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SOME REMARKS ON MEROMORPHIC FIRST INTEGRALS

by Marco BRUNELLA † )

ABSTRACT. A scholium on a paper by Cerveau and Lins Neto.

Our starting point is the following result, recently established by Cerveau

and Lins Neto in their paper [CLN] :

THEOREM 1. Let F be a germ of holomorphic foliation on (C2; 0) .

Suppose that there exists a germ of real analytic hypersurface M ⊂ (C2; 0)

which is invariant by F . Then F admits a meromorphic first integral.

Of course, in this statement the hypersurface M may be singular at 0, and

this singularity may even be non-isolated. To say that M is invariant by the

foliation refers to its smooth part Mreg .

The proof given in [CLN] is rather involved. There are two cases : the

dicritical case and the non-dicritical one. In the first case, the authors find

a first integral by a quite mysterious computation with power series. In the

second case, they use delicate dynamical considerations (holonomy group).

Our aim is to give an almost straightforward proof of Theorem 1, which

is based only on some general principles of analytic geometry (in the spirit

of our previous paper on a closely related subject [Bru]), together with a

general (and simple) criterion for the existence of a meromorphic first integral.

This relatively new proof will reveal the beautiful geometric structure behind

foliations tangent to real analytic hypersurfaces.

Let us also recall that Theorem 1 generalizes to codimension one fo-

liations in higher-dimensional spaces, by a standard sectional argument

† ) Les Éditeurs ont appris le décès de Marco Brunella en janvier 2012, après que son article
sur les intégrales premières méromorphes eut été accepté pour publication, mais son auteur n’a
pas eu le temps d’y apporter d’éventuels derniers changements. Dominique Cerveau a bien voulu
rédiger un commentaire, sollicité par les Éditeurs, qui le remercient de sa collaboration.
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([M-M], [CLN]); alternatively, our arguments also generalize to higher dimen-

sions with no substantial new difficulty. Another possible generalization con-

cerns foliations defined on singular spaces, instead of C
2 .

1. AN INTEGRABILITY CRITERION

Let F be a holomorphic foliation on a domain U ⊂ C
2 containing the

origin, with Sing(F ) = {0} . Set U◦
= U \ {0} . A meromorphic first integral

is a nonconstant meromorphic function on U which is constant along the

leaves of F .

PROPOSITION 2. Suppose that there exists an irreducible analytic 1 ) hyper-

surface

W ⊂ U◦ × V ,

V being a neighbourhood of 0 in C
2 , such that :

(1) for every p ∈ U◦ , the fibre

Wp = W ∩ ({p} × V) ⊂ V

is a proper analytic curve in V , passing through the origin;

(2) if p, q ∈ U◦ belong to the same leaf of F , then Wp = Wq ;

(3) the projection of W to V is Zariski-dense (i.e., not contained in a

curve).

Then F admits a meromorphic first integral on U .

The germ-oriented reader should here replace V by its germ at the origin,

and W by its germ along U◦ × {0} .

Proof. It can be summarized as follows. We already have, by Assump-

tions (1) and (2) a “first integral”, but, instead of being a meromorphic function,

it is a map which takes values into the “space of curves in V through 0”.

Hence, roughly speaking, we shall give an algebraic structure to such a space

of curves, so that the true meromorphic first integral will be obtained by com-

position of the former “first integral” with a generic meromorphic function on

the space of curves. Hypothesis (3) will guarantee that such a first integral is

not identically constant. All of this is trivial if, for instance, each Wp is a line :

1 ) To avoid confusion : ‘analytic’ without the ‘real’ attribute means ‘complex analytic’.



MEROMORPHIC FIRST INTEGRALS 317

the space of lines through the origin is the familiar algebraic variety CP1 .

The general case only requires some additional blow-ups.

Given a sequence of ℓ blow-ups

π : Ṽ → V

over the origin, denote by D =

⋃ℓ

j=1 Dj the exceptional divisor π−1(0) , and

set

Π = id × π : U◦ × Ṽ → U◦ × V .

Denote by W̃ the strict transform of W , i.e. the closure of the inverse image

by Π of W � (W ∩ (U◦×{0})) . The trace of W̃ on U◦×D is a hypersurface

(of dimension 2), and we shall denote by Z the union of those irreducible

components whose projections to U◦ are dominant (the other components

project to curves). Thus, for p ∈ U◦ generic, the fibre

Zp = Z ∩ ({p} × D)

is a finite subset of D , which actually coincides with the trace on D of the

strict transform of Wp (here we have to exclude not only those points p such

that Zp contains some component of D , but also those points which belong

to the projection of the non-dominant components of the trace of W̃ : these

are precisely the conditions ensuring that the fibre of W̃ over p is equal to

the strict transform of Wp ).

Now, hypothesis (3) implies the following : there exists a sequence of blow-

ups π : Ṽ → V over the origin such that Z is not of the type U◦×{finite set} .

Indeed, in the opposite case the generic curves Wp would all be unseparable

by any sequence of blow-ups, i.e. they would be all equal, and this contradicts

the Zariski-density of the projection W → V (here we use the irreducibility

of W , and also the fact that every Wp passes through the origin).

In this way, we get an irreducible component of D (say, Dℓ ) such that the

part of Z inside U◦×Dℓ (call it Zℓ ) is dominant over U◦ and Zariski-dense

over Dℓ .

If k is the degree of Zℓ → U◦ , then Zℓ defines a meromorphic map I

from U◦ to D
(k)
ℓ , the k -fold symmetric product of Dℓ . Such a map is

not constant, but it is constant along the leaves of F , by hypothesis (2).

Since D
(k)
ℓ is an algebraic variety, we can find F ∈ M

(
D

(k)
ℓ

)
such that

f = F ◦ I is a nonconstant meromorphic function, constant along the leaves.

Finally, f extends from U◦ to U by Levi’s theorem. .
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REMARK 3. Consider a foliation F on U ⊂ C
2 , Sing(F ) = {0} , such

that every leaf L is a so-called separatrix at 0 : L ∪ {0} is a proper analytic

curve in U . This occurs if F has a meromorphic first integral having 0 as

indeterminacy point, but, as is well known, the converse implication is far

from being true, see for instance [Mou] and references therein. We have a

naturally defined subset S of U◦ × U : its fibre over p is, by definition, the

curve Lp = Lp ∪ {0} . However, generally speaking this subset S is not an

analytic subset, since it may be not closed.

Of course, we may take the Zariski-closure Ŝ of S , which however could

be the full U◦×U . If it is not the case, i.e. if dim Ŝ = 3, then by Proposition 2

we get a meromorphic first integral, and the converse is also true by an easy

argument. Note, however, that in this special case our Proposition 2 is closely

related to old results by B. Kaup and Suzuki [Suz, §5], relating the existence

of first integrals with the analyticity of the graph of the foliation.

Let us stress that, even when a first integral exists, the subset S is

typically not an analytic subset, that is its Zariski-closure Ŝ may be much

larger than S . Indeed, the fibre of Ŝ over p may contain, besides Lp , other

components Lp1
, . . . , Lpn

. These additional separatrices are precisely the ones

which cannot be separated from Lp by meromorphic first integrals. In other

words, while S represents the (nonanalytic) equivalence relation generated by

the leaves, Ŝ represents the (analytic) equivalence relation generated by level

sets of meromorphic first integrals.

There is a variant of Proposition 2 in which the hypothesis that every Wp is

a curve passing through the origin of V is replaced by a similar asymptotic

hypothesis over the singular point of the foliation. First we observe that if

W ⊂ U◦ × V is as in Proposition 2, then, by standard extension theorems,

W can be prolonged to an irreducible analytic hypersurface in U×V . However,

it may happen that the fibre over 0 of this extension is not a curve, but the

full V ; this is precisely the case in which the meromorphic first integral has

an indeterminacy point at 0.

PROPOSITION 4. Suppose that there exists an irreducible analytic hyper-

surface W ⊂ U × V , where V is a neighbourhood of 0 in C
2 , such that :

(1) for every p ∈ U , the fibre Wp = W ∩ ({p} × V) ⊂ V is a proper

analytic curve in V , passing through the origin when p = 0 ;

(2) if p, q ∈ U◦ belong to the same leaf of F , then Wp = Wq ;

(3) the projection of W to V is Zariski-dense.
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Then F admits a holomorphic first integral on some (possibly smaller)

neighbourhood of 0 .

Proof. It is even simpler than the previous one; in some sense, it is the

“no blow-up case”.
Take a (possibly singular) disk D ⊂ V passing through 0 and intersecting W0

only at 0. Take the trace Z of W on U×D . Then, up to shrinking U , Z is a

hypersurface in U ×D and the projection Z → U is proper, say of degree k .

We thus obtain, as before, a first integral with values in D(k) . This last space

admits a lot of holomorphic functions, and so we get a holomorphic first

integral. Thanks to hypothesis (3), and by a suitable choice of D , this first

integral will not be identically constant (it is sufficient to choose D highly

tangent to a branch of W0 ). .

REMARK 5. Consider a foliation F on U ⊂ C
2 , Sing(F ) = {0} , such that

there is a finite number of separatrices and any other leaf is a proper analytic

curve in U . Then, on a possibly smaller U′ ⊂ U , the foliation admits a holo-

morphic first integral [M-M]. This result can be recast into Proposition 4, but

one needs some further work. The idea is to look again at the subset S ⊂ U◦×U

of Remark 3, and to show that the topological closure S in U×U is an analytic

hypersurface, which cuts the fibre over 0 along a curve passing through 0.

This last curve will be the union of the separatrices (plus the origin).

This indispensable further work can be found in [Mou]. Let Σ ⊂ U be

the union of the separatrices and the origin. We may assume that the closure

of each separatrix is a (singular) disk passing through 0 and transverse to the

boundary of U . According to [Mou, Lemme 1], if p is suffciently close to 0,

and outside Σ , then Lp is a curve transverse to the boundary of U . Using

the finiteness of the holonomy of Lp (which is an elementary fact) and Reeb

stability, it is then easy to see that the restriction of S to (U′ \ Σ
′) ×U is an

analytic hypersurface, where U′ is a sufficiently small neighbourhood of 0

and Σ
′
= Σ ∩ U′ . Take now the topological closure S of S in U′ × U . By

standard results (Remmert-Stein), if S is not an analytic hypersurface, then it

must contain an irreducible component of Σ
′×U ; this is however impossible,

again by [Mou, Lemme 1] (which implies that the F -saturation of U′ cannot

be the full U ). Hence, S is an analytic hypersurface in U′×U . For the same

reason, its fibre over 0 cannot be the full U , and therefore it must coincide

with Σ . We can now apply Proposition 4.

It is also worth observing that the fibre of S over a point p ∈ U′ \ Σ
′

is the single leaf Lp . This corresponds to the fact that the leaves outside the

separatrices can be separated by holomorphic first integrals.
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2. COMPLEXIFICATION OF REAL HYPERSURFACES

Consider now the setting of Theorem 1 : F is a foliation on U ⊂ C
2 ,

singular at 0 ∈ U , and M is a real analytic hypersurface passing through

the origin and invariant by F . We denote by Mreg ⊂ M the (open) subset

of regular points, i.e. the points where M is a real analytic submanifold of

dimension 3. We assume that 0 ∈ Mreg (otherwise, the germ of M at 0 would

not be a germ of hypersurface, as prescribed by Theorem 1). Without loss of

generality, we may also assume that M is irreducible, and even that the germ

of M at 0 is irreducible.

Let us recall a few facts concerning complexification, see also [Bru, §3].

Denote by U∗ the complex manifold conjugate to U : it is the same

differentiable manifold, but with the opposite complex structure; equivalently,

holomorphic functions on U∗ are the same as antiholomorphic functions on U .

Remark that if A is an analytic subset of U , then it is analytic also as a subset

of U∗ . As such, it will be denoted by A∗ . In particular, every point p ∈ U

has a “mirror” point p∗ ∈ U∗ . Similarly, if F is a holomorphic foliation

on U , then it is holomorphic also as a foliation on U∗ , and as such it will

be denoted by F∗ . Remark that, generally speaking, the two foliations F

and F∗ are different as holomorphic foliations : the identity map U → U∗

obviously conjugates F to F∗ , but such a map is antiholomorphic, and not

holomorphic. For example, if γ ⊂ L ∈ F is a loop with linear holonomy λ ,

then the same loop γ ⊂ L∗ ∈ F∗ has linear holonomy λ̄ .

In the product space U×U∗ (with the product complex structure) we have

the involution

 : U × U∗ → U × U∗

(p, q∗) = (q, p∗) .

It is antiholomorphic. Its fixed point set is the diagonal ∆ , and it is a totally

real submanifold.

It is convenient to look at our real analytic hypersurface M in U as a

subset of the diagonal :

M ⊂ ∆ ⊂ U × U∗ .

Then, M can be complexified : there exists a neighbourhood Û ⊂ U ×U∗ of

the diagonal and an irreducible complex analytic hypersurface MC in Û such

that

MC ∩ ∆ = M .
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Up to restricting U around the origin, we may assume that Û = U × U∗ .

Remark that

(MC) = MC and Fix(|MC ) = M .

Actually, this complexification can be done on any real analytic subset. In

particular, we can start with a complex analytic subset A ⊂ U and look at it as

a subset of ∆ , thus forgetting its complex analytic structure and retaining only

its real analytic one. Its complexification is then simply the product A × A∗

(which could be pompously called “complexification of the decomplexification

of A”).

Consider now the projection

pr : MC → U

to the first factor, and for every p ∈ U set

MC

p = pr−1(p) .

It is an analytic subset of U∗ .

LEMMA 6. Up to shrinking U around the origin, we have : for

every p ∈ U◦ , MC
p is a (nonempty) curve in U∗ .

Proof. The irreducibility of MC implies that the set of points of U over

which the fibre is two-dimensional (i.e., the full U∗ ) is discrete. Hence, up to

shrinking U , we get that MC
p is at most one-dimensional for every p ∈ U◦

(note that a shrinking of U implies a simultaneous shrinking of U∗ , but this

is not a problem).

Obviously MC
p cannot contain isolated points, because MC is a hypersur-

face. Therefore, it remains to show that it is not empty. Of course MC

0 is not

empty, for any choice of U , and we can distinguish two cases :

(a) MC

0 = U∗ , i.e. MC contains {0} × U∗ . Because MC is -invariant,

this means that also the horizontal fibre U × {0∗} is fully contained in MC .

As a consequence, every MC
p , p ∈ U◦ , is a curve which, moreover, passes

through the origin.

(b) MC

0 is a curve in U∗ . Then, by a standard result (Remmert’s Rank

Theorem), the map pr is open, and hence surjective for a suitable choice

of U . .

We shall see that case (a) corresponds to the dicritical case, and case (b)

to the non-dicritical one.

Recall now that we have a holomorphic foliation F on U , which leaves

M invariant.
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LEMMA 7. For every p ∈ U◦ , the curve MC
p ⊂ U∗ is invariant by F∗ .

Moreover, if p and q belong to the same leaf, then MC
p = MC

q .

Proof. This is basically [Bru, Lemma 3.1], but let us explain it in a

slightly different manner.

On U×U∗ we have the foliation (of dimension 2) F×F∗ . It is nonsingular

on U × U◦∗ , and its leaf through (p, q∗) is

Lp,q∗ = Lp × L∗

q∗ ,

where the first factor is the leaf of F through p and the second factor is the

leaf of F∗ through q∗ . In particular, if (p, p∗) ∈ ∆ , then Lp,p∗ = Lp × L∗

p∗ ,

and this is also the complexification of Lp ⊂ ∆ (here Lp is not yet properly

embedded, but it does not matter for the next arguments). It follows that if

we take a leaf Lp contained in M , then the leaf Lp,p∗ is contained in MC .

Thus we have found a continuum of leaves of F × F∗ which are contained

in MC , and therefore we get that MC is invariant by F × F∗ (this is not

a surprise, for this last foliation can be understood as the complexification of

the decomplexification of F , which leaves M invariant).

As a consequence of this, if L is any leaf of F , its preimage pr−1(L) ⊂ MC

is a union of leaves of F × F∗ (plus possibly some singular point on

U◦ × {0∗} ), i.e. it is of the form L × (L∗

1 ∪ . . . ∪ L∗

n ) for suitable leaves L∗

j

of F∗ (plus possibly some singular point). But this is precisely the assertion

of the lemma. .

REMARK 8. Without assuming the existence of F , the same argument

shows the following : if M ⊂ U is any real analytic Levi-flat hypersurface,

then on MC we have a two-dimensional foliation whose leaves are products

of horizontal and vertical fibres of MC . Here the essential point is that if we

take a horizontal fibre and a vertical fibre of MC , passing through the same

point of MC , then their product is still contained in MC . This is a remarkable

symmetry property of MC , and of course it is a manifestation of the Levi-

flatness of M . This foliation appears also in [CLN], as complexification of

the Levi foliation, but the authors obtain the properness of leaves only after

a long tour.

REMARK 9. The fact that MC
p may contain several leaves of F∗ should

be compared with the phenomenon described in Remark 3. Note also that on

a neighbourhood of Mreg we have a Schwarz reflection at the level of the leaf

space [Bru, p. 669]. If p is close to Mreg , then MC
p contains the Schwarz
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reflection of Lp (which must be understood as a leaf of F∗ ). The fact that MC
p

is defined for every p could be interpreted as a sort of “globalization” of that

Schwarz reflection, and the fact that MC
p contains several leaves suggests that

“reflection” should be replaced by “correspondence”.

For example, suppose that F is the radial foliation (z dw − w dz = 0) ,

so that M corresponds to a real algebraic curve γ ⊂ CP1 (= the space

of leaves of F ). The complexification of γ is a complex algebraic curve

γC ⊂ CP1 × CP1∗ , which gives an antiholomorphic correspondence of CP1

with itself 2 ).

We can now immediately complete the proof of Theorem 1. First we note

that, by Lemmas 6 and 7, every leaf of F is properly embedded in U◦ . If

MC

0 is the full U∗ then, as observed in the proof of Lemma 6, every MC
p ,

p �= 0, is a curve through the origin, and so we can apply Proposition 2 to

get a meromorphic first integral. If MC

0 is a curve, then it is a curve through

the origin, by symmetry, and so we can apply Proposition 4 (actually, in

that proposition the requirement that W0 passes through 0 can obviously be

replaced by W0 �= ∅ ).

Let us conclude with a question. In the setting of Theorem 1, consider

first the case where we have a (primitive) holomorphic first integral f , with

f (0) = 0. It is then easy to see that M = f−1(γ) , with γ ⊂ C a real analytic

curve passing through the origin. Indeed, we obviously have M = f̂−1(γ̂)

where f̂ is the projection to the space of leaves Σ (a non-Hausdorff Riemann

surface [Mou] [Suz]) and γ̂ ⊂ Σ is a real analytic curve. Moreover, f = e◦ f̂ ,

where e : Σ → V ⊂ C is the map which collapses nonseparated points.

However, due to the special structure of Σ in this case (there is only a finite

set of nonseparated points, all sent to 0 by e) we certainly have γ̂ = e−1(γ)

for some γ ⊂ V , and so M = f−1(γ) . Now, consider the dicritical case, where

the first integral f is only meromorphic, and 0 is an indeterminacy point. Can

we find a real algebraic curve γ ⊂ CP1 such that M = f−1(γ) ? The problem

here is that the collapsing map e : Σ → CP1 is much more complicated, and

in principle the curve γ̂ ⊂ Σ could be not of the form e−1(γ) , i.e. there could

exist two unseparable leaves L, L′ with L in M but not L′ . Of course, we

2 ) We say that a real analytic curve γ ⊂ CP1 is real algebraic if its complexification γ
C ,

which is in principle defined only on a neighbourhood of the diagonal, extends to the full

CP1
× CP1∗ . With this definition, it is easy to see that a radial Levi-flat hypersurface M is

analytic at 0 if and only if the corresponding γ is real algebraic; the complex curve γ
C is then

the trace of M̃
C

on CP1
×CP1∗

⊂ Ũ × Ũ
∗

, where M̃ is the strict transform of M in Ũ = the
blow-up of U at 0.
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can set γ = e(γ̂) and take f−1(γ) , but this last one could be reducible, and

our initial M could be only one irreducible component of it.

U◦

f̂

f

γ̂

γ̂′

γ

e
Σ

CP1

FIGURE 1

Can M = f̂−1(γ̂) and M′
= f̂−1(γ̂′) be irreducible components of f−1(γ) ?
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