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1 Introduction

It is very well known that a triangle ABC has its Feuerbach circle (nine point circle).
The Feuerbach circle is a circle that passes through the midpoints EA, EB , and EC of
the segments that join the vertices and the orthocenter H . These points are commonly
referred to as the Euler points; we will refer the center of the Feuerbach circle as F . Also,
the following properties of the Feuerbach circle are very well-known; see Fig. 1:

The orthocenter H , triangle centroid G, circumcenter O, and the Feuerbach center
F are aligned (Euler line). In fact 243 Kimberling centers are lying on the Euler line.

The cross ratio (O, F, G, H ) = −1; that is: O, F , G, and H form a harmonic range
with OG = 1

2 GH , OG = 1
3 OH , OF = 1

2 OH , FG = 1
6 H O. The simple ratio

(O, H, F) = OF
H F = −1.

.

Der Feuerbachkreis eines Dreiecks geht bekanntlich durch die Mittelpunkte der Sei-
ten, die Fusspunkte der Höhen sowie durch die Eulerpunkte des Dreiecks. Darüber
hinaus liegen der Mittelpunkt des Feuerbachkreises, der Höhenschnittpunkt und der
Schwerpunkt des Dreiecks auf einer Geraden, der sogenannten Eulergeraden. In dem
nachfolgenden Beitrag verallgemeinert der Autor diesen Sachverhalt auf zyklische N-
Ecke (N ≥ 3), d.h. konvexe N-Gone, die einen Umkreis besitzen. Dementsprechend
findet er für das zur Diskussion stehende zyklische N-Eck unter anderem ein Analogon
des Feuerbachkreises, dessen Zentrum zusammen mit dem Umkreiszentrum und dem
Schwerpunkt des N-Ecks auf einer Geraden liegt.
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(1*) The intersection of the three lines AHA, BHB, and CHC is F ; where HA, HB , and
HC are orthocenters of the segments BC , AC , and AB , respectively. These ortho-
centers are symmetric to O with respect to the sides BC , AC , and AB , respectively
(see [3] for why these points are called orthocenters).

(2*) The radius of the Feuerbach circle is one-half the circumradius r .

For the above statements see classical works as [4], [5], and books of geometry as [8].
For much more properties of the Feuerbach circle see the X (5) center in C. Kimberling’s
Encyclopedia of triangle centers [6] and [7].

In this paper we will refer the set of sentences (1*), (2*) as Definition 1, “Def. 1”.

We refer the circle �(F, r
2 ), center F and radius r

2 , where F and r are defined in “Def. 1”,
as the Feuerbach circle. This definition is totally different from the definition of the nine
point circle given by S.N. Collings [1], [2]; and the difference resides in the different
definition of the orthocenter point H of the polygon.

In this work we want to show that the Feuerbach circle is not a special entity of the trian-
gles, but it is a general entity of a cyclic polygon with n sides, n-polygon with n ≥ 3. But,
in fact, a cyclic polygon has an infinite quantity of remarkable circles such that all their
centers are aligned (Euler line).

2 Feuerbach circle

In this section we want to show an easy way to generalize the results of the introduction
for a cyclic n-polygon, and we summarize the results in form of a theorem at the end of
the section.
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2.1 Preliminaries

1. Evidently an n-polygon has circumcenter O if it is a cyclic n-polygon, i.e., if it is a
polygon with vertices upon which a circle can be circumscribed. The center of the
circumcircle is O. We will refer the circumradius as r .

2. If we use Cartesian coordinates and such that r = 1, the vertices of the cyclic n-
polygon A1 A2 . . . An are Ai = (cosαi , sin αi ) then we have trivially that O = (0, 0)

and the polygon centroid is G =
(

1
n

∑n
i=1 cosαi ,

1
n

∑n
i=1 sin αi

)
.

3. If the polygon is a triangle A1 A2A3 we can see, for example in [3], that the triangle
orthocenter H is the intersection of the circles

⋂3
j=1 �(Hj , r). That is to say: the

circles of radius r and center the orthocenter, Hj , of the side Ai Ak = Ai Â j Ak =
{A1, A2, A3} � {A j } opposite to vertex A j are concurrent in a point, and this point
is the orthocenter H of A1A2 A3, see Fig. 1. If A j = (cosα j , sin α j ) we have

Hj =
(
− cosα j +

∑3

i=1
cosαi ,− sinα j +

∑3

i=1
sin αi

)
,

and

H =
(∑3

i=1
cosαi ,

∑3

i=1
sin αi

)
.

4. With the same notations of above we have that for A1A2A3 the point

F =
(1

2

∑3

i=1
cosαi ,

1

2

∑3

i=1
sin αi

)

is its triangle Feuerbach center.

2.2 Considerations

Now we consider the above propriety number 3 and define the orthocenter by induction
as the intersection of circles; that is: for a cyclic n-polygon A1A2 . . . An with r = 1,
n ≥ 3, we consider the j -set of n − 1 points A1A2 . . . Â j . . . An = {A1, A2, . . . , An} �
{A j }. For this j -set we have, by induction, its orthocenter point Hj = (− cosα j +∑n

i=1 cosαi ,− sin α j + ∑n
i=1 sinαi ).

It is easy to see that the point
(∑n

i=1 cosαi ,
∑n

i=1 sinαi
) ∈ �(Hj , 1); we refer this point

as H . Then H = ⋂n
j=1 �(Hj , 1), and this intersection in this paper will be the Defini-

tion 2, “Def. 2”. From now, we will say that the cyclic n-polygon has an orthocenter point
H defined as “Def. 2”, see Fig. 2.

Then, with the above expressions of O, G, and H , it is trivial to see that the cyclic n-
polygon has an Euler line because O, G, and H are aligned; and we have the simple
ratio (O, G, H ) = n

n−1 , see Fig. 2. The existence of this line was proved for cyclic
quadrilaterals, and also was cited without proof with this simple ratio for n-polygons, by
M. Dalcı́n in [3].

The line A j H j has equation (cosα j , sin α j ) + λ(−2 cosα j + ∑n
i=1 cosαi ,−2 sinα j +∑n

i=1 sinαi ); then, with λ = 1
2 , it is easy to see that

⋂n
j=1 A j H j exists and

⋂n
j=1 A j H j =
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(
1
2

∑n
i=1 cosαi ,

1
2

∑n
i=1 sin αi

)
, we will refer this point as F , see Fig. 2. Therefore, we

have that F is on the Euler line and the cross ratio (O, F, G, H ) = (O,F,G)
(O,F,H) = OG�FG

OH�F H =
−

(
1
n �

n−2
2n

)
1� 1

2
= − 1

n−2 .

The midpoint E j of the segment A j H (Euler point) is 1
2 (cosα j + ∑n

i=1 cosαi , sin α j +∑n
i=1 sinαi ). Trivially we can test that E j ∈ �(

F, 1
2

)
because the equation of this circle

is 1
4 = (

x − 1
2

∑n
i=1 cosαi

)2 + (
y − 1

2

∑n
i=1 sinαi

)2. Therefore this circle �(
F, 1

2

)
,

see Fig. 2, is the Feuerbach circle of the cyclic n-polygon and its radius is one-half the
circumradius. This circle definition in this paper will be the Definition 3, “Def. 3”.

Then, we can summarize the results in the following:

Theorem 1 Let A1A2 . . . An be a cyclic n-polygon, n ≥ 3, with circumradius r . Then:

a) It has an orthocenter point H = ⋂n
j=1 �(Hj , r), where H j is the orthocenter of

A1A2 . . . Â j . . . An = {A1, A2, . . . , An} � {A j }.
b) Its orthocenter H , its centroid G, and its circumcenter O, are aligned; therefore it

has an Euler line. The simple ratio (O, G, H ) = n
n−1 .

c) Its midpoints E j of the segments that join the vertices and the orthocenter H , the
Euler points, are concyclic; therefore it has a Feuerbach circle �(F, ρ).

d) The radius ρ of its Feuerbach circle is one-half the circumradius, ρ = r
2 .
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e) The center F of its Feuerbach circle is on the Euler line, and the cross ratio
(O, F, G, H ) = − 1

n−2 .

f) The intersection of the lines
⋂n

j=1 A j H j = F.

3 Difference and relations with the Collings nine point circle

3.1 Difference

In 1967, S.N. Collings [1], [2] defined the orthocenter in a different way of “Def. 2”.

Collings’ definition for the orthocenter Hc is: First Hc = H with n = 3. Now, for a cyclic
n-polygon A1A2 . . . An , n ≥ 4, we consider the j -set of n − 1 points A1 A2 . . . Â j . . . An .
For this j -set we have, by induction, its orthocenter point H j , then Collings proves, by
induction, that the lines A j H j concur in a point that he refers as orthocenter point Hc =⋂n

j=1 A j H jof the n-polygon. This definition is different from the definition “Def. 2” and
this orthocenter point Hc is different from the orthocenter point H for n ≥ 4.

Collings proves that O, G, and Hc are aligned. Then trivially, with part b) of Theorem 1:
O, G, H , and Hc are aligned (Euler line for cyclic n-polygon). He proves that the simple
ratio (O, Hc, G) = OG

HcG = − n−2
2 .

Collings’ definition for the nine point circle ν is: First ν = �(F, r
2 ) with n = 3. Now,

for a cyclic n-polygon A1 A2 . . . An , n ≥ 4, we consider the j -set of n − 1 points
A1A2 . . . Â j . . . An . For this j -set we have its centroid point G j , then Collings proves
that all centroids G j lie on a circle that he refers as nine point circle ν of the n-polygon.
Collings names this circle ν: nine point circle of the n-polygon. This definition is different
from the definition “Def. 3” and this nine point circle ν = �(N, s) (N and s are the center
and the radius of ν) is different from the Feuerbach circle �(F, r

2 ) for n ≥ 4.

Collings proves that O, G, and N are aligned. Then trivially, with part e) of Theorem 1:
O, G, H , Hc, F , and N are aligned. He proves that s = r

n−1 , and the simple ratio

(O, N, G) = OG
NG = − n−1

1 . Therefore, the cross ratio

(O, N, G, Hc) = 1 − (O, G, N, Hc) = 1 − (O, G, N)

(O, G, Hc)
= 1 − 1 − (O, N, G)

1 − (O, Hc, G)
= −1.

We will refer: circle �(N, r
n−1 ), points H j , point Hc, and center N , as: circle, points,

orthocenter and center, of Collings, respectively; see Fig. 3.

We will refer the circle �(F, r
2 ) as Feuerbach circle because, for us, the most important

property for the Feuerbach circle of a triangle (nine point circle of a triangle) is that the
radius of the Feuerbach circle is one-half the circumradius, see part d) of Theorem 1.

3.2 Relations

For n ≥ 4, we consider the j -set of n − 1 points A1A2 . . . Â j . . . An of the cyclic n-

polygon, r = 1. For this j -set we have the point H
j = 1

n−3

(− cosα j + ∑n
i=1 cosαi ,
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− sinα j + ∑n
i=1 sin αi

)
with H

j = Hj if n = 4. The line A j H
j
has equation

(cosα j , sin α j )+ λ

n − 3

(
(2 − n) cosα j +

∑n

i=1
cosαi , (2 − n) sinα j +

∑n

i=1
sin αi

)
;

then, with λ = n−3
n−2 , it is easy to see that

⋂n
j=1 A j H

j
exists, and

⋂n

j=1
A j H

j = 1

n − 2

(∑n

i=1
cosαi ,

∑n

i=1
sin αi

)
.

Therefore H
j = H j and

⋂n
j=1 A j H j = Hc.

We can consider the point C = 1
n−3

(∑n
i=1 cosαi ,

∑n
i=1 sin αi

)
. Then now it is trivial that

the Collings points H j are concyclic and H j ∈ �(C, 1
n−3 ), see Fig. 3. The point C is on

the Euler line; C = H if n = 4, and C = F if n = 5 see Fig. 3.
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Clearly, G j = 1
n−1

(− cosα j + ∑n
i=1 cosαi ,− sinα j + ∑n

i=1 sin αi
)

and all G j are on

the circle with center 1
n−1

(∑n
i=1 cosαi ,

∑n
i=1 sin αi

)
and radius 1

n−1 ; then, this center
is N .

It is trivial to see that the points O, G j , Hj , and H j are aligned.

With n = 5 then H j = 1
2

(− cosα j + ∑n
i=1 cosαi ,− sinα j + ∑n

i=1 sin αi
)

and E j =
1
2

(
cosα j + ∑n

i=1 cosαi , sin α j + ∑n
i=1 sinαi

)
are concyclic on the Feuerbach circle; see

Fig. 3.

We can consider the Euler-Collings points; that is to say, the midpoints E j of the segment
A j Hc, and they are the points E j = 1

2

(
cosα j + 1

n−2

∑n
i=1 cosαi , sinα j + 1

n−2

∑n
i=1 sinαi

)
.

Trivially we can test that E j ∈ �
(
B, 1

2

)
where B is the mid point of the segment OHc,

that is B = 1
2n−4

(∑n
i=1 cosαi ,

∑n
i=1 sinαi

)
. Therefore we refer �

(
B, 1

2

)
as Feuerbach-

Collings circle of the cyclic n-polygon because its radius is one-half the circumradius; see
Figs. 3, 4.

Then, we can summarize the relations in the following theorem; parts a), b) and c) are in
[1], the other parts are new:

Theorem 2 Let A1A2 . . . An be a cyclic n-polygon, n ≥ 4, with circumradius r .

Then:

a) It has a Collings orthocenter point Hc = ⋂n
j=1 A j H j , where H j is, by induction,

the Collings orthocenter point of A1 A2 . . . Â j . . . An. If n = 3, then Hc = H.

b) The centroid points G j of A1A2 . . . Â j . . . An are concyclic; therefore it has a nine
point circle �(N, ρ), that we refer as Collings circle. If n = 3, then �(N, ρ) =
�(F, r

2 ).

c) ρ = r
n−1 , (O, N, G, Hc) = −1.

e) H, G, O, N, and Hc are aligned.

f) Its Collings points H j are concyclic on the circle �(C, r
n−3 ). And the point C =

O + 1
n−3

−−→
OH.

g) If n = 5 then C = F and the points {H j , E j }nj=1 are concyclic.

h) Its Euler-Collings points, that is to say, the midpoints E j of the segments A j H c, are

concyclic on the circle �(B, 1
2 ). The point B = O + 1

2n−4
−−→
OH (i.e., B is the mid

point of segment OHc), and E j = O + 1
2 (

−−→
OHc + −−→

O A j ).

4 Infinite quantity of remarkable circles

We can rewrite, without coordinates, all the points that we have consider in the above
sections and we have:
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For a cyclic n-polygon A1A2 . . . An with n ≥ 4 and circumradius r :

H = O + −−→
OH Hj = O + (

−−→
OH − −−→

O A j )

F = O + 1

2
−−→
OH E j = O + 1

2
(
−−→
OH + −−→

O A j )

C = O + 1

n − 3
−−→
OH H j = O + 1

n − 3
(
−−→
OH − −−→

O A j )

Hc = O + 1

n − 2
−−→
OH

N = O + 1

n − 1
−−→
OH G j = O + 1

n − 1
(
−−→
OH − −−→

O A j )

G = O + 1

n

−−→
OH

B = O + 1

2

−−→
OHc = O + 1

2n − 4
−−→
OH E j = O + 1

2
(
−−→
OHc + −−→

O A j )

And it is enough to see the above table to easily check that:

1. The orthocenter points Hj are concyclic in the circle �(H, r).

2. The Euler points E j are concyclic in the Feuerbach circle �(F, r
2 ).

3. The Collings points H j are concyclic in the circle �(C, r
n−3 ).

4. The centroid points G j are concyclic in the circle �(N, r
n−1 ).

5. The Euler-Collings points E j are concyclic in the Feuerbach-Collings circle �(B, r
2 ).

6. If n = 4 then H = C , F = Hc, the orthocenter points Hj and Collings points H j

are the same.

7. If n = 5 then F = C , the Euler points E j and the Collings points H j are concyclic
in the Feuerbach circle �(F, r

2 ).

8. The points O, H , F , C , Hc, N , G, B are aligned (Euler line).

9. The points O, Hj , H j , G j are aligned.

But in general we can see easily that the cyclic n-polygon has a infinite quantity of re-
markable circles, centers and points.

We can write the following

Theorem 3 Let A1A2 . . . An be a cyclic n-polygon, n ≥ 4, with circumradius r . Then:

a) The points O, H , F, C, Hc, N, G, B are aligned (Euler line).

b) The points O, H j , H j , G j are aligned.

c) The infinite quantity of remarkable centers {γk = O + 1
k
−−→
OH | k ∈ N} are aligned.

d) The remarkable set of points �−
k = {π−

kj = O + 1
k (

−−→
OH − −−→

O A j ) | 1 ≤ j ≤ n} lies
on the remarkable circle �(γk,

r
k ), for each k ∈ N .
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e) The remarkable set of points �+
k = {π+

kj = O + 1
k (

−−→
OH + −−→

O A j ) | 1 ≤ j ≤ n} lies
on the remarkable circle �(γk,

r
k ), for each k ∈ N .

f) Then, the two sets of points �−
k , �+

k are concyclic, for all k ∈ N, on the circle
�(γk,

r
k ).

g) The remarkable set of points �c+
k = {πc+

kj = O + 1
k (

−−→
OHc +−−→

O A j ) | 1 ≤ j ≤ n} lies

on the remarkable circle �(γ c
k , r

k ), for all k ∈ N. The center γ c
k = O + 1

k

−−→
OHc =

O + 1
k(n−2)

−−→
OH = γk(n−2).

h) The points O, π+
kj , for all k ∈ N, are aligned with fixed j .

i) The points O, π−
kj , for all k ∈ N, are aligned with fixed j .

j) The points O, πc+
kj , for all k ∈ N, are aligned with fixed j .

k) And in a more general situation: The remarkable set of points �m±
k = {πm±

kj =
O + 1

k ( 1
m

−−→
OH ± −−→

O A j ) | 1 ≤ j ≤ n} lies on the remarkable circle �(γkm , r
k ), for

each k ∈ N � m. And the points O, πm±
kj , for all k ∈ N, are aligned with fixed sign

±, j , and m.
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5 Relation between the circles of radius r and r
2

To give a complete study, see Fig. 4, we consider the intersection of the circumcircle
�(O, r) and the remarkable circle �(H, r): �(H, r) ∩ �(O, r) = {P1, P2}. Also we
consider the intersection of the Feuerbach circle �(F, r

2 ) and the Feuerbach-Collings
circle �(B, r

2 ): �(F, r
2 ) ∩ �(B, r

2 ) = {Q1, Q2}. To make the calculations, we can
consider r = 1. Then with H = (∑n

i=1 cosαi ,
∑n

i=1 sin αi
) = (a, b) we can make a

rotation gO,ϕ , of center O and angle ϕ, such that gO,ϕ(a, b) = (h, 0). Then we have
gO,ϕ(O) = O, gO,ϕ(H ) = (h, 0), gO,ϕ(F) = 1

2 (h, 0) and gO,ϕ(B) = 1
2n−4 (a, b), where

h = OH = √
a2 + b2. Therefore, with a long and straightforward calculation we can

proof the following:

Theorem 4 Let A1A2 . . . An be a cyclic n-polygon, n ≥ 4, with circumradius r . Then:

a) The four points of intersection �(H, r) ∩ �(O, r) and �(F, r
2 ) ∩ �(B, r

2 ) are con-
cyclic on the circle �(K , σ ).

b) The point K , on the Euler line, is K = O + 1
2

3n−6−h2

h2(n−3)

−−→
OH; where h = OH.

c) The radius σ = r
2h(n−3)

√
h4(2n − 5) + h2(−2n2 + 12) + 9(n2 − 4n + 4).
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