Algebraic numbers of the form $P(T)^{Q(T)}$ with T transcendental

Diego Marques

Diego Marques was awarded a Ph.D. at the Universidade de Brasília in 2009. Recently he obtained a professorship in the department of mathematics at the same university. His field of interest is transcendental number theory.

1 Introduction

When I was a high-school student, I liked writing rational numbers as "combination" of irrational ones, for instance

$$
2=\sqrt{\sqrt[3]{2+\sqrt{-121}}+\sqrt[3]{2-\sqrt{-121}}}=\sqrt{2}^{\sqrt{2} \sqrt{2}}=\sqrt{3}^{\log 4} \log ^{\log }=e^{\log 2}
$$

In particular, the last equality above shows us one way of writing the algebraic number 2 as power of two transcendental numbers. In 1934, the mathematicians A.O. Gelfond [2] and T. Schneider [3] proved the following well-known result: If $\alpha \in \overline{\mathbb{Q}} \backslash\{0,1\}$ and $\beta \in \overline{\mathbb{Q}} \backslash \mathbb{Q}$, then α^{β} is a transcendental number. This result, named as Gelfond-Schneider theorem, classifies completely the arithmetic nature of the numbers of the form $A_{1}^{A_{2}}$, for $A_{1}, A_{2} \in \overline{\mathbb{Q}}$. Returning to our subject, but now using the Gelfond-Schneider theorem, we also can easily write 2 as T^{T}, for some T transcendental. Actually, all prime numbers and

Im Jahr 1934 lösten A.O. Gelfond und T. Schneider das siebte Hilbertsche Problem, indem sie zeigten, dass für algebraische Zahlen α, β mit $\alpha \neq 0,1$ und $\beta \notin \mathbb{Q}$ die Grösse α^{β}, also z.B. $\sqrt{2}^{\sqrt{2}}$, transzendent ist. Eine Art Umkehrung dieses Sachverhalts bedeutet die Fragestellung, unter welchen Bedingungen an zwei transzendente Zahlen σ, τ die Grösse σ^{τ} algebraisch ist. Beispielsweise sind die Eulersche Zahl $e=2,71828$. . und $\log (2)$ transzendent, aber es ist $e^{\log (2)}=2$. In der vorliegenden Arbeit zeigt der Autor, dass es zu zwei beliebigen, nicht-konstanten Polynomen $P(X)$ und $Q(X)$ mit rationalen Koeffizienten jeweils unendlich viele algebraische Zahlen gibt, die in der Form $P(\tau)^{Q(\tau)}$ mit transzendentem τ dargestellt werden können.
all algebraic numbers $A \geq e^{-1 / e}$, satisfying $A^{n} \notin \mathbb{Q}$ for all $n \geq 1$, can be written in this form; for a more general result see [4, Proposition 1]. Using again the Gelfond-Schneider theorem and Galois theory, we show that for all non-constant polynomials $P(x), Q(x) \in$ $\mathbb{Q}[x]$, there are infinitely many algebraic numbers which can be written in the particular "complicated" form $P(T)^{Q(T)}$, for some transcendental number T.

2 Main result

Proposition. Fix non-constant polynomials $P(x), Q(x) \in \mathbb{Q}[x]$. Then the set of algebraic numbers of the form $P(T)^{Q(T)}$, with T transcendental, is dense in some connected subset either of \mathbb{R} or \mathbb{C}.

As we said in Section 1, all algebraic numbers $A \geq e^{-1 / e}$ satisfying $A^{n} \notin \mathbb{Q}$ for all $n \geq 1$, can be written in the form T^{T}, for some $T \notin \overline{\mathbb{Q}}$. An example of such A is $1+\sqrt{2}$. But that is only one case of our proposition, namely when $P(x)=Q(x)=x$. So for proving our result we need a stronger condition satisfied by an algebraic number A, and that is exactly what our next result asserts.

Lemma. Let $Q(x)$ be a polynomial in $\mathbb{Q}[x]$ and set $\mathcal{F}=\{Q(x)-d: d \in \mathbb{Q}\}$. Then there exists $\alpha \in \mathbb{R} \cap \overline{\mathbb{Q}}$, such that

$$
\begin{equation*}
\alpha^{n} \notin \mathbb{Q}\left(\mathcal{R}_{\mathcal{F}}\right) \text { for all } n \geq 1 \tag{1}
\end{equation*}
$$

where $\mathcal{R}_{\mathcal{F}}$ denotes the set $\{x \in \mathbb{C}: f(x)=0$ for some $f \in \mathcal{F}\}$.
Proof. Set $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots\right\}$, and for each $n \geq 1$, set $K_{n}=\mathbb{Q}\left(\mathcal{R}_{F_{1} \ldots F_{n}}\right)$ and $\left[K_{n}: \mathbb{Q}\right]=$ t_{n}. Since $K_{n} \subseteq K_{n+1}$, then $t_{n} \mid t_{n+1}$, for all $n \geq 1$. Therefore, there are integers $\left(m_{n}\right)_{n \geq 1}$ such that $t_{n}=m_{n-1} \ldots m_{1} t_{1}$. Note that $K_{n+1}=K_{n}\left(\mathcal{R}_{F_{n+1}}\right)$ and $\operatorname{deg} F_{n+1}=\operatorname{deg} Q$. It follows that $\left[K_{n+1}: K_{n}\right] \leq(\operatorname{deg} Q)$!. Because $\mathbb{Q} \subseteq K_{n} \subseteq K_{n+1}$, we also have that $\frac{t_{n+1}}{t_{n}} \leq(\operatorname{deg} Q)$! for all $n \geq 1$. On the other hand $\frac{t_{n+1}}{t_{n}}=m_{n}$, so the sequence $\left(m_{n}\right)_{n \geq 1}$ is bounded. Thus, we ensure the existence of a prime number $p>\max _{n \geq 1}\left\{m_{n}, t_{1}, 3\right\}$. Hence p does not divide t_{n}, for $n \geq 1$. We pick a real number α that is a root of the irreducible polynomial $F(x)=x^{p}-4 x+2$ and we claim that $\alpha \notin \mathbb{Q}\left(\mathcal{R}_{\mathcal{F}}\right)$. Indeed, if this is not the case, then there exists a number $s \geq 1$, such that $\alpha \in \mathbb{Q}\left(\mathcal{R}_{F_{1} \ldots F_{s}}\right)=K_{s}$. Since $[\mathbb{Q}(\alpha): \mathbb{Q}]=p$, we would have that $p \mid t_{s}$, however this is impossible. Moreover, given $n \geq 1$, we have the field inclusions $\mathbb{Q} \subseteq \mathbb{Q}\left(\alpha^{n}\right) \subseteq \mathbb{Q}(\alpha)$. So $\left[\mathbb{Q}\left(\alpha^{n}\right): \mathbb{Q}\right]=1$ or p, but α^{n} cannot be written as radicals over \mathbb{Q}, since that $F(x)$ is not solvable by radicals over \mathbb{Q}, see [1, p. 189]. Hence $\mathbb{Q}(\alpha)=\mathbb{Q}\left(\alpha^{n}\right)$ and then such α satisfies the condition (1).

Without referring to the lemma, we have the following special remarks:
Remark 1 If deg $Q(x)=1$, then $\mathbb{Q}\left(\mathcal{R}_{\mathcal{F}}\right)=\mathbb{Q}$. Therefore $\alpha=1+\sqrt{2}$ satisfies our desired condition (1).

Remark 2 More generally, if $\operatorname{deg} Q \leq 4$, then we take α one of the real roots of the polynomial $F(x)=x^{5}-4 x+2$. We assert that this α satisfies (1). In fact, note that
all elements of the field $\mathbb{Q}\left(\mathcal{R}_{\mathcal{F}}\right)$ are solvable by radicals (over \mathbb{Q}), on the other hand the Galois group of $F(x)=0$ over \mathbb{Q} is isomorphic to S_{5} (the symmetric group), see [1 , p. 189]. Hence if $\alpha^{n} \in \mathbb{Q}\left(\mathcal{R}_{\mathcal{F}}\right)$, it would be expressed as radicals over \mathbb{Q}, but this cannot happen.

Now we are able to prove our main result:
Proof of the proposition. Let us suppose that P assumes a positive value. In this case, we have $0<P(x) \neq 1$ for some interval $(a, b) \subseteq \mathbb{R}$. Therefore, the function $f:(a, b) \rightarrow$ \mathbb{R}, given by $f(x):=P(x)^{Q(x)}$ is well-defined. Since f is a non-constant continuous function, $f((a, b))$ is a non-degenerate interval, say (c, d). Now, take α as in the lemma. Note that the set $\{\alpha Q: Q \in \mathbb{Q} \backslash\{0\}\}$ is dense in (c, d). For such an $\alpha Q \in(c, d)$, we have

$$
\begin{equation*}
\alpha Q=P(T)^{Q(T)} \tag{2}
\end{equation*}
$$

for some $T \in(a, b)$. We must prove that T is a transcendental number. Assuming the contrary, then $P(T)$ and $Q(T)$ are algebraic numbers. Since $P(T) \notin\{0,1\}$, then by the Gelfond-Schneider theorem, we infer that $Q(T)=\frac{r}{s} \in \mathbb{Q}, s>0$. It follows that $T \in \mathcal{R}_{Q(x)-\frac{r}{s}} \subseteq \mathcal{R}_{\mathcal{F}}$, so $P(T)^{r} \in \mathbb{Q}\left(\mathcal{R}_{\mathcal{F}}\right)$. By (2), $(\alpha Q)^{s}=P(T)^{r}$, hence $\alpha^{s} \in \mathbb{Q}\left(\mathcal{R}_{\mathcal{F}}\right)$, but that contradicts the lemma.

For the case that $P(x) \leq 0$ for all $x \in \mathbb{R}$, we can consider a subinterval $(a, b) \subseteq \mathbb{R}$ such that $\mathcal{R}_{P} \cap(a, b)=\emptyset$, therefore the proof follows by the same argument. But in this case the image of (a, b) under f is a connected subset of \mathbb{C} and our basic dense subset (in \mathbb{C}) is the set $\{\alpha Q: Q \in \mathbb{Q}(i) \backslash\{0\}\}$.

Acknowledgement

I would like to thank Angelo Papa and Professor Matzat for their helpful suggestions, I also thank Professor Paques for enjoyable talks on this subject.

References

[1] Lorenz, F.: Algebra, volume 1: fields and Galois theory. Springer-Verlag, New York 2006.
[2] Gelfond, A.O.: Sur le septième problème de Hilbert. Izv. Akad. Nauk SSSR 7 (1934), 623-630.
[3] Schneider, T.: Transzendenzuntersuchungen periodischer Funktionen: I. Transzendenz von Potenzen; II. Transzendenzeigenschaften elliptischer Funktionen. J. Reine Angew. Math. 172 (1934), 65-74.
[4] Sondow, J.; Marques, D.: Algebraic, irrational, and transcendental solutions of some exponential equations. Preprint, 2009.

Diego Marques
Departamento de Matemática
Universidade de Brasília
Brasília, DF, Brazil
e-mail: diego@mat.unb.br

