Short note On the proof of Ptolemy's Lemma

Dura Paunić and Gerhard Wanner

Ptolemy's Lemma. Let ABCD be a quadrilateral inscribed in a circle with sides a, b, c, d and diagonals e, f, then (see Figure 2 (1))

$$
\begin{equation*}
a c+b d=e f \tag{1}
\end{equation*}
$$

This lemma enabled Ptolemy to compute his famous table of chords $\left(=2 \sin \frac{\alpha}{2}\right)$ and thus initiate the developments of modern Astronomy, Geography and Trigonometry (see [1]). Its historical importance is thus beyond any doubt. When the quadrilateral is a rectangle, then (1) becomes $a^{2}+b^{2}=e^{2}$, i.e., Pythagoras' theorem.

Figure 1 Ptolemy's proof in Copernicus' autograph De revolutionibus [4] (left); Callagy's picture from [2] (right).

Ptolemy's Proof. This proof remained the standard one for more than thousand years (see, e.g., Figure 1, left). It consisted in drawing a line be (notation of that picture) such that the angles $a b e$ and $d b c$ are the same. This creates two pairs of similar triangles $a b e$ and $d c b$ as well as bec and bad. Thales' theorem then allows the calculation of $a e$ and $e c$ respectively and finally to prove (1) (for more details see, e.g., [5], Section 5.1).
This proof is short and simple, but it does not reflect the geometric content of the formula, namely $a c+b d=e f$ states that the sum of the areas of two rectangles is that of another
rectangle. Or, if the areas are multiplied by a constant $k=\sin \varphi$, it would be nice to see, without any calculation, that a parallelogram is the sum of two different parallelograms with the same angle φ. Such a proof can be made using ideas by Callagy [2] (see Figure 1, right) ${ }^{1}$.

Figure 2 The parallelogram area proof in four acts.
Parallelogram area proof of Ptolemy's Lemma. First we double the area \mathcal{A} of a cyclic quadrilateral $A B C D$ by circumscribing it by the parallelogram parallel to the diagonals (Callagy calls this "a well-known exercise in second year geometry", see Figure 2 (2)). The main idea is then the following: move A to E on the circle, with $A E$ parallel to $D B$ (Figure $2(3)$). Thus the angle φ between the diagonals is reproduced at A (Eucl. I.29), then at B (Eucl. III.21), at D (Eucl.III.22) and finally (Eucl. I.29, Figure 2(4)) at E. The triangle $E D B$ is mirror symmetric to $A D B$, with a and d exchanged. Therefore both triangles have the same area, i.e., $\mathcal{D}+\mathcal{B}=\mathcal{A}$. For the areas of the parallelograms in Figures 2 (2) and (4) we thus obtain

$$
\begin{equation*}
2 \cdot \mathcal{D}+2 \cdot \mathcal{B}=2 \cdot \mathcal{A} \tag{2}
\end{equation*}
$$

All these parallelograms possess the same angle φ, hence (1) is just (2) divided by $k=$ $\sin \varphi$.

Remark added in proof. Our colleague Jan Hogendijk (Univ. Utrecht) has remarked a nice connection of our proof with Ptolemy's: If in Ptolemy's picture the line be is extended

[^0]until the second point of intersection with the circle, one obtains precisely the line $C E$ in our Figure 2, (3) and (4), i.e., the common diagonal of the two parallelograms. This could serve as a second motivation for the proof of Ptolemy's Lemma presented here.

References

[1] G. van Brummelen, The Mathematics of the Heavens and the Earth, The Early History of Trigonometry, Princeton UP (2009).
[2] J.J.Callagy, Ptolemy's Theorem by Area Formulae, The Mathematical Gazette, Vol. 44, No. 348 (May, 1960) p. 112.
[3] T. Christofides, James Callagy (1908-1988), Irish Math. Soc. Bull., Vol. 22 (1989) pp. 9-11.
[4] N. Copernicus (Mikołaj Kopernik), De revolutionibus orbium coelestium, Nürnberg 1543; second impression Basel 1566; "Autograf" preserved in Biblioteka Jagiellońska, Krakòw, Poland; digitalized Neurosoft 1996.
[5] A. Ostermann, G. Wanner, Geometry by its History, Springer (2012).
[6] Ptolemy, Epitoma in Almagestum Ptolemaei, written (appr. 150 A.D., Latin (commented) translation by G. Peu[e]rbach \& J. Regiomontanus, Venice 1496.

Đura Paunić
University of Novi Sad
e-mail: djura@dmi.uns.ac.rs
Gerhard Wanner
University of Geneva
e-mail: Gerhard.Wanner@unige.ch

[^0]: ${ }^{1}$ For an obituary notice on the Irish mathematician James Callagy (1908-1988) see [3].

