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An elementary approach to dessins d’enfants and the
Grothendieck–Teichmüller group

Pierre Guillot

Abstract. We give an account of the theory of dessins d’enfants which is both elementary
and self-contained. We describe the equivalence of many categories (graphs embedded
nicely on surfaces, �nite sets with certain permutations, certain �eld extensions, and some
classes of algebraic curves), some of which are naturally endowed with an action of the
absolute Galois group of the rational �eld. We prove that the action is faithful. Eventually
we prove that Gal.Q=Q/ embeds into the Grothendieck–Teichmüller group bGT0 introduced
by Drinfeld. �ere are explicit approximations of bGT0 by �nite groups, and we hope to
encourage computations in this area.

Our treatment includes a result which has not appeared in the literature yet: the
action of Gal.Q=Q/ on the subset of regular dessins – that is, those exhibiting maximal
symmetry – is also faithful.
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Introduction

�e story of dessins d’enfants (children’s drawings) is best told in two
episodes.

�e �rst side of the story is a surprising uni�cation of di�erent-looking
theories: graphs embedded nicely on surfaces, �nite sets with certain permutations,
certain �eld extensions, and some classes of algebraic curves (some over C , some
over Q ), all turn out to de�ne equivalent categories. �is result follows from
powerful and yet very classical theorems, mostly from the 19th century, such as
the correspondence between Riemann surfaces and their �elds of meromorphic
functions (of course known to Riemann himself), or the basic properties of the
fundamental group (dating back to Poincaré).

One of our goals with the present paper is to give an account of this theory
that sticks to elementary methods, as we believe it should. (For example we shall
never need to appeal to “Weil’s rigidity criterion”, as is most often done in the
literature on the subject; note that it is also possible, in fact, to read most of this
paper without any knowledge of algebraic curves.) Our development is moreover
as self-contained as is reasonable: that is, while this paper is not the place to
develop the theory of Riemann surfaces, Galois extensions or covering spaces
from scratch – we shall refer to basic textbooks for these – we give complete
arguments from there. Also, we have striven to state the results in terms of actual
equivalences of categories, a slick language which unfortunately is not always
employed in the usual sources.

�e term dessins d’enfants was coined by Grothendieck in [Gr], in which a
vast programme was laid out, giving the theory a new thrust which is the second
side of the story we wish to tell. In a nutshell, some of the categories mentioned
above naturally carry an action of Gal.Q=Q/ , the absolute Galois group of the
rational �eld. �is group therefore acts on the set of isomorphism classes of
objects in any of the equivalent categories; in particular one can de�ne an action
of the absolute Galois group on graphs embedded on surfaces. In this situation
however, the nature of the Galois action is particularly mysterious – it is hoped
that, by studying it, light may be shed on the structure of Gal.Q=Q/ . It is the
opportunity to bring some kind of basic, visual geometry to bear in the study of
the absolute Galois group that makes dessins d’enfants – embedded graphs – so
attractive.

In this paper we explain carefully, again relying only on elementary methods,
how one de�nes the action, and how one proves that it is faithful. �is last
property is clearly crucial if we are to have any hope of studying Gal.Q=Q/ by
considering graphs. We devote some space to the search for invariants of dessins
belonging to the same Galois orbit, a major objective in the �eld.
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When a group acts faithfully on something, we can usually obtain an embedding
of it in some automorphism group. In our case, this leads to the Grothendieck–
Teichmüller group bGT , �rst introduced by Drinfeld in [Dr], and proved to
contain Gal.Q=Q/ by Ihara in [Ih]. While trying to describe Ihara’s proof in any
detail would carry us beyond the scope of this paper, we present a complete,
elementary argument establishing that Gal.Q=Q/ embeds into the slightly larger
group bGT 0 also de�ned by Drinfeld. In fact we work with a group GT isomorphic
to bGT 0 , and which is an inverse limit

GT D lim
n

GT .n/ I

here GT .n/ is a certain subgroup of Out.Hn/ for an explicitly de�ned �nite
group Hn . So describing Hn and GT .n/ for some n large enough gives rough
information about Gal.Q=Q/ – and it is possible to do so in �nite time.

In turn, we shall see that understanding Hn amounts, in a sense, to
understanding all �nite groups generated by two elements, whose order is less
than n . We land back on our feet: from the �rst part of this paper, those groups
are in one to one correspondence with some embedded graphs, called regular,
exhibiting maximal symmetry. �e classi�cation of “regular maps”, as they are
sometimes called, is a classical topic which is still alive today.

? ? ?

Let us add a few informal comments of historical nature, not written by an expert
in the history of mathematics.

�e origin of the subjet is the study of “maps”, a word meaning graphs
embedded on surfaces in a certain way, the complement of the graph being a
disjoint union of topological discs which may be reminiscent of countries on a
map of the world. Attention has focused quickly on “regular maps”, that is, those
for which the automorphism group is as large as possible. For example, “maps”
are mentioned in the 1957 book [Co] by Coxeter and Moser, and older references
can certainly be found. �e 1978 paper [JS] by Jones and Singerman has gained
a lot of popularity; it gave the �eld stronger foundations, and already established
bijections between “maps” and combinatorial objects such as permutations on the
one hand, and also with compact Riemann surfaces, and thus complex algebraic
curves, on the other hand. For a recent survey on the classi�cation of “maps”,
see [Si].

�en came the Esquisse d’un programme [Gr], written by Grothendieck
between 1972 and 1984. Dessins can be seen as algebraic curves over C with
some extra structure (a morphism to P1 with rami�cation above 0; 1 or 1 only),
and Grothendieck knew that such a curve must be de�ned over Q . Since then,
this remark has been known as “the obvious part of Belyi’s theorem” by people
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working in the �eld, even though it is not universally recognized as obvious,
and has little to do with Belyi (one of the �rst complete and rigorous proofs
is probably that by Wolfart [Wo]). However, Grothendieck was very impressed
by the simplicity and strength of a result by Belyi [Be] stating that, conversely,
any algebraic curve de�ned over Q can be equipped with a morphism as above
(which is nowadays called a Belyi map, while it has become common to speak of
Belyi’s theorem to mean the equivalence of de�nability of Q on the one hand,
and the possibility of �nding a Belyi map on the other hand). �us the theory of
dessins encompasses all curves over Q , and Grothendieck pointed out that this
simple fact implied that the action of Gal.Q=Q/ on dessins must be faithful.
�e esquisse included many more ideas which will not be discussed here. For a
playful exposition of many examples of the Galois action on dessins, see [LZ].

Later, in 1990, Drinfeld de�ned bGT in [Dr] and studied its action on braided
categories, but did not relate it explicitly to Gal.Q=Q/ although the motivation
for the de�nition came from the esquisse. It was Ihara in 1994 [Ih] who proved
the existence of an embedding of Gal.Q=Q/ into bGT ; it is interesting to note
that, if dessins d’enfants were the original idea for Ihara’s proof, they are a little
hidden behind the technicalities.

�e Grothendieck–Teichmüller group has since been the object of much
research, quite often using the tools of quantum algebra in the spirit of Drinfeld’s
original approach. See also [Fr] by Fresse, which establishes an interpretation
of bGT in terms of operads.

? ? ?

Here is an outline of the paper. In Section 1, we introduce cell complexes, that
is, spaces obtained by glueing discs to bipartite graphs; when the result is a
topological surface, we have a dessin. In the same section we explain that dessins
are entirely determined by two permutations. In Section 2, we quote celebrated,
classical results that establish a number of equivalences of categories between that
of dessins and many others, mentioned above. In Section 3 we study the regularity
condition in detail. �e Galois action is introduced in Section 4, where we also
present some concrete calculations. We show that the action is faithful. Finally in
Section 5 we prove that Gal.Q=Q/ embeds into the group GT described above.

In the course of this �nal proof, we obtain seemingly for free the following
re�nement: the action of Gal.Q=Q/ on regular dessins is also faithful. �is fact
follows mostly from a 1980 result by Jarden [Ja] (together with known material
on dessins), and it is surprising that it has not been mentioned in the literature
yet. While this work was in its last stages, I have learned from Gareth Jones that
the preprint [JG] by Andrei Jaikin-Zapirain and Gabino Gonzalez-Diez contains
generalizations of Jarden’s theorem while the faithfulness of the Galois action
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on regular dessins is explicitly mentioned as a consequence (together with more
precise statements). Also in [BCG], a preprint by Ingrid Bauer, Fabrizio Catanese
and Fritz Grunewald, one �nds the result stated.
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1. Dessins

In this section we describe the �rst category of interest to us, which is that of
graphs embedded on surfaces in a particularly nice way. �ese have been called
sometimes “maps” in the literature, a term which one should avoid if possible
given the other meaning of the word “map” in mathematics. We call them dessins.

�e reader may be surprised by the number of pages devoted to this �rst
topic, and the level of details that we go into. Would it not su�ce to say that the
objects we study are graphs embedded on surfaces, whose complement is a union
of open discs, perhaps with just a couple of technical conditions? (A topologist
would say “a CW-complex structure on a surface”.)

�is would not be appropriate, for several reasons. First and foremost, we
aim at proving certain equivalences of categories, eventually (see next section).
With the above de�nition, whether one takes as morphisms all continuous maps
between surfaces, or restricts attention to the “cellular” ones, in any case there
are simply too many morphisms taken into account (see for example [JS]). Below,
we get things just right.

Another reason is that we already present two categories in this section,
not just one: dessins are intimately related to �nite sets endowed with certain
permutations. �e two categories are equivalent and indeed so close that we
encourage the reader to always think of these two simultaneously; we take the
time to build the intuition for this.

Note also that our treatment is very general, including non-orientable dessins
as well as dessins on surfaces with boundary.

Finally, the material below is so elementary that it was possible to describe it
with absolutely no reference to textbooks, an opportunity we took. We think of
the objects de�ned in this section as the most down-to-earth of the paper, while
the other categories to be introduced later are here to shed light on dessins.

1.1. Bipartite graphs. We start with the de�nition of bipartite graphs, or
bigraphs for short, which are essentially graphs made of black and white vertices,
such that the edges only connect vertices of di�erent colours. More formally, a
bigraph consists of
� a set B , the elements of which we call the black vertices,
� a set W , the elements of which we call the white vertices,
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� a set D , the elements of which we call the darts,
� two maps B W D �! B and W W D �! W .

In most examples all of the above sets will be �nite, but in general we only
specify a local �niteness condition, as follows. �e degree of w 2 W is the
number of darts d such that W.d/ D w ; the degree of b 2 B is the number of
darts d such that B.d/ D b . We require that all degrees be �nite.

For example, the following picture will help us describe a bigraph.

b

b

bc

bc

bc

b1

b2

w1

w2

w3

d1

d2
d
3

d
4

Here B D ¹b1; b2º , while W D ¹w1; w2; w3º and D D ¹d1; d2; d3; d4º . �e
maps B and W satisfy, for example, B.d1/ D b1 and W.d1/ D w2 . Note that
bigraphs according to this de�nition are naturally labeled, even though we will
often suppress the names of the vertices and darts in the pictures.

�e notion of morphism of bigraphs is the obvious one: a morphism
between G D .B;W;D;B;W/ and G 0 D .B 0; W 0;D0;B 0;W 0/ is given by three
maps B ! B 0 , W ! W 0 and � W D ! D0 which are compatible with
the maps B;W ;B 0;W 0 . Isomorphisms are invertible morphisms, unsurprisingly.
(Pedantically, one could de�ne an unlabeled bigraph to be an isomorphism class
of bigraphs.)

To a bigraph G we may associate a topological space jG j , by attaching
intervals to discrete points according to the maps B and W ; in the above
example, and in all others, it will look just like the picture. To this end, take for
each d 2 D a copy Id of the unit interval Œ0; 1� with its usual topology. �en
consider

Y D
a
d2D

Id

with the disjoint union topology, and

X D Y
a

B
a

W :
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(Here B and W are given the discrete topology.) On X there is an equivalence
relation corresponding to the identi�cations imposed by the maps B and W .
In other words, the equivalence class Œb� of b 2 B is such that Œb� \ Id D ¹0º
if B.d/ D b and Œb�\ Id D ¿ otherwise, while Œb�\B D ¹bº and Œb�\W D ¿ ;
the description of the equivalence class Œw� when w 2 W is analogous,
with Œw� \ Id D ¹1º precisely when W.d/ D w . All the other equivalence
classes are singletons. �e space jG j is the set of equivalence classes, with the
quotient topology. Clearly, an isomorphism of graphs induces a homeomorphism
between their topological realizations.

Finally, we point out that usual graphs (the reader may pick their favorite
de�nition) can be seen as bigraphs by “inserting a white vertex inside each
edge”. We will not formalize this here, although it is very easy. In what follows
we o�cially de�ne a graph to be a bigraph in which all white vertices have
degree precisely 2 ; a pair of darts with a common white vertex form an edge.
�e next picture, on which you see four edges, summarizes this.

b

b

b

b

bc

bc

bc bc

1.2. Cell complexes. Suppose a bigraph G is given. A loop on G is a sequence
of darts describing a closed path on G alternating between black and white
vertices. More precisely, a loop is a tuple

.d1; d2; : : : ; d2n/ 2 D
2n

such that W.d2iC1/ D W.d2iC2/ and B.d2iC2/ D B.d2iC3/ , for 0 � i � n � 1 ,
where d2nC1 is to be understood as d1 . We think of this loop as starting
and ending with the black vertex B.d1/ , and visiting along the way the points
W.d2/ , B.d3/ , W.d4/ , B.d5/ , W.d6/; : : : (It is a little surprising to adopt such
a convention, that loops always start at a black vertex, but it does simplify what
follows.)

For example, consider the following square:
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bc

bcb

b

d1

d2

d3

d4

On this bigraph we have a loop .d1; d2; d3; d4/ for example. Note that .d1; d2;
d2; d1/ is also a loop, as well as .d1; d1/ .

Loops on G form a set L.G / . We have reached the de�nition of a cell
complex (or 2 -cell complex, for emphasis). �is consists of

� a bigraph G ,
� a set F , the elements of which we call the faces,
� a map @ W F ! L.G / , called the boundary map.

�e de�nition of morphisms between cell complexes will wait a little.
A cell complex C also has a topological realization jC j : brie�y, one attaches

closed discs to the space jG j using the speci�ed boundary maps. In more details,
for each f 2 F we pick a copy Df of the unit disc

D D ¹z 2 C W jzj � 1º :

Consider then

Z0 D
a
f 2F

Df

and

Z D jG j
a

Z0 :

We de�ne jC j to be the following identi�cation space of Z , with the quotient
topology. Fix f 2 F and let @f D .d1; d2; : : : ; d2n/ . We put ! D e

2i�
2n 2 Df .

�e discussion will be easier to understand with a picture:
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b

b

b

bc

bc

bc

ω1

ω0

ω5

ω4

ω3

ω2

d1

d2

d3

d4

d5

d6

�e letters d1; : : : ; d6 are simply here to indicate the intended glueing.
Let I D Œ0; 1� and consider the homeomorphism

hi W I �! Œ!2i ; !2iC1� ;

where Œ!2i ; !2iC1� denotes the circular arc from !2i to !2iC1 , de�ned by hi .t/ D
!2iCt . We shall combine it with the continuous map

gi W I �! jG j

which is obtained as the identi�cation I D Id2iC1 followed by the canonical
map Id2iC1 ! jG j (see the de�nition of jG j ). We can now request, for all t 2 I ,
the identi�cation of gi .t/ and hi .t/ , these being both points of Z .

Similarly there is an identi�cation of the arc Œ!2i ; !2i�1� with the image
of Id2i . We prescribe no more identi�cations, and this completes the de�nition
of jC j .

Example 1.1. Let us return to the square as above. We add one face f ,
with @f D .d1; d2; d3; d4/ . We obtain a complex C such that jC j is homeomorphic
to the square Œ0; 1� � Œ0; 1� , and which we represent as follows:

bc

bcb

b

d1

d2

d3

d4 ⋆ f
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We shall often place a ? inside the faces, even when they are not labeled, to
remind the reader to mentally �ll in a disc. �e reader is invited to contemplate
how the complex obtained by taking, say, @f D .d2; d1; d4; d3/ instead, produces
a homeomorphic realization. �ese two complexes ought to be isomorphic, when
we have de�ned what isomorphisms are.

Example 1.2. �is example will be of more importance later than is immediately
apparent. Let B;W;D and F all have one element, say b;w; d and f

respectively; and let @f D .d; d/ . �en jC j is homeomorphic to the sphere S2 .

�is example shows why we used discs rather than polygons: we may very
well have to deal with digons.

Example 1.3. It is possible to convey a great deal of information by pictures
alone, and with this example we explore such shorthands. Consider for example:

b

bc

bc

bc bc

1

2

3

4

5

6

⋆ ⋆

Here we use integers to label the darts. We can see this picture as depicting
a cell complex with two faces, having boundary .2; 3/ and .5; 6/ respectively.
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Should we choose to do so, there would be little ambiguity in informing the
reader that we mean for there to be a third face “on the outside”, hoping that the
boundary .1; 1; 2; 3; 4; 4; 5; 6/ (or equivalent) will be understood. �e centre of
that face is placed “at in�nity”, that is, we think of the plane as the sphere S2
with a point removed via stereographic projection, and that point is the missing ? .
Of course with these three faces, one has jC j homeomorphic to S2 .

Suppose we were to draw the following picture, and specify that there is a
third face “at in�nity” (or “on the outside”):

b

bc

bc bc⋆ ⋆bc

�is is probably enough information for the reader to understand which cell
complex we mean. (It has the same underlying bigraph as the previous one,
but the cell complexes are not isomorphic). �e topological realization, again a
sphere, is represented below.

Example 1.4. It is harder to draw pictures in the following case. Take B D

¹b1; b2; b3º and W D ¹w1; w2; w3º , and add darts so that G is “the complete
bipartite graph on 3 C 3 vertices”: that is, place a dart between each bi and
each wj , for 1 � i; j � 3 . Since there are no multiple darts between any two
vertices in this bigraph, we can designate a dart by its endpoints; we may also
describe a loop by simply giving the list of vertices that it visits. With this
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convention, we add four faces:

f1 through b1; w2; b3; w3; b2; w1;
f2 through b1; w2; b2; w3;
f3 through b2; w2; b3; w1;
f4 through b1; w3; b3; w1 :

(Each of these returns to its starting point in the end.) �e topological realiza-
tion jC j is homeomorphic to the projective plane RP 2 . We will show this with
a picture:

bc

bc

bc

bc

bc

bc

b

b

b

b1

b2

b3
w1

w2

w3w1

w2

w3

⋆f3

⋆

⋆f2

⋆f1

⋆f3
⋆f2

⋆

f4

f4

Here we see RP 2 as the unit disc D with z identi�ed with �z whenever jzj D
1 ; we caution that the dotted arcs, indicating the boundary of the unit circle, are
not darts.

Here are some very basic properties of the geometric realization.

Proposition 1.5. (1) �e space jC j is connected if and only if jG j is.
(2) �e space jC j is compact if and only if the complex is �nite (ie B , W , D

and F are all �nite).

Proof. (1) It is quite easy to prove this directly, after showing that each path
on jC j is homotopic to one lying on jG j . �e reader who has recognized that the
space jC j is, by de�nition, the realization of a CW-complex, whose 1 -skeleton
is jG j , will see the result as a consequence of the cellular approximation theorem
([Br], �eorem 11.4).

(2) By construction there is a quotient map

q W K D Y
a

B
a

W
a

Z0 �! jC j ;

where the notation is as above. Clearly K is compact if the complex is �nite,
so q.K/ D jC j must be compact, too, and we have proved that the condition is
su�cient.
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To see that it is necessary as well, one can argue that the map q is proper,
or else use elementary arguments as follows. We show that the faces must be
�nite in number when jC j is compact, and the reader will do similarly with the
vertices and darts.

For each f 2 F , consider the open set Uf � K whose complement is the
union of the closed discs of radius 1

2
in all the discs Df 0 for f 0 ¤ f (this

complement is closed by de�nition of the disjoint union topology). By de�nition
of the quotient topology q.Uf / is open in jC j , and the various open sets q.Uf /
form a cover of jC j (each q.Uf / is obtained by removing a closed disc from
each face of jC j but one). By compactness, �nitely many of them will cover the
space, and so �nitely many of the open sets Uf will cover K . It follows that F
is �nite.

1.3. Morphisms between cell complexes; triangulations. Let us start with
a provisional de�nition: a naive morphism between C D .G ; F; @/ and C 0 D

.G 0; F 0; @0/ is given by a morphism G ! G 0 together with a map ˆ W F ! F 0

such that @0ˆ.f / D �.@f / for f 2 F ; here the map � W D ! D0 has been
extended to the set L.G / in the obvious way. With this de�nition, it is clear that
naive morphisms induce continuous maps between the topological realizations.

However this de�nition does not allow enough morphisms. Let us examine
this.

Example 1.6. We return to Example 1.1, so we consider the cell complex C

depicted below:

bc

bcb

b

d1

d2

d3

d4 ⋆ f

Here @f D .d1; d2; d3; d4/ . Now form a complex C 0 by changing only @ to @0 ,
with @0f D .d2; d1; d4; d3/ . �ere is indeed a naive isomorphism between C

and C 0 , given by “the re�ection in the line joining the white vertices”.
However, suppose now that we equip C with two faces f1 and f2 (leaving

the bigraph unchanged) with @f1 D .d1; d2; d3; d4/ D @f2 ; then jC j is the
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sphere S2 . On the other hand consider C 0 having the same bigraph, and two
faces satisfying @f 01 D .d1; d2; d3; d4/ and @f 02 D .d2; d1; d3; d4/ . �en it is readily
checked that there is no naive isomorphism between C and C 0 .

�is is disappointing, as we would like to see these two as essentially “the
same” complexes. More generally we would like to think of the boundaries of
the faces in a cell complex as not having a distinguished (black) starting point,
and not having a particular direction.

�e following better de�nition will be su�cient in many situations. A
lax morphism between C D .G ; F; @/ and C 0 D .G 0; F 0; @0/ is given by a
morphism G ! G 0 together with a map ˆ W F ! F 0 with the following property.
If f 2 F with @f D .d1; : : : ; d2n/ , and if @0ˆ.f / D .d 01; : : : ; d 02m/ , then

�.¹d1; : : : ; d2nº/ D ¹d
0
1; : : : ; d

0
2mº ;

where � is the map D ! D0 . So naive morphisms are lax morphisms, but not
conversely.

Example 1.7. Resuming the notation of the last example, the identity on G and
the bijection F ! F 0 , f1 7! f 01 , f2 7! f 02 , together de�ne a lax isomorphism
between C and C 0 .

It is not immediate how lax morphisms can be used to induce continuous
maps. Moreover, the following phenomenon must be observed.

Example 1.8. We build a bigraph G with only one black vertex, one white vertex,
and two darts d1 and d2 between them; jG j is a circle. Turn this into a cell
complex C by adding one face f with @f D .d1; d2; d1; d2/ . �e topological
realization jC j is obtained by taking a copy of the unit disc D , and identifying z
and �z when jzj D 1 : in other words, jC j is the real projective plane RP 2 .

Now consider the map z 7! �z , from D to itself, and factor it through RP 2 ;
it gives a self-homeomorphism of jC j . �e latter cannot possibly be induced
by a lax morphism, for it is the identity on jG j : to de�ne a corresponding lax
isomorphism we would have to de�ne the self maps of B;W and F to be the
identity. Assuming that we had chosen a procedure to get a continuous map from
a lax morphism, surely the identity would induce the identity.

However the said self-homeomorphism of RP 2 is simple enough that we
would like to see it corresponding to an isomorphism of C .

Our troubles seem to arise when repeated darts show up in the boundary
of a single face. We solve the problem by subdividing the faces, obtaining the
canonical triangulation of our objects.
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Let C be a cell complex. We may triangulate the faces of jC j by adding a
point in the interior of each face (think of the point marked ? in the pictures), and
connecting it to the vertices on the boundary. More precisely, for each face f ,
with @f D .d1; : : : ; d2n/ , we identify 2n subspaces of jC j , each homeomorphic
to a triangle, as the images under the canonical quotient map of the sectors
obtained on the unit disc in the fashion described on the picture below for n D 3 .
We denote them t

f
i with 1 � i � 2n .

b

b

b

bc

bc

bc

d1

d2

d3

d4

d5

d6

⋆

t
f
3

t
f
2

t
f
4 t

f
6

t
f
1

t
f
5

(As before the labels di indicate the intended gluing, while the sector bearing
the name tfi will map to that subspace under the quotient map.) �e space jC j is
thus triangulated, yet it is not necessarily (the realization of) a simplicial complex,
as distinct triangles may have the same set of vertices, as in Example 1.2. �is same
example exhibits another relevant pathology, namely that the disc corresponding
to a face might well map to something which is not homeomorphic to a disc
anymore (viz. the sphere), while the triangles actually cut the space jC j into
“easy” pieces. It also has particularly nice combinatorial properties.

We write T for the set of all triangles in the complex. We think of T as
an indexing set, much like B , W , D or F . One can choose to adopt a more
combinatorial approach, letting t

f
1 , : : : , tf2n be (distinct) symbols attached to

the face f whose boundary is .d1; : : : ; d2n/ , with T the set of all symbols.
�ere is a map D W T ! D which associates t

f
i with D.t

f
i / D di , there is

also a map F W T ! F with F .t
f
i / D f . We will gradually use more and

more geometric terms when referring to the triangles, but it is always possible
to translate them into combinatorial relations.

Each t 2 T has vertices which we may call � , ı and ? unambiguously. Its
sides will be called � � ı , ? � � and ? � ı . Each t also has a neighbouring
triangle obtained by re�ecting in the ? � � side; call it a.t/ . Likewise, we may
re�ect in the ?� ı side and obtain a neighbouring triangle, which we call c.t/ .
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In other words, T comes equipped with two permutations a and c , of order two
and having no �xed points. (In particular if T is �nite it has even cardinality.)
�e notation a; c is standard, and there is a third permutation b coming up soon.
Later we will write ta and tc instead of a.t/ and c.t/ , see Remark 1.15.

Example 1.9. In Example 1.2, there are two triangles, say T D ¹1; 2º , and a D c D
the transposition .12/ .

Example 1.10. Let us consider the second complex from Example 1.3, that is let
us have a look at

b

bc

bc bcbc1

2 3

4

5

6

⋆⋆

Let us �rst assume that there is no “outside face”, so let the the triangles be
numbered from 1 to 6 . �e permutation a is then

a D .14/.23/.56/ ;

while
c D .12/.34/.56/ :

If one adds a face at in�nity, there are six new triangles, and the permutations a
and c change accordingly. We leave this as an exercise.

We have at long last arrived at the o�cial de�nition of a morphism
between C D .G ; F; @/ and C 0 D .G 0; F 0; @0/ . We de�ne this to be given by
a morphism G ! G 0 (thus including a map � W D ! D0 ) and a map ‚ W T ! T 0

which

(1) veri�es that for each triangle t , one has D 0.‚.t// D �.D.t// ,
(2) is compatible with the permutations a and c , that is ‚.a.t// D a.‚.t//

and ‚.c.t// D c.‚.t// .

It is immediate that morphisms induce continuous maps between the topological
realizations. �ese continuous maps restrict to homeomorphisms between the
triangles.

Should this de�nition appear too complicated, we hasten to add:
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Lemma 1.11. Let C be a cell complex such that, for each face f with @f D

.d1; : : : ; d2n/ , the darts d1; : : : ; d2n are distinct. Let C 0 be another cell complex
with the same property. �en any lax morphism between C and C 0 de�nes a
unique morphism, characterized by the property that F .‚.t// D ˆ.F .t// for
every triangle t .

(Recall that lax morphisms have a map ˆ between the sets of faces, and
morphisms have a map ‚ between the sets of triangles.)

Many cell complexes in practice satisfy the property stated in the lemma, and
for these we specify morphisms by giving maps B ! B 0 , W ! W 0 , D ! D0 ,
and F ! F 0 .

Proof. Any triangle t in C is now entirely determined by the face F .t/ and the
dart D.t/ ; the same can be said of triangles in C 0 . So ‚.t/ must be de�ned
as the only triangle t 0 such that F .t 0/ and D.t 0/ are appropriate (in symbols
F .t 0/ D ˆ.F .t// and D.t 0/ D �.D.t// ). �e de�nition of lax morphisms
guarantees the existence of t 0 .

�at ‚ is compatible with a and c is automatic here. Indeed a.t/ is the only
triangle such that F .a.t// D F .t/ and such that D.a.t// has the same black
vertex as D.t/ . An analogous property is true of both ‚.a.t// and a.‚.t// ,
which must be equal. Likewise for c .

Example 1.12. We come back to Example 1.8. �e face f is divided into 4

triangles, say t1; t2; t3; t4 . We can de�ne a self-isomorphism of C by ‚.ti / D tiC2
(indices mod 4), and everything else the identity. �e induced continuous
map jC j ! jC j is the one we were after (once some identi�cation of jC j
with RP 2 is made and �xed).

We are certainly not claiming that any continuous map jC j ! jC 0j , or even
any homeomorphism, will be induced by a morphism C ! C 0 . For a silly
example, think of the map z 7! jzjz from the unit disc D to itself, which
moves points a little closer to the origin; it is easy to imagine a cell complex C

with jC j Š D such that no self-isomorphism can induce that homeomorphism.
In fact, whenever a self-homeomorphism of jC j leaves the triangles stable, then
the best approximation of it which we can produce with an automorphism of C

is the identity.
However, the equivalence of categories below will show that we have “enough”

morphisms, in a sense.
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1.4. Surfaces. Here we adress a natural question: under what conditions on C

is jC j a surface (topological manifold of dimension 2), or a surface-with-
boundary?

A condition springing to mind is that each dart should be on the boundary
of precisely two faces (one or two faces for surfaces-with-boundary). However
this will not su�ce, as we may well end up with “two discs touching at their
centres”, that is, a portion of jC j might look like this:

b

bc
bc

bc

bc

bc

bc

(On this picture you are meant to see a little bit of six faces, three at the
top and three at the bottom, all touching at the black vertex; each visible dart is
on the boundary of precisely two faces, yet jC j is not a manifold near the black
vertex.)

�is is the only pathology that can really occur. To formulate the condition
on C , here is some terminology. We say that a dart d is on the boundary of
the face f if, of course, d shows up in the tuple @f ; since d may appear
several times in @f , we de�ne its multiplicity with respect to f accordingly.
We say that two darts d and d 0 appear consecutively in f if @f contains
either the sequence d; d 0 or d 0; d . In this case d and d 0 have an endpoint
in common; conversely if they do have a common point, say a black one, then
they appear consecutively in f if and only if there are triangles t and t 0

with F .t/ D F .t 0/ D f such that d D D.t/ , d 0 D D.t 0/ , and t; t 0 are the image
of one another under the permutation a (the symmetry in the ?�� side). Use c
if the common point is white.

Now let us �x a vertex, say a black one b 2 B . It may be surprising at �rst
that the condition that follows is in terms of graphs; but it is the quickest way to
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phrase things. We take B�1.b/ , the set of darts whose black vertex is b , as the
set of vertices of a graph Cb , and called the connectivity graph at b . We place
an edge between d and d 0 whenever they appear consecutively in some face f .
Note that this may create loops in Cb as d D d 0 is not ruled out.

We note that Cb has �nitely many vertices. If we assume that the darts in C

are on the boundary of no more than two faces, counting multiplicities, then it
follows that each vertex in Cb is connected to at most two others (corresponding
to the images under a of the two triangles, at most, which may have the dart as
a side). �us when Cb is connected, it is either a straight path or a circle.

�ere is a similar discussion involving a graph Cw for a white vertex w 2 W .
Here is an example of complex with the connectivity graphs drawn:

b

b

b

b b

b

b

b

bc

bc

bc

bc

bc

bc

bc

⋆⋆

⋆ ⋆ ⋆

⋆⋆⋆

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

bb

b

b

b

b
b b

b

b
b

b

b

b

Proposition 1.13. Let C be a complex. �en jC j is a topological surface if and
only if the following conditions are met:

(1) each vertex has positive degree,
(2) each dart is on the boundary of precisely two faces, counting multiplicities,
(3) all the connectivity graphs are connected.

Necessary and su�cient conditions for jC j to be a surface-with-boundary are
obtained by replacing (2) with the condition that each dart is on the boundary
of either one or two faces, counting multiplicities.

�is should be obvious at this point, and is left as an exercise.
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We have reached the most important de�nition in this section. A dessin is a
complex C such that jC j is a surface (possibly with boundary). Whenever S is a
topological surface, a dessin on S is a cell complex C together with a speci�ed
homeomorphism h W jC j �! S . Several examples of dessins on the sphere have
been given.

Dessins have been called hypermaps and dessins d’enfants in the literature.
When all the white vertices have degree precisely two, we call a dessin clean.
Clean dessins are sometimes called maps in the literature.

1.5. More permutations. Let C be a dessin. Each triangle t 2 T determines a
dart d D D.t/ , and d belongs to one or two triangles (exactly two when jC j
has no boundary). We may thus de�ne a permutation b of T by requiring

b.t/ D

´
t if no other triangle has d as a side ;

t 0 if t 0 has d as a side and t 0 ¤ t :

�eorem 1.14. Let T be a �nite set endowed with three permutations a , b , c ,
each of order two, such that a and c have no �xed points. �en there exists
a dessin C , unique up to unique isomorphism, such that T and a; b; c can be
identi�ed with the set of triangles of C with the permutations described above.

Later we will rephrase this as an equivalence of categories (with the proof
below containing all that is necessary).

Remark 1.15. It is time for us to adopt a convention about groups of permutations.
If X is any set, and S.X/ is the set of permutations of X , there are (at least)
two naturals ways of turning S.X/ into a group. When �; � 2 S.X/ , we choose
to de�ne �� to be the permutation x 7! �.�.x// . Accordingly, we will write x�
instead of �.x/ , so as to obtain the formula x�� D .x� /� .

With this convention the group S.X/ acts on X on the right. �is will simplify
the discussion later when we bring in covering spaces (personal preference is also
involved here).

Proof. Let G be the group of permutations of T generated by a , b , and c ,
let Gab be the subgroup generated by a and b alone, and similarly de�ne Gbc ,
Gac , Ga , Gb and Gc . Now put

B D T=Gab ; W D T=Gbc ; D D T=Gb ; F D T=Gac :

�e maps B W D ! B and W W D ! W are taken to be the obvious ones, and we
already have a bigraph G . It remains to de�ne the boundary map @ W F ! L.G /

in order to de�ne a cell complex.
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So let f 2 F , and let t 2 T represent f (the di�erent choices we can make
for t will all lead to isomorphic complexes). Consider the elements t , tc , tca ,
tcac , tcaca , : : : , alternating between a and c . Since T is �nite, there can be
only �nitely many distinct points created by this process. Using the fact that a
and c are of order two, and without �xed points, it is a simple exercise to check
that the following list exhausts the orbit of t under Gac :

t; tc ; tca; : : : ; tcac���acacac :

(�ere is an even number of elements, and the last one ends with a c .) We then
let @f D .d1; : : : ; d2n/ , where d1 , d2 , : : : is the Gb -orbit of t , tc , : : :

We have thus de�ned a cell complex C out of T together with a , b and c .
It is a matter of checking the de�nitions to verify that T can be identi�ed with
the set of triangles of C , in a way that is compatible with all the structure – in
particular, the map T ! T=Gb is the map D which to a triangle t associates
the unique dart which is a side of t , and from the fact that b has order two we
see that C satis�es condition (2) of Proposition 1.13 (while (1) is obvious).

Let us examine condition (3). Any two darts in C having the same black
endpoint in p 2 B can be represented mod Gb respectively by t and tw where w
is a word in a and b . As we read the letters of w from left to right and think
of the successive darts obtained from t , each occurrence of a replaces a dart
with a consecutive one, by de�nition; occurrences of b do not change the dart.
So Cp is connected, and C is a dessin.

�e uniqueness statement, to which we turn, is almost tautological given our
de�nition of morphisms. Suppose C and C 0 are dessins with sets of triangles
written TC and TC 0 , such that there are equivariant bijections � W TC ! T

and �0 W TC 0 ! T . �en ‚ D .�0/�1 ı � is an equivariant bijection between TC

and TC 0 . Since B , W and D can be identi�ed with certain orbits within TC ,
and similarly with B 0 , W 0 and D0 , the maps B ! B 0 , W ! W 0 and D ! D0

must and can be de�ned as being induced from ‚ . Hence there is a unique
isomorphism between C and C 0 .

We have learned something in the course of this proof:

Corollary 1.16 (of the proof of �eorem 1.14). Let C and C 0 be dessins. �en a
morphism C ! C 0 de�nes, and is uniquely de�ned by, a map ‚ W T ! T 0 which
is compatible with the permutations a; b and c .

Proof. By de�nition a morphism furnishes a map ‚ W T ! T 0 which is compatible
with a and c , and satis�es an extra condition of compatibility with D ; however
given the de�nition of b , this condition is equivalent to the equivariance of T
with respect to b .
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Conversely if we only have ‚ , equivariant with respect to all three of a , b ,
c , we can complete it to a fully �edged morphism C ! C 0 as in the last proof,
identifying B , W and D with certain orbits in T .

�e group G introduced in the proof will be called the full cartographic
group of C (below we will de�ne another group called the cartographic group).

Lemma 1.17. Let C be a compact dessin. �en jC j is connected if and only if
the full cartographic group acts transitively on the set of triangles.

Proof. Let T1 , T2 , : : : be the orbits of G in T , and let Xi � jC j be the union
of the triangles in Ti . Each Xi is compact as a �nite union of compact triangles,
hence Xi is closed in jC j . Also, jC j is the union of the Xi ’s, since a dessin
does not have isolated vertices (condition (1) above).

�us we merely have to prove that the Xi ’s are disjoint. However when two
triangles intersect, they do so along an edge, and then an element of G takes
one to the other.

1.6. Orientations.

Proposition 1.18. Let C be a compact, connected dessin. �en the surface jC j is
orientable if and only if it is possible to assign a colour to each triangle, black
or white, in such a way that two triangles having a side in common are never of
the same colour.

Proof. We give a proof in the case when there is no boundary, leaving the general
case as an exercise. We use some standard results in topology, �rst and foremost:
jC j is orientable if and only if

H2.jC j ;Z/ ¤ 0 :

To compute this group we use cellular homology. More precisely, we exploit the
CW-complex structure on jC j for which the two-cells are the triangles (of course
this space also has a CW-complex in which the two-cells are the faces, but this
is not relevant here). Recall from an earlier remark that simplicial homology is
not directly applicable.

We need to orient the triangles, and thus declare that the positive orientation
is ?���ı ; likewise, we decide to orient the 1-cells in such a fashion that ?�� ,
��ı and ı�? are oriented from the �rst named 0-cell to the second. Writing @
for the boundary in cellular homology, we have then

(*) @t D Œ? � �� C Œ� � ı� C Œı � ?� ;
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in notation which we hope is suggestive.
So let us assume that there is a 2-chain

(**) � D
X
t2T

nt t ¤ 0 ;

where nt 2 Z , such that @� D 0 . Suppose t is such that nt ¤ 0 . From (*), we
know the coe�cients of the neighbours of t in � , namely

nta D ntb D ntc D �nt :

Since the full cartographic group acts transitively on T by the last lemma, it
follows that for each t 0 2 T , the coe�cient nt 0 is determined by nt , and in
fact nt 0 D ˙nt .

Now let triangles t 0 such that nt 0 > 0 be black, and let the others be white. We
have coloured the triangles as requested. �e converse is no more di�cult: given
the colours, let nt D 1 if t is black and �1 otherwise. �en the 2-chain de�ned
by (**) is non-zero and has zero boundary, so the homology is non-zero.

When jC j is orientable, we will call an orientation of C a colouring as
above; there are precisely two orientations on a connected, orientable dessin. An
isomorphism will be said to preserve orientations when it sends black triangles
to black triangles. Note the following:

Lemma 1.19. A morphism C ! C 0 , where C and C 0 are oriented dessins,
preserves the orientations if and only if ‚ sends black triangles to black triangles,
and white triangles to white triangles.

1.7. More permutations. Suppose that C is a dessin, and suppose that the
surface jC j is oriented, and has no boundary. �en each dart is the intersection
of precisely two triangles, one black and one white. �e next remark is worth
stating as a lemma for emphasis:

Lemma 1.20. When C is oriented, without boundary, there is a bijection between
the darts and black triangles.

Of course there is also a bijection between the darts and the white triangles,
on which we comment below.

Now consider the permutations � D ab , ˛ D bc and � D ca . Each preserves
the subset of T comprised by the black triangles, so we may see �; ˛ and �

as permutations of D . It is immediate that they satisfy �˛� D 1 , the identity
permutation.
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Let us draw a little picture to get a geometric understanding of these
permutations. We adopt the following convention: when we draw a portion of an
oriented dessin, we represent the black triangles in such a way that going from ?

to � to ı rotates us counterclockwise. (If we arrange this for one black triangle,
and the portion of the dessin really is planar, that is embeds into the plane, then
all black triangles will have this property).

b

b

b

b

b

b

b

bc

bc

bc

bc

b

d1

d

d2

σ(d)

α(d)

b

b

a

c
σ

α

d3 = φ(d1)

d4

φ

c
a

⋆

⋆

⋆

⋆

(Recall our convention on permutations as per Remark 1.15.)
On this picture, we see that our intuition for � should be that it takes a dart

to the next one in the rotation around its black vertex, going counterclockwise.
Likewise ˛ is interpreted as the rotation around the white vertex of the dart. As
for � , seen as a permutation of T , it takes a black triangle to the next one on
the same face, going counterclockwise. �is can be made into more than just an
intuition: if @f D .d1; : : : ; d2n/ , and if tfi is black, then �.di / D diC2 . Note that
if the triangle tfi is white, then � takes it to t

f
i�2 . In particular if one changes

the orientation of the dessin, the rotation � changes direction, as do � and ˛ .
�is is also re�ected algebraically in the relation b�1�b D ��1 (which

translates the fact that a2 D 1 ): conjugating by b amounts to swapping the roles
of the black and white triangles (or to identifying D with the white triangles
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instead of the blacks), and that turns � into ��1 . �is relation is important in
the proof of the following.

�eorem 1.21. Let D be a �nite set endowed with three permutations � , ˛ , �
such that �˛� D 1 . �en there exists a dessin C , oriented and without boundary,
unique up to unique orientation-preserving isomorphism, such that D and � , ˛ ,
� can be identi�ed with the set of darts of C with the permutations described
above.

Proof. Let T D D�¹˙1º . We extend � to a permutation N� on T by the formula

N�.d; "/ D .�".d/; "/ ;

and likewise ˛ induces N̨ on T by

N̨ .d; "/ D .˛".d/; "/ :

We also de�ne a permutation b of T by

b.d; "/ D .d;�"/ :

Putting a D N�b and c D N̨b , it is immediate that a and c are of order 2 and
have no �xed points.

By �eorem 1.14, the set T together with a , b and c de�nes a dessin C .
Since b has no �xed points, C has no boundary. Calling the triangles in D�¹1º
black, and those in D � ¹�1º white, we see that C is naturally oriented.

�e remaining statements are straightforward to prove.

Remark 1.22. We point out that one may prove �eorem 1.21 without appealing
to �eorem 1.14 �rst: one can identify B , resp W , resp F , with the cycles of � ,
resp. ˛ , resp � , and proceed from there. We leave this to the reader.

In particular, we may identify the topological surface jC j easily: since it is
compact, orientable, and without boundary, it is determined by its genus or its
Euler characteristic. �e latter is

�.jC j/ D n� C n˛ � nC n� ;

where n is the cardinality of D (the number of darts), while n� , resp. n˛ , resp.
n� is the number of cycles of � , resp. ˛ , resp. � .

Note that the group of permutations of D generated by � , ˛ and � is called
the cartographic group of C , or sometimes the monodromy group.
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1.8. Categories. Next we promote �eorems 1.14 and 1.21 to equivalence of
categories. We write Dessins for the category whose objects are compact, oriented
dessins without boundary, and whose morphisms are the orientation-preserving
maps of cell complexes. Also, UDessins will be the category whose objects
are compact dessins without boundary (possibly on non-orientable surfaces), and
whose morphisms are all morphisms of cell complexes.

We leave to the reader the task of proving the next theorem based on
�eorem 1.14 and Corollary 1.16, as well as �eorem 1.21.

�eorem 1.23. Consider the category Setsa;b;c whose objects are the �nite sets T
equipped with three distinguished permutations a , b , c , each of order two and
having no �xed points, and whose arrows are the equivariant maps. �en the
assigment C ! T extends to an equivalence of categories between UDessins

and Setsa;b;c .
Likewise, consider the category Sets�;˛;� whose objects are the �nite sets D

equipped with three distinguished permutations � , ˛ , � satisfying �˛� D 1 ,
and whose arrows are the equivariant maps. �en the assigment C ! D extends
to an equivalence of categories between Dessins and Sets�;˛;� .

If one removes the requirement that b have no �xed point, in the �rst part, one
obtains a category equivalent to that of compact dessins possibly with boundary.

1.9. �e isomorphism classes. It is very easy for us now to describe the set of
isomorphism classes of dessins. �ere are di�erent approaches in the literature
and we try to give several points of view.

Proposition 1.24. (1) A dessin C in Dessins determines, and can be recon-
structed from, an integer n , a subgroup G of Sn , and two distinguished
generators � and ˛ for G . Two sets of data .n;G; �; ˛/ and .n0; G0; � 0; ˛0/
determine isomorphic dessins if and only if n D n0 and there is a conjugation
in Sn taking � to � 0 and ˛ to ˛0 (and in particular G to G0 ).

(2) �e set of isomorphism classes of connected dessins in Dessins is in bijection
with the set of conjugacy classes of subgroups of �nite index in the free
group on two generators h�; ˛i .

(3) Any connected dessin in Dessins determines, and can reconstructed from, a
�nite group G with two distinguished generators � and ˛ , and a subgroup H
such that the intersection of all the conjugates of H in G is trivial. We
obtain isomorphic dessins from .G; �; ˛;H/ and .G0; � 0; ˛0;H 0/ if and only
if there is an isomorphism G ! G0 taking � to � 0 , ˛ to ˛0 , and H to a
conjugate of H 0 .
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Proof. At this point this is very easy. (1) is left as an exercise. Here are some
indications with (2): A connected object amounts to a �nite set X with a
transitive, right action of h�; ˛i , so X must be isomorphic to Knh�; ˛i , where
an isomorphism is obtained by choosing a base-point in X (whose stabilizer
is K ); di�erent choices lead to conjugate subgroups. (2) follows easily.

We turn to (3). It is clear that a connected object X is isomorphic to HnG

where G is the cartographic group and H is the stabilizer of some point; elements
in the intersection of all conjugates of H stabilize all the points of X , and so
must be trivial since G is by de�nition a subgroup of S.X/ . Conversely any
object of the form HnG , with the actions of � and ˛ by multiplication on
the right, can be seen in Sets�;˛;� ; it is connected since � and ˛ generate G ;
and its cartographic group must be G itself given the condition on H . What
is more, there is a canonical map f W h�; ˛i ! G sending � and ˛ to the
elements with the same name in G , and the inverse image K D f �1.H/ is the
subgroup corresponding to the dessin as in (2), while the intersection N of all
the conjugates of K is the kernel of f . �us we deduce the rest of (3) from
(2).

In §3 we shall come back to these questions (see §3.2 in particular). For the
moment let us add that it is common, in the literature, to pay special attention to
certain dessins for which some condition on the order of � , ˛ and � is prescribed.
For example, those interested in clean dessins very often require ˛2 D 1 . Assuming
that we are interested in the dessins for which, in addition, the order of � divides
a �xed integer k , and that of � divides ` , then the objects are in bijection with
the conjugacy classes of subgroups of �nite index in

Tk;` D h�; ˛; � W �
k
D ˛2 D �` D 1; �˛� D 1i ;

usually called a triangle group. (We point out that, in doing so, we include more
than the clean dessins, for ˛ may have �xed points.)

�e variant in the unoriented case is as follows.

Proposition 1.25. Consider the group ha; b; c W a2 D b2 D c2 D 1i D C2�C2�C2 ,
the free product of three copies of the group of order 2 . �e isomorphism classes
of connected objects in UDessins are in bijection with the conjugacy classes of
subgroups H of C2 �C2 �C2 having �nite index, and with the property that no
conjugate of H contains any of a , b , c .

Note that the last condition rephrases the fact that the actions of a , b and c

on HnC2 � C2 � C2 (on the right) have no �xed points.
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2. Various categories equivalent to Dessins

We proceed to describe a number of categories which are equivalent to
the category Dessins of dessins – the word dessin will henceforth mean
compact, oriented dessin without boundary. �ese should be familiar to the
reader, and there will be little need for long descriptions of the objects and
morphisms.

As for proving the equivalences, it will be a matter of quoting celebrated
results: the equivalence between covering spaces and sets with an action of the
fundamental group, the equivalence between Riemann surfaces and their �elds of
meromorphic functions, the equivalence between algebraic curves and their �elds
of rational functions. . . as well as some elementary Galois theory, which we have
taken from Völklein’s book [Vö]. �ere is a little work left for us, but we hope
to convince the reader that the theory up to here is relatively easy – given the
classics! What makes all this quite deep is the combination of strong theorems
in many di�erent branches of mathematics.

2.1. Rami�ed covers. Let S and R be compact topological surfaces. A
map p W S ! R is a rami�ed cover if there exists for each s 2 S a couple of charts,
centered around s and p.s/ respectively, in which the map p becomes z 7! ze

for some integer e � 1 called the rami�cation index at s (this index at s is
well-de�ned, for p cannot look like z 7! ze

0 for e0 ¤ e in other charts, as can
be seen by examining how-many-to-1 the map is).

Examples are provided by complex surfaces: if S and R have complex
structures, and if p is analytic (holomorphic), then it is a basic result from
complex analysis that p must be a rami�ed cover in the above sense (as long as
it is not constant on any connected component of S ). However we postpone all
complex analysis for a while.

Instead, we can obtain examples (and in fact all examples) by the following
considerations. �e set of s 2 S such that the rami�cation index e is > 1 is
visibly discrete in S and closed, so it is �nite by compactness. Its image in R

under p is called the rami�cation set and written Rr . It follows that the restriction

p W S X f �1.Rr / �! R XRr

is a �nite covering in the traditional sense. Now, it is a classical result that
one can go the other way around: namely, start with a compact topological
surface R , let Rr denote a �nite subset of R , and let p W U �! R XRr denote
a �nite covering map; then one can construct a compact surface S together with
a rami�ed cover Np W S ! R such that U identi�es with Np�1.R X Rr / and p

identi�es with the restriction of Np . �e rami�cation set of Np is then contained
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in Rr . See §5 of [Vö] for all the details in the case R D P1 (the general case
is no di�erent).

�us when the rami�cation set is constrained once and for all to be a subset of
a given �nite set Rr , rami�ed covers are in one-one correspondence with covering
maps. To make this more precise, let us consider two rami�ed covers p W S ! R

and p0 W S 0 ! R both having a rami�cation set contained in Rr , and let us
de�ne a morphism between them to be a continuous map h W S ! S 0 such
that p0ıh D p . Morphisms, of covering maps above RXRr are de�ned similarly.
We may state:

�eorem 2.1. �e category of �nite coverings of R X Rr is equivalent to the
category of rami�ed covers of R with rami�cation set included in Rr .

Now let us quote a well-known result from algebraic topology:

�eorem 2.2. Assume that R is connected, and pick a base point � 2 RXRr . �e
category of coverings of RXRr is equivalent to the category of right �1.RXRr ;�/ -
sets. �e functor giving the equivalence sends p W U ! RXRr to the �bre p�1.�/
with the monodromy action.

We shall now specialize to R D P1 D S2 and Rr D ¹0; 1;1º . With
the base point � D 1

2
(say), one has �1.P1 X ¹0; 1;1º;�/ D h�; ˛i , the free

group on the two distinguished generators � and ˛ ; these are respectively the
homotopy classes of the loops t 7! 1

2
e2i�t and t 7! 1� 1

2
e2i�t . �e category of

�nite, right �1.P1 X ¹0; 1;1º;�/ -sets is precisely the category Sets�;˛;� already
mentioned.

�e following result combines �eorem 1.23 from the previous section,
�eorem 2.1 above, as well as �eorem 2.2:

�eorem 2.3. �e category Dessins of oriented, compact dessins without
boundary is equivalent to the category Cov.P1/ of rami�ed covers of P1 having
rami�cation set included in ¹0; 1;1º .

2.2. Geometric intuition. �ere are shorter paths between dessins and rami�ed
covers of the sphere, that do not go via permutations. Here we comment on this
approach.

First, let us examine the following portion of an oriented dessin:
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b

bc bc

⋆

Consider the identi�cation space obtained from this by gluing the two white
vertices into one, and the four visible edges in pairs accordingly. �e result is
a sphere; more precisely, we can canonically �nd a homeomorphism with S2

sending � to 0 and ı to 1 , while ? is sent to 1 . Doing this for all pairs .t; ta/ ,
where t is black, yields a single map jC j ! S2 . �e latter is the rami�ed cover
corresponding to C in the equivalence of categories above.

We will not prove this last claim in detail, nor will we rely on it in the sequel.
On the other hand, we do examine the reverse construction more closely. In fact
let us state:

Proposition 2.4. Let C correspond to p W S ! P1 in the above equivalence of
categories. �en jC j Š S , under a homeomorphism taking jG j to the inverse
image p�1.Œ0; 1�/ .

For the proof it will be convenient to have a modest lemma at our disposal. It
gives conditions under which a rami�ed cover p W S ! R , which must be locally
of the form z 7! ze , can be shown to be of this form over some given open set.
We will write

D D ¹z 2 C W jzj � 1º

as before, while
PD D ¹z 2 C W jzj < 1º ;

and
PD0 D PD X ¹0º :

Lemma 2.5. Let p W S ! R be a rami�ed cover between compact surfaces.
Let x 2 Rr , and let U be an open neighbourhood of x . We assume that U is
homeomorphic to a disc, and that U \Rr D ¹xº .
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�en each connected component V of p�1.U / contains one and only one
point of the �bre p�1.x/ . Moreover, each V is itself homeomorphic to a disc
and there is a commutative diagram

PD

z 7!ze

��

Š // V

p

��
PD

Š // U

Proof. Let us start with the connected components of p�1.U X¹xº/ . Let us form
the pullback square

E

�

��

Š // p�1.U X ¹xº/

p

��
PD0

Š // U X ¹xº

�e map � is a covering map. �e connected coverings of PD0 are known of
course: if W is a connected component of E , then it can be identi�ed with PD0
itself, with �.z/ D ze .

If V is as in the statement of the lemma, then it is a surface, so it remains
connected after removing �nitely many points. It follows that

V 7! W D V X p�1.x/

is well-de�ned, and clearly injective, from the set of connected components
of p�1.U / to the set of connected components of p�1.U X ¹xº/ .

Let us prove that V 7! W is surjective, so let W be a component. Let Kn
be the closure in S of

¹z 2 W D PD0 W jzj �
1

n
º :

Since S is compact, there must be a point s 2 S belonging to all the closed
subsets Kn , for all n � 1 . It follows that p.s/ D x . �e point s must belong to
some component V ; and by de�nition s is in the closure of W , so V \W ¤ ¿ .
�us the component V X p�1.x/ must be W .

We have established a bijection between the V ’s and the W ’s, and in passing
we have proved that each V contains at least an s such that p.s/ D x . Let us show
that it cannot contain two distinct such points s and s0 . For this it is convenient
to use the following fact from covering space theory: given a covering c W X ! Y

with X and Y both path-connected, there is no open subset � of X , other
than X itself, such that the restriction c W � ! Y is a covering of Y . From
this, we conclude that if � and �0 are open subsets of PD0 , such that the
restriction of � to either of them yields a covering map, over the same pointed
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disc Y , then � and �0 must be both equal to X D ��1.Y / . If now s; s0 2 V

satisfy p.s/ D p.s0/ D x , using the fact that p is a rami�ed cover we see that
all the neighbourhoods of s and s0 must intersect, so s D s0 .

So we have a homeomorphism

h W W D PD0 �! V X ¹sº

and we extend it to a map Nh W PD ! V by putting Nh.0/ D s . We see that this
extension of h is again continuous, for example by using that a neighbourhood
of s in V mapping onto a disc around x must correspond, under the bijection h ,
to a disc around 0 , by the above “fact”. �is shows also that Nh is an open map,
so it is a homeomorphism.

Proof of Proposition 2.4. Let us start with p W S �! P1 , a rami�ed cover with
rami�cation in ¹0; 1;1º , and let us build some dessin C . We will then prove
that it is the dessin corresponding to p in our equivalence of categories, so this
proof will provide a more explicit construction.

So let B D p�1.0/ , W D p�1.1/ . �ere is no rami�cation along .0; 1/ ,
and this space is simply-connected, so p�1..0; 1// is a disjoint union of copies
of .0; 1/ ; we let D denote the set of connected components of p�1..0; 1// .

For each b 2 B we can �nd a neighbourhood U of b and a neighbourhood V
of 0 2 P1 , both carrying charts onto discs, within which p looks like the
map z 7! ze . Pick " such that Œ0; "/ � V ; then the open set U with p�1.Œ0; "//\U
drawn on it looks like a disc with straight line segments connecting the centre to
the e -th roots of unity. Taking " small enough for all b 2 B at once, p�1.Œ0; "//
falls into connected components looking like stars and in bijection with B . As
a result, each d 2 D determines a unique b 2 B , corresponding to the unique
component that it intersects. �is is B.d/ ; de�ne W.d/ similarly.

We have de�ned a bigraph G , and it is clear that jG j can be identi�ed with the
inverse image p�1.Œ0; 1�/ . We turn it into a cell complex now. Let F D p�1.1/ .
We apply the previous lemma to P1 X Œ0; 1� , which is an open subset in P1

homeomorphic to a disc and containing only one rami�cation point, namely 1 .
By the lemma, we know that p�1.P1 X Œ0; 1�/ is a disjoint union of open discs,
each containing just one element of F . We need to be a little more precise in
order to de�ne @f .

We consider the map h W D ! P1 constructed in two steps as follows. First,
let D ! D=� be the quotient map that identi�es z and Nz if and only if jzj D 1 ;
then, choose a homeomorphism D=�! P1 , satisfying 1 7! 0 , �1 7! 1 , 0 7! 1 ,
and sending both circular arcs from 1 to �1 in D to Œ0; 1� . We think of h as
the map D ! jC j in Example 1.2. In D , we think of 1 as a black vertex, of �1
as a white vertex, of the circular arcs just mentioned as darts, and of the two
half-discs separated by the real axis as black and white triangles.
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bc b⋆

Let D1 D D X ¹1;�1; 0º and in fact de�ne Dn D D X ¹! W !2n D 1º [ ¹0º .
We emphasize that Dn contains numbers of modulus 1 . �ere is a covering
map Dn ! D1 given by z 7! zn . Since D1 retracts onto a circle, its fundamental
group is Z , and we see that any connected covering of �nite degree n must
actually be of this form.

Now let S 0 ! P1 X ¹0; 1;1º be the covering de�ned by p . Let us construct
a pull-back square

E
� //

q

��

S 0

p

��
D1 h // P1 X ¹0; 1;1º

Here E ! D1 is a �nite covering map, so each connected component of E can
be identi�ed with Dn for some n , while the map q becomes z 7! zn . �ese
components are in bijection with F , so we write Dn

f
for f 2 F .

If ! is a 2n -th root of unity, the circular arc .!i ; !iC1/ � Dn
f

is mapped
onto a dart by the map � W E ! S 0 . �is de�nes, for each face f , a sequence
of darts which is @f . �is completes our construction of a cell complex from a
rami�ed cover of P1 . Note that � W Dn

f
! S 0 can be extended to a map D ! S ,

clearly, and it follows easily that jC j is homeomorphic to S itself, or in other
words that C is a dessin on S .

It remains to prove that C is the dessin corresponding to the rami�ed cover p
in the equivalence of categories at hand. For this we compare the induced actions.
To C are attached two permutations � and ˛ of the set D of darts. Note that D
is here in bijection with the �bre p�1.1

2
/ , and taking 1

2
as base point we have the

monodromy action of �1.P1 X ¹0; 1;1º/ D h� 0; ˛0i , de�ning the permutations � 0
and ˛0 . We must prove that � D � 0 and ˛ D ˛0 . Here � 0 and ˛0 are the classes
of the loops de�ned above (where we used the notation � and ˛ in anticipation).

We will now use the fact that S can be endowed with a unique smooth structure
and orientation (in the sense of di�erential geometry), such that p W S ! P1 is
smooth and orientation-preserving. We use this �rst to obtain, for each dart, a
smooth parametrization  W Œ0; 1� ! S such that p ı  is the identity of Œ0; 1� .
Each dart belongs to two triangles, and it now makes sense to talk about the
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triangle on the left of the dart as we travel along  . Colour it black. We will
prove that this is a colouring of the type considered in §1.6.

Pick b 2 B , and a centered chart PD ! U onto a neighbourhood U of b ,
such that the map p when pulled-back to PD is z 7! ze . �e monodromy
action of �1. PD0/ on the cover PD0 ! PD0 given by z 7! ze is generated by the
counterclockwise rotation of angle 2�

e
. Now it is possible for us to insist that

the chart PD ! U be orientation-preserving, so “counterclockwise” can be safely
interpreted on S as well as PD . Let us draw a picture of U with p�1.Œ0; 1//\U
on it, together with the triangles, for e D 4 .

b

�e complement of the star-like subset of U given by p�1.Œ0; 1// falls into
connected components, each contained in a face; so two darts obtained by a rotation
of angle 2�

e
are on the boundary of the same face, and must be consecutive.

�e symmetry a , that is the symmetry in the ?� � side, is now clearly seen to
exchange a black triangle with a white one. What is more, calling b as usual
the symmetry in the darts, the permutation � D ab sends a black triangle to
its image under the rotation already mentioned. �is is also the e�ect of the
monodromy action, and � D � 0 .

Reasoning in the same fashion with white vertices, we see that c , the symmetry
in the ?� ı side, also exchanges triangles of di�erent colours. So the colouring
indeed has the property that neighbouring triangles are never of the same colour.
�at ˛ D ˛0 is observed similarly. �is concludes the proof.

Example 2.6 (Duality). �e geometric intuition gained with this proposition and
its proof may clarify some arguments. Let C be a dessin, whose sets of triangles
and darts will be written T and D , so that C de�nes the object .D; �; ˛; �/
in Sets�;˛;� . Now let p W S �! P1 correspond to C . What is the dessin
corresponding to 1=p ? And what is the object in Sets�;˛;� ?

Let us use the notation C 0 , T 0 and D0 . We can think of C and C 0 as being
drawn on the same surface S . Zeroes of 1=p are poles of p and vice-versa, so
black vertices are exchanged with face centres, while the white vertices remain
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in place. In fact, the most convenient property to observe is that C and C 0 have
exactly the same triangles, as subspaces of S , and we identify T D T 0 . �e ?�ı
sides are promoted to darts.

�e symmetries of T which we have called a; b and c become, for C 0 ,
the symmetries a0 D a , b0 D c and c0 D b (simply look at the de�nitions and
exchange ? and � throughout). It follows that � D ab becomes � 0 D a0b0 D

ac D ��1 and similarly one obtains ˛0 D ˛�1 and �0 D ��1 .
One must be careful, however. �e object in Sets�;˛;� de�ned by 1=p , which

we are after, is hidden behind one more twist. �e black triangles in T for C

are those mapping to the upper half plane under p ; the white triangles for C are
the black ones for C 0 as a result. Identifying darts and black triangles, we see T
as the disjoint union of D and D0 . While it is the case that C 0 corresponds
to .D0; ��1; ˛�1; ��1/ in Sets�;˛;� , this notation is confusing since we tend
to think of ��1 as a map de�ned on either T or D , when in fact it is the
induced map on D0 which is considered here (in fact we should write something
like ��1jD0 ). It is clearer to use for example the map b0 W D ! D0 and transport
the permutations to D , which is simply a conjugation. As already observed, this
“change of orientation” amounts to taking inverses for � 0 and ˛0 .

�e conclusion is that replacing p by 1=p takes the object .D; �; ˛; �/ to
the object .D; �; ˛; ˛�1�˛/ .

Example 2.7 (Change of colours). As an exercise, the reader will complete
the following outline. If C is represented by p W S ! P1 , with corresponding
object .D; �; ˛; �/ , then 1�p W S ! P1 corresponds to .D; ˛; �; ˛�˛�1/ . Indeed,
C and C 0 have the same triangles, as subsets of S , and the black triangles
for C are precisely the white ones for C 0 and vice-versa; the vertices of C 0

are those of C with the colours exchanged, while the face centres remain in
place. (Informally C 0 is just that: the same as C with the colours exchanged.)
So c0 D a , b0 D b and a0 D c , and � 0 D c˛c�1 , ˛0 D b�b�1 , as maps of T .
As maps of D , using the bijection b W D ! D0 to transport the maps induced
on D0 , we end up with the permutations announced.

2.3. Complex structures. When p W S ! R is a rami�ed cover, and R is
equipped with a complex structure, there is a unique complex structure on S

such that p is complex analytic ([DD], 6.1.10). Any morphism between S and S 0 ,
over R , is then itself complex analytic. Conversely if S and R both have complex
structures, an analytic map S ! R is a rami�ed cover as soon as it is not constant
on any connected component of S .

We may state yet another equivalence of categories. Recall that an analytic
map S ! P1 is called a meromorphic function on S .
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�eorem 2.8. �e category Dessins is equivalent to the category Belyi of
compact Riemann surfaces with a meromorphic function whose rami�cation set
is contained in ¹0; 1;1º .

(�e arrows considered are the maps above P1 .) A pair .S; p/ with p W S ! P1

meromorphic, not rami�ed outside of ¹0; 1;1º , is often called a Belyi pair,
while p is called a Belyi map.

Example 2.9. Let us illustrate the results up to now with dessins on the sphere,
so let C be such that jC j is homeomorphic to S2 . By the above, C corresponds
to a Riemann surface S equipped with a Belyi map p W S ! P1 .

By Proposition 2.4, S is itself topologically a sphere. �e uniformization
theorem states that there is a complex isomorphism � W P1 �! S , so we may as
well replace S with P1 equipped with F D p ı � . �en .P1; F / is a Belyi pair
isomorphic to .S; p/ .

Now F W P1 ! P1 , which is complex analytic and not constant, must be
given by a rational fraction, as is classical. �e bigraph G can be realized as the
inverse image F �1.Œ0; 1�/ where F W P1 �! P1 is a rational fraction.

Let us take this opportunity to explain the terminology dessins d’enfants
(children’s drawings), and stress again some remarkable features. By drawing a
simple picture, we may as in Example 1.3 give enough information to describe
a cell complex C . Very often it is evident that jC j is a sphere, as we have
seen in this example. What the theory predicts is that we can �nd a rational
fraction F such that the drawing may be recovered as F �1.Œ0; 1�/ . �is works
with pretty much any planar, connected drawing that you can think of, and gives
these drawings a rigidi�ed shape.

To be more precise, the fraction F is unique up to an isomorphism of P1 , that
is, up to precomposing with a Moebius transformation. �is allows for rotation
and stretching, but still some features will remain unchanged. For example the
darts around a given vertex will all have the same angle 2�

e
between them,

since F looks like z 7! ze in conformal charts.

2.4. Fields of meromorphic functions. When S is a compact, connected
Riemann surface, one can consider all the meromorphic functions on S ,
comprising a �eld M.S/ . When S is not assumed connected, the meromorphic
functions form an étale algebra, still written M.S/ : in this paper an étale algebra
is simply a direct sum of �elds, here corresponding to the connected components
of S . In what follows we shall almost always have to deal with an étale algebra
over K where K is some �eld, by which we mean an étale algebra which is
also a K -algebra, and which is �nite-dimensional over K . (In the literature étale
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algebras have to satisfy a separability condition, but we work in characteristic 0
throughout the paper.)

If now p W S ! R is a rami�ed cover between compact surfaces, we may speak
of its degree, as the degree of the corresponding covering p�1.RXRr /! RXRr .
�e following is given in §6.2.4 in [DD].

�eorem 2.10. Fix a compact, connected Riemann surface R . �e category of
compact Riemann surfaces S with a rami�ed cover S ! R is anti-equivalent to
the category of étale algebras over M.R/ . �e equivalence is given by S 7!M.S/ ,
and the degree of S ! R is equal to the dimension of M.S/ as a vector space
over M.R/ .

(Here and elsewhere, “anti-equivalent” means “equivalent to the opposite
category”.)

Taking R D P1 , we get a glimpse of yet another category that could be
equivalent to Dessins . However to pursue this, we need to translate the condition
about the rami�cation into a statement about étale algebras (lest we should end
up with a half-baked category, consisting of algebras such that the corresponding
surface has a certain topological property; that would not be satisfactory). For
this we reword §2.2.1 of [Vö].

Recall that M.P1/ D C.x/ , where x is the identity of P1 . So let us start with
any �eld k at all, and consider a �nite, Galois extention L of k.x/ . We shall say
that L=k.x/ is not rami�ed at 0 when it embeds into the extension k..x//=k.x/ ,
where as usual k..x// is the �eld of formal power series in x . In this paper
we will not enter into the subtleties of the �eld k..x// , nor will we discuss
the reasons why this de�nition makes sense. We chie�y want to mention that
there is a simple algebraic statement corresponding to the topological notion of
rami�cation, quoting the results we need.

Now take any s 2 k . From L we construct Ls D L ˝k.x/ k.x/ , where
we see k.x/ as an algebra over k.x/ via the map k.x/ ! k.x/ which
sends x to x C s ; concretely if we pick a primitive element y for L=k.x/ ,
so that L Š k.x/Œy�=.P / , then Ls is k.x/Œy�=.Ps/ where Ps is the result of
applying x 7! x C s to the coe�cients of P . When Ls=k.x/ is not rami�ed
at 0 , we say that L=k.x/ is not rami�ed at s .

Finally, using the map k.x/ ! k.x/ which sends x to x�1 , we get an
extension L1=k.x/ , proceeding as above. When the latter is not rami�ed at 0 ,
we say that L=k.x/ is not rami�ed at 1 .

When the conditions above are not satis�ed, for s 2 k [ ¹1º , we will of
course say that L does ramify at s (or is rami�ed at s ). �at the topological
and algebraic de�nitions of rami�cation actually agree is the essence of the next
lemma.
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Lemma 2.11. Let p W S ! P1 be a rami�ed cover, with S connected, and assume
that the corresponding extension M.S/=C.x/ is Galois. �en for any s 2 P1 ,
the rami�cation set P1r contains s if and only if M.S/=C.x/ rami�es at s in
the algebraic sense.

In particular, the rami�cation set in contained in ¹0; 1;1º if and only if the
extension M.S/=C.x/ does not ramify at s whenever s 62 ¹0; 1;1º .

�is is the addendum to theorem 5.9 in [Vö]. Now we need to get rid of
the extra hypothesis that M.S/=C.x/ be Galois (a case not considered in [Vö],
strictly speaking). Algebraically, we say that an extension L=k.x/ does not ramify
at s when its Galois closure QL=k.x/ does not. To see that, with this de�nition,
the last lemma generalizes to all rami�ed covers, we need to prove the following.

Lemma 2.12. Let p W S ! P1 be a rami�ed cover, where S is connected.
Let Qp W QS ! P1 be the rami�ed cover such that M. QS/=C.x/ is the Galois
closure of M.S/=C.x/ . �en the rami�cation sets for S and QS are equal.

Proof. We have C.x/ � M.S/ � M. QS/ , so we also have a factorization of Qp
as QS ! S ! P1 . From this it is clear that, if Qp is not rami�ed at s 2 P1 , then
neither is p .

�e crux of the proof of the reverse inclusion is the fact that covering maps have
Galois closures, usually called regular covers. �e following argument anticipates
the material of the next section, though it should be understandable now.

Let P1r be the rami�cation set for p , and let U D p�1.P1 X P1r / , so
that U ! P1 X P1r is a �nite covering map. Now let QU ! P1 X P1r be the
corresponding regular covering map. Here “regular” can be taken to mean that
this cover has as many automorphisms as its degree; and QU is minimal with
respect to this property, among the covers factoring through U . �e existence
of QU is standard in covering space theory, and should become very clear in the
next section. Note that, if U corresponds to the subgroup H of �1.P1 X P1r / ,
then QU corresponds to the intersection of all the conjugates of H .

As above, we can construct a Riemann surface S 0 from QU , and the latter does
not ramify outside of P1r . To prove the lemma, it is su�cient to show that S 0
can be identi�ed with QS .

However from basic Galois theory we see that M.S 0/=C.x/ must be Galois
since it possesses as many automorphisms as its degree, and by minimality it
must be the Galois closure of M.S/=C.x/ . So S 0 and QS are isomorphic covers
of P1 .

Finally, an étale algebra over k.x/ will be said not to ramify at s when it
is a direct sum of �eld extensions, none of which rami�es at s . �is clearly
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corresponds to the topological situation when k D C , and we have established
the following.

�eorem 2.13. �e category Dessins is anti-equivalent to the category Etale.C.x//

of �nite, étale algebras over C.x/ that are not rami�ed outside of ¹0; 1;1º , in
the algebraic sense.

2.5. Extensions of Q.x/ . Let L=C.x/ be a �nite, Galois extension, and let n D
ŒL W C.x/� . We shall say that it is de�ned over Q when there is a sub�eld Lrat

of L , containing Q.x/ and Galois over it, such that ŒLrat W Q.x/� D n . �is is
equivalent to requiring the existence of Lrat containing NQ.x/ and Galois over
it such that L Š Lrat ˝Q C . �at these two conditions are equivalent follows
(essentially) from (a) of Lemma 3.1 in [Vö]: more precisely this states that, when
the condition on dimensions holds, there is a primitive element y for L=C.x/
whose minimal polynomial has coe�cients in Q.x/ , and y is also a primitive
element for Lrat= NQ.x/ .

Item (d) of the same lemma reads:

Lemma 2.14. When L is de�ned over Q , the sub�eld Lrat is unique.

�is relies on the fact that Q is algebraically closed, and would not be true
with Q and C replaced by arbitrary �elds.

�ere is also an existence statement, which is �eorem 7.9 in [Vö]:

�eorem 2.15. If L=C.x/ is a �nite, Galois extension which does not ramify
at s 2 C unless s 2 Q [ ¹1º , then it is de�ned over Q .

We need to say a word about extensions which are not assumed to be Galois
over C.x/ . For this we now quote (b) of the same Lemma 3.1 in [Vö]:

Lemma 2.16. When L=C.x/ is �nite, Galois, and de�ned over NQ , there is an
isomorphism Gal.L=C.x// Š Gal.Lrat=Q.x// induced by restriction.

So from the Galois correspondence, we see that �elds between C.x/ and L ,
Galois or not over C.x/ , are in bijection with �elds between NQ.x/ and Lrat .
If K=C.x/ is any �nite extension, not rami�ed outside of ¹0; 1;1º , we see by
the above that its Galois closure L=C.x/ is de�ned over Q , and thus there is a
unique �eld Krat , between Q.x/ and Lrat , such that K Š Krat ˝Q C .

Putting together the material in this section, we get:

�eorem 2.17. �e category Dessins is anti-equivalent to the category Etale.Q.x//

of �nite, étale extensions of Q.x/ that are not rami�ed outside of ¹0; 1;1º , in
the algebraic sense.
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�e functor giving the equivalence with the previous category is the tensor
product � ˝Q C . �eorem 2.15 shows that it is essentially surjective; proving
that it is fully faithful is an argument similar to the proof of Lemma 2.16 above.

2.6. Algebraic curves. Strictly speaking, the following material is not needed to
understand the rest of the paper, and to reach our goal of describing the action
of Gal.Q=Q/ on dessins. Moreover, we expect the majority of our readers to �t
one of two pro�les: those who know about algebraic curves and have immediately
translated the above statements about �elds into statements about curves; and those
who do not know about algebraic curves and do not wish to know. Nevertheless,
in the sequel we shall occasionally (though rarely) �nd it easier to make a point
in the language of curves.

Let K be an algebraically closed �eld, which in the sequel will always be
either C or Q . A curve C over K will be, for us, an algebraic, smooth, complete
curve over K . We do not assume curves to be irreducible, though smoothness
implies that a curve is a disjoint union of irreducible curves.

We shall not recall the de�nition of the above terms, nor the de�nition of
morphisms between curves. We also require the reader to be (a little) familiar with
the functor of points of a curve C , which is a functor from K -algebras to sets that
we write L 7! C.L/ . �ere is a bijection between the set of morphisms C ! C 0

between two curves on the one hand, and the set of natural transformations
between their functors of points on the other hand; in particular if C and C 0

have isomorphic functors of points, they must be isomorphic. For example, the
�rst projective space P1 is a curve for which P1.L/ is the set of lines in L2

when L is a �eld. (�is holds for any base �eld K ; note that we have already
used the notation P1 for P1.C/ , the Riemann sphere. We also use below the
notation Pn.L/ for the set of lines in LnC1 , as is perfectly standard (though Pn

is certainly not a curve for n � 2 )).
In concrete terms, given a connected curve C it is always possible to �nd

an integer n and homogeneous polynomials Pi .z0; : : : ; zn/ (for 1 � i � m ) with
the following property: for each �eld L containing K , we can describe C.L/ as
the subset of those points Œz0 W � � � W zn� in the projective space Pn.L/ satisfying

(*) Pi .z0; : : : ; zn/ D 0 .1 � i � m/ :

�us one may (and should) think of curves as subsets of Pn de�ned by
homogeneous polynomial equations. When K is algebraically closed, as is the
case for us, one can in fact show that C is entirely determined by the single
subset C.K/ together with its embedding in Pn.K/ .

We illustrate this with the so-called rational functions on C , which by
de�nition are the morphisms C ! P1 with the exclusion of the “constant
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morphism which is identically 1”. When C.K/ is presented as above as a
subset of Pn.K/ , these functions can alternatively be described in terms of maps
of sets C.K/ ! K [ ¹1º of the following particular form: take P and Q ,
two homogeneous polynomials in nC 1 variables, of the same degree, assume
that Q does not vanish identically on C.K/ , assume that P and Q do not
vanish simultaneously on C.K/ , and consider the map on C.K/ sending z

to P.z/=Q.z/ if Q.z/ ¤ 0 , and to 1 otherwise. (In other words z is sent
to ŒP.z/ W Q.z/� in P1.K/ D K [ ¹1º .)

�e rational functions on the connected curve C comprise a �eld M.C / (an
étale algebra when C is not connected). We use the same letter as we did for
meromorphic functions, which is justi�ed by the following arguments. Assume
that K D C . �en our hypotheses guarantee that S D C.C/ is naturally a
Riemann surface. In fact if we choose polynomial equations as above, then S

appears as a complex submanifold of Pn.C/ . It follows that the rational functions
on C , from their description as functions on S , are meromorphic. However, a
non-trivial but classical result asserts the converse: all meromorphic functions
on S are in fact rational functions ([GH], chap. 1, §3). �us M.S/ D M.C / .
When K D Q , it still makes sense to talk about the Riemann surface S D C.C/ ,
and then M.S/ DM.C /˝Q C . For example M.P1/ D K.x/ , when we see P1

as a curve over any �eld K .
�e following theorem is classical.

�eorem 2.18. �e category of connected curves over K , in which constant mor-
phisms are excluded, is anti-equivalent to the category of �elds of transcendence
degree 1 over K , the equivalence being given by C 7!M.C / .

From this we have immediately a new category equivalent to Dessins , by
restricting attention to the �elds showing up in �eorem 2.13 or �eorem 2.17.
Let us de�ne a morphism C ! P1 to be rami�ed at s 2 K [¹1º if and only if
the corresponding extension of �elds M.C /=K.x/ rami�es at s ; this may sound
like cheating, but expressing properties of a morphism in terms of the e�ect on
the �elds of rational functions seems to be in the spirit of algebraic geometry. It
is then clear that:

�eorem 2.19. �e category Dessins is equivalent to the category of curves C ,
de�ned over C , equipped with a morphism C ! P1 which does not ramify
outside of ¹0; 1;1º . Here the morphisms taken into account are those over P1 .

Likewise, Dessins is equivalent to the category of curves de�ned over Q

with a map C ! P1 having the same rami�cation property.
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(Note that we have used the same notation P1 for an object which is sometimes
seen as a curve over C , sometimes as a curve over Q , sometimes as a Riemann
surface.)

As a side remark, we note that these equivalences of categories imply in
particular the well-known fact that “Riemann surfaces are algebraic”. For if we start
with S , a Riemann surface, and consider the �eld M.S/ , then by �eorem 2.18
there must be a curve C over C such that M.C / D M.S/ (where on the left
hand side M means “rational functions”, and on the right hand side it means
“meromorphic functions”). However, we have seen that M.C / DM.C.C// (with
the same convention), and the fact that M.S/ and M.C.C// can be identi�ed
implies that S and C.C/ are isomorphic (�eorem 2.10). Brie�y, any Riemann
surface S can be cut out by polynomial equations in projective space.

Likewise, the above theorems show that if S has a Belyi map, then there is a
curve over Q such that S is isomorphic to C.C/ . �is is usually expressed by
saying that S is “de�ned over Q”, or is an “arithmetic surface”. �e converse
is discussed in the next section.

2.7. Belyi’s theorem. When considering a dessin C , we de�ne a curve C

over Q . Is it the case that all curves over Q are obtained in this way? Given C ,
it is of course enough to �nd a Belyi map, that is a morphism C ! P1

with rami�cation in ¹0; 1;1º : the above equivalences then guarantee that C
corresponds to some C . In turn, Belyi has proved precisely this existence
statement:

�eorem 2.20 (Belyi). Any curve C over Q possesses a Belyi map.

�e proof given by Belyi in [Be], and reproduced in many places, is very
elegant and elementary. It starts with any morphism F W C ! P1 , and modi�es
it ingeniously to obtain another one with appropriate rami�cation.

3. Regularity

From now on, it will be convenient to use the word dessin to refer to an
object in any of the equivalent categories at our disposal (especially when we
want to think of it simultaneously as a cell complex and a �eld, for example).

In this section we study regular dessins. �ese could have been called “Galois”
instead of “regular”, since the interpretation in the realm of �eld extensions is
precisely the Galois condition, but we want to avoid the confusion with the Galois
group Gal.Q=Q/ which will become a major player in the sequel.
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3.1. De�nition of regularity. An object in Dessins has a degree given by the
number of darts. In the other categories equivalent to Dessins , this translates
in various ways. In Sets�;˛;� , it is the cardinality of the set having the three
permutations on it. In the categories of étale algebras over C.x/ or Q.x/ , it is
the dimension of the algebra as a vector space over C.x/ or Q.x/ respectively.
In the category of �nite coverings of P1 X ¹0; 1;1º , it is the cardinality of any
�bre.

�ere is also a notion of connectedness in these categories. A dessin C is con-
nected when jC j is connected, which happens precisely when the corresponding
étale algebras are actually �elds, or when the cartographic group acts transitively
(cf. Lemma 1.17).

In this section we shall focus on the automorphism groups of connected
dessins. We are free to conduct the arguments in any category, and most of the
time we prefer Sets�;˛;� . However, note the following at once.

Lemma 3.1. �e automorphism group of a connected dessin is a �nite group, of
order no greater than the degree.

Proof. �is is obvious in Etale.Q.x// : in fact for any �nite-dimensional extension
of �elds L=K , basic Galois theory tells us that the automorphism group of the
extension has order no greater than ŒL W K� .

A proof in Sets�;˛;� will be immediate from Lemma 3.3 below.

A dessin will be called regular when it is connected and the order of its
automorphism group equals its degree.

In terms of �eld extensions for example, then L=C.x/ is regular if and only
if it is Galois (in the elementary sense, ie normal and separable). In terms of
a covering U ! P1 X ¹0; 1;1º , with U is connected, then it is regular if and
only if it is isomorphic to the cover U ! U=G where G is the automorphism
group (this agrees with the use of the term “regular” in covering space theory,
of course).

Remark 3.2. �e reader needs to pay special attention to the following convention.
When X is a dessin and h; k 2 Aut.X/ , we write hk for the composition of k
followed by h ; that is hk.x/ D h.k.x// , at least when we are willing to make
sense of x 2 X (for example in Dessins this will mean that x is in fact a
triangle). In other words, we are letting Aut.X/ act on X on the left. While this
will be very familiar to topologists, for whom it is common to see the “group
of deck transformations” of a covering map act on the left and the “monodromy
group” act on the right, other readers may be puzzled to see that we have
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treated the category of sets di�erently when we took the convention described in
Remark 1.15.

To justify this, let us spoil the surprise of the next paragraphs, and announce
the main result at once: in Sets�;˛;� , a regular dessin is precisely a group G

with two distinguished generators � and ˛ ; the monodromy group is G itself,
acting on the right by translations, while the automorphism group is again G

itself, acting on the left by translations.
If we had taken di�erent conventions, we would have ended up with one of

these actions involving inverses, in a way which is de�nitely unnatural.

3.2. Sets with permutations. We explore the de�nition of regularity in the
context of Sets�;˛;� , where it is very easy to express.

Let X be a set of cardinality n , with three permutations �; ˛; � satisfy-
ing �˛� D 1 . Let G denote the cartographic group; recall that by de�nition, it is
generated by � and ˛ as a subgroup of S.X/ Š Sn , acting on X on the right.
We assume that G acts transitively (so the corresponding dessin is connected).

We choose a base-point � 2 X . �e map g 7! �g identi�es HnG with X ,
where H is the stabilizer of � . �is is an isomorphism in Sets�;˛;� , with G

acting on HnG by right translations. As we shall insist below that the choice of
base-point is somewhat signi�cant, we shall keep the notation X and not always
work directly with HnG .

Since the morphisms in Sets�;˛;� are special maps of sets, we can re-
late Aut.X/ and S.X/ , where the automorphism group is taken in Sets�;˛;� ,
and S.X/ as always is the group of all permutations of X . More precisely,
any h 2 Aut.X/ can be seen as an element of S.X/ , still written h , and there is
a homomorphism Aut.X/! S.X/ given by h 7! h�1 ; our left-right conventions
force us to take inverses to get a homomorphism. (In other words, Aut.X/ is
naturally a subgroup of S.X/op , the group S.X/ with the opposite composi-
tion law.) As announced, the conventions will eventually lead to a result without
inverses.

Lemma 3.3. Let X;G;H be as above. We have the following two descriptions
of Aut.X/ .
(1) Let N.H/ be the normalizer of H in G . �en for each g 2 N.H/ , the

map HnG ! HnG given by Œx� 7! Œgx� is in Aut.HnG/ . �is construction
induces an isomorphism Aut.X/ Š N.H/=H .

(2) �e map Aut.X/ ! S.X/ is an isomorphism onto the centralizer of G
in S.X/ .

Proof. (1) �e notation Œx� is for the class of x in HnG , of course. To see
that Œgx� is well-de�ned, let h 2 H , then ghx D ghg�1gx so Œghx� D Œgx� . �e
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map clearly commutes with the right action of G , and so is an automorphism,
with inverse given by Œx� 7! Œg�1x� .

Conversely, any automorphism h is determined by h.Œ1�/ , which we call Œg� ,
and we must have h.Œx�/ D h.Œ1�x/ D Œg�x D Œgx� for any x ; the fact that h is well-
de�ned implies that g 2 N.H/ . So there is a surjective map N.H/! Aut.HnG/

whose kernel is clearly H .
(2) An automorphism of X , by its very de�nition, is a self-bijection of X

commuting with the action of G ; so this second point is obvious.

We also note the following.

Lemma 3.4. Aut.X/ acts freely on X .

Proof. If h.x/ D x for some x 2 X , then h.xg/ D h.x/g D xg so xg is
also �xed by h , for any g 2 G . By assumption G acts transitively, hence the
lemma.

Proposition 3.5. �e following are equivalent.

(1) Aut.X/ acts transitively on X .
(2) G acts freely on X .
(3) H is normal in G .
(4) H is trivial.
(5) G and Aut.X/ are isomorphic.
(6) G and Aut.X/ are both of order n .
(7) X is regular.

Proof. �at (1) implies (2) is almost the argument we used for the last lemma,
only with the roles of Aut.X/ and G interchanged. Condition (2) implies (4)
by de�nition and hence (3); when we have (3) we have N.H/=H D G=H ,
and the description of the action of N.H/=H on HnG makes it clear that (1)
holds.

Condition (4) implies N.H/=H Š G , so we have (5); we also have (6)
since X (whose cardinality is n ) can be identi�ed with G acting on itself on the
right. Conversely if we have (6), given that the cardinality of X is n D jGj=jH j
we deduce (4).

Finally (7), by de�nition, means that Aut.X/ has order n , so it is implied
by (6). Conversely, since this group acts freely on X , having cardinality n ,
it is clear that (7) implies that the action is also transitive, which is (1).
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Corollary 3.6 (of the proof). Let X be a regular object in Sets�;˛;� with
cartographic group G . �en X can be identi�ed with G itself with its action
on itself on the right by translations. �e automorphism group Aut.X/ can also
be identi�ed with G , acting on X D G on the left by translations.

Conversely any �nite group G with two distinguished generators � and ˛

de�nes a regular object in this way.

Proof. �ere remains the (very easy) converse to prove. If we start with G , a
�nite group generated by � and ˛ , we can let it act on itself on the right by
translations, thus de�ning an object in Sets�;˛;� . �e cartographic group is easily
seen to be isomorphic to G (in fact this is the traditional Cayley embedding of G
into the symmetric group S.G/ ). �e action of the cartographic group is, as a
result, free and transitive, so the object is regular.

However, some care must be taken. �e identi�cations above are not canonical,
but depend on the choice of base-point. Also, the actions of g 2 G on X , given
by right and left multiplications, are very di�erent-looking maps of the set X .
We want to make these points crystal-clear. �e letter d below is used for
“dart”.

Proposition 3.7. Suppose that X is regular. �en for each d 2 X there is an
isomorphism

�d W G �! Aut.X/ :

�e automorphism �d .g/ is the unique one taking d to dg .
Changing d to d 0 amounts to conjugating, in Aut.X/ , by the unique

automorphism taking d to d 0 .

Proof. �is is merely a reformulation of the discussion above, and we only need
to check some details. We take � D d as base-point. �e map �d is clearly
well-de�ned, and we check that it is a homomorphism: �d .gh/.d/ D dgh D

.dg/h D �d .g/.d/
h D �d .g/.d

h/ D �d .g/�d .h/.d/ , so the automorphisms �d .gh/
and �d .g/�d .h/ agree at d , hence everywhere by transitivity of the action
of G .

Example 3.8. Consider the dessin on the sphere given by the tetrahedron, as
follows:
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Here we have numbered the darts, for convenience (the faces, on the other
hand, are implicit). �ere are many ways to see that this is a regular dessin. For
example, one may �nd enough rotations to take any one dart to any other one,
and apply criterion (1) of Proposition 3.5. Or, we could write the permutations

� D .123/.456/.789/.10; 11; 12/ ; ˛ D .14/.2; 10/.37/.59/.6; 11/.8; 12/ ;

and compute the order of the group generated by � and ˛ , which is 12 (a
computer does that for you immediately). �en appeal to criterion (6) of the
same proposition. Finally, one could also determine the automorphism group of
this dessin, and �nd that it has order 12. �is is the very de�nition of regularity.

Take d D 1 as base point, and write � for �1 . What is �.�/? �is is the
automorphism taking 1 to 2 , which is the rotation around the black vertex
adjacent to 1 and 2 . �e permutation of the darts induced by �.�/ is

.123/.4; 10; 7/.6; 12; 9/.11; 8; 5/ :

We see that � and �.�/ are not to be confused. Likewise, �.˛/ is the rotation
taking 1 to 4 , and the induced permutation is

.14/.8; 12/.2; 5/.3; 6/.10; 9/.11; 7/ :

3.3. �e distinguished triples. From Proposition 3.7, we see that each choice of
dart in a regular dessin C de�nes three elements of Aut.C/ , namely Q� D �d .�/ ,
Q̨ D �d .˛/ , and Q� D �d .�/ . �ese are generators of Aut.C/ , and they
satisfy Q� Q̨ Q� D 1 . Changing d to another dart conjugates all three generators
simultaneously. Any such triple, obtained for a choice of d , will be called a
distinguished triple for C .

Lemma 3.9. If d and d 0 are darts with a common black vertex, then �d .�/ D

�d 0.�/ . Similarly if they have a common white vertex then �d .˛/ D �d 0.˛/ . Finally
if the black triangles corresponding to d and d 0 respectively lie in the same
face, then �d .�/ D �d 0.�/ .
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Proof. We treat the �rst case, for which d 0 D d�k for some k . Write Q� D �d .�/ .
Since d�k D Q�k.d/ , we see that �d 0.�/ D Q�k Q� Q��k D Q� .

�us the notation Q� makes senses unambiguously when it is understood that
the possible base-darts are incident to a given black vertex. Similarly for the other
types of points. We can now fully understand the �xed points of automorphisms:

Proposition 3.10. Let h 2 Aut.C/ , where C is regular. Suppose that the induced
homeomorphism jC j ! jC j has a �xed point. Suppose also that h is not the
identity. �en the �xed point is a vertex or the centre of a face; moreover there
exists an integer k such that, for any choice of dart d incident with the �xed
point, we can write h D Q�k , Q̨k or Q�k , according to the type of �xed point, � ,
ı or ? .

In particular, the subgroup of Aut.C/ comprised of the automorphisms �xing
a given point of type � is cyclic, generated by Q� D �d .�/ where we have chosen
any dart incident with the �xed point. Likewise for the other types of �xed point.

(In this statement we have abused the language slightly, by saying that a dart
is “incident” to the centre of a face if the corresponding black triangle belongs
to that face.)

Proof. Let t be a triangle containing the �xed point. Note that h.t/ ¤ t : otherwise
by regularity we would have h D identity. We have t \ h.t/ ¤ ¿ though, and as
the triangle h.t/ is of the same colour as t , unlike its neighbours, we conclude
that t \ h.t/ is a single vertex of t , and the latter is our �xed point.

Say it is a black vertex. Let d be the dart on t . �en h.d/ is a dart
with the same black vertex as d , so h.d/ D d�

k for some integer k . In other
words h D �d .�k/ .

�us we have a canonical generator for each of these subgroups. Here we
point out, and this will matter in the sequel, that the generator Q� agrees with
what Völklein calls the “distinguished generator” in Proposition 4.23 of [Vö].
�is follows from unwinding all the de�nitions.

�e following result is used very often in the literature on regular “maps”.

Proposition 3.11. Let C be a dessin, with cartographic group G , and the
distinguished elements �; ˛; � 2 G . Similarly, let C 0; G0; � 0; ˛0; �0 be of the same
kind. Assume that C and C 0 are both regular. �en the following conditions are
equivalent:

(1) C and C 0 are isomorphic,
(2) there is an isomorphism G ! G0 taking � to � 0 , ˛ to ˛0 and � to �0 ,
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(3) there is an isomorphism Aut.C/! Aut.C 0/ taking a distinguished triple to
a distinguished triple.

Proof. �at (1) implies (2) is obvious, and holds without any regularity assumption.
Since there are isomorphisms G Š Aut.C/ and G0 Š Aut.C 0/ taking the
distinguished permutations in the cartographic group to a distinguished triple
(though none of this is canonical), we see that (2) implies (3).

Finally, if we work in Sets�;˛;� , we can identify C with the group Aut.C/

endowed with the three elements Q�; Q̨ ; Q� acting by multiplication on the right,
where we have picked some distinguished triple Q�; Q̨ ; Q� . �us (3) clearly
implies (1).

�e equivalence of (1) and (3), together with Corollary 3.6, reduces the
classi�cation of regular dessins to that of �nite groups with two distinguished
generators (or three distinguished generators whose product is 1 ). We state this
separately as an echo to Proposition 1.24. Recall that dessins are implicitly
compact, oriented and without boundary here.

Proposition 3.12. (1) A regular dessin determines, and can be reconstructed
from, a �nite group G with two distinguished generators � and ˛ . We
obtain isomorphic dessins from .G; �; ˛/ and .G0; � 0; ˛0/ if and only if there
is an isomorphism G ! G0 taking � to � 0 and ˛ to ˛0 .

(2) �e set of isomorphism classes of regular dessins is in bijection with the
normal subgroups of the free group on two generators. More precisely, if a
connected dessin corresponds to the conjugacy class of the subgroup K as
in Proposition 1.24, then it is regular if and only if K is normal.

Proof. We have already established (1). As for the �rst statement in (2), we only
need to remark that the groups mentioned in (1) are precisely the groups of the
form G D h�; ˛i=N for some normal subgroup N in the free group F2 D h�; ˛i ,
and that an isomorphism of the type speci�ed in (1) between G D F2=N

and G0 D F2=N
0 exists if and only if N D N 0 .

We turn to the last statement. If a connected dessin corresponds to K , then it
is isomorphic to X D Knh�; ˛i in Sets�;˛;� . �e action of h�; ˛i on X yields a
homomorphism f W h�; ˛i ! S.X/ whose image is the cartographic group G , and
whose kernel is the intersection N of all the conjugates of K , so G Š h�; ˛i=N .
Let H be the stabilizer in G of a point in X . �en f �1.H/ is the stabilizer of
that same point in h�; ˛i , so it is a conjugate of K . Now, X is regular if and
only if H is trivial, which happens precisely when f �1.H/ D N , which in turn
occurs precisely when K is normal.
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3.4. Regular closure & Galois correspondence. In the discussion that follows,
we restrict our attention to connected dessins.

When C and C 0 are two dessins, we call C 0 an intermediate dessin of C

when there exists a morphism C ! C 0 . To appreciate the term “intermediate”, it
is best to move to categories other than Dessins . In Cov.P1/ , if C corresponds
to p W S ! P1 and C 0 corresponds to p0 W S 0 ! P1 , then C 0 is an intermediate
dessin of C when there is a factorization of p as

p W S
f
�! S 0

p0

�! P1 ;

for some map f ; so jC 0j D S 0 is intermediate between jC j D S and P1 , if you
will. In Etale.Q.x// , the towers Q.x/ � L0 � L provide examples where L0=Q.x/
is an intermediate dessin of L=Q.x/ , and all examples are isomorphic to one of
this kind.

Of course the word “intermediate” is borrowed from �eld/Galois theory,
where the ideas for the next paragraphs come from. Let us point out one more
characterization.

Lemma 3.13. Let C and C 0 correspond to the conjugacy classes of the
subgroups H and H 0 of h�; ˛i respectively, as in Proposition 1.24. �en C 0

is an intermediate dessin of C if and only if some conjugate of H 0 contains H .

So H 0 is intermediate between H and the free group h�; ˛i .

Proof. �e object in Sets�;˛;� corresponding to H (and also to C ) is X D

Hnh�; ˛i , and likewise for H 0 we can take X 0 D H 0nh�; ˛i ; there is a
map X ! X 0 if and only if the stabilizer of some point in X is contained
in the stabilizer of some point in X 0 , hence the lemma.

Lemma 3.14. Let C be a connected dessin. �ere exists a regular dessin QC such
that C is an intermediate dessin of QC . Moreover, we can arrange for QC to be
minimal in the following sense: if C is an intermediate dessin of any regular
dessin C 0 , then QC is itself an intermediate dessin of C 0 . Such a minimal QC is
unique up to isomorphism.

Finally, the cartographic group of C is isomorphic to Aut. QC/ .

We call QC the regular closure of C .

Proof. Leaving the last statement aside, in Etale.Q.x// , this is a basic result from
Galois theory. Alternatively, we can rely on Proposition 1.24 and the previous
lemma: if C corresponds to the conjugacy class of H , then clearly the object
corresponding to N , the intersection of all conjugates of H , suits our purpose.
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As for the last statement, that the cartographic group of Hnh�; ˛i is isomorphic
to h�; ˛i=N was already observed during the proof of Proposition 3.12 (and is
obvious anyway).

�e fundamental theorem of Galois theory applied in Etale.Q.x// , or some
elementary considerations with the subgroups of h�; ˛i , imply:

Proposition 3.15. Let C be a regular dessin. �ere is a bijection between the set
of isomorphism classes of intermediate dessins of C on the one hand, and the
conjugacy classes of subgroups of Aut.C/ on the other hand. Normal subgroups
corresponds to regular, intermediate dessins.

�e concepts of this section are, as usual, very easily illustrated within Sets�;˛;� .
A connected object is of the form HnG , as we have seen, where G has two dis-
tinguished generators � and ˛ . �e regular closure is the object G , with its right
action on itself, seen in Sets�;˛;� . Of course there is the natural map G ! HnG .
Conversely any X with a surjective, equivariant map G ! X (that is, any con-
nected, intermediate object of G ) must be of the form HnG , clearly. From
this we see that whenever C is regular, its intermediate dessins might called its
quotient dessins instead.

4. �e action of Gal.Q=Q/

In this section we show how each element � 2 Gal.Q=Q/ de�nes a self-
equivalence of Dessins , or any of the other categories equivalent to it. Writing �C

for the object obtained by applying this functor to the dessin C , we show that
there is an isomorphism between ��C and �.�C/ , so Gal.Q=Q/ acts on the set
of isomorphism classes of dessins.

�e de�nition of the action is in fact given in Etale.Q.x// , where it is most
natural. �e di�culty in understanding it in Dessins has much to do with the
zig-zag of equivalences that one has to go through. For example, the functor
from Riemann surfaces to �elds is straightforward, and given by the “�eld of
meromorphic functions” construction, but the inverse functor is less explicit.

We study carefully the genus 0 case, and include a detailed description of a
procedure to �nd a Belyi map associated to a planar dessin – which is, so far,
an indispensable step to study the action. We say just enough about the genus 1
case to establish that the action is faithful.

We then proceed to study the features which are common to C and �C , for
example the fact that the surfaces jC j and

ˇ̌
�C
ˇ̌
are homeomorphic (so that the

action modi�es dessins on a given topological surface). Ultimately one would
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hope to know enough of these “invariant” features to predict the orbit of a given
dessin under Gal.Q=Q/ without having to compute Belyi maps, but this remains
an open problem.

4.1. �e action. Let � W Q! Q be an element of Gal.Q=Q/ . We extend it to
a map Q.x/! Q.x/ which �xes x , and use the same letter � to denote it. In
this situation the tensor product operation

�˝� Q.x/

de�nes a functor from Etale.Q.x// to itself. In more details, if L=Q.x/ is an
étale algebra, one considers

�L D L˝� Q.x/ :

�e notation suggests that we see Q.x/ as a module over itself via the map � .
We turn �L into an algebra over Q.x/ using the map t 7! 1˝ t .

To describe this in more concrete terms, as well as verify that �L is an
étale algebra over Q.x/ whenever L is, it is enough to consider �eld extensions,
since the operation clearly commutes with direct sums. So if L Š Q.x/Œy�=.P /

is a �eld extension of Q.x/ , with P 2 Q.x/Œy� an irreducible polynomial,
then �L Š Q.x/Œy�=.�P / , where �P is what you get when the (extented) map �
is applied to the coe�cients of P . Clearly �P is again irreducible (if it could
be factored as a product, the same could be said of P by applying ��1 ).
�erefore �L is again a �eld extension of Q.x/ , and coming back to the general
case, we do conclude that �L is an étale algebra whenever L is. What is more,
the rami�cation condition satis�ed by the objects of Etale.Q.x// is obviously
preserved.

Let � 2 Gal.Q=Q/ . Note that y ˝ s ˝ t 7! y ˝�.s/t yields an isomorphism

�
�
�L
�
D L˝� Q.x/˝� Q.x/ �! L˝�� Q.x/ D ��L :

As a result, the group Gal.Q=Q/ acts (on the left) on the set of isomorphism
classes of objects in Etale.Q.x// , or in any category equivalent to it. We state
this separately in Dessins .

�eorem 4.1. �e absolute Galois group Gal.Q=Q/ acts on the set of isomorphism
classes of compact, oriented dessins without boundaries.

4.2. Examples in genus 0 ; practical computations. We expand now on
Example 2.9. Let C be a dessin on the sphere. We have seen that we can �nd a
rational fraction F such that F W P1 ! P1 is the rami�ed cover corresponding
to C .
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In terms of �elds of meromorphic functions, we have the injection C.x/!

C.z/ mapping x to F.z/ ; here x and z both denote the identity of P1 , but we
use di�erent letters in order to distinguish between the source and target of F . �e
extension of �elds corresponding to C , as per �eorem 2.13, is C.z/=C.F.z// .
We will write x D F.z/ for simplicity, thus seeing the injection above as an
inclusion. If F D P=Q , note that P.z/ � xQ.z/ D 0 , illustrating that z is
algebraic over C.x/ .

Suppose that we had managed to �nd an F as above whose coe�cients are
in Q . �en z is algebraic over Q.x/ , and in this case C.z/rat can be taken to
be Q.z/ . We have identi�ed the extension Q.z/=Q.x/ corresponding to C as in
�eorem 2.17.

Now that theorem and the discussion preceding it do not, as stated, claim that F
can always be found with coe�cients in Q : we merely now that some primitive
element y can be found with minimal polynomial having its coe�cients in Q . �e
stronger statement is equivalent to C.z/rat being purely transcendental over Q ,
as can be seen easily. Many readers will no doubt be aware of several reasons
why this must in fact always be the case; we will now propose an elementary
proof which, quite importantly, also indicates how to �nd F explicitly in practice.
�e Galois action will be brought in as we go along.

Let us �rst discuss the number of candidates for F . Any two rational fractions
corresponding to C must di�er by an isomorphism in the category of Belyi pairs;
that is, any such fraction is of the form F.�.z// where F is one �xed solution
and � W P1 ! P1 is some isomorphism. Of course � must be a Moebius
transformation, �.z/ D .azC b/=.czC d/ . Let us call a Belyi map F W P1 ! P1

normalized when F.0/ D 0 , F.1/ D 1 and F.1/ D1 .

Lemma 4.2. Let C be a dessin on the sphere. �ere are �nitely many normalized
fractions corresponding to C .

Proof. �e group of Moebius transformations acts simply transitively on triples
of points, so we can arrange for there to be at least one normalized Belyi fraction,
say F , corresponding to C . Other candidates will be of the form F ı� where �
is a Moebius transformation, so �.0/ must be a root of F and �.1/ must be
a root of F � 1 , while �.1/ must be a pole of F . Since � is determined by
these three values, there are only �nitely many possibilities.

We shall eventually prove that any normalized fraction has its coe�cients
in Q .

Our strategy for �nding a fraction F W P1 ! P1 which is a Belyi map is to
pay attention to the associated fraction
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A D
F 0

F.F � 1/
:

Proposition 4.3. Let F be a Belyi fraction such that F.1/ D1 , and let A be
as above. �en the following holds.

(1) �e partial fraction decomposition of A is of the form

A D
X
i

mi

z � wi
�

X
i

ni

z � bi
;

where the ni ’s and the mi ’s are positive integers, the bi ’s are the roots
of F , and the wi ’s are the roots of F � 1 . In fact ni is the degree of the
black vertex bi , and mi is the degree of the white vertex wi .

(2) One can recover F from A as:

1

F
D 1 �

Q
i .z � wi /

miQ
i .z � bi /

ni
:

(3) �e fraction A can be written in reduced form

A D �

Q
i .z � fi /

ri�1Q
i .z � bi /

Q
i .z � wi /

;

where the fi ’s are the poles of F (other than 1 ), and ri is the multiplicity
of fi as a pole of F . In fact ri is the number of black triangles inside the
face corresponding to fi .

Conversely, let A be any rational fraction of the form given in (3), with the
numbers fi , bi , wi distinct. Assume that A has a partial fraction decomposition
of the form given in (1); de�ne F by (2); and �nally assume that the fi ’s are
poles of F . �en F is a Belyi map, A D F 0=.F.F � 1// , and we are in the
previous situation.

We submit a proof below. For the moment, let us see how we can use this
proposition to establish the results announced above. So assume C is a given
dessin on the sphere, and we are looking for a corresponding normalized Belyi
map F W P1 ! P1 . We look for the fraction A instead, and our “unknowns” are
the fi ’s, the bi ’s, the wi ’s, and � , cf (3). Of course we now the numbers ri
from counting the black triangles on C , just as we now the number of black
vertices, white vertices, and faces, giving the number of bi ’s, wi ’s, and fi ’s
(keeping in mind the pole at 1 already accounted for).

Now comparing (3) and (1) we must have

(*) �

Q
i .z � fi /

ri�1Q
i .z � bi /

Q
i .z � wi /

D

X
i

mi

z � wi
�

X
i

ni

z � bi
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where the integers ni and mi are all known, since they are the degrees of the
black and white vertices respectively, and again these can be read from C .

Further, the fi ’s must be poles of F , which is related to A by (2). �us we
must have

(**)
Y
i

.fj � wi /
mi D

Y
i

.fj � bi /
ni ;

for all j . We also want F to be normalized so we pick indices i0 and j0 and
throw in the equations

(***) bi0 D 0 ; wj0 D 1 :

Finally we want our unknowns to be distinct. �e usual trick to express this as an
equality rather than an inequality is to take an extra unknown � and to require

(****) �.b1 � b2/.f1 � f2/ � � � D 1 ;

where in the dots we have hidden all the required di�erences.

Lemma 4.4. �e system of polynomials equations given by (*), (**), (***) and
(****) has �nitely many solutions in C . �ese solutions are all in Q .

Proof. By the proposition, each solution de�nes a normalized Belyi map, and
thus a dessin on the sphere. De�ne an equivalence relation on the set of solutions,
by declaring two solutions to be equivalent when the corresponding dessins are
isomorphic. By Lemma 4.2, there are �nitely many solutions in an equivalence
class. However there must be �nitely many classes as well, since for each n

there can be only a �nite number of dessins on n darts, clearly, and for all the
solutions we have n D

P
i ni darts.

It is a classical fact from either algebraic geometry, or the theory of Gröbner
bases, that a system of polynomial equations with coe�cients in a �eld K , having
�nitely many solutions in an algebraically closed �eld containing K , has in fact
all its solutions in the algebraic closure of K . Here the equations have coe�cients
in Q .

We may state, as a summary of the discussion:

Proposition 4.5. A dessin C on the sphere de�nes, and is de�ned by, a rational
fraction F with coe�cients in Q which is also a Belyi map. �e dessin �C

corresponds to the fraction �C obtained by applying � to the coe�cients of F .

Example 4.6. Suppose C is the following dessin on the sphere:
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b

bc

bc

bc bc bb bcb0
b1 b2w0

w1

w2

w3

w4

Let us �nd a fraction F corresponding to C by the method just described.
Note that, whenever the dessin is really a planar tree, one can greatly improve
the e�ciency of the computations, as will be explained below, but we want to
illustrate the general case.

We point out that the letters bi and wi above are used to label the sets B
and W , and the same letters will be used in the equations which we are about
to write down. A tricky aspect is that, in the equations, there is really nothing
to distinguish between, say, w2 , w3 , and w4 ; and we expect more solutions to
our system of equations than the one we want. We shall see that some solutions
will actually give a di�erent dessin.

Here there is just one face, so F will have just the one pole at 1 ; in other
words F will be a polynomial. As for A , it is of the form

A D
�

.z � b0/.z � b1/.z � b2/.z � w0/.z � w1/.z � w2/.z � w2/.z � w4/
:

�e �rst equations are obtained by comparing this with the expression

A D �
4

z � b0
�

1

z � b1
�

2

z � b2
C

2

z � w0
C

2

z � w1
C

1

z � w2
C

1

z � w3
C

1

z � w4
:

�ere are no fi ’s so no extra condition, apart from the one expressing that the
unknowns are distinct:

�.b0 � b1/ � � � .b2 � w3/ � � � D 1 ;

where we do not write down the 28 terms. Finally, for F to be normalized, we
add

b0 D 0 ; w0 D 1 :

At this point we know that there must be a �nite set of solutions. �is
is con�rmed by entering all the polynomial equations into a computer, which
produces exactly 8 solutions (using Groebner bases). For each solution, we can
also ask the computer to plot (an approximation to) the set F �1.Œ0; 1�/ .
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1 2

3 4

5 6

7 8
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It seems that 5 and 6 look like our original dessin C , while the other six are
certainly not isomorphic to C (even the underlying bigraphs are not isomorphic
to that of C ). Let us have a closer look at 5 and 6:

We see precisely what is going on: we have imposed the condition w0 D 1 ,
but in the equations there was nothing to distinguish the two white vertices of
degree two, and they can really both play the role of w0 . �ese two solutions give
isomorphic dessins, though: one diagram is obtained from the other by applying
a rotation of angle � , that is z 7! �z , and the two fractions are of the form F.z/

and F.�z/ respectively. �is could be con�rmed by calculations, though we will
spare the tedious veri�cations.

�e other solutions all come in pairs, for the same reason. Let us have a
closer look at 1, 3, 5, 7:

1 3

5 7
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Here 1 and 3 present the same bicolored tree; 1, 5 and 7 are non-isomorphic
bicolored trees. However 1 and 3 are not isomorphic dessins – or rather, they are
not isomorphic as oriented dessins, as an isomorphism between the two would
have to change the orientation.

Let � , ˛ and � be the three permutations corresponding to C . Now suppose
we were to look for a dessin C 0 with permutations � 0 , ˛0 and �0 such that � 0
is conjugated to � within S7 (there are 7 darts here), and likewise for ˛0 and ˛ ,
and �0 and � . �en we would write down the same equations, which only relied
on the cycle types of the permutations. �us C 0 would show up among the
solutions, and conversely. So we have an interpretation of this family of four
dessins.

Let us have a look at the Galois action. Here is the number b1 in the cases
1, 3, 5, 7:

1

32

�
�2i

q
5i
p
7 � 7

p
7C 3i

p
2
p
7C 7

p
2

�
p
2 ;

1

32

�
2

q
5i
p
7C 7

p
7 � 3i

p
2
p
7C 7

p
2

�
p
2 ;

�
1

72

�q
8
p
3
p
7C 63

p
3
p
7 � 21

p
3C 12

p
7

�
p
3 ;

1

72

�q
�8
p
3
p
7C 63

p
3
p
7C 21

p
3C 12

p
7

�
p
3 :

One can check that the minimal polynomial for b1 in case 1 has degree 4, and
that the four distinct values for b1 in cases 1, 2, 3, 4 all have the same minimal
polynomial (these are questions easily answered by a computer). �us they are
the four roots of this polynomial, which are in the same Gal.Q=Q/ -orbit. On the
other hand, in cases 5, 6, 7, 8 the values for b1 have another minimal polynomial
(and they have the same one), so Gal.Q=Q/ cannot take solution 1 to any of
the solutions 5, 6, 7, 8. In the end we see that the four solutions 1, 2, 3, 4 are
in the same Galois orbit, in particular 1 and 3 are in the same orbit. A similar
argument shows that 5 and 7 also belong to the same orbit. However these orbits
are di�erent.

Understanding the action of the absolute Galois group of Q on (isomorphism
classes of) dessins will be a major theme in the rest of this paper.

Remark 4.7. Let us comment of e�ciency issues. A seemingly anecdotal trick,
whose in�uence on the computation is surprising, consists in grouping the vertices
of the same colour and the same degree. In the last example, we would “group
together” w2 , w3 and w4 , and write

.z � w2/.z � w3/.z � w4/ D z
3
C uz2 C vz C s :
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All subsequent computations are done with the unknowns u , v and s instead
of w2 , w3 and w4 , thus reducing the degree of the equations.

More signi�cant is the alternative approach at our disposal when the dessin is
a planar tree. �en F is a polynomial (if we arrange for the only pole to be 1 ),
and F 0 divides F.F � 1/ , so F.F � 1/ D PF 0 , where everything in sight is a
polynomial.

Coming back to the last example, we would write

F D cz4.z � b1/.z � b2/
2

(incorporating b0 D 0 ) and

F � 1 D c.z � 1/2.z � w1/
2.z3 C uz2 C vz C s/ ;

the unknowns being now c; b1; b2; w1; u; v and s . In the very particular case at
hand, there is already a �nite number of solutions to the polynomial equations
resulting from the comparison of the expressions for F and F � 1 . In general
though, the very easy next step is to compute the remainder in the long division
of F.F � 1/ by F 0 , say in Q.c; b1; b2; w1; u; v; s/Œz� . Since F and F 0 both
have c as the leading coe�cient, it is clear that the result will have coe�cients
in QŒc; b1; b2; w1; u; v; s� . �ese coe�cients must be zero, and these are the
equations to consider.

Proceeding in this way is, based on a handful of examples, several orders of
magnitude faster than with the general method.

We conclude with a proof of Proposition 4.3.

Proof. Let F be as in the proposition, let A D F 0=F.F � 1/ , and let us write
the partial fraction decomposition of A over C :

A D
X
˛;r;k

˛

.z � r/k
:

Now we integrate; we do this formally, though it can be made rigorous by
restricting z to lie in a certain interval of real numbers. Note that essentially we
are solving the di�erential equation F.F � 1/ D A�1F 0 . On the one hand:Z

F 0.z/dz

F.z/.F.z/ � 1/
D

Z
dF

F.F � 1/
D

Z �
�1

F
C

1

F � 1

�
dF D log.

F � 1

F
/ ;

up to a constant. On the other hand this must be equal toX
˛;r;k>1

˛

.1 � k/.z � r/k�1
C

X
˛;r

˛ log.z � r/ ;
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up to a constant. �us the exponential of this last expression is a rational fraction,
from which it follows that the �rst sum above must be zero. In other words, k D 1
in all the nonzero terms of the partial fraction decomposition of A . Moreover,
for the same reason all ˛ ’s must be integers. In the end

A D
X
˛;r

˛

z � r
;

and
F � 1

F
D c

Y
˛;r

.z � r/˛ :

We rewrite this
1

F
D 1 � c

Y
˛;r

.z � r/˛ :

Examination of this expression establishes (1) and (2) simultaneously. Indeed
F.1/ D 1 implies c D 1 (and

P
˛ D 0 ). Likewise, the roots of F are the

numbers r ’s such that ˛ < 0 , and the roots of F �1 are the r ’s such that ˛ > 0 .
�e multiplicities are interpreted as degrees of vertices, as already discussed (we
see that

P
˛ D 0 amounts to

P
mi D

P
ni , and as a matter a fact these two

sums are equal to the number n of darts, each dart joining a back vertex and a
white one). Let us now use the notation bi , wi , ni and mi .

We have shown that

A D �
BQ

i .z � bi /.z � wi /

where B is a monic polynomial. It remains, in order to prove (3), to �nd the
roots of B together with their multiplicities, knowing that B does not vanish at
any bi or any wi .

For this write F D P=Q with P;Q coprime polynomials, so that

A D
P 0QC PQ0

P.P �Q/
:

If fi is a root of Q , with multiplicity ri , then it is a root of P 0QCPQ0 with
multiplicity ri � 1 . Also, it is not a root of P.P �Q/ , so in the end fi is a
root of B of multiplicity ri � 1 .

Finally, from the expression A D F 0=F.F � 1/ we know that the roots of A
are to be found among the roots of F 0 and the poles of F.F � 1/ , that is the
roots of Q . So a root of A which is not a root of Q would have to be a root
of F 0 . Now we use the fact that F is a Belyi map: a root of F 0 is taken by F

to 0 or 1 , so it is among the bi ’s and the wi ’s. �ese are not roots of B , as
observed, so we have proved (3).
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Now we turn to the converse, so we let A have the form in (3), we suppose
that (1) holds and de�ne F by (2). From the arguments above it is clear
that A D F 0=F.F � 1/ .

Is F a Belyi map? For z0 satisfying F 0.z0/ D 0 , we need to examine whether
the value F.z0/ is among 0; 1;1 . Suppose F.z0/ is neither 0 nor 1 . �en it is
not a root of F.F � 1/ , so it is a root of A . If we throw in the assumption that
the roots of A are poles of F , it follows that F.z0/ D1 .

4.3. Examples in genus 1 ; faithfulness of the action. Let us brie�y discuss the
Galois action in the language of curves, as in §2.6. A dessin de�nes a curve C ,
which can be taken to be de�ned by homogeneous polynomial equations Pi D 0
in projective space, where Pi has coe�cients in Q . Also C comes equiped with
a map F W C ! P1 , or equivalently F 2 M.C / , and F can be written as a
quotient F D P=Q where P and Q are homogeneous polynomials of the same
degree, again with coe�cients in Q . Conversely such a curve, assuming that F
does not ramify except possibly at 0 , 1 or 1 , de�nes a dessin.

It is then easy to show (though we shall not do it here) that �C corresponds
to the curve �C obtained by applying � to the coe�cients of each Pi ; it comes
with a Belyi map, namely �F , which we again obtain by applying � to the
coe�cients of F . (Note in particular that �C , as a curve without mention of a
Belyi map, is obtained from � and C alone, and F does not enter the picture.)

We illustrate this with dessins in degree 1 . An elliptic curve is a curve C

given in P2 by a “Weierstrass equation”, that is, one of the form

y2z � x3 � axz2 � bz3 D 0 :

Assuming we work over Q or C , the surface C.C/ is then a torus. One can
show conversely that whenever C.C/ has genus 1, the curve is an elliptic curve.

�e equation is of course not uniquely determined by the curve. However one
can prove that

j D 1728.4a/3=16.4a3 C 27b2/

depends only on C up to isomorphism. (�e notation is standard, with 1728
emphasized.) What is more, over an algebraically closed �eld we have a converse:
the number j determines C up to isomorphism. Further, each number j 2 K
actually corresponds to an elliptic curve over K . �ese are all classical results,
see for example [Si].

Now we see that, in obvious notation, j.�C/ D �j.C / , with the following
consequence. Given � 2 Gal.Q=Q/ which is not the identity, there is certainly
a number j 2 Q such that �j ¤ j . Considering the (unique) curve C such
that j.C / D j , we can use Belyi’s theorem to make sure that it possesses a
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Belyi map F (it really does not matter which, for our purposes), producing at
least one dessin C . It follows that �C is not isomorphic to C , and we see that
the action of Gal.Q=Q/ on dessins is faithful.

As it happens, one can show that the action is faithful even when restricted
to genus 0 , and even to plane trees. What is more, the argument is easy and
elementary, see the paper by Schneps [Sch1], who ascribes the result to Lenstra.

We note for the record:

�eorem 4.8. �e action of Gal.Q=Q/ on dessins is faithful. In fact, the action
on plane trees is faithful, as is the action on dessins of genus 1 .

In this statement it is implicit that the image of a plane tree under the Galois
action is another plane tree. �eorem 4.11 below proves this, and more.

4.4. Invariants. We would like to �nd common features to the dessins C and �C ,
assumed connected for simplicity. First and foremost, if L=Q.x/ corresponds to C ,
one must observe that there is the following commutative diagram:

Q.x/
� //

��

Q.x/

��
L D L˝id Q.x/

y˝s 7!y˝�.s/ // L˝� Q.x/ D �L:

Here both horizontal arrows are isomorphisms of �elds (but the bottom one is
not an isomorphism of Q.x/ -extensions, of course). It follows that there is an
isomorphism

�� W Gal
�
L=Q.x/

�
�! Gal

�
�L=Q.x/

�
;

obtained by conjugating by the bottom isomorphism (this is the approach taken
in [Vö]). Alternatively, the existence of a homomorphism �� between these groups
is guaranteed by the functoriality of the Galois action; while the fact that �� is
a bijection is established by noting that its inverse is .��1/� . �e two de�nitions
of �� agree, as is readily seen.

For the record, we note:

Lemma 4.9. If C is regular, so is �C .

Proof. It is clear that C and �C have the same degree, and their automorphism
groups are isomorphic under �� , so the lemma is obvious.
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Using curves, we can guess a property of �� which is essential (a rigorous
argument will be given next). Let C be a curve in projective space corresponding
to C . It is a consequence of the material in §2 that C.C/ is homeomorphic
to jC j . �e automorphism Q� must then correspond to a self-map C ! C , and
the latter must �x a black vertex by Proposition 3.10. �is black vertex has its
coordinates (in projective space) lying in Q .

Now, this map Q� W C ! C is a map of curves over Q , and so is given, at
least locally, by rational fractions with coe�cients in Q . Applying �� amounts
to applying � to these coe�cients. �us we get a map ��. Q�/ W �C ! �C , and
clearly it also has a �xed point. By Proposition 3.10 again, we see that ��. Q�/ must
be a power of the distinguished generator Q�� (in suggestive notation). Likewise
for ��. Q̨ / and ��. Q�/ .

With a little faith, one may hope that the map C ! C , having a �xed point,
looks like z 7! �z in local coordinates, where � is some root of unity. If so, the
power of Q�� could be found by examining the e�ect of � on roots of unity, and
we may hope that it is the same power for Q� , Q̨ and Q� .

Exactly this is true. �e result even has an easy and elementary proof, that
goes via �elds.

Proposition 4.10 (Branch cycle argument). Assume that C is regular, and let Q�; Q̨
and Q� be a distinguished triple for Gal.L=Q.x// Š Aut.C/ . Let n be the degree
of C , let �n D e

2i�
n , and let m be such that

��1.�n/ D �
m
n :

Finally, let Q��; Q̨� and Q�� be a distinguished triple for Gal.�L=Q.x// .
�en ��. Q�m/ is conjugated to Q�� , while ��. Q̨m/ is conjugated to Q̨� and

��. Q�m/ is conjugated to Q�� .

Proof. �is is Lemma 2.8 in [Vö], where it is called “Fried’s branch cycle
argument”. �e following comments may be helpful. In loc. cit., this is stated
using the “conjugacy classes associated with 0; 1;1”; in the addendum to
theorem 5.9, these are identi�ed with the “topological conjugacy classes associated
with 0; 1;1”; and we have already observed (after Proposition 3.10) that they
are the conjugacy classes of Q�; Q̨ ; Q� .

We should pause to compare this with Proposition 3.11, which states that a
regular dessin, up to isomorphism, is nothing other than a �nite group G with
two distinguished generators �; ˛ (and � D .�˛/�1 is often introduced to clarify
some formulae). Let us see the map �� as an identi�cation (that is, we pretend
that it is the identity). �en the action of � on .G; �; ˛/ produces the same group,
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with two new generators, which are of the form g�mg�1 and h˛mh�1 ; moreover,
if we call these �� and ˛� respectively, then �� D .��˛�/�1 is conjugated to �m .

Of course, not all random choices of g; h;m will conversely produce new
generators for G by the above formulae. And not all recipes for producing new
generators out of old will come from the action of a � 2 Gal.Q=Q/ . Also note
that, if g D h and m D 1 , that is if we simply conjugate the original generators,
we get an object isomorphic to the original dessin – more generally when there
is an automorphism of G taking � to �� and ˛ to ˛� , then �C Š C .

One further remark. In Sets�;˛;� , the regular dessin C is modeled by the
set X D Aut.C/ with the distinguished triple Q�; Q̨ ; Q� acting by right multiplica-
tion; similarly for �C . Now, if we simply look at X , and its counterpart �X ,
in the category of sets-with-an-action-of-a-group, that is if we forget the speci�c
generators at our disposal, then X and �X become impossible to tell apart, by
the discussion above.

We expand on this idea in the next theorem, where we make no assumption
of regularity.

�eorem 4.11. Let C be a compact, connected, oriented dessin without boundary,
and let � 2 Gal.Q=Q/ .

(1) C and �C have the same degree n .
(2) It is possible to number the darts of C and �C in such a way that these

two dessins have precisely the same cartographic group G � Sn .
(3) Let m be such that ��1.�N / D �mN , where N is the order of G

and �N D e
2i�
N . �en within G , the generator �� is conjugated to �m ,

while ˛� is conjugated to ˛m and �� is conjugated to �m .
(4) Within Sn , the generator �� is conjugated to � , while ˛� is conjugated

to ˛ and �� is conjugated to � .
(5) C and C 0 have the same number of black vertices of a given degree, white

vertices of a given degree, and faces of a given degree.
(6) �e automorphism groups of C and �C are isomorphic.
(7) �e surfaces jC j and

ˇ̌
�C
ˇ̌
are homeomorphic.

�ere is an ingredient in the proof that will be used again later, so we isolate
it:

Lemma 4.12. Let C be a regular dessin, and let C 0 be the intermediate dessin
corresponding to the subgroup H of Aut.C/ . �en �C is regular, and �C 0 is
its intermediate dessin corresponding to the subgroup ��.H/ .
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Proof. �is is purely formal, given that the action of � is via a self-equivalence
of the category Etale.Q.x// which preserve degrees (this is the �rst point of
the proposition, and it is obvious!). Clearly regular objects must be preserved.
If K=Q.x/ is an intermediate extension of L=Q.x/ corresponding to H , then
the elements of H are automorphisms of L �xing K , so the elements of ��.H/
are automorphisms of �L �xing �K . Comparing degrees we see that ��.H/ is
precisely the subgroup corresponding to �K .

Proof of the theorem. We need a bit of notation. Let QC be the regular cover
of C . Let us pick a dart d of C as a base-dart. �is de�nes an isomorphism
between the cartographic group G and Aut. QC/ , under which � is identi�ed
with Q� , and likewise for ˛ and � . Finally, let H be the stabilizer of the dart d ,
so that in Sets�;˛;� our dessin is the object HnG . �e subgroup H of G

corresponds to C in the “Galois correspondence” for QC .
By the lemma, � QC is the regular closure of �C , and the latter corre-

sponds to the subgroup ��.H/ . �erefore in Sets�;˛;� we can represent �C

by ��.H/n��.G/ . In the category of G -sets, this is isomorphic to HnG via �� .
If we use the bijection HnG ! ��.H/n��.G/ in order to number the elements
of ��.H/n��.G/ , then we have arranged things so that the cartographic groups
for C and �C coïncide as subgroups of Sn .

�is proves (1) and (2). Point (3) is a reformulation of the previous proposition.
To establish (4), we note that m is prime to the order N of G , and in particular
it is prime to the order of � . In this situation �m has the same cycle-type
as � and is therefore conjugated to � within Sn . Likewise for ˛ and � . �ose
cycle-types describe the combinatorial elements refered to in (5).

Point (6) follows since the automorphism groups of C and �C are both
isomorphic to the centralizer of G in Sn .

Finally, point (7) is obtained by comparing Euler characteristics, as in
Remark 1.22.

Example 4.13. We return to Example 4.6. While looking for an explicit Belyi
map, we found four candidates, falling into two Galois orbits. Let us represent
them again, with a numbering of the darts.
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α = (45)(67)

α = (35)(17)

α = (17)(45)

α = (27)(35)

In all four cases one has � D .1234/.56/ , while ˛ is given on the pictures.
�e following facts are obtained by asking GAP: in cases A and B, the group
generated by � and ˛ is the alternating group A7 (of order 2520); in cases C
and D , we get a group isomorphic to PSL3.F2/ (of order 168). �is prevents
A and B from being in the same orbit as C or D, by the theorem, and suggests
that A and B form one orbit, C and D another. We have seen earlier that this is
in fact the case.

Note that the cartographic groups for A and B are actually the same subgroups
of S7 , and likewise for C and D. �e theorem asserts that this can always be
arranged, though it does not really provide an easy way of making sure that
a numbering will be correct. With random numberings of the darts, it is a
consequence of the theorem that the cartographic groups will be conjugated. In
general the conjugation will not preserve the distinguished generators, unless the
two dessins under consideration are isomorphic, cf �eorem 1.24.

5. Towards the Grothendieck–Teichmüller group

In this section we de�ne certain �nite groups Hn for n � 1 , and prove that
there is an injection

Gal.Q=Q/ �! lim
n
Out.Hn/ :

We further prove that the image lies in a certain subgroup, which we call GT
and call the coarse Grothendieck–Teichmüller group. �e group GT is an inverse
limit of �nite groups, and one can compute approximations for it in �nite time.

Beside these elementary considerations, we shall also use the language of
pro�nite groups, which has several virtues. It will show that our constructions are
independent of certain choices which seem arbitrary; it will help us relate our
construction to the traditional literature on the subject; and it will be indispensable
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to prove a re�nement of �eorem 4.8: the action of Gal.Q=Q/ on the set of
regular dessins is also faithful.

5.1. �e �nite groups Hn . Let F2 denote the free group on two generators,
written � and ˛ . We encourage the reader to think of F2 simultaneously as h�; ˛i
and h�; ˛; � j �˛� D 1i .

For any group G we shall employ the notation G.n/ to denote the intersection
of all normal subgroups of G whose index is � n . We de�ne then Hn D F2=F .n/2 .
It is easily seen that Hn is a �nite group; moreover the intersection of all the
normal subgroups of Hn of index � n is trivial, that is H .n/

n D ¹1º .
In fact Hn is universal among the groups sharing these properties, as the

following proposition makes precise (it is extracted from [Vö], see §7.1). �e
proof is essentially trivial.

Proposition 5.1. (1) For any �nite group G of order � n and g1; g2 2 G ,
there is a homomorphism Hn ! G sending � to g1 and ˛ to g2 .

(2) If g1; g2 are generators of a group G having the property that G.n/ D ¹1º ,
then there is a surjective map Hn ! G sending � to g1 and ˛ to g2 .

(3) If h1; h2 are generators of Hn , there is an automorphism of Hn sending �
to h1 and ˛ to h2 .

(Here we have written � and ˛ for the images in Hn of the generators
of F2 .)

In particular, there is a surjective map HnC1 ! Hn . �e kernel of this map
is H .n/

nC1 , which is characteristic ; it follows that we also have maps Aut.HnC1/!
Aut.Hn/ as well as Out.HnC1/! Out.Hn/ .

Here is a concrete construction of Hn . Consider all triples .G; x; y/ where G
is a �nite group of order � n and x; y are generators for G , and consider
two triples .G; x; y/ and .G0; x0; y0/ to be isomorphic when there is an isomor-
phism G ! G0 taking x to x0 and y to y0 . Next, pick representatives for the
isomorphism classes, say .G1; x1; y1/; : : : ; .GN ; xN ; yN / . By the material above,
this is equivalent to classifying all the regular dessins on no more than n darts.
Consider then

U D G1 � � � � �GN ;

and its two elements � D .x1; : : : ; xN / and ˛ D .y1; : : : ; yN / . �e subgroup K

of U generated by � and ˛ is then isomorphic to Hn . Indeed, if G is any
group generated by two elements g1; g2 satisfying G.n/ D ¹1º , by considering
the projections from G to its quotients of order � n we obtain an injection of G
into U ; under this injection g1 , resp. g2 , maps to an element similar to � , resp.
˛ , except that some entries are replaced by 1 ’s, for those indices i such that Gi
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is not a quotient of G . As a result there is a projection K ! G sending � to g1
and ˛ to g2 . Since K satis�es the “universal” property (2) of Proposition 5.1,
just like Hn does, these two groups must be isomorphic.

�e �nite groups Hn will play a major role in what follows. Variants are
possible: other collections of quotients of F2 could have been chosen, and we
comment on this in §5.5. We shall presently use the language of pro�nite groups,
which allows a reformulation which is plainly independent of choices. Yet, in
the sequel where elementary methods are preferred, and whenever we attempt a
computation in �nite time, the emphasis is on Hn or the analogous �nite groups.
�e use of pro�nite groups is necessary, however, to prove �eorem 5.7.

Lemma 5.2. �e inverse limit limnHn is isomorphic to OF2 , the pro�nite
completion of F2 .

Proof. By de�nition the pro�nite completion is

OF2 D limF2=N

where the inverse limit is over all normal subgroups N of �nite index.
Each such N contains some F

.n/
2 for n large enough, so the collection of

subgroups F .n/2 is “�nal” in the inverse limit, implying the result.

Lemma 5.3. �ere is an isomorphism Out. OF2/ Š limnOut.Hn/ .

Note that Out. OF2/ is, by de�nition, Autc. OF2/=Inn. OF2/ where Autc. OF2/ is
the group of continuous automorphisms of OF2 . �e proof will give a description
of Autc. OF2/ as an inverse limit of �nite groups.

Proof. We will need the fact that normal subgroups of �nite index in F2 are
in bijection with open, normal subgroups of OF2 (which are automatically closed
and of �nite index), under the closure operation N 7! NN : in fact the quotient
map F2 ! F2=N extends to a map OF2 ! F2=N whose kernel is NN . It follows
easily that NN1 \ NN2 D N1 \N2 , where Ni has �nite index in F2 . In particular,
the closure of F .n/2 in OF2 , which is the kernel of OF2 ! Hn , is preserved by all
continuous automorphisms – we call it characteristic.

We proceed with the proof. Using the previous lemma we identify OF2

and limnHn . �ere is a natural map

lim
n
Aut.Hn/ �! Autc.lim

n
Hn/ ;

and since the kernel of OF2 ! Hn is characteristic there is also a map going the
other way:
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Autc. OF2/ �! lim
n
Aut.Hn/ :

�ese two maps are easily seen to be inverses to one another.
Next we show that the corresponding map

� W lim
n
Aut.Hn/ �! lim

n
Out.Hn/

is surjective. �is can be done as follows. Suppose that a representative Qn 2
Aut.Hn/ of n 2 Out.Hn/ has been chosen. Pick any representative QnC1
of nC1 . It may not be the case that QnC1 maps to Qn under the map Aut.HnC1/!
Aut.Hn/ , but the two di�er by an inner automorphism of Hn ; since HnC1 ! Hn

is surjective, we can compose QnC1 with an inner automorphism of HnC1 to
compensate for this. �is de�nes . Qn/n�1 2 limnAut.Hn/ by induction, and shows
that � is surjective.

To study the kernel of � , we rely on a deep theorem of Jarden [Ja], which
states that any automorphism of OF2 which �xes all the open, normal subgroups
is in fact inner. An element ˇ 2 ker.�/ must satisfy this assumption: indeed
each open, normal subgroup of OF2 is the closure NN of a normal subgroup N

of �nite index in F2 , and each such subgroup contains some F
.n/
2 for some n

large enough, so if ˇ induces an inner automorphism of Hn it must �x NN . We
conclude that the kernel of � is Inn. OF2/ , and the lemma follows.

5.2. A group containing Gal.Q=Q/ . We make use of the axiom of choice, and
select an algebraic closure � of Q.x/ .

�e �nite group Hn with its two generators gives a regular dessin, and so
also an extension of �elds Ln=Q.x/ which is in Etale.Q.x// ; it is Galois with
Gal.Ln=Q.x// Š Hn . Now we may choose Ln to be a sub�eld of � . What
is more, Ln is then unique: for suppose we had L0n � � such that there is
an isomorphism of �eld extensions Ln ! L0n , then we would simply appeal
to the fact that any map Ln ! � has its values in Ln , from basic Galois
theory. In the same vein, we point out that if L=Q.x/ is any extension which
is isomorphic to Ln=Q.x/ , then any two isomorphisms Ln ! L di�er by
an element of Gal.Ln=Q.x// . From now on we identify once and for all Hn
and Gal.Ln=Q.x// .

Now let � 2 Gal.Q=Q/ . We have seen that �Ln is again regular (just like Ln
is), and that it corresponds to a choice of two new generators �� and ˛� of Hn .
However by (3) of Proposition 5.1 there is an automorphism Hn ! Hn such
that � 7! �� and ˛ 7! ˛� , and so Ln and �Ln are isomorphic. In other words
there exists an isomorphism � W Ln !

�Ln of extensions of Q.x/ , which is
de�ned up to pre-composition by an element of Gal.Ln=Q.x// D Hn .

Given h 2 Hn , we may consider now the following diagram, which does not
commute.
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Ln
� //

h

��

�Ln

��.h/

��
Ln

� // �Ln:

�e map ��1 ı ��.h/ ı � depends on the choice of � , and more precisely it is
de�ned up to conjugation by an element of Hn . As a result the automorphism h 7!

��1 ı��.h/ı � of Hn induces a well-de�ned element in Out.Hn/ , which depends
only on � .

�eorem 5.4. �ere is an injective homomorphism of groups

� W Gal.Q=Q/ �! lim
n
Out.Hn/ Š Out. OF2/ :

Proof. We have explained how to associate to � 2 Gal.Q=Q/ an element
in Out.Hn/ . First we need to prove that this gives a homomorphism

�n W Gal.Q=Q/ �! Out.Hn/ ;

for each �xed n . Assume that �n.�i / is represented by h 7! ��1i ı �
�
i .h/ ı �i ,

for i D 1; 2 . �en �n.�1/ ı �n.�2/ is represented by their composition, which is

h 7! ��13 ı .�1�2/
�
ı �3 ;

where �3 D �1 �2 ı �1 . Since �3 is an isomorphism Ln !
�1�2Ln , we see that this

automorphism represents �n.�1�2/ , so �n.�1�2/ D �n.�1/�n.�2/ , as requested.
Next we study the compatibility with the maps Out.HnC1/ ! Out.Hn/ .

�e point is that Ln � LnC1 , and that Ln corresponds to a characteristic
subgroup of HnC1 in the Galois correspondence (namely H

.n/
nC1 ). It follows that

any isomorphism LnC1 !
�LnC1 must carry Ln onto �Ln . Together with the

naturality of �� , this gives the desired compatibilities.
Finally we must prove that � is injective. We have seen that the action

of Gal.Q=Q/ on dessins is faithful; so it su�ces to shows that whenever
�.�/ D 1 , the action of � on dessins is trivial.

To see this, pick any extension L of Q.x/ , giving an object in Etale.Q.x// .
It is contained in Ln for some n , and corresponds to a certain subgroup K

of Hn in the Galois correspondence. By Lemma 4.12, �L corresponds to ��.K/
as a sub�eld of �Ln . �e condition �.�/ D 1 means that, if we identify �Ln

with Ln by means of some choice of isomorphism � (which we may), the
map �� becomes conjugation by a certain element of Hn . So �L corresponds
to a conjugate of K , and is thus isomorphic to L (this is part of the Galois
correspondence).
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5.3. Action of Out.Hn/ on dessins. We seek to de�ne a down-to-earth
description of an action of limnOut.Hn/ on (isomorphism classes of) dessins.
In fact we only de�ne an action on connected dessins in what follows, and will
not recall that assumption. (It is trivial to extend the action to all dessins if the
reader wishes to do so.)

We work in Sets�;˛;� , in which a typical (connected) object is KnG , where G
is a �nite group with two generators � and ˛ and K is a subgroup. Assume that G
has order � n . �en there is a surjective map p W Hn ! G , sending � and ˛ to
the elements bearing the same name. We let N D ker.p/ and NK D p�1.K/ .

Now suppose  is an automorphism of Hn . We can consider G D Hn=.N / ,
which we see as possessing the distinguished generators � and ˛ , the images
under Hn ! Hn=.N / of the elements with the same name. We certainly do not
take .�/ and .˛/ as generators; on the other hand  induces an isomorphism
of groups G ! G which is not compatible with the distinguished generators.
Finally G has the subgroup K , the image of . NK/ under Hn ! Hn=.N / .
�e object KnG in Sets�;˛;� is the result of applying  to KnG . Clearly
this de�nes an action of Out.Hn/ on isomorphism classes of dessins whose
cartographic group has order � n .

Lemma 5.5. Suppose  2 Out.Hn/ is of the form  D �n.�/ for some � 2

Gal.Q=Q/ . �en the action of  on (isomorphism classes of) dessins agrees with
that of � .

Proof. We keep the notation introduced above, and write C for the regular
dessin de�ned by the �nite group Hn with its two canonical generators. �e
dessin X D KnG considered is the intermediate dessin of C corresponding to
the subgroup NK of Aut.C/ D Hn . �us �X corresponds to the subgroup ��. NK/
of Aut.�C/ D ��.Hn/ . Picking an isomorphism � between C and �C as before,
we see that �X is isomorphic . NK/nHn as requested.

Lemma 5.6. �e actions de�ned above are compatible as n varies and can be
combined into a single action of limnOut.Hn/ on the isomorphism classes of
dessins.

Proof. It su�ces to prove that, for any integers n; s , if we pick nCs 2 Out.HnCs/
and let n be its image under the projection Out.HnCs/! Out.Hn/ , then for
any dessin X whose cartographic group G has order � n the dessins nCsX

and nX are isomorphic. However this follows easily from the fact that the
projection pnCs W HnCs ! G factors as pnı�nCs , where we write �nCs W HnCs !
Hn for the natural map.
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Now we seek to prove that the action of limnOut.Hn/ on dessins is faithful.

�eorem 5.7. �e group limnOut.Hn/ Š Out. OF2/ acts faithfully on the set of
regular dessins.

Proof. Let ˇ 2 Aut. OF2/ correspond to  D .n/n�1 2 limnOut.Hn/ . If the action
of this element is trivial on the set of all regular dessins, then the automorphism ˇ

must �x all open, normal subgroups of OF2 . However the theorem of Jarden already
used in the proof of Lemma 5.3 implies then that ˇ is an inner automorphism
of OF2 . As a result, n D 1 for all n .

Here it was necessary to see limnHn as Out. OF2/ to conduct the proof (or
more precisely, to be able to apply Jarden’s theorem which is stated in terms
of OF2 ).

Corollary 5.8. �e group Gal.Q=Q/ acts faithfully on the set of regular dessins.

Example 5.9. Suppose  is an automorphism of Hn for which you have an
explicit formula, say

.�/ D ˛�˛�1 ; .˛/ D ˛ :

What is the e�ect of  on dessins, explicitly? Discussing this for regular dessins
for simplicity, say you have G , a �nite group of order � n with two distinguished
generators written as always � and ˛ . Can we compute the e�ect of  on .G; �; ˛/
immediately?

�e answer is that some care is needed. Looking at the de�nitions,
we write G D Hn=N for some uniquely de�ned N , and the new dessin
is .Hn=.N /; �; ˛/ . If we want to write this more simply, according to the
principle that “applying  gives the same group with new generators”, we exploit
the isomorphism of groups

G D Hn=N �! Hn=.N /

which is induced by  . Transporting the canonical generators of Hn=.N / to G
via this isomorphism gives is fact .G; �1.�/; �1.˛// (note the inverses!).

In our case we compute �1.�/ D � , �1.˛/ D ˛ . In short

 .G; �; ˛/ D .G; �; ˛/

with, as ever, � D .�˛/�1 . Incidentally, if we compare this with Example 2.6,
we see that the action of  is to turn a dessin into its “dual”.
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5.4. �e coarse Grothendieck–Teichmüller group. Let us give a list of condi-
tions describing a subgroup of limOut.Hn/ containing the image of Gal.Q=Q/ .

Lemma 5.10. Let  D �n.�/ 2 Out.Hn/ , for some � 2 Gal.Q=Q/ . �en  can
be represented by an element of Aut.Hn/ , still written  for simplicity, and
enjoying the following extra properties: there exists an integer k prime to the
order of Hn , and an element f 2 ŒHn;Hn� , the commutator subgroup, such that

.�/ D �k and .˛/ D f �1˛kf :

Moreover .�˛/ is conjugated to .�˛/k .

Proof. �is follows from Proposition 4.10 (the branch cycle argument) applied
to Ln . More precisely, let us write � for Q� and ˛ for Q̨ , etc. �en there is an
isomorphism � between Ln and �Ln , under which �� 2 Aut.

�Ln/ is identi�ed
with � 2 Hn , and similarly for ˛� and �� ; as for �� , it becomes �n.�/ when
viewed in Out.Hn/ . �us a simple translation of the notation shows that .�/
is conjugated to �k , where k is determined by the action of � on roots of
unity, while .˛/ is conjugated to ˛k and .�˛/ is conjugated to .�˛/k . By
composing with an inner automorphism, we may thus assume that .�/ D �k .

Let g 2 Hn be such that .˛/ D g�1˛kg . Every element of the abelian
group Hn=ŒHn;Hn� can be written ˛j� i for some integers i; j , so let us
write g D ˛j� ic1 for some c1 2 ŒHn;Hn� . Further put � ic1 D c2c1� i ; here c2
is a commutator, so that f D c2c1 2 ŒHn;Hn� . �us g D ˛jf� i and

.˛/ D g˛kg�1 D .��if �1˛�j /˛k.˛jf� i / D ��i .f ˛kf �1/� i :

By composing  with conjugation by � i , we obtain a representative which is of
the desired form.

For each n there is an automorphism ın of Hn satisfying ın.�/ D ˛�˛�1 D
��1˛�1 , ın.˛/ D ˛ , ın.�/ D � . We write ı D .ın/n�1 for the corresponding
element of limnOut.Hn/ . �e letter ı is for duality, as the next lemma explains.

Lemma 5.11. (1) �e dessin ıC resulting from the application of ı to an
arbitrary dessin C is its “dual”. If C corresponds to the surface S endowed
with the Belyi map F W S ! P1 , then ıC corresponds to S endowed
with 1=F .

(2) If  D �.�/ 2 limnOut.Hn/ for � 2 Gal.Q=Q/ , then  and ı commute.

Note that ı squares to conjugation by ˛ . �us in Out.Hn/ , it is equal to its
inverse, and the letter ! is often used in the literature for ı�1 .
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Proof. (1) follows from the computations in Example 2.6 and Example 5.9.
Since the Galois action proceeds by the e�ect of � 2 Gal.Q=Q/ on the

coe�cients of the equations de�ning S as a curve, and the coe�cients of the
rational fraction F , the �rst point implies that �ıC Š ı�C for any dessin C .
Since the action of limnOut.Hn/ on isomorphism classes of dessins is faithful,
this implies �ı D ı� .

Note that we have relied on the point of view of algebraic curves in this
argument.

Now we turn to the study of the automorphism of Hn usually written �n which
satis�es �n.�/ D ˛ and �n.˛/ D � . We write � D .�n/n�1 for the corresponding
element of limnOut.Hn/ .

Lemma 5.12. (1) �e dessin �C resulting from the application of � to an
arbitrary dessin C is simply obtained by changing the colours of all the
vertices in C . If C corresponds to the surface S endowed with the Belyi
map F W S ! P1 , then �C corresponds to S endowed with 1 � F .

(2) If  D �.�/ 2 limnOut.Hn/ for � 2 Gal.Q=Q/ , then  and � commute.

Proof. As the previous proof, based on Example 2.7.

We come to the de�nition of the coarse Grothendieck–Teichmüller group, to
be denoted GT . In fact, we start by de�ning the subgroup GT .n/ of Out.Hn/
comprised of all the elements  such that:
(GT0)  has a representative in Aut.Hn/ , say Q , for which there exists an

integer kn prime to the order of Hn , and an element fn 2 ŒHn;Hn� , such
that

Q.�/ D �kn and Q.˛/ D f �1n ˛knfn :

(GT1)  commutes with �n .
(GT2)  commutes with ın ,

Remark that conditions (GT2) and (GT0) together imply that Q.�˛/ is
conjugated to .�˛/kn .

We let GT D limn GT .n/ . �e contents of this section may thus be summarized
as follows, throwing in the extra information we have from Proposition 4.10:

�eorem 5.13. �ere is an injective homomorphism

� W Gal.Q=Q/ �! GT :

Moreover, for  D �.�/ , the integer kn can be taken to be any integer satisfying

�.�N / D �
kn
N :

Here N is the order of Hn , and �N D e
2i�
N .
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5.5. Variants. It should be clear that the groups Hn are not the only ones we
could have worked with. In fact, let N be a collection of subgroups of F2 with
the following properties:

(i) each N 2 N has �nite index in F2 ,
(ii) each N 2 N is characteristic (and in particular normal),
(iii) for any normal subgroup K in F2 , there exists N 2 N such that N � K .
(iv) for each N 2 N , the group G D F2=N has the following property: given two

pairs of generators .g1; g2/ and .h1; h2/ for G , there exists an automorphism
of G taking gi to hi , for i D 1; 2 .

So far we have worked with N D the collection of all subgroups F .n/2 (for n � 1 ).
Other choices include:

� For n � 1 , let F Œn�2 D the intersection of all normal subgroups of F2 of
order dividing n . �en take N D the collection, for all n � 1 , of all the
groups F Œn� .

� For G a �nite group, let NG D the intersection of all the normal subgroups N
of F2 such that F2=N is isomorphic to G (the group G not having
distinguished generators). �en take N D the collection of all NG , where G
runs through representatives for the isomorphism classes of �nite groups
which can be generated by two elements.

To establish condition (iv) in each case, one proves a more “universal” property
analogous to (2) of Proposition 5.1 for Hn .

�e reader will check that all the preceding material is based only on these
four conditions, and the results below follow mutatis mutandis. First, as in �5.1
we have

OF2 Š lim
N2N

F2=N ;

and
Out. OF2/ Š lim

N2N
Out.F2=N/ :

In particular we have maps Gal.Q=Q/! Out.F2=N/ for N running through N ,
and any non-trivial element of Gal.Q=Q/ has non-trivial image in some
Out.F2=N/ .

Let us introduce the notation GT .K/ , for any characteristic subgroup K of
�nite index in F2 , to mean the subgroup of Out.F2=K/ of those elements
satisfying (GT0) - (GT1) - (GT2). Note that N being characteristic, it makes
sense to speak of ı and � as elements of Out.F2=N/ . In the same fashion we
de�ne GT .K/ , as a subgroup of Out. OF2=K/ , when K is open and characteristic
in OF2 .
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With this terminology, one proves that the elements of Out.F2=N/ coming
from elements of Gal.Q=Q/ must in fact lie in GT .N / . If we let GT .N / denote
the inverse limit of the groups GT .N / for N 2 N , then it is isomorphic to a
subgroup of Out. OF2/ and we have an injection of Gal.Q=Q/ into GT .N / .

�e next lemma then proves that GT .N / is independent of N :

Lemma 5.14. Let ˇ 2 Out. OF2/ . �en ˇ lies in GT .N / if and only if for each
open, characteristic subgroup K of OF2 , the induced element of Out. OF2=K/ is
in GT .K/ .

In particular, the group GT .N / , as a subgroup of Out. OF2/ is independent
of the choice of N .

Proof. �e condition is clearly su�cient, as we see by letting K run through the
closures of the elements of N .

To see that it is necessary, we only need to observe that K contains the closure
of an element N 2 N , so OF2=K is a quotient of F2=N and the automorphism
induced by ˇ on OF2=K is also induced by an element of GT .N / ; thus it must
lie in GT .K/ .

�is characterization of elements of GT .N / visibly does not make any
reference to N .

In theory, all choices for N are equally valid, and in fact no mention of
any choice is necessary: one may state all the results of this section in terms
of Out. OF2/ , for example de�ning GT by the characteristic property given in the
lemma. In practice however, choosing a collection N allows us to compute GT .N /
explicitly for some groups N 2 N , and that is at least a baby step towards a
description of Gal.Q=Q/ . �e di�culty of the computations will depend greatly
on the choices we make. For example, with the groups F .n/ , the order of Hn
increases very rapidly with n , but the indexing set is very simple; with F Œn� , the
order of F2=F Œn�2 is much less than the order of Hn , but the inverse limits are
more involved. In a subsequent publication, computations with the family N of
all the groups of the form NG will be presented.

We conclude with yet another de�nition of GT which does involve choosing
a collection N . �is is the traditional de�nition.

5.6. Taking coordinates; the group bGT 0 . We start with a couple of observa-
tions about Hn .

Lemma 5.15. If k1 and k2 are integers such that �k1 and �k2 are conjugate
in Hn , then k1 � k2 mod n . Similarly for ˛ .
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Proof. We use the map Hn ! Cn D hxi , where Cn is the cyclic group of
order n , sending both � and ˛ to x . �e image of �ki is xki (for i D 1; 2),
and conjugate elements of Cn are equal, so k1 � k2 mod n .

Corollary 5.16. Let  2 GT .n/ . For i D 1; 2 , let Qi be a representative for 
in Aut.Hn/ such that Qi .�/ is conjugate to �ki . �en k1 � k2 mod n . �is
de�nes a homomorphism

GT .n/ �! .Z=n/� ;

which we write  7! k./ (or sometimes kn./ for emphasis).
Letting n vary, we obtain a homomorphism

k W GT �! OZ� :

Here OZ D limn Z=nZ is the pro�nite completion of the ring Z .

Proposition 5.17. Let  2 GT . �en  has a lift ˇ 2 Aut. OF2/ satisfying

ˇ.�/ D �k./ ; ˇ.˛/ D f �1˛k./f ;

for some f 2 Œ OF2; OF2� , the commutator subgroup. �e element f is unique, and
as a result, so is ˇ .

Proof. Start with any lift ˇ0 . �e elements ˇ0.�/ and �k./ are conjugate in
every group Hn , so ˇ0.�/ is in the closure of the conjugacy class of �k./ .
However this class is closed (the map x 7! x�k./x�1 is continuous and its image
must be closed since its source OF2 is compact). So ˇ0.�/ is conjugated to �k./ ,
and likewise ˇ0.˛/ is conjugated to ˛k./ . Now, argue as in Lemma 5.10 to
obtain the existence of a representative ˇ as stated.

We turn to the uniqueness. If f 0 can replace f , then f D c1f
0c2 where c2

centralizes � and c1 centralizes ˛ . However the centralizer of � in OF2 is the
(closed) subgroup generated by � and likewise for ˛ . Since f and f 0 are
assumed to be both commutators, we can reduce mod Œ OF2; OF2� and obtain a
relation c1c2 D 1 ; the latter must then hold true in any �nite, abelian group
on two generators � and ˛ , and this is clearly only possible if c1 D c2 D 1

in OF2 .

We observe at once:

Corollary 5.18. �e injection � W Gal.Q=Q/ ! Out. OF2/ lifts to an injection
Q� W Gal.Q=Q/! Aut. OF2/ . In particular, an element of Gal.Q=Q/ can be entirely
described by a pair .k; f / 2 OZ� � Œ OF2; OF2� .
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Proof. Let Q�.�/ be the lift of �.�/ described in the proposition. �e composition
of two automorphisms of OF2 of this form is again of this form, so Q�.�/ Q�.�/
must be the lift of �.�/�.�/ D �.��/ , that is, it must be equal to Q�.��/ .

We want to describe a group analogous to GT in terms of the pairs .k; f / .
�ere is a subtlety here, in that if we pick k 2 OZ� and f 2 Œ OF2; OF2� arbitrarily,
the self-homomorphism ˇ of OF2 satisfying

(*) ˇ.�/ D �k ; ˇ.˛/ D f �1˛kf

may not be an automorphism. Keeping this in mind, we de�ne a group bGT 0
now – the notation is standard, and the index “0” is not to be confused with our
writing GT .n/ for n D 0 ; moreover the notation does not refer to a pro�nite
completion of some underlying group GT 0 . So let bGT 0 be the group of all
pairs .k; f / 2 OZ� � Œ OF2; OF2� such that:
� Let ˇ be the self-homomorphism de�ned by (*); then ˇ is an automorphism.
� ˇ commutes with ı in Out. OF2/ .
� ˇ commutes with � in Out. OF2/ .

�e composition law on bGT 0 is de�ned via the composition of the corresponding
automorphisms of OF2 ; one may recover k and f from ˇ , and indeed bGT 0 could
have been de�ned as a subgroup of Aut. OF2/ , though that is not what has been
traditionally done in the literature.

�e de�nition of bGT 0 was given by Drinfeld in [Dr]. �e reader who is
familiar with loc. cit. may not recognize bGT 0 immediately behind our three
conditions, so let us add:

Lemma 5.19. �is de�nition of bGT 0 agrees with Drinfeld’s.

Proof. �is follows from [Sch2], §1.2, last theorem, stating that “conditions (I) and
(II)” are equivalent with the commutativity conditions with � and ı respectively
(the author using the notation ! for an inverse of ı in Out. OF2/ ).

�e natural map Aut. OF2/ ! Out. OF2/ induces a map bGT 0 ! GT . �e
existence and uniquess statements in Proposition 5.17 imply the surjectivity and
injectivity of this map, respectively, hence:

Proposition 5.20. bGT 0 and GT are isomorphic.

One may rewrite the main theorem of this section, �eorem 5.13, as follows:

�eorem 5.21. �ere is an injective homomorphism of groups

Gal.Q=Q/ �! bGT 0 :
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Composing this homomorphism with the projection bGT 0 ! OZ� gives the
cyclotomic character of Gal.Q=Q/ .

We conclude with a few remarks about the (real) Grothendieck–Teichmüller
group. �is is a certain subgroup of bGT 0 , denoted bGT , also de�ned by Drinfeld
in [Dr]. It consists of all the elements of bGT 0 satisfying the so-called “pentagon
equation” (or “condition (III)”).

Ihara in [Ih] was the �rst to prove the existence of an injection of Gal.Q=Q/
into bGT . His method is quite di�erent from ours, and indeed proving the
pentagon equation following our elementary approach would require quite a bit
of extra work, assuming it can be done at all.

Another noteworthy feature of Ihara’s proof (beside the fact that it re�nes
ours by dealing with bGT rather than bGT 0 ) is that it does not, or at least not
explicitly, refer to dessins d’enfants. It is pretty clear that the original ideas stem
from the material in the esquisse [Gr] on dessins, but the children’s drawings
have disappeared from the formal argument. We hope to have demonstrated that
the elementary methods could be pushed quite a long way.
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