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1 Introduction

When I was a high-school student, I liked writing rational numbers as “combination” of
irrational ones, for instance

2 =
√

3
√

2 + √−121 + 3
√

2 − √−121 = √
2

√
2

√
2
···

= √
3

log 4
log 3 = elog 2.

In particular, the last equality above shows us one way of writing the algebraic number
2 as power of two transcendental numbers. In 1934, the mathematicians A.O. Gelfond
[2] and T. Schneider [3] proved the following well-known result: If α ∈ Q \ {0, 1} and
β ∈ Q \ Q, then αβ is a transcendental number. This result, named as Gelfond-Schneider
theorem, classifies completely the arithmetic nature of the numbers of the form AA2

1 , for
A1, A2 ∈ Q. Returning to our subject, but now using the Gelfond-Schneider theorem, we
also can easily write 2 as T T , for some T transcendental. Actually, all prime numbers and

.

Im Jahr 1934 lösten A.O. Gelfond und T. Schneider das siebte Hilbertsche Problem, in-
dem sie zeigten, dass für algebraische Zahlen α, β mit α �= 0, 1 und β /∈ Q die Grösse

αβ , also z.B.
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, transzendent ist. Eine Art Umkehrung dieses Sachverhalts bedeu-

tet die Fragestellung, unter welchen Bedingungen an zwei transzendente Zahlen σ , τ

die Grösse στ algebraisch ist. Beispielsweise sind die Eulersche Zahl e = 2, 71828 . . .

und log(2) transzendent, aber es ist elog(2) = 2. In der vorliegenden Arbeit zeigt der
Autor, dass es zu zwei beliebigen, nicht-konstanten Polynomen P(X) und Q(X) mit
rationalen Koeffizienten jeweils unendlich viele algebraische Zahlen gibt, die in der
Form P(τ )Q(τ ) mit transzendentem τ dargestellt werden können.
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all algebraic numbers A ≥ e−1/e, satisfying An /∈ Q for all n ≥ 1, can be written in this
form; for a more general result see [4, Proposition 1]. Using again the Gelfond-Schneider
theorem and Galois theory, we show that for all non-constant polynomials P(x), Q(x) ∈
Q[x], there are infinitely many algebraic numbers which can be written in the particular
“complicated” form P(T )Q(T ), for some transcendental number T .

2 Main result

Proposition. Fix non-constant polynomials P(x), Q(x) ∈ Q[x]. Then the set of algebraic
numbers of the form P(T )Q(T ), with T transcendental, is dense in some connected subset
either of R or C.

As we said in Section 1, all algebraic numbers A ≥ e−1/e satisfying An /∈ Q for all n ≥ 1,
can be written in the form T T , for some T /∈ Q. An example of such A is 1+√

2. But that
is only one case of our proposition, namely when P(x) = Q(x) = x . So for proving our
result we need a stronger condition satisfied by an algebraic number A, and that is exactly
what our next result asserts.

Lemma. Let Q(x) be a polynomial in Q[x] and set F = {Q(x) − d : d ∈ Q}. Then there
exists α ∈ R ∩ Q, such that

αn /∈ Q(RF ) for all n ≥ 1, (1)

where RF denotes the set {x ∈ C : f (x) = 0 for some f ∈ F}.
Proof . Set F = {F1, F2, . . .}, and for each n ≥ 1, set Kn = Q(RF1...Fn ) and [Kn : Q] =
tn . Since Kn ⊆ Kn+1, then tn |tn+1, for all n ≥ 1. Therefore, there are integers (mn)n≥1
such that tn = mn−1 . . . m1t1. Note that Kn+1 = Kn(RFn+1) and deg Fn+1 = deg Q.
It follows that [Kn+1 : Kn] ≤ (deg Q)!. Because Q ⊆ Kn ⊆ Kn+1, we also have that
tn+1

tn
≤ (deg Q)! for all n ≥ 1. On the other hand tn+1

tn
= mn , so the sequence (mn)n≥1

is bounded. Thus, we ensure the existence of a prime number p > maxn≥1{mn, t1, 3}.
Hence p does not divide tn , for n ≥ 1. We pick a real number α that is a root of the
irreducible polynomial F(x) = x p − 4x + 2 and we claim that α /∈ Q(RF ). Indeed, if
this is not the case, then there exists a number s ≥ 1, such that α ∈ Q(RF1...Fs ) = Ks .
Since [Q(α) : Q] = p, we would have that p|ts , however this is impossible. Moreover,
given n ≥ 1, we have the field inclusions Q ⊆ Q(αn) ⊆ Q(α). So [Q(αn) : Q] = 1 or
p, but αn cannot be written as radicals over Q, since that F(x) is not solvable by radicals
over Q, see [1, p. 189]. Hence Q(α) = Q(αn) and then such α satisfies the condition (1).

�

Without referring to the lemma, we have the following special remarks:

Remark 1 If deg Q(x) = 1, then Q(RF ) = Q. Therefore α = 1 + √
2 satisfies our

desired condition (1).

Remark 2 More generally, if deg Q ≤ 4, then we take α one of the real roots of the
polynomial F(x) = x5 − 4x + 2. We assert that this α satisfies (1). In fact, note that
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all elements of the field Q(RF ) are solvable by radicals (over Q), on the other hand the
Galois group of F(x) = 0 over Q is isomorphic to S5 (the symmetric group), see [1,
p. 189]. Hence if αn ∈ Q(RF ), it would be expressed as radicals over Q, but this cannot
happen.

Now we are able to prove our main result:

Proof of the proposition. Let us suppose that P assumes a positive value. In this case, we
have 0 < P(x) �= 1 for some interval (a, b) ⊆ R. Therefore, the function f : (a, b) →
R, given by f (x) := P(x)Q(x) is well-defined. Since f is a non-constant continuous
function, f ((a, b)) is a non-degenerate interval, say (c, d). Now, take α as in the lemma.
Note that the set {αQ : Q ∈ Q \ {0}} is dense in (c, d). For such an αQ ∈ (c, d), we have

αQ = P(T )Q(T ) (2)

for some T ∈ (a, b). We must prove that T is a transcendental number. Assuming the
contrary, then P(T ) and Q(T ) are algebraic numbers. Since P(T ) /∈ {0, 1}, then by
the Gelfond-Schneider theorem, we infer that Q(T ) = r

s ∈ Q, s > 0. It follows that
T ∈ RQ(x)− r

s
⊆ RF , so P(T )r ∈ Q(RF ). By (2), (αQ)s = P(T )r , hence αs ∈ Q(RF ),

but that contradicts the lemma.

For the case that P(x) ≤ 0 for all x ∈ R, we can consider a subinterval (a, b) ⊆ R such
that RP ∩ (a, b) = ∅, therefore the proof follows by the same argument. But in this case
the image of (a, b) under f is a connected subset of C and our basic dense subset (in C)
is the set {αQ : Q ∈ Q(i) \ {0}}. �
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Universidade de Brası́lia
Brası́lia, DF, Brazil
e-mail: diego@mat.unb.br


