic SL2 -tiling
T D .ai;j /.i;j /2Z�Z such that the m � n -subarray P given by (6.3) consists of
positive integers. We claim that T can be obtained by the above construction.

Lemma 6.2.1. �e ratios of the �rst two rows of P form a decreasing sequence:
a0;0

a1;0

>
a0;1

a1;1

> : : : >
a0;n�1

a1;n�1

;

and similarly for the ratios of the �rst two columns of P :
a0;1

a0;0

>
a1;1

a1;0

> : : : >
am�1;1

am�1;0

:

Proof. �is follows from the unimodular conditions a0;ja1;jC1 � a0;jC1a1;j D 1

and the assumption that all the entries of P are positive.

Lemma 6.2.2. �e entries of T satisfy the recurrence relations (6.1) where
q D .qj / and q0 D .q0i / are n -periodic and m -periodic sequences of positive
integers, respectively.

Proof. Given .i; j / , there is a linear relation 
ai;jC1

aiC1;jC1

!
D �i;j

 
ai;j

aiC1;j

!
C �i;j

 
ai;j�1

aiC1;j�1

!
:

Using the SL2 conditions one immediately obtains the values

�i;j D ai;j�1aiC1;jC1 � ai;jC1aiC1;j�1; �i;j D �1:

From Lemma 6.2.1, one has �i;j > 0 . Furthermore, it readily follows from the
tameness property (see Proposition 3.4.1) that �i;j actually does not depend on
i , so we use the notation qj WD �i;j .

�e arguments for the rows are similar.

Lemma 6.2.3. �e above sequences .q0; : : : ; qm�1/ and .q00; : : : ; qn�1/ are
quiddities.

Proof. �e rows, resp. columns, of T are antiperiodic solutions of an equation
(5.1) with ci D ciCn D qi , resp. ci D ciCm D q

0
i . It follows from Proposition 5.2.1

that the coe�cients are quiddities.

Lemma 6.2.4. �e 2 � 2 left upper block of P , satis�es

q0 a0;0 < a0;1;

q00 a0;0 < a1;0:
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Proof. By antiperiodicity, a0;�1 < 0 . One has from (6.1): a0;1 D q0 a0;0 � a0;�1 ,
and similarly for q00 . Hence the result.

In other words, the elements of the matrix 
a0;0 a0;1

a1;0 a1;1

!
DW

 
a b

c d

!
satisfy (4.1).

�eorem 2 is proved.

7. SL2 -tilings and the Farey graph

In this section, we give an interpretation of the entries ai;j of a doubly
periodic SL2 -tiling. We follow the idea of Coxeter [Co] and consider n -gons in
the classical Farey graph.

7.1. �e distance between two n -gons. Consider a doubly periodic SL2 -tiling
T D .ai;j / and the corresponding triple .q; q0;M/ (see �eorem 2). Our next
goal is to give an explicit expression for the numbers ai;j similar to (2.5).

From the triple .q; q0;M/ we construct the unique n -gon .v0; v1; : : : ; vn�1/

and the unique m -gon .v00; v
0
1; : : : ; v

0
m�1/ with the “initial” conditions:

.v0; v1/ WD
�

a
c
; b

d

�
;

�
v00; v

0
m�1

�
WD
�

1
0
; 0

1

�
;

and with the quiddities .q0; : : : ; qn�1/ and .q01; : : : ; q
0
m/ , respectively. Notice that

the quiddity q0 is shifted cyclically.

�eorem 3. �e entries of the SL2 -tiling T D .ai;j / are given by

ai;j D d.v
0
i�1; vj /;

for all 0 � i � m � 1; 0 � j � n � 1 .

Proof. �e main idea of the proof is to include the n -gon v and the m -gon v0

into a bigger N -gon in a Farey graph, and then apply Eq. (2.5). In other words,
we will include the fundamental domain P into a (bigger) frieze pattern.

First, let us show that

v0m�2 > v0 > v1 > : : : > vn�1 > v
0
m�1:

Indeed, the vertices v0m�2; v
0
m�1; v

0
0 are consecutive vertices of the m -gon v0 . By

assumption, v0m�1 D
0
1
, so that the condition
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d.v0m�2; v
0
m�1/ D 1

implies v0m�2 D
1
`

for some ` . By Lemma 2.2.2, the distance d.v00; v
0
m�2/

coincides with the number of triangles at the vertex v0m�1 which is, by
construction, equal to q00 . We �nally have:

d.v00; v
0
m�2/ D ` D q

0
0;

so that v0m�2 D
1

q0
0

. �e inequality v0m�1 > v0 then follows from the second
inequality (4.1).

It is well-known that the Farey graph is connected; see [HW]. �erefore, two
disjoint polygons, v and v0 , belong to some N -gon that contains the n -gon v

and the m -gon v0 .
�eorem 3 then follows from formula (2.5).

Example 7.1.1. Consider the tiling given in Figure 2. It corresponds to the
following data:

q D .1; 2; 2; 1; 3/; q0 D .2; 1; 2; 1/; M D

 
2 5

7 18

!
:

�e associated 5 -gon and 4 -gon in the Farey graph are as follows:

v D

�
2

7
;
5

18
;
8

29
;
11

40
;
3

11

�
; and v0 D

�
1

0
;
1

1
;
1

2
;
0

1

�
;

respectively. �ey can be included in an 11 -gon; see Figure 6.

0
2

1

0

1

1411402918731

0131185211

Figure 6
�e subgraph associated with the tiling in Figure 2
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