TERNARY CUBIC FORMS AND ÉTALE ALGEBRAS

by Mélanie Raczek and Jean-Pierre Tignol*)

The configuration of inflection points on a nonsingular cubic curve in the complex projective plane has a well-known remarkable feature: a line through any two of the nine inflection points passes through a third inflection point. Therefore the inflection points and the 12 lines through them form a tactical configuration $\left(9_{4}, 12_{3}\right)$, which is the configuration of points and lines of the affine plane over the field with 3 elements ([3, p. 295], [7, p.242]). This property was used by Hesse to show that the inflection points of a ternary cubic over the rationals are defined over a solvable extension, see [11, §110]. As a result, any ternary cubic can be brought to a normal form $x_{1}^{3}+x_{2}^{3}+x_{3}^{3}-3 \lambda x_{1} x_{2} x_{3}$ over a solvable extension of the base field ${ }^{1}$). The purpose of this paper is to investigate this extension.

Throughout the paper, we denote by F an arbitrary field of characteristic different from 3, by F_{s} a separable closure of F and by $\Gamma=\operatorname{Gal}\left(F_{s} / F\right)$ its Galois group. Let V be a 3 -dimensional F-vector space and let $f \in \mathrm{~S}^{3}\left(V^{*}\right)$ be a cubic form on V. Assume that f has no singular zero in the projective plane $\mathbf{P}_{V}\left(F_{s}\right)$. Then the set $\Im(f) \subseteq \mathbf{P}_{V}\left(F_{s}\right)$ of inflection points has 9 elements. There are 12 lines in $\mathbf{P}_{V}\left(F_{s}\right)$ that contain three points of $\mathfrak{I}(f)$; they are called inflectional lines. Their set $\mathfrak{L}(f)$ is partitioned into four 3 -element subsets $\mathfrak{T}_{0}, \mathfrak{T}_{1}, \mathfrak{T}_{2}, \mathfrak{T}_{3}$ called inflectional triangles, which have the property that each inflection point is incident to exactly one line of each triangle. Let $\mathfrak{T}(f)=\left\{\mathfrak{T}_{0}, \mathfrak{T}_{1}, \mathfrak{T}_{2}, \mathfrak{T}_{3}\right\}$. There is a canonical map $\mathfrak{L}(f) \rightarrow \mathfrak{T}(f)$, which carries every inflectional line to the unique triangle that contains it. The Galois

[^0]group Γ acts on $\mathfrak{I}(f)$, hence also on $\mathfrak{L}(f)$ and $\mathfrak{T}(f)$, and the canonical map $\mathfrak{L}(f) \rightarrow \mathfrak{T}(f)$ is a triple covering of Γ-sets, in the terminology of [9, §2.2]. Galois theory associates to the Γ-set $\mathfrak{L}(f)$ a 12 -dimensional étale F-algebra $L(f)$, which is a cubic étale extension of the 4 -dimensional étale F-algebra $T(f)$ associated to $\mathfrak{T}(f)$. We show in $\S 4$ that if one of the inflectional triangles, say \mathfrak{T}_{0}, is defined over F, hence preserved under the Γ-action, then there are decompositions
$$
T(f) \simeq F \times N, \quad L(f) \simeq K \times M
$$
where N and K are cubic étale F-algebras whose corresponding Γ-sets are $\mathfrak{X}(N)=\left\{\mathfrak{T}_{1}, \mathfrak{T}_{2}, \mathfrak{T}_{3}\right\}$ and $\mathfrak{X}(K)=\mathfrak{T}_{0}$ respectively, and M is a 9 -dimensional étale F-algebra containing N, associated to K and a unit $a \in K^{\times}$. One can then identify the vector space V with K in such a way that
\[

$$
\begin{equation*}
f(X)=\mathrm{T}_{K}\left(a^{-1} X^{3}\right)-3 \lambda \mathrm{~N}_{K}(X) \quad \text { for some } \lambda \in F \tag{0.1}
\end{equation*}
$$

\]

where T_{K} and N_{K} are the trace and the norm of the F-algebra K. Conversely, if f can be reduced to the form (0.1), then one of the inflectional triangles is defined over F, and $\mathfrak{X}(K)$ is isomorphic to the set of lines of the triangle. Note that the (generalized) Hesse normal form

$$
a_{1} x_{1}^{3}+a_{2} x_{2}^{3}+a_{3} x_{3}^{3}-3 \lambda x_{1} x_{2} x_{3}
$$

is the particular case of (0.1) where $K=F \times F \times F$ (i.e., the Γ-action on $\mathfrak{X}(K)$ is trivial) and $a=\left(a_{1}^{-1}, a_{2}^{-1}, a_{3}^{-1}\right)$. As an application, we show that the form $\mathrm{T}_{K}\left(X^{3}\right)$ can be reduced over F to a generalized Hesse normal form if and only if K has the form $F[\sqrt[3]{d}]$ for some $d \in F^{\times}$, see Example 4.4.

The 9 -dimensional étale F-algebra M associated to a cubic étale F-algebra K and a unit $a \in K^{\times}$was first defined by Markus Rost in relation with Morley's theorem. We are grateful to Markus for allowing us to quote from his private notes [10] in $\S 2$.

For background information on cubic curves, we refer to [3], Chapter 11 of [7], or [2].

1. Étale algebras over a field

An étale F-algebra is a finite-dimensional commutative F-algebra A such that $A \otimes_{F} F_{s} \simeq F_{s} \times \cdots \times F_{s}$; see [1, Ch. 5, §6] or [8, §18] for various other characterizations of étale F-algebras. For any étale F-algebra A, we denote by $\mathfrak{X}(A)$ the set of F-algebra homomorphisms $A \rightarrow F_{s}$. This is a finite set with
cardinality $|\mathfrak{X}(A)|=\operatorname{dim}_{F} A$. Composition with automorphisms of F_{s} endows $\mathfrak{X}(A)$ with a Γ-set structure, and \mathfrak{X} is a contravariant functor that defines an anti-equivalence of categories between the category Et_{F} of étale F-algebras and the category $\operatorname{Set}_{\Gamma}$ of finite Γ-sets, see [1, Ch. 5, §10] or [8, (18.4)].

Let G be a finite group of automorphisms of an étale F-algebra A. The group G acts faithfully on the Γ-set $\mathfrak{X}(A)$.

Proposition 1.1. If G acts freely (i.e., without fixed points) on $\mathfrak{X}(A)$, then

$$
H^{1}\left(G, A^{\times}\right)=1 .
$$

Proof. The G-action on $\mathfrak{X}(A)$ maps each Γ-orbit on a Γ-orbit, since the actions of G and Γ commute. We may thus decompose $\mathfrak{X}(A)$ into a disjoint union

$$
\mathfrak{X}(A)=\mathfrak{X}_{1} \amalg \cdots \amalg \mathfrak{X}_{n},
$$

where each \mathfrak{X}_{i} is a union of Γ-orbits permuted by G. Using the antiequivalence between Et_{F} and Set_{Γ}, we obtain a corresponding decomposition of A into a direct product of étale F-algebras

$$
A=A_{1} \times \cdots \times A_{n} .
$$

The G-action preserves each A_{i}, hence

$$
H^{1}\left(G, A^{\times}\right)=H^{1}\left(G, A_{1}^{\times}\right) \times \cdots \times H^{1}\left(G, A_{n}^{\times}\right) .
$$

It therefore suffices to prove that $H^{1}\left(G, A^{\times}\right)=1$ when G acts transitively on the Γ-orbits in $\mathfrak{X}(A)$. These Γ-orbits are in one-to-one correspondence with the primitive idempotents of A. Let e be one of these idempotents and let $H \subseteq G$ be the subgroup of automorphisms that leave e fixed. Let also $B=e A$. The map $g \otimes b \mapsto g(b)$ for $g \in G$ and $b \in B$ induces isomorphisms of G-modules

$$
A=\mathbf{Z}[G] \otimes_{\mathbf{Z}[H]} B, \quad A^{\times}=\mathbf{Z}[G] \otimes_{\mathbf{Z}[H]} B^{\times},
$$

hence the Eckmann-Faddeev-Shapiro lemma (see for instance [4, Prop. (6.2), p. 73]) yields an isomorphism

$$
H^{1}\left(G, A^{\times}\right) \simeq H^{1}\left(H, B^{\times}\right)
$$

Now, B is a field and each element $h \in H$ restricts to an automorphism of B. Let $\xi \in \mathfrak{X}(A)$ be such that $\xi(e)=1$, hence $\xi(x)=\xi(e x)$ for all $x \in A$. If $h \in H$ restricts to the identity on B then

$$
e h(x)=h(e x)=e x \quad \text { for all } x \in A,
$$

and hence

$$
\xi(h(x))=\xi(x) \quad \text { for all } x \in A
$$

It follows that h leaves ξ fixed, hence $h=1$ since G acts freely on $\mathfrak{X}(A)$. Therefore H embeds injectively in the group of automorphisms of B. Hilbert's Theorem 90 then yields $H^{1}\left(H, B^{\times}\right)=1$, see [8, (29.2)].

2. Morley algebras

Let K be an étale F-algebra of dimension 3 . To every unit $a \in K^{\times}$we associate an étale F-algebra $M(K, a)$ of dimension 9 by a construction due to Markus Rost [10], which will be crucial for the description of the Γ-action on inflectional lines of a nonsingular cubic, see Theorem 3.2.

DEFINITION 2.1. Let D be the discriminant algebra of K (see [8, p. 291]); this is a 2 -dimensional étale F-algebra such that $K \otimes_{F} D$ is the S_{3}-Galois closure of K, see $[8, \S 18 . C]$. We thus have F-algebra automorphisms σ, ρ of $K \otimes_{F} D$ such that

$$
\left.\sigma\right|_{D}=\operatorname{Id}_{D},\left.\quad \rho\right|_{K}=\operatorname{Id}_{K}, \quad \sigma^{3}=\rho^{2}=\operatorname{Id}_{K \otimes D}, \quad \text { and } \quad \rho \sigma=\sigma^{2} \rho
$$

We identify each element $x \in K$ with its image $x \otimes 1$ in $K \otimes_{F} D$ and denote its norm by $\mathrm{N}_{K}(x)$.

Now, fix an element $a \in K^{\times}$. Let s, t be indeterminates and consider the quotient F-algebra

$$
A=K \otimes_{F} D[s, t] /\left(s^{3}-\sigma^{2}(a) \sigma(a)^{-1}, t^{3}-\mathrm{N}_{K}(a)\right)
$$

Since the characteristic is different from 3, every F-algebra homomorphism $K \otimes_{F} D \rightarrow F_{s}$ extends in 9 different ways to A, so A is an étale F-algebra. Abusing notation, we also denote by s and t the images in A of the indeterminates. Straightforward computations show that σ and ρ extend to automorphisms of A by letting

$$
\sigma(s)=s t \sigma^{2}(a)^{-1}, \quad \sigma(t)=t, \quad \rho(s)=s^{-1}, \quad \rho(t)=t
$$

and that the extended σ, ρ satisfy $\sigma^{3}=\rho^{2}=\operatorname{Id}_{A}$ and $\rho \sigma=\sigma^{2} \rho$, so they generate a group G of automorphisms of A isomorphic to the symmetric group S_{3}. The subalgebra of A fixed under G is called the Morley F-algebra associated with K and a. It is denoted by $M(K, a)$.

Since G acts freely on $\mathfrak{X}\left(K \otimes_{F} D\right)$, it also acts freely on $\mathfrak{X}(A)$, hence

$$
\operatorname{dim}_{F} M(K, a)=9
$$

It readily follows from the definition that $M(K, a)$ contains the 3-dimensional étale F-algebra

$$
N(K, a)=F[t], \quad \text { with } t^{3}=\mathrm{N}_{K}(a)
$$

Clearly, if $a^{\prime}=\lambda k^{3} a$ for some $\lambda \in F^{\times}$and $k \in K^{\times}$, then there is an isomorphism $M\left(K, a^{\prime}\right) \simeq M(K, a)$ induced by $s^{\prime} \mapsto s \sigma^{2}(k) \sigma(k)^{-1}$, $t^{\prime} \mapsto t \lambda \mathrm{~N}_{K}(k)$.

EXAMPLE 2.2. Let $K=F \times F \times F$ and $a=\left(a_{1}, a_{2}, a_{3}\right) \in K^{\times}$. Then $D \simeq F \times F$, so $K \otimes_{F} D \simeq F^{6}$. We index the primitive idempotents of $K \otimes D$ by the elements in G, so that the G-action on the primitive idempotents $\left(e_{\tau}\right)_{\tau \in G}$ is given by

$$
\theta\left(e_{\tau}\right)=e_{\theta \tau} \quad \text { for } \theta, \tau \in G
$$

We identify K with a subalgebra of $K \otimes D$ by

$$
\left(x_{1}, x_{2}, x_{3}\right)=x_{1}\left(e_{\mathrm{Id}}+e_{\rho}\right)+x_{2}\left(e_{\sigma}+e_{\rho \sigma}\right)+x_{3}\left(e_{\sigma^{2}}+e_{\rho \sigma^{2}}\right)
$$

for $x_{1}, x_{2}, x_{3} \in F$. Then $A \simeq F^{6}[s, t]$ where

$$
s^{3}=\frac{\sigma^{2}(a)}{\sigma(a)}=\frac{a_{2}}{a_{3}} e_{\mathrm{Id}}+\frac{a_{3}}{a_{1}} e_{\sigma}+\frac{a_{1}}{a_{2}} e_{\sigma^{2}}+\frac{a_{3}}{a_{2}} e_{\rho}+\frac{a_{2}}{a_{1}} e_{\sigma \rho}+\frac{a_{1}}{a_{3}} e_{\sigma^{2} \rho}
$$

and

$$
t^{3}=a_{1} a_{2} a_{3}
$$

Let $r=\sum_{\tau \in G} \tau(s) e_{\tau} \in M(K, a)$. Then $r^{3}=\frac{a_{2}}{a_{3}}$ and $M(K, a)=F[r, t]$. Note that $\left(\frac{r^{2} t}{a_{2}}\right)^{3}=\frac{a_{1}}{a_{3}}$, so

$$
M(K, a) \simeq F\left[\sqrt[3]{\frac{a_{1}}{a_{3}}}, \sqrt[3]{\frac{a_{2}}{a_{3}}}\right] \quad \text { and } \quad N(K, a) \simeq F\left[\sqrt[3]{a_{1} a_{2} a_{3}}\right]
$$

EXAMPLE 2.3. Let K be an arbitrary cubic étale F-algebra and let $a=1$. Let $F[\omega]$ be the quadratic étale F-algebra with $\omega^{2}+\omega+1=0$. By the Chinese Remainder Theorem we have

$$
N(K, 1)=F[t] /\left(t^{3}-1\right) \simeq F \times F[\omega]
$$

The corresponding orthogonal idempotents in $N(K, 1)$ are

$$
e_{1}=\frac{1}{3}\left(1+t+t^{2}\right) \quad \text { and } \quad e_{2}=\frac{1}{3}\left(2-t-t^{2}\right)
$$

Let $A_{1}=e_{1} A$ and $A_{2}=e_{2} A$, so $A=A_{1} \oplus A_{2}$ and the G-action preserves A_{1} and A_{2}. Let

$$
\begin{gathered}
e_{11}=\frac{1}{3}\left(1+s+s^{2}\right) e_{1} \in A_{1}, \quad e_{12}=\frac{1}{3}\left(2-s-s^{2}\right) e_{1} \in A_{1} \\
\varepsilon_{1}=\frac{1}{3}\left(1+s+s^{2}\right) e_{2} \in A_{2}, \quad \varepsilon_{2}=\frac{1}{3}\left(1+s t+s^{2} t^{2}\right) e_{2} \in A_{2} \\
\varepsilon_{3}=\frac{1}{3}\left(1+s t^{2}+s^{2} t\right) e_{2} \in A_{2}
\end{gathered}
$$

These elements are pairwise orthogonal idempotents, and we have

$$
e_{1}=e_{11}+e_{12}, \quad e_{2}=\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3} .
$$

The G-action fixes e_{11} and e_{12}, while

$$
\begin{array}{rlrl}
\sigma\left(\varepsilon_{1}\right) & =\varepsilon_{2}, & \sigma\left(\varepsilon_{2}\right)=\varepsilon_{3}, & \sigma\left(\varepsilon_{3}\right)=\varepsilon_{1} \\
\rho\left(\varepsilon_{1}\right)=\varepsilon_{1}, & \rho\left(\varepsilon_{2}\right)=\varepsilon_{3}, & \rho\left(\varepsilon_{3}\right)=\varepsilon_{2}
\end{array}
$$

We have $e_{1} t=e_{1}$ and $e_{11} s=e_{11}$, hence $e_{11} A \simeq K \otimes D$ and $e_{11} M(K, 1) \simeq F$. On the other hand, $e_{12} s$ is a primitive cube root of unity in $e_{12} M(K, 1)$. It is fixed under σ and $\rho\left(e_{12} s\right)=e_{12} s^{-1}$. Therefore we have

$$
e_{12} A \simeq K \otimes D \otimes F[\omega] \quad \text { and } \quad e_{12} M(K, 1) \simeq(D \otimes F[\omega])^{\rho}
$$

where ρ acts non-trivially on D and $F[\omega]$. The quadratic étale algebra $(D \otimes F[\omega])^{\rho}$ is the composite of D and $F[\omega]$ in the group of quadratic étale F-algebras, see [9, Prop. 3.11]. It is denoted by $D * F[\omega]$. Finally, we have an isomorphism $K \otimes F[\omega] \simeq e_{2} M(K, 1)$ by mapping $x \in K$ to $x \varepsilon_{1}+\sigma(x) \varepsilon_{2}+\sigma^{2}(x) \varepsilon_{3}$ and ω to $e_{2} t$, so

$$
M(K, 1) \simeq F \times(D * F[\omega]) \times(K \otimes F[\omega])
$$

Under this isomorphism, the inclusion $N(K, 1) \hookrightarrow M(K, 1)$ is the map

$$
F \times F[\omega] \rightarrow F \times(D * F[\omega]) \times(K \otimes F[\omega]), \quad(x, y) \mapsto(x, x, y)
$$

In particular, if F contains a cube root of unity, then $F[\omega] \simeq F \times F$ and

$$
M(K, 1) \simeq F \times D \times K \times K
$$

The inclusion $N(K, 1) \hookrightarrow M(K, 1)$ is then given by

$$
F \times F \times F \rightarrow F \times D \times K \times K, \quad(x, y, z) \mapsto(x, x, y, z)
$$

Details are left to the reader.

In the rest of this section, we show how the Γ-set $\mathfrak{X}(M(K, a))$ can be characterized as the fibre of a certain (ramified) covering of the projective plane.

Viewing K as an F-vector space, we may consider the projective plane \mathbf{P}_{K}, whose points over the separable closure F_{s} are

$$
\mathbf{P}_{K}\left(F_{s}\right)=\left\{x \cdot F_{s}^{\times} \mid x \in K \otimes_{F} F_{s}, x \neq 0\right\} .
$$

Let

$$
\begin{equation*}
\pi: \mathbf{P}_{K}\left(F_{s}\right) \rightarrow \mathbf{P}_{K}\left(F_{s}\right), \quad x \cdot F_{s}^{\times} \mapsto x^{3} \cdot F_{s}^{\times} \quad \text { for } x \in K \otimes F_{s}, x \neq 0 \tag{2.1}
\end{equation*}
$$

We show in Theorem 2.6 below that there is an isomorphism of Γ-sets

$$
\mathfrak{X}(M(K, a)) \simeq \pi^{-1}\left(a \cdot F_{s}^{\times}\right) \quad \text { for } a \in K^{\times}
$$

In view of the anti-equivalence between Et_{F} and Set_{Γ}, this result characterizes the Morley algebra $M(K, a)$ up to isomorphism.

Until the end of this section, we fix $a \in K^{\times}$and denote $M(K, a)$ simply by M. We identify $K \otimes M$ with the subalgebra of A fixed under ρ.

LEmmA 2.4. There exists $u \in(K \otimes M)^{\times}$such that $s=\sigma^{2}(u) \sigma(u)^{-1}$.
Proof. Define a map $c: G \rightarrow A^{\times}$by

$$
c(\mathrm{Id})=c\left(\sigma^{2} \rho\right)=1, \quad c(\sigma)=c(\rho)=s, \quad c\left(\sigma^{2}\right)=c(\sigma \rho)=\sigma^{2}(s)^{-1}
$$

Computation shows that $s \sigma(s) \sigma^{2}(s)=1$, and it follows that c is a 1-cocycle. Proposition 1.1 yields an element $v \in A^{\times}$such that $c(\tau)=v \tau(v)^{-1}$ for all $\tau \in G$; in particular, we have

$$
s=v \sigma(v)^{-1}=v \rho(v)^{-1}
$$

Let $u=\sigma^{2}(v)^{-1}$. The equations above yield

$$
s=\sigma^{2}(u) \sigma(u)^{-1} \quad \text { and } \quad \rho(u)=u
$$

Therefore $u \in K \otimes M$, and this element satisfies the condition.
Lemma 2.5. The set $\pi^{-1}\left(a \cdot F_{s}^{\times}\right)$has 9 elements if it is non-empty.
Proof. Suppose $x_{0} \in K \otimes F_{s}$ is such that $x_{0}^{3} \cdot F_{s}^{\times}=a \cdot F_{s}^{\times}$. Then the map $y \cdot F_{s}^{\times} \mapsto x_{0} y \cdot F_{s}^{\times}$defines a bijection between $\pi^{-1}\left(1 \cdot F_{s}^{\times}\right)$and $\pi^{-1}\left(a \cdot F_{s}^{\times}\right)$, so it suffices to show that $\left|\pi^{-1}\left(1 \cdot F_{s}^{\times}\right)\right|=9$. Identify $K \otimes F_{s}=F_{s} \times F_{s} \times F_{s}$, and let $\omega \in F_{s}^{\times}$be a primitive cube root of unity. To simplify notation, write
$\left(z_{1}: z_{2}: z_{3}\right)=\left(z_{1}, z_{2}, z_{3}\right) \cdot F_{s}^{\times}$for $z_{1}, z_{2}, z_{3} \in F_{s}$. It is easy to check that $\pi^{-1}\left(1 \cdot F_{s}^{\times}\right)$consists of the following elements :

$$
\begin{array}{lll}
(1: 1: 1), & \left(1: \omega: \omega^{2}\right), & \left(1: \omega^{2}: \omega\right) \\
(1: 1: \omega), & (1: \omega: 1), & (\omega: 1: 1) \\
\left(1: 1: \omega^{2}\right), & \left(1: \omega^{2}: 1\right), & \left(\omega^{2}: 1: 1\right)
\end{array}
$$

Each $\xi \in \mathfrak{X}(M)$ extends uniquely to a K-algebra homomorphism

$$
\widehat{\xi}: K \otimes_{F} M \rightarrow K \otimes_{F} F_{s}
$$

THEOREM 2.6 (Rost). Let $u \in(K \otimes M)^{\times}$be such that $\sigma^{2}(u) \sigma(u)^{-1}=s$. The map $\xi \mapsto \widehat{\xi}(u) \cdot F_{s}^{\times}$defines an isomorphism of Γ-sets

$$
\Phi: \mathfrak{X}(M) \xrightarrow{\sim} \pi^{-1}\left(a \cdot F_{s}^{\times}\right) .
$$

Proof. If $u \in(K \otimes M)^{\times}$satisfies $\sigma^{2}(u) \sigma(u)^{-1}=s$, then

$$
\sigma^{2}\left(u^{3}\right) \sigma\left(u^{3}\right)^{-1}=s^{3}=\sigma^{2}(a) \sigma(a)^{-1}
$$

so $a^{-1} u^{3}$ is fixed under σ, hence $a^{-1} u^{3} \in M^{\times}$. Therefore $a^{-1} \widehat{\xi}(u)^{3} \in F_{s}^{\times}$, hence $\widehat{\xi}(u) \cdot F_{s}^{\times}$lies in $\pi^{-1}\left(a \cdot F_{s}^{\times}\right)$.

Note that the map Φ does not depend on the choice of u : indeed, u is determined uniquely up to a factor in M^{\times}, and for $m \in M^{\times}$we have $\widehat{\xi}(u m)=\widehat{\xi}(u) \xi(m)$, so $\widehat{\xi}(u m) \cdot F_{s}^{\times}=\widehat{\xi}(u) \cdot F_{s}^{\times}$.

It is clear from the definition that the map Φ is Γ-equivariant. Since $|\mathfrak{X}(M)|=\left|\pi^{-1}\left(a \cdot F_{s}^{\times}\right)\right|=9$, it suffices to show that Φ is injective to complete the proof. Extending scalars, we may assume that $K \simeq F \times F \times F$, and use the notation of Example 2.2. Then, up to a factor in M^{\times}, we have

$$
\begin{aligned}
u & =\sigma^{2} \rho(s) e_{\mathrm{Id}}+\sigma(s) e_{\sigma}+e_{\sigma^{2}}+\sigma(s) e_{\rho}+e_{\sigma \rho}+\sigma^{2} \rho(s) e_{\sigma^{2} \rho} \\
& =\frac{r^{2} t}{a_{2}}\left(e_{\mathrm{Id}}+e_{\rho}\right)+r\left(e_{\sigma}+e_{\sigma^{2} \rho}\right)+\left(e_{\sigma^{2}}+e_{\sigma \rho}\right) \\
& =\left(\frac{r^{2} t}{a_{2}}, r, 1\right) \in K \otimes M=M \times M \times M .
\end{aligned}
$$

If $\xi, \eta \in \mathfrak{X}(M)$ satisfy $\widehat{\xi}(u) \cdot F_{s}^{\times}=\widehat{\eta}(u) \cdot F_{s}^{\times}$, then $\xi\left(\frac{r^{2} t}{a_{2}}\right)=\eta\left(\frac{r^{2} t}{a_{2}}\right)$ and $\xi(r)=\eta(r)$. Since M is generated by r and t, it follows that $\xi=\eta$.

REMARK 2.7. As pointed out by Rost [10], the map π factors through

$$
W\left(F_{s}\right)=\left\{(\lambda, x) \cdot F_{s}^{\times} \mid \lambda^{3}=\mathrm{N}_{K}(x)\right\} \subseteq \mathbf{P}_{F \times K}\left(F_{s}\right):
$$

we have $\pi=\pi_{1} \circ \pi_{2}$, where

$$
\pi_{2}: \mathbf{P}_{K}\left(F_{s}\right) \rightarrow W\left(F_{s}\right), \quad x \cdot F_{s}^{\times} \mapsto\left(\mathrm{N}_{K}(x), x^{3}\right) \cdot F_{s}^{\times}
$$

and

$$
\pi_{1}: W\left(F_{s}\right) \rightarrow \mathbf{P}_{K}\left(F_{s}\right), \quad(\lambda, x) \cdot F_{s}^{\times} \mapsto x \cdot F_{s}^{\times}
$$

There is a commutative diagram

where $\mathfrak{X}(i)$ is the map functorially associated to the inclusion

$$
i: N(K, a) \hookrightarrow M(K, a)
$$

and $\Phi^{\prime \prime}$ maps the unique element of $\mathfrak{X}(F)$ to $a \cdot F_{s}^{\times}$. The induced map Φ^{\prime} is an isomorphism of Γ-sets

$$
\Phi^{\prime}: \mathfrak{X}(N(K, a)) \xrightarrow{\sim} \pi_{1}^{-1}\left(a \cdot F_{s}^{\times}\right) .
$$

3. INFLECTION POINT CONFIGURATIONS

Let V be a 3-dimensional vector space over F. Let $\mathrm{S}^{3}\left(V^{*}\right)$ be the third symmetric power of the dual space V^{*}, i.e., the space of cubic forms on V. A cubic form $f \in \mathrm{~S}^{3}\left(V^{*}\right)$ is called triangular if its zero set in the projective plane $\mathbf{P}_{V}\left(F_{s}\right)$ defines a triangle or, equivalently, if there exist linearly independent linear forms $\varphi_{1}, \varphi_{2}, \varphi_{3} \in V^{*} \otimes_{F} F_{s}$ such that $f=\varphi_{1} \varphi_{2} \varphi_{3}$ in $\mathrm{S}^{3}\left(V^{*} \otimes F_{s}\right)$. The sides of the triangle are the zero sets of φ_{1}, φ_{2}, and φ_{3}; they form a 3 -element Γ-set $\mathfrak{S}(f)$.

Proposition 3.1. Let $f \in S^{3}\left(V^{*}\right)$ be a triangular cubic form and let K be the cubic étale F-algebra such that $\mathfrak{X}(K) \simeq \mathfrak{S}(f)$. Then we may identify the F-vector spaces V and K so as to identify f with a multiple of the norm form of K,

$$
f=\lambda \mathrm{N}_{K} \quad \text { for some } \lambda \in F^{\times} .
$$

In particular, the Γ-action on $\mathfrak{S}(f)$ is trivial if and only if f factors into a product of three independent linear forms in V^{*}.

Proof. Let $f=\varphi_{1} \varphi_{2} \varphi_{3}$ for some linearly independent linear forms $\varphi_{1}, \varphi_{2}, \varphi_{3} \in V^{*} \otimes F_{s}$. Since ${ }^{\gamma} \varphi_{1}{ }^{\gamma} \varphi_{2}^{\gamma} \varphi_{3}=\varphi_{1} \varphi_{2} \varphi_{3}$ for $\gamma \in \Gamma$, it follows by unique factorization in $S^{3}\left(V^{*}\right)$ that there exist a permutation π_{γ} of $\{1,2,3\}$ and scalars $\lambda_{\pi_{\gamma}(i), \gamma} \in F_{s}^{\times}$such that

$$
{ }^{\gamma} \varphi_{i}=\lambda_{\pi_{\gamma}(i), \gamma} \varphi_{\pi_{\gamma}(i)} \quad \text { for } i=1,2,3
$$

Since ${ }^{\gamma \delta} \varphi_{i}={ }^{\gamma}\left({ }^{\delta} \varphi_{i}\right)$ for $\gamma, \delta \in \Gamma$, we have

$$
\lambda_{\pi_{\gamma \delta}(i), \gamma \delta} \varphi_{\pi_{\gamma \delta}(i)}=\gamma\left(\lambda_{\pi_{\delta}(i), \delta}\right) \lambda_{\pi_{\gamma} \pi_{\delta}(i), \gamma} \varphi_{\pi_{\gamma} \pi_{\delta}(i)}
$$

hence $\pi_{\gamma \delta}=\pi_{\gamma} \pi_{\delta}$ and

$$
\begin{equation*}
\lambda_{\pi_{\gamma \delta}(i), \gamma \delta}=\gamma\left(\lambda_{\pi_{\delta}(i), \delta}\right) \lambda_{\pi_{\gamma} \pi_{\delta}(i), \gamma} . \tag{3.1}
\end{equation*}
$$

The Γ-set $\mathfrak{S}(f)$ is $\{1,2,3\}$ with the Γ-action $\gamma \mapsto \pi_{\gamma}$; therefore we may identify K with the F-algebra of Γ-equivariant maps

$$
K=\operatorname{Map}\left(\{1,2,3\}, F_{s}\right)^{\Gamma} .
$$

For $\gamma \in \Gamma$, define $a_{\gamma} \in \operatorname{Map}\left(\{1,2,3\}, F_{s}^{\times}\right)=\left(K \otimes F_{s}\right)^{\times}$by

$$
a_{\gamma}(i)=\lambda_{i, \gamma} .
$$

Clearly, $a_{\gamma}=1$ if γ fixes φ_{1}, φ_{2}, and φ_{3}; moreover, by (3.1) we have $a_{\gamma}{ }^{\gamma} a_{\delta}=a_{\gamma \delta}$ for $\gamma, \delta \in \Gamma$, hence $\left(a_{\gamma}\right)_{\gamma \in \Gamma}$ is a continuous 1-cocycle. By Hilbert's Theorem $90[8,(29.2)]$, we have $H^{1}\left(\Gamma,\left(K \otimes F_{s}\right)^{\times}\right)=1$, hence there exists $b \in \operatorname{Map}\left(\{1,2,3\}, F_{s}^{\times}\right)$such that $a_{\gamma}=b^{\gamma} b^{-1}$ for all $\gamma \in \Gamma$. For $i=1,2,3$, let $\psi_{i}=b(i) \varphi_{i} \in V^{*} \otimes F_{s}$. Let also

$$
\lambda=(b(1) b(2) b(3))^{-1} .
$$

Computation shows that ${ }^{\gamma} \psi_{i}=\psi_{\pi_{\gamma}(i)}$ for $\gamma \in \Gamma$ and $i=1,2,3$, and $f=\lambda \psi_{1} \psi_{2} \psi_{3}$ in $\mathrm{S}^{3}\left(V^{*} \otimes F_{s}\right)$, hence $\lambda \in F^{\times}$. Define

$$
\Theta: V \otimes F_{s} \rightarrow \operatorname{Map}\left(\{1,2,3\}, F_{s}\right)=K \otimes F_{s}
$$

by

$$
\Theta(x): i \mapsto \psi_{i}(x) \quad \text { for } i=1,2,3 \text { and } x \in V \otimes F_{s} .
$$

Since $\psi_{1}, \psi_{2}, \psi_{3}$ are linearly independent, Θ is an F_{s}-vector space isomorphism. It restricts to an isomorphism of F-vector spaces $V \xrightarrow{\sim} K$ under which f is identified with $\lambda \mathrm{N}_{K}$.

Now, let $\mathfrak{I} \subseteq \mathbf{P}_{V}\left(F_{s}\right)$ be a 9 -point set that has the characteristic property of the set of inflection points of a nonsingular cubic curve : the line through any two distinct points of \mathfrak{I} passes through exactly one third point of \mathfrak{I}. Let \mathfrak{L} be the set of lines in $\mathbf{P}_{V}\left(F_{s}\right)$ that are incident to three points of \mathfrak{I}. This set has 12 elements, and $\mathfrak{I}, \mathfrak{L}$ form an incidence geometry that is isomorphic to the affine plane over the field with three elements, see [7, § 11.1]. In particular, there is a partition of \mathfrak{L} into four subsets $\mathfrak{T}_{0}, \ldots, \mathfrak{T}_{3}$ of three lines, which we call triangles, with the property that each point of \mathfrak{I} is incident to one and only one line of each triangle.

Assume \mathfrak{I} is stable under the action of Γ, and Γ preserves the triangle \mathfrak{T}_{0}. Let K be the cubic étale F-algebra whose Γ-set $\mathfrak{X}(K)$ is isomorphic to \mathfrak{T}_{0}. By Proposition 3.1, we may identify V with K in such a way that the union of the lines in \mathfrak{T}_{0} is the zero set of the norm N_{K}.

Theorem 3.2. There exists $a \in K^{\times}$such that the Γ-set of vertices of the triangles $\mathfrak{T}_{1}, \mathfrak{T}_{2}, \mathfrak{T}_{3}$ is $\pi^{-1}\left(a \cdot F_{s}^{\times}\right)$, where $\pi: \mathbf{P}_{K}\left(F_{s}\right) \rightarrow \mathbf{P}_{K}\left(F_{s}\right)$ is defined in (2.1). The set \mathfrak{I} is the set of inflection points of the cubics in the pencil spanned by the forms $\mathrm{T}_{K}\left(a^{-1} X^{3}\right)$ and $\mathrm{N}_{K}(X)$, and we have isomorphisms of Γ-sets

$$
\mathfrak{L} \simeq \mathfrak{X}(K) \amalg \mathfrak{X}(M(K, a)), \quad\left\{\mathfrak{T}_{1}, \mathfrak{T}_{2}, \mathfrak{T}_{3}\right\} \simeq \mathfrak{X}(N(K, a)) .
$$

Proof. Fix an isomorphism $K \otimes F_{s} \simeq F_{s} \times F_{s} \times F_{s}$, and write simply $\left(x_{1}: x_{2}: x_{3}\right)$ for $\left(x_{1}, x_{2}, x_{3}\right) \cdot F_{s}^{\times}$. The sides of \mathfrak{T}_{0} are then the lines with equation $x_{1}=0, x_{2}=0$, and $x_{3}=0$. Let $\mathfrak{I}=\left\{p_{1}, \ldots, p_{9}\right\}$. We label the points so that the incidence relations can be read from the representation of the affine plane over \mathbf{F}_{3} in Figure 1.

Say the line through p_{1}, p_{2}, p_{3} is $x_{1}=0$, and the line through p_{4}, p_{5}, p_{6} is $x_{2}=0$. We can then find $u_{1}, u_{2}, u_{3}, v \in F_{s}^{\times}$such that

$$
p_{i}=\left(0: u_{i}: 1\right) \quad \text { for } i=1,2,3, \quad \text { and } \quad p_{4}=(1: 0: v)
$$

Figure 1
Incidence relations on \mathfrak{I}

Since p_{7} lies at the intersection of $x_{3}=0$ with the line through p_{1} and p_{4}, we have

$$
p_{7}=\left(1:-u_{1} v: 0\right) .
$$

Similarly,

$$
p_{8}=\left(1:-u_{2} v: 0\right) \quad \text { and } \quad p_{9}=\left(1:-u_{3} v: 0\right) .
$$

Finally, since $p_{5}\left(\right.$ resp. $\left.p_{6}\right)$ lies at the intersection of $x_{2}=0$ with the line through p_{1} and p_{8} (resp. p_{9}), we have

$$
p_{5}=\left(u_{1}: 0: u_{2} v\right) \quad \text { and } \quad p_{6}=\left(u_{1}: 0: u_{3} v\right)
$$

Collinearity of the points p_{2}, p_{6}, p_{7} (resp. p_{2}, p_{5}, p_{9}; resp. $\left.p_{3}, p_{6}, p_{8}\right)$ yields

$$
u_{1}^{2}=u_{2} u_{3}, \quad\left(\text { resp. } u_{2}^{2}=u_{1} u_{3} ; \text { resp. } u_{3}^{2}=u_{1} u_{2}\right)
$$

Therefore

$$
u_{1}^{3}=u_{2}^{3}=u_{3}^{3}=u_{1} u_{2} u_{3}
$$

Since u_{1}, u_{2}, u_{3} are pairwise distinct, it follows that there is a primitive cube root of unity $\omega \in F_{s}$ such that

$$
u_{2}=\omega u_{1} \quad \text { and } \quad u_{3}=\omega^{2} u_{1}
$$

Straightforward computations yield the vertices of the triangles $\mathfrak{T}_{1}, \mathfrak{T}_{2}, \mathfrak{T}_{3}$:
$\mathfrak{T}_{1}: q_{1}=\left(1: \omega^{2} u_{1} v:-v\right), \quad q_{1}^{\prime}=\left(1: u_{1} v:-\omega^{2} v\right), \quad q_{1}^{\prime \prime}=\left(\omega^{2}: u_{1} v:-v\right)$,
$\mathfrak{T}_{2}: q_{2}=\left(\omega: u_{1} v:-v\right), \quad q_{2}^{\prime}=\left(1: u_{1} v:-\omega v\right), \quad q_{2}^{\prime \prime}=\left(1: \omega u_{1} v:-v\right)$,
$\mathfrak{T}_{3}: q_{3}=\left(1: \omega u_{1} v:-\omega^{2} v\right), \quad q_{3}^{\prime}=\left(\omega^{2}: \omega u_{1} v:-v\right), \quad q_{3}^{\prime \prime}=\left(1: u_{1} v:-v\right)$.
Let $a_{0}=\left(1, u_{1}^{3} v^{3},-v^{3}\right) \in\left(K \otimes F_{s}\right)^{\times}$. It is readily verified that

$$
\left\{q_{1}, q_{1}^{\prime}, q_{1}^{\prime \prime}, q_{2}, q_{2}^{\prime}, q_{2}^{\prime \prime}, q_{3}, q_{3}^{\prime}, q_{3}^{\prime \prime}\right\}=\pi^{-1}\left(a_{0} \cdot F_{s}^{\times}\right)
$$

Since \mathfrak{I} is stable under the action of Γ, the point $a_{0} \cdot F_{s}^{\times}$is fixed under Γ, hence for $\gamma \in \Gamma$ there exists $\lambda_{\gamma} \in F_{s}^{\times}$such that

$$
\gamma\left(a_{0}\right)=a_{0} \lambda_{\gamma} \quad \text { in } K \otimes F_{s}
$$

Then $\left(\lambda_{\gamma}\right)_{\gamma \in \Gamma}$ is a continuous 1 -cocycle of Γ in F_{s}^{\times}. Hilbert's Theorem 90 yields an element $\mu \in F_{s}^{\times}$such that $\lambda_{\gamma}=\mu \gamma(\mu)^{-1}$ for all $\gamma \in \Gamma$. Then for $a=a_{0} \mu$ we have $a_{0} \cdot F_{s}^{\times}=a \cdot F_{s}^{\times}$and $\gamma(a)=a$ for all $\gamma \in \Gamma$, hence $a \in K^{\times}$.

The inflection points of the cubics in the pencil spanned by $\mathrm{T}_{K}\left(a^{-1} X^{3}\right)$ and $\mathrm{N}_{K}(X)$ are the points $\left(x_{1}: x_{2}: x_{3}\right)$ such that

$$
\left\{\begin{array}{l}
x_{1}^{3}+\left(u_{1} v\right)^{-3} x_{2}^{3}-v^{-3} x_{3}^{3}=0 \\
x_{1} x_{2} x_{3}=0
\end{array}\right.
$$

The solutions of this system are exactly the points p_{1}, \ldots, p_{9}.
Finally, the Γ-set of sides of the triangle \mathfrak{T}_{0} is isomorphic to $\mathfrak{X}(K)$ by hypothesis, and the map that associates to each side of a triangle its opposite vertex defines an isomorphism between the set of sides of \mathfrak{T}_{1}, $\mathfrak{T}_{2}, \mathfrak{T}_{3}$ and the set $\left\{q_{1}, \ldots, q_{3}^{\prime \prime}\right\}=\pi^{-1}\left(a \cdot F_{s}^{\times}\right)$. By Theorem 2.6, we have $\pi^{-1}\left(a \cdot F_{s}^{\times}\right) \simeq \mathfrak{X}(M(K, a))$, hence

$$
\mathfrak{L} \simeq \mathfrak{X}(K) \coprod \mathfrak{X}(M(K, a)) .
$$

This isomorphism induces an isomorphism

$$
\left\{\mathfrak{T}_{1}, \mathfrak{T}_{2}, \mathfrak{T}_{3}\right\} \simeq \mathfrak{X}(N(K, a))
$$

which can be made explicit by the following observation: the triangular cubic forms in the pencil spanned by $\mathrm{T}_{K}\left(a^{-1} X^{3}\right)$ and $N_{K}(X)$ are the scalar multiples of $\mathrm{N}_{K}(X)$ (whose zero set is the triangle \mathfrak{T}_{0}) and of $\mathrm{T}_{K}\left(a^{-1} X^{3}\right)-3 z \mathrm{~N}_{K}(X)$, where $z \in F_{s}^{\times}$is such that $z^{3}=\mathrm{N}_{K}\left(a^{-1}\right)$. The zero set of the latter form is $\mathfrak{T}_{1}, \mathfrak{T}_{2}$ or \mathfrak{T}_{3} depending on the choice of z, and the three values of z are in one-to-one correspondence with the elements in the fibre of the map π_{1} in Remark 2.7.

4. NORMAL FORMS OF TERNARY CUBICS

Let V be a 3 -dimensional vector space over F and let $f \in \mathrm{~S}^{3}\left(V^{*}\right)$ be a nonsingular cubic form. Recall from the introduction the notation $\mathfrak{I}(f)$ (resp. $\mathfrak{L}(f)$, resp. $\mathfrak{T}(f))$ for the set of inflection points (resp. inflectional lines, resp. inflectional triangles) of f. The following result is a direct application of Theorem 3.2:

COROLLARY 4.1. Let K be a cubic étale F-algebra. The following conditions are equivalent:
(i) f is isometric to a cubic form $\mathrm{T}_{K}\left(a^{-1} X^{3}\right)-3 \lambda \mathrm{~N}_{K}(X)$ for some unit $a \in K^{\times}$and some scalar $\lambda \in F$;
(ii) Γ has a fixed point $\mathfrak{T}_{0} \in \mathfrak{T}(f)$ with $\mathfrak{T}_{0} \simeq \mathfrak{X}(K)$ (as Γ-sets of 3 elements).

When these conditions hold, we have

$$
\mathfrak{L}(f) \simeq \mathfrak{X}(K) \amalg \mathfrak{X}(M(K, a)) \quad \text { and } \quad \mathfrak{T}(f) \simeq\left\{\mathfrak{T}_{0}\right\} \amalg \mathfrak{X}(N(K, a)) .
$$

Proof. If $f(X)=\mathrm{T}_{K}\left(a^{-1} X^{3}\right)-3 \lambda \mathrm{~N}_{K}(X)$, then computation shows that the zero set of N_{K} is an inflectional triangle of f. This triangle is clearly preserved under the Γ-action. Conversely, if $\mathfrak{T}_{0} \in \mathfrak{T}(f)$ is preserved under the Γ-action and K is the cubic étale F-algebra such that $\mathfrak{X}(K) \simeq \mathfrak{T}_{0}$, Theorem 3.2 yields an element $a \in K^{\times}$such that the forms $\mathrm{T}_{K}\left(a^{-1} X^{3}\right)$ and $\mathrm{N}_{K}(X)$ span the pencil of cubics whose set of inflection points is $\Im(f)$.

Applying Corollary 4.1 in the case where F is a finite field yields a direct proof of the following result from [7, p. 276]:

Corollary 4.2. Suppose F is a finite field with q elements. For any nonsingular cubic form f, the number of inflectional triangles of f defined over F is 0,1 , or 4 if $q \equiv 1 \bmod 3$; it is 0 or 2 if $q \equiv-1 \bmod 3$.

Proof. Since F is finite, the action of Γ on $\mathfrak{T}(f)$ factors through a cyclic group. If there is at least one fixed triangle \mathfrak{T}_{0}, then Corollary 4.1 yields a decomposition

$$
\mathfrak{T}(f) \simeq\left\{\mathfrak{T}_{0}\right\} \amalg \mathfrak{X}(N(K, a)),
$$

where $N(K, a)=F[t]$ with $t^{3}=\mathrm{N}_{K}(a)$. If $N(K, a)$ is a field, then it must be a cyclic extension of F, hence F contains a primitive cube root of unity and therefore $q \equiv 1 \bmod 3$. Similarly, if $N(K, a) \simeq F \times F \times F$, then F contains a primitive cube root of unity. Thus, if $q \equiv-1 \bmod 3$, the Γ-action on $\mathfrak{T}(f)$ has either 0 or 2 fixed points. If $q \equiv 1 \bmod 3$ then F contains a primitive cube root of unity and either the polynomial $x^{3}-\mathrm{N}_{K}(a)$ is irreducible or it splits into linear factors. Therefore the Γ-action on $\mathfrak{T}(f)$ has either 0,1 or 4 fixed points.

We next spell out the special case of Corollary 4.1 where the cubic étale F-algebra K is the split algebra $F \times F \times F$:

Corollary 4.3. There is a basis of V in which f takes the generalized Hesse normal form $a_{1} x_{1}^{3}+a_{2} x_{2}^{3}+a_{3} x_{3}^{3}-3 \lambda x_{1} x_{2} x_{3}$ for some $a_{1}, a_{2}, a_{3} \in F^{\times}$ and $\lambda \in F$ if and only if Γ has a fixed point $\mathfrak{T}_{0} \in \mathfrak{T}_{(f)}$) and acts trivially on \mathfrak{T}_{0} (viewed as a 3 -element subset of $\mathfrak{L}(f)$).

Example 4.4. Let K be a cubic étale F-algebra and let $f(X)=\mathrm{T}_{K}\left(X^{3}\right)$. By Corollary 4.1 we have

$$
\mathfrak{L}(f) \simeq \mathfrak{X}(K) \amalg \mathfrak{X}(M(K, 1)) \quad \text { and } \quad \mathfrak{T}(f) \simeq\left\{\mathfrak{T}_{0}\right\} \amalg \mathfrak{X}(N(K, 1)) .
$$

The Γ-sets $\mathfrak{X}(M(K, 1))$ and $\mathfrak{X}(N(K, 1))$ are determined in Example 2.3:

$$
\mathfrak{X}(M(K, 1)) \simeq \mathfrak{X}(F) \amalg \mathfrak{X}(D * F[\omega]) \amalg \mathfrak{X}(K \otimes F[\omega])
$$

and

$$
\mathfrak{X}(N(K, 1)) \simeq \mathfrak{X}(F) \amalg \mathfrak{X}(F[\omega]) .
$$

The map $\mathfrak{X}(i): \mathfrak{X}(M(K, 1)) \rightarrow \mathfrak{X}(N(K, 1))$ functorially associated to the inclusion $i: N(K, 1) \hookrightarrow M(K, 1)$ maps $\mathfrak{X}(F) \amalg \mathfrak{X}(D * F[\omega])$ to $\mathfrak{X}(F)$ and $\mathfrak{X}(K \otimes F[\omega])$ to $\mathfrak{X}(F[\omega])$.

If $K \simeq F \times F \times F$, then $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}$ so f has a Hesse normal form. If $K \not \not F F \times F \times F$, then the Γ-action on $\mathfrak{X}(K)$, hence also on $\mathfrak{X}(K \otimes F[\omega])$, is nontrivial. Therefore it follows from Corollary 4.3 that f has a generalized Hesse normal form over F if and only if the Γ-action on $\mathfrak{X}(D * F[\omega])$ is trivial. This happens if and only if $D \simeq F[\omega]$, which is
equivalent to $K \simeq F[\sqrt[3]{d}]$ for some $d \in F^{\times}$, by [8, (18.32)]. Indeed, for $X=x_{1}+x_{2} \sqrt[3]{d}+x_{3} \sqrt[3]{d^{2}}$, computation yields

$$
f(X)=3\left(x_{1}^{3}+d x_{2}^{3}+d^{2} x_{3}^{3}+6 d x_{1} x_{2} x_{3}\right)
$$

Corollary 4.3 applies in particular when F is the field \mathbf{R} of real numbers:

COROLLARY 4.5. Every nonsingular cubic form over \mathbf{R} can be reduced to a generalized Hesse normal form.

Proof. It is clear from the Weierstrass normal form that every nonsingular cubic over \mathbf{R} has three real collinear inflection points, see [3, Prop. 14, p. 305]. The inflectional line through these points is fixed under Γ, hence the Γ-action on $\mathfrak{T}(f)$ has at least one fixed point. The same argument as in Corollary 4.2 then shows that Γ has exactly two fixed points in $\mathfrak{T}(f)$. Let $\mathfrak{T}_{0}, \mathfrak{T}_{1} \in \mathfrak{T}(f)$ be the fixed inflectional triangles. Assume the Γ-action on \mathfrak{T}_{0} (viewed as a 3-element set) is not trivial, hence $K \simeq \mathbf{R} \times \mathbf{C}$ in the notation of Corollary 4.1; we shall prove that the Γ-action on \mathfrak{T}_{1} is trivial. By Corollary 4.1, there is a unit $a=\left(a_{1}, a_{2}\right) \in \mathbf{R} \times \mathbf{C}$ such that

$$
\mathfrak{L}(f) \simeq \mathfrak{X}(\mathbf{R} \times \mathbf{C}) \coprod \mathfrak{X}(M(\mathbf{R} \times \mathbf{C}, a)) .
$$

By Theorem 2.6, we have an isomorphism of Γ-sets

$$
\Phi: \mathfrak{X}(M(\mathbf{R} \times \mathbf{C}, a)) \xrightarrow{\sim} \pi^{-1}\left(a \cdot \mathbf{C}^{\times}\right) \subset \mathbf{P}_{\mathbf{R} \times \mathbf{C}}(\mathbf{C})
$$

We identify $(\mathbf{R} \times \mathbf{C}) \otimes_{\mathbf{R}} \mathbf{C}$ with $\mathbf{C} \times \mathbf{C} \times \mathbf{C}$ by mapping $(r, x) \otimes y$ to ($r y, x y, \bar{x} y$) for $r \in \mathbf{R}$ and $x, y \in \mathbf{C}$. Then the Γ-action on $\mathbf{P}_{\mathbf{R} \times \mathbf{C}}=\mathbf{P}_{\mathbf{C}}^{3}$ is such that the complex conjugation - acts by

$$
\left(x_{1}: x_{2}: x_{3}\right) \mapsto\left(\overline{x_{1}}: \overline{x_{3}}: \overline{x_{2}}\right) .
$$

If $\xi \in \mathbf{R}$ and $\eta \in \mathbf{C}$ satisfy $\xi^{3}=a_{1}$ and $\eta^{3}=a_{2}$, and if $\omega \in \mathbf{C}$ is a primitive cube root of unity, then the proof of Lemma 2.5 shows that $\pi^{-1}\left(a \cdot \mathbf{C}^{\times}\right)$consists of the following elements :

$$
\begin{array}{lll}
(\xi: \eta: \bar{\eta}), & (\xi: \omega \eta: \overline{\omega \eta}), & (\xi: \bar{\omega} \eta: \omega \bar{\eta}), \\
(\xi: \eta: \omega \bar{\eta}), & (\xi: \omega \eta: \bar{\eta}), & (\omega \xi: \eta: \bar{\eta}), \\
(\xi: \eta: \overline{\omega \eta}), & (\xi: \bar{\omega} \eta: \bar{\eta}), & (\bar{\omega} \xi: \eta: \bar{\eta}) .
\end{array}
$$

The three points in the first row of this table are fixed under the Γ-action, whereas the Γ-action interchanges the second and third row. Therefore the first row corresponds to \mathfrak{T}_{1} under Φ, and the proof is complete.

When the conditions in Corollary 4.1 do not hold, we may still consider the 4-dimensional étale F-algebra $T(f)$ such that $\mathfrak{X}(T(f))=\mathfrak{T}(f)$, and the 12-dimensional étale F-algebra $L(f)$ such that $\mathfrak{X}(L(f))=\mathfrak{L}(f)$, which is a cubic étale extension of $T(f)$. The separability idempotent $e \in T(f) \otimes_{F} T(f)$ satisfies $e \cdot(T(f) \otimes T(f)) \simeq T(f)$, and hence yields a decomposition

$$
T(f) \otimes_{F} T(f) \simeq T(f) \times T(f)_{0}
$$

for some cubic algebra $T(f)_{0}$ over $T(f)$. Likewise, multiplication in $L(f)$ yields an isomorphism

$$
e \cdot(L(f) \otimes T(f)) \simeq L(f)
$$

hence

$$
L(f) \otimes_{F} T(f) \simeq L(f) \times L(f)_{0}
$$

for some cubic algebra $L(f)_{0}$ over $T(f)_{0}$. By functoriality of the construction of L and T, the cubic form $f_{T(f)}$ over $V \otimes_{F} T(f)$ obtained from f by scalar extension to $T(f)$ satisfies

$$
L\left(f_{T(f)}\right) \simeq L(f) \otimes_{F} T(f) \quad \text { and } \quad T\left(f_{T(f)}\right) \simeq T(f) \otimes_{F} T(f)
$$

Corollary 4.1 applied to $f_{T(f)}$ shows that $f_{T(f)}$ is isometric to

$$
\mathrm{T}_{L(f)}\left(a^{-1} X^{3}\right)-3 \lambda \mathrm{~N}_{L(f)}(X)
$$

for some $\lambda \in T(f)^{\times}$and some $a \in L(f)^{\times}$such that $L(f)_{0}$ is a Morley $T(f)$-algebra $L(f)_{0} \simeq M(L(f), a)$.

REFERENCES

[1] Bourbaki, N. Algèbre. Chapitres 4 à 7. Masson, Paris, 1981.
[2] Bretagnolle-Nathan, J. Cubiques définies sur un corps de caractéristique quelconque. Ann. Fac. Sci. Univ. Toulouse (4) 22 (1958), 175-234.
[3] Brieskorn, E. and H. Knörrer. Plane Algebraic Curves. Translated from the German by J. Stillwell. Birkhäuser Verlag, Basel-Boston-Stuttgart, 1986.
[4] Brown, K.S. Cohomology of Groups. Graduate Texts in Mathematics 87. Springer-Verlag, New York, Heidelberg, Berlin, 1982.
[5] Hesse, O. Über die Elimination der Variabeln aus drei algebraischen Gleichungen vom zweiten Grade mit zwei Variabeln. J. Reine Angew. Math. 28 (1844), 68-96.
[6] - Algebraische Auflösung derjenigen Gleichungen 9ten Grades, deren Wurzeln die Eigenschaft haben, daß eine gegebene rationale und symmetrische Function $\theta\left(x_{\lambda}, x_{\mu}\right)$ je zweier Wurzeln x_{λ}, x_{μ} eine dritte Wurzel x_{κ} giebt, so daß gleichzeitig: $x_{\kappa}=\theta\left(x_{\lambda}, x_{\mu}\right), x_{\lambda}=\theta\left(x_{\mu}, x_{\kappa}\right)$, $x_{\mu}=\theta\left(x_{\kappa}, x_{\lambda}\right)$. J. Reine Angew. Math. 34 (1847), 193-208.
[7] Hirschfeld, J. W. P. Projective Geometries over Finite Fields. Oxford Mathematical Monographs. Clarendon Press, Oxford University Press, New York, 1979.
[8] Knus, M.-A., A.S. Merkurjev, M. Rost and J.-P. Tignol. The Book of Involutions. American Mathematical Society Colloquium Publications 44. Amer. Math. Soc., Providence, RI, 1998.
[9] Knus, M.-A. and J.-P. Tignol. Quartic exercises. Int. J. Math. Math. Sci. 68 (2003), 4263-4323.
[10] Rost, M. Notes on Morley's theorem. Private notes dated July 22, 2003.
[11] Weber, H. Lehrbuch der Algebra, Bd. II. F. Vieweg u. Sohn, Braunschweig, 1899.
(Reçu le 8 juin 2008)

Mélanie Raczek
Jean-Pierre Tignol
Département de Mathématique
Université Catholique de Louvain
Chemin du Cyclotron 2
B-1348 Louvain-la-Neuve
Belgique
e-mail: melanie.raczek@uclouvain.be
e-mail: jean-pierre.tignol@uclouvain.be

[^0]: *) The second author is partially supported by the Fund for Scientific Research F.R.S.-FNRS (Belgium).
 ${ }^{1}$) We are grateful to the erudite anonymous referee who pointed out that the normal form of cubics was obtained by Hesse in [5, §20, Aufgabe 2] before he proved (in [6]) that the equation of inflection points is solvable by radicals.

