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The standard Gaussian measure on euclidean space Rn ,

γ (dx) = 1

(2π)n/2
e−|x |2/2 dx,

has many fascinating properties, among them the Poincaré inequality

‖ f ‖2 ≤ ‖∇ f ‖2 for
∫
Rn

f dγ = 0
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Das Gaußsche Maß auf R
n besitzt zahlreiche schöne Eigenschaften. Einige davon

tauchen im Zusammenhang mit verschiedenen Normen bei Ungleichungen auf. Die
Poincaré-Ungleichung und die logarithmische Sobolev-Ungleichung von Gross sind
zwei prominente Beispiele. 1989 bewies Beckner eine L p-Ungleichung für 1 ≤ p <
2, welche zwischen den beiden genannten Ungleichungen interpoliert: Die Poincaré-
Ungleichung erhält man für p = 1, die Ungleichung von Gross für p → 2. Die Au-
toren der vorliegenden Arbeit benutzen nun die Tatsache, dass das Gaußsche Maß als
Wärmeleitungskern auftritt, um mit Hilfe der klassischen Wärmeleitungshalbgruppe
Beckners Ungleichung neu zu beweisen und sie gleichzeitig auf den Fall p > 2 auszu-
dehnen.
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and Gross’s [6] logarithmic Sobolev inequality∫
Rn

f 2 log | f | dγ − ‖ f ‖2
2 log ‖ f ‖2 ≤ ‖∇ f ‖2

2.

Beckner [4] has proved the functional inequality

‖ f ‖2
2 − ‖ f ‖2

p ≤ (2 − p)‖∇ f ‖2
2, 1 ≤ p < 2. (1)

For p = 1, inequality (1) is equivalent to the Poincaré inequality, as can be seen for
bounded f by adding a sufficiently large constant C so that f + C is nonnegative, and for
a general f by approximation by bounded functions. Furthermore, if we divide both sides
of (1) by 2− p and let p → 2, the left side tends to the left side of the logarithmic Sobolev
inequality. Thus Beckner’s inequality interpolates between the Poincaré inequality and the
logarithmic Sobolev inequality.

Beckner’s original proof of (1) is based on the explicit spectral decomposition of the
Ornstein–Uhlenbeck operator in terms of Hermite polynomials and Nelson’s [9] hyper-
contractivity inequality for the Ornstein–Uhenbeck semigroup. Apparently unaware of
Beckner’s work at the time, Latała and Oleszkiewicz [7] proved an extension of Beck-
ner’s inequality for measures ce−|x1|r− ···−|xn |r dx with 1 ≤ r ≤ 2. However, in the Gaus-
sian case r = 2 the inequality (1) was derived from the logarithmic Sobolev inequality
and the hypercontractivity of the Ornstein–Uhlenbeck semigroup, via an argument sim-
ilar to that in Beckner [4]. Many other authors also studied Beckner’s inequality and its
generalizations in various directions; see, e.g., Arnold, Bartier, and Dolbeault [1]; Arnold,
Markowich, Toscani, and Unterreiter [2]; Barthe and Roberto [3]; Chafai [5]; Ledoux [8];
and Wang [11]. But none of these works includes a proof of (1) which does not rely on
ideas or results comparable in difficulty to the logarithmic Sobolev inequality or its conse-
quence the hypercontractivity. In addition, most of these works prove Beckner’s inequality
in a much broader setting than that in which Beckner originally derived it, which can make
it difficult for a reader without susbstantial background in the field to discern the beauty
and simplicity of the original inequality. This situation makes it desirable and instructive
to search for a more direct proof of Beckner’s inequality. In this note, we shall demon-
strate this possibility by proving the following slight extension of Beckner’s inequality by
an elementary argument based on the classical heat semigroup.

Theorem. Let q ≥ 2 and 1 ≤ p ≤ q. Then if f : Rn → R is a smooth function such that
f and each of its partial derivatives belong to Lq (Rn), we have

‖ f ‖2
q − ‖ f ‖2

p ≤ (q − p)‖∇ f ‖2
q . (2)

Remark 1. We state the inequality here for smooth functions for expository purposes, but
an elementary approximation argument shows that it is also valid for functions f in the
Sobolev space W 1,q(Rn).

The basic tool for our proof is the classical heat semigroup {Ps} defined by

Ps f (x) = 1

(2πs)n/2

∫
Rn

f (y)e−|x−y|2/2s dy.
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Note that if f is bounded and continuous, then Ps f → f as s → 0, and if f ∈ L1(γ ),
then

P1 f (0) =
∫
Rn

f dγ.

Furthermore, it is easy to verify from the definition that the heat semigroup has the follow-
ing properties:

Ps Pt = Ps+t , ∂s Ps = 1

2
�Ps = 1

2
Ps�, ∇Ps = Ps∇.

Here ∇ and � are the usual gradient and Laplace operator on R
n , respectively. Aside from

these elementary properties, the only other tool we will need for the proof of our main
result (2) is Hölder’s inequality for a Borel measure ν on R

n:

∫
Rn

f g dν ≤
(∫

Rn
| f |p dν

)1/p (∫
Rn

|g|q dν

)1/q

(3)

for f ∈ L p(Rn, ν), g ∈ Lq(Rn, ν), and exponents p, q ∈ [1,∞] such that 1/p+1/q = 1.

By replacing f with | f | and then approximating | f | by smooth positive functions bounded
away from 0 and ∞, it is enough to show the inequality (2) for a smooth function f such
that 0 < c ≤ f ≤ C . For 0 ≤ s ≤ 1, consider the function

φs(x) =
[
Ps

(
P1−s f p)q/p

(x)
]2/q

. (4)

We can write the left side of (2) as

‖ f ‖2
q − ‖ f ‖2

p = φ1(0) − φ0(0) =
∫ 1

0
∂sφs(0)ds.

The idea of considering such a function in the context of functional inequalities can be
traced back to Neveu [10].

The technical part of our proof is a straightforward computation of the derivative of (4)
with respect to s, which will lead to a convenient expression for this derivative (see (7)
below). From this, we will repeatedly apply Hölder’s inequality to get the simple upper
bound

∂sφs(0) ≤ (q − p)

(∫
Rn

|∇ f |qdγ

)2/q

,

from which our desired inequality (2) follows immediately by integrating with respect to
s from 0 to 1.

From the definition (4) of φs we have

∂sφs = ∂s

[
Psg

q/p
s

]2/q = 2

q
as∂s(Psgs)

q/p,

where, to simplify the notation hereafter, we have introduced the functions

gs = P1−s f p and as =
(
Psg

q/p
s

)2/q−1
.
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The derivative ∂s (Psgs)
q/p can be easily calculated and we obtain

∂sφs = 2

q
as(∂s Ps)g

q/p
s + 2

p
as Ps

(
gq/p−1

s ∂s gs

)
. (5)

Using the relation ∂s Ps = (1/2)Ps�, we may rewrite the first term on the right side as

(1/q)as Ps�
(
gq/p

s

)
, which equals

1

p

(
q

p
− 1

)
as Ps

(
gq/p−2

s |∇gs|2
)

+ 1

p
as Ps

(
gq/p−1

s �gs

)
(6)

by the identity

�
(
hq/p) = q

p

(
q

p
− 1

)
hq/p−2|∇h|2 + q

p
hq/p−1�h

applied with h = gs . From ∂s P1−s = −(1/2)�P1−s we have ∂sgs = −(1/2)�gs, so the
second term in the sum (6) exactly cancels the second term in (5). In the remaining term,
we use the fact that P1−s commutes with ∇ to write ∇gs = pP1−s( f p−1∇ f ). This gives

∂sφs = (q − p)as Ps

(
gq/p−2

s |P1−s( f p−1∇ f )|2
)

. (7)

Note that P1−s is an integral with respect to a (probability)measure, so we can use Hölder’s
inequality (3) with the exponents p/(p − 1) and p to get

|P1−s( f p−1∇ f )| ≤ P1−s( f p−1|∇ f |) ≤ (
P1−s f p)(p−1)/p (

P1−s |∇ f |p)1/p
.

Thus, by (7),

∂sφs ≤ (q − p)as Ps

(
gq/p−2/p

s
(
P1−s |∇ f |p)2/p

)
. (8)

The case q = 2 is covered by trivial modifications to what follows, so in the remainder
of the proof we assume q > 2. A second application of Hölder’s inequality with the
exponents q/(q − 2) and q/2 yields

Ps

(
gq/p−2/p

s
(
P1−s |∇ f |p)2/p

)
≤

(
Psg

q/p
s

)1−2/q (
Ps

(
P1−s |∇ f |p)q/p

)2/q
.

The first factor on the right side is exactly a−1
s , which cancels the factor as in (8). We thus

have

∂sφs ≤ (q − p)
(
Ps

(
P1−s |∇ f |p)q/p

)2/q
. (9)

Since 1 ≤ p ≤ q , another application of Hölder’s inequality gives

P1−s |∇ f |p ≤ (
P1−s |∇ f |q)p/q

.

This together with the semigroup property Ps P1−s = P1 gives

(
Ps

(
P1−s |∇ f |p)q/p

)2/q ≤ (
Ps P1−s |∇ f |q)2/q =

(∫
Rn

|∇ f |qdγ

)2/q

.
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The last equality holds after evaluating at x = 0. It follows from (9) that

∂sφs(0) ≤ (q − p)

(∫
Rn

|∇ f |qdγ

)2/q

.

Integrating from s = 0 to s = 1 yields the desired inequality (2).

We conclude this note with a few more remarks.

Remark 2. The constant q − p on the right side of our new inequality (2) cannot be
improved. This can be seen by taking f (x) = et x1 for t > 0, calculating both sides
explicitly, and letting t → 0.

Remark 3. The condition q ≥ 2 in (2) is essential. Indeed, an inequality of the form

‖ f ‖2
q − ‖ f ‖2

p ≤ C(q − p)‖∇ f ‖2
q (10)

cannot hold in the parameter range 1 ≤ p < q < 2 with any constant C . Replacing f by
1 + ε f in (10) and comparing the coefficients of ε2 in the Taylor expansions of both sides,
we see that (10) would lead to

‖ f ‖2
2 −

(∫
Rn

f dμ

)2

≤ ‖∇ f ‖2
q .

Taking again f (x) = et x1 , this time with a very large t , we see easily that this inequality
cannot hold if q < 2.

Remark 4. However, the function

θ(q, p) = ‖ f ‖2
q − ‖ f ‖2

p

1/p − 1/q

is increasing in both arguments whenever 1 ≤ p < q (see Latała and Oleszkiewicz [7]).
This fact together with the original Beckner’s inequality (1) implies

‖ f ‖2
q − ‖ f ‖2

p ≤ 2

q
(q − p)‖∇ f ‖2

2, for 1 ≤ p ≤ q ≤ 2.

Remark 5. In Section 3.1 of [8], Ledoux used a nonlinear partial differential equation to
prove a version of (1) for the invariant probability measures of a Markov semigroup whose
generator satisfies a curvature-dimension inequality. In the Gaussian case, his inequality
reduces to a sharpened form of (1), with the right side multiplied by (n − 1)/n and the
parameter p allowed to increase to 2n/(n − 1).
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