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1 Introduction
Proving the same theorem by using more approaches is necessary in the development
of mathematical reasoning (see [7] and [8]). Problem-solving in different ways develops
mathematical knowledge, and creativity in the students’ mathematical way of thinking
(see [7]).

In the secondary school – not only for higher level students – we usually prove that
√

2
and log10 2 are irrational. More general we can demonstrate m

√
N is irrational, unless N is

the mth power of an integer and logn m is irrational if m and n are integers, one of which
has a prime factor which the other lacks. In these cases we usually suppose that the given
number is rational, therefore can be written in the form a/b, where a and b are integers,
with b > 0, which after a few steps leads to a contradiction.

The irrationality of tan 1◦ can be easily proved as well with the help of the compound angle
formulae for the tangent of the sum of two angles, using the fact that tan 30◦ is irrational.

Another way to prove the irrationality of a number is using the next theorem: if the real
number x satisfies the equation xn +c1xn−1 +· · ·+cn = 0, with integral coefficients, then

.

Das hier behandelte Problem verknüpft Primzahlen mit irrationalen Zahlen: Wir bil-
den eine Dezimalzahl zwischen 0 und 1, indem wir nach dem Komma die Primzahlen
als Ziffernfolge notieren, also 0.23571113 . . .. Diese Zahl ist irrational. Aber wie be-
weist man diese Tatsache möglichst elementar? Die Autoren der vorliegenden Arbeit
sammeln bekannte Beweise, die auf dem Primzahlsatz von Dirichlet respektive auf
Bertrands Postulat beruhen, und sie geben zwei neue, einfache Beweise.
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x is either an integer or an irrational number. For example
√

2 + √
5 is irrational, since it

is not an integer and satisfies the equation x4 − 14x2 + 9 = 0.

We have to mention that the irrationality of a number can be proved in a geometrical way
as well (see [3]).

To prove that e is irrational is a bit more complicated and needs deeper mathematical
knowledge, but if we define it as

∑∞
n=0

1
n! , then this can be proved easily in different ways,

one of which assumes that the theorem is false, and then deduces that a certain number is
integer, positive and less than one, obviously a contradiction. For another simple proof for
the irrationality of e see [4]. To prove that π is irrational is much more complicated than
all those mentioned above, the required mathematical knowledge exceeds the secondary
school curriculum.

Another interesting question is whether ab can be rational for both a and b irrational. Let

a = √
2
√

2
and b = √

2. Then either a is rational (and an example for the question), or a

is irrational and ab = 2 an example. We mention that eπ and 2
√

2 are irrational numbers
(proven), but we still just suspect that 2e, πe, and π

√
2 are also.

Before we turn to the main aim of this article we show a problem that can serve as a pre-
lude of it: if we take γ = 0.149162536 . . . where the decimal point is followed by the
consecutive positive square numbers, than γ is irrational. Namely in the decimal represen-
tation of γ there are series of zeros of any length (102k is a square number if k is a natural
number). The numbers that can be expressed as recurring decimals are precisely the ratio-
nal numbers. But it is not possible, that the repeating string in the decimal representation
of γ contains only non-zero digits.

A frequently mentioned result in elementary number theory is the following theorem:

Theorem 1. Let P = {2 = p1 < p2 < · · · < pn < . . .} be the infinite sequence of prime
numbers. Denote by 〈pn〉 the decimal expansion of its elements. Then the infinite decimal
fraction

α = 0.〈p1〉〈p2〉 . . . 〈pn〉 . . .

is an irrational number.

The main goal of our paper is to give a new and simple proof of Theorem 1. We mention
here that our arguments go through for an arbitrary base; nevertheless in the literature the
decimal case is the well-known, so we concentrate on this in the rest.

The two usual different proofs are based on the following deep theorems respectively:

Theorem 2 (Dirichlet). For any two positive coprime integers a, b, the sequence {an+b :
n = 1, 2, . . .} contains infinite many prime numbers.

Theorem 3 (Bertrand’s postulate). For every integer n > 3 the interval [n, 2n] contains
at least one prime number.

The proofs of Theorem 2 and 3 are complicated and rather long. In Section 3 we recall a
proof which appeared in The American Mathematical Monthly (see [5]) and in Section 4
we show a new and simpler way to show Theorem 1.
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Definition 1. We say that a decimal fraction β = 0.a1a2 . . . an . . . (an ∈ {0, 1, . . . 9})
contains the pattern b1b2 . . . bk (bm ∈ {0, 1, . . . 9}; m = 1, 2, . . . k) if there is a subscript
i such that ai = b1, ai+1 = b2, . . . , ai+k−1 = bk .

2 The usual two proofs of Theorem 1
Proof. Theorem 2 ⇒ Theorem 1. The examined α number is not a terminating decimal
(since the number of prime numbers is infinite), with infinite digits different from 0. Let us
suppose that α is a rational number. Then α = 0.a1a2 . . . akḃ1 . . . ḃn ḃ1 . . . ḃn . . . , where ai

and bi are digits and ḃ1 . . . ḃn is the repeating pattern. In the repeating string not all digits
are 0, so among any n consecutive digits after ak there is at least one which is not 0. From
Theorem 2 with a = 10n+1 and b = 1 we get, that there are infinite prime numbers with
1 as the last digit, preceded by n consecutive 0. Since this is repeated infinitely often, in α
there are infinitely often n consecutive 0 digits, which leads to a contradiction. �

Proof. Theorem 3 ⇒ Theorem 1. Again assume that α is a rational number

α = 0.a1a2 . . . akḃ1 . . . ḃnḃ1 . . . ḃn . . . ,

where ai and bi are digits and ḃ1 . . . ḃn is the repeating pattern.
From Theorem 3 we get that for any m natural number (m > 0) there are at least two prime
numbers with m digits. Indeed each interval [10m, 2 · 10m] and [2 · 10m, 4 · 10m] contain
different prime numbers. Let m be a multiple of n, so that the two prime numbers with m
digits make part of the repeating string. Since α is a repeating decimal all digits of one of
the prime numbers recur. So the two prime numbers are equal, which is a contradiction.

�

3 First simpler approach
The second named author observed (see [5]) that there is a simpler proof of this statement
which uses just the fact that the series

∑∞
i1

1
pi

diverges (one can find this proof in [6] and
[9] too).
For the sake of completeness, let us briefly repeat here this argument: if the decimal
fraction would contain a periodical pattern B := b1b2 . . . bk (bm ∈ {0, 1, . . . 9}; m =
1, 2, . . . k) then let C := c1c2 . . . c2k (cm ∈ {0, 1, . . . 9}; m = 1, 2, . . . 2k) be a pattern
with length 2k which does not contain pattern B .
Let SC := {n ∈ N : n does not contain the pattern C}.
Lemma 1. The series ∞∑

n∈SC

1

n

converges.

It implies that there are infinitely many prime numbers containing the pattern C
(∑∞

i1
1
pi

diverges
)
which avoids the periodical pattern B . It leads to a contradiction. �

In the next section we give a new simple proof. For this proof we need a stronger form of
the previous lemma:
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Lemma 2. Let C be an arbitrary pattern with length m. Then there are two positive real
numbers A > 0 and 0 < B < 1 such that

|SC ∩ {1, 2, . . . , x}| < Ax B .

One can conclude by undergraduate calculus that Lemma 2 implies Lemma 1.

Proof of Lemma 2. Instead of base 10, express the positive integers in base q := 10m . Let

Sq := {n ∈ N : n does not contain the digit 〈c1c2 . . . cm〉 in base q}.
Clearly SC ⊂ Sq . Thus it is enough to show that |Sq ∩ {1, 2, . . . , x}| < Ax B .

Write Sk := S0 ∩ [qk, qk+1); i.e., we collect to Sk all integers from Sq having k many
digits. Let n ∈ Sk , n = x1qk−1 + x2qk−2 + · · · + xk . x1 differs from 〈0, 0 . . . 0〉 and from
〈c1c2 . . . cm〉. The other digits differ from 〈c1c2 . . . cm〉. Hence |Sk | = (q − 2)(q − 1)k−1.
Define T by qT ≤ x < qT+1. Thus

|Sq ∩ {1, 2, . . . , x}| =
T∑

k=1

(q − 2)(q − 1)k−1 = (q − 2)
(q − 1)T − 1

q − 2

< (q − 1)T = qT ln(q−1)/ lnq < x ln(q−1)/ lnq = x B,

where 0 < B = ln(q − 1)/ ln q < 1. �

4 Second simpler approach
Our strategy in the second simpler proof will be the following:

Fact 1. Let C := c1c2 . . . c2k, cm ∈ {0, 1, . . .9}; m = 1, 2, . . .2k be an arbitrary pattern
in base 10.

There are infinitely many prime numbers containing pattern C in base 10.

Firstly we prove

Theorem 4. We have

π(x) >
ln 2

2

x

ln x
,(

where ln 2
2 = 0.3465 . . .

)
Proof. We split our proof into three parts.

1. Let
p(x) = anxn + · · · + a1x + a0

be a non-zero polynomial with integer coefficients for which p(x) ≥ 0 for every x ∈ [0, 1].
Since p(x) is a continuous function, p(x) �≡ 0 we get by the Leibnitz–Newton rule

0 <

∫ 1

0
p(x)dx =

[
an

xn+1

n + 1
+ · · · + a1

x2

2
+ a0x

]1

0

= A

l.c.m.[1, 2, . . . , n + 1] ,
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where A is a positive integer. Thus A ≥ 1 and so∫ 1

0
p(x)dx ≥ 1

l.c.m.[1, 2, . . . , n + 1] .

2. How can be calculated l.c.m[1, 2, . . . , N], what is the prime factorization of it?

Example 1. l.c.m[1, 2, . . . , 10]: here the prime factors are 2, 3, 5, 7. The power of 2 is
three, the prime factor 3 has power two, 5 and 7 have power one.

Thus l.c.m.[1, 2, . . . , 10] = 23 · 32 · 5 · 7.

Now we turn to the general calculation: assume that in the factorization of

l.c.m.[1, 2, . . . , N]
the occurring primes are p1, p2, . . . , pk . Clearly k = π(N) and we have

pαi
i ≤ N < pαi+1

i .

Hence

l.c.m.[1, 2, . . . , N] =
k∏

i=1

pαi
i ≤ Nk = Nπ(N).

Thus by 1 ∫ 1

0
p(x)dx ≥ 1

l.c.m.[1, 2, . . . , n + 1] ≥ 1

(n + 1)π(n+1)
.

3. Finally we give an explicit polynomial p(x). Let p(x) := (x(1 − x))k . Its coefficients
are integers and clearly for every x ∈ [0, 1] x(1 − x) is a parabola cupped down. The
numbers 0 and 1 are roots, p(x) is non-negative in (0, 1), not identically zero, hence the
function (x(1 − x))k so does. Here x(1 − x) ≤ 1/4 thus

p(x) = (x(1 − x))k ≤ 1

4k for all x ∈ [0, 1].
Hence ∫ 1

0
p(x)dx =

∫ 1

0
(x(1 − x))k dx ≤

∫ 1

0

1

4k
dx = 1

4k
.

The degree of p(x) is n = 2k. Thus by 1. and 2.

1

(n + 1)π(n+1)
= 1

(2k + 1)π(2k+1)
≤

∫ 1

0
p(x)dx ≤ 1

4k
.

Rearranging
4k ≤ (2k + 1)π(2k+1)

and taking the logarithm

2k ln 2 ≤ π(2k + 1) ln(2k + 1), i.e., ln 2
2k

ln(2k + 1)
≤ π(2k + 1).
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Since 2k > 2k+1
2 , π(2k + 1) = π(2k) for k > 1 and ln(2k + 1) < 2 ln(2k) we have both

ln 2

2

2k

ln(2k)
≤ π(2k) and

ln 2

2

2k + 1

ln(2k + 1)
≤ π(2k + 1),

i.e., shortly

π(x) >
ln 2

2

x

ln x
.

Remarks. This argument is due to Gelfond (see, e.g., in [2]).

Now we are in the position to complete our proof: we have to show

Lemma 3. Let 0 < B < 1. We have

lim
x→∞

x/ ln x

x B
= ∞.

Proof of Lemma 3. By the L’Hospital rule

lim
x→∞

x/ ln x

x B
= lim

x→∞
x1−B

ln x
= lim

x→∞
(1 − B)x−B

1/x
= lim

x→∞(1 − B)x1−B = ∞,

i.e., P \ SC is a non-empty set. �
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