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1 Introduction

Intuitively, making a compromise within a dispute means to take the opinions of others into
account. The hidden hope thereby is to approach a consensus. By what weights, however,
should different people be taken into account? Does one really approach a consensus by
making compromises – or could one run into a dissent or maybe separate forever? Giving
weights to others could be mathematically modelled by a weighted mean – but which one?
There are a large variety of means, including the arithmetic mean, the geometric mean, the
harmonic mean, various power means etc. Could it be that the question of approaching a
consensus does depend on the kind of mean applied?

.

Es wird ein einfaches Modell vorgestellt und analysiert für die kollektive Dynamik
einer Gruppe von Akteuren, die zu echten Kompromissen bereit sind. Interessante
Beispiele sind etwa die Meinungsbildung unter mehreren Individuen oder die Ko-
ordination zwischen autonomen Robotern. Dabei wird angenommen, dass der Vor-
schlag xi (t + 1) des Akteurs i eine individuell festgelegte konvexe Kombination der
auf dem Tisch liegenden Gebote x1(t), . . . , xn(t) ∈ R

d ist. Für diesen Kompromiss-
Algorithmus konvergieren bei t → ∞ die Vorschläge xi (t), 1 ≤ i ≤ n, gegen einen
gemeinsamen Wert, den Konsens, der auch noch von den Startwerten x1(0), . . . , xn(0)

abhängen kann. Einen linearen Spezialfall dieses Modells stellt das ergodische Ver-
halten primitiver Markovketten dar. Ein nichtlinearer Spezialfall ist das arithmetisch-
geometrische Mittel von Gauß aus dem Jahr 1799. Dieses lässt sich deuten als eine
Meinungsbildung unter zwei Akteuren, wobei der eine jeweils das arithmetische, der
andere das geometrische Mittel der letzten Gebote als Kompromissvorschlag wählt.
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For simplicity, imagine two persons with initial opinions represented by two different pos-
itive numbers a and b, respectively. These numbers may be thought of as two different
assessments of a certain magnitude by the two persons. Suppose, person 1 compromises
for certain reasons and changes her opinion to the arithmetic mean a′ = a+b

2 , whereas
person 2 compromises by changing b to the geometric mean b′ = √

ab. In general, the
numbers a′ and b′ will not yet be equal and, hence, opinions will be changed anew. By
iteration one obtains two sequences of positive numbers ak and bk , respectively. As early
as 1799 it was observed by Gauss that the two sequences converge to a joint limit c, the
arithmetic-geometric mean, which is given by a complete elliptic integral [1, p. 5]. This
might be interpreted by saying that the two persons compromising as above will tend to a
consensus c, which depends on the initial opinions a and b via the integral.

Since the above algorithm converges very fast, it is used in practical computations of
elliptic integrals. Following Gauss (and Legendre), many variations and extensions of the
algorithm have been investigated (cf. [1], [2]). Thereby, the convergence is the easier
issue compared to the determination of the value of the consensus. The latter task can be
very difficult and is still open even in seemingly simple cases. In the literature on Gauss’
arithmetic-geometric mean, extensions to n numbers instead of just two numbers a and b
have been considered as well as other means, like (weighted) power means (see Section 3).
For a rather general mean which is an abstraction of the known concrete means, the so
called abstract mean, convergence was proved in [1, p. 244]. As the authors put it: “There
is a great literature on particular means and very little on means in general.” [1, p. 235].

All the means considered so far, including the abstract mean, are means of finitely many
real numbers. These means may model the making of a compromise among finitely many
persons expressing one dimensional opinions. In this article we take up more generally the
issue of forming means of points in higher dimensional space. Considering the process
to compromise, this means that we admit the persons to express more refined opinions,
represented by bundles of real numbers. Forming a mean now amounts to forming a
convex combination in higher dimensional space. This general framework does not only
cover the classical issue of mean iteration but also the more recent models of opinion
formation and multiagent communication, developed for organisms in biology as well as
for decision-takers in economics and robots in engineering. Following a common usage
we will, therefore, use the term “agent” instead of “person”. (For the models mentioned
and their history see [3], [4], [5] and the references given therein.)

Section 2 presents a model of compromising behavior for finitely many agents. There is
no need to go into the motives of the agents which are often opaque and diverse, including
strategic motives. What will matter are the factual compromises taken by the agents and
the dynamics of interaction. It is shown that a simple and intuitively compelling condi-
tion guarantees convergence of the dynamics to a consensus. This result extends that on
abstract means in [1] and demonstrates, how consensus is approached in spite of possible
conflicts between different dimensions. The proof of the result is elementary and needs no
elaborated tools.

Section 3 illustrates the general convergence result by examples. Surprisingly, the fa-
mous ergodic theorem for primitive Markov chains results easily by specializing to linear
compromise maps. Convergence results, known from the literature, can be obtained in a
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sharpened version. For a nonlinear model of opinion dynamics a criterion for consensus
can be derived.

Section 4 contains concluding remarks and discusses a simple example, which is not cov-
ered by criteria known hitherto.

2 Convergence of the compromise algorithm to consensus
Consider a number n of agents involved in a process of compromising when taking actions.
Let S denote the set of all agents’ possible actions. For agent i ∈ {1, . . . , n} denote by
fi (x1, x2, . . . , xn) the action she takes in the next period by making a compromise based
on the actions x1, x2, . . . , xn of all agents (including herself) in the previous period.

The idea now is to model such a compromise as a convex combination of x1, x2, . . . , xn .
For this we take the action set S to be a non-empty convex subset of d-dimensional real
space R

d , that is with any two points u and v the set S contains also the convex combina-
tion αu + (1 − α)v for each α ∈ [0, 1]. It follows that for xi ∈ S, 1 ≤ i ≤ n, the convex
hull conv{x1, x2, . . . , xn}, consisting of all convex combinations α1x1+α2x2+. . .+αn xn

with 0 ≤ αi for all i and α1 + α2 + . . . + αn = 1 is contained in S, too. Collecting the
mappings fi of the agents in f = ( f1, . . . , fn), the mapping f : Sn → Sn is called a
compromise map on S for n agents if

conv{ f1(x), . . . , fn(x)} ⊆ conv{x1, . . . , xn} (1)

holds for all x = (x1, . . . , xn) ∈ Sn .

We call a compromise map proper if for x1, . . . , xn , not all equal, the inclusion in (1)
holds properly. That is “⊆” holds but not “=”.

Since in one dimension convex sets coincide with intervals (including the empty set, a
point, or infinite intervals), in the special case of d = 1 condition (1) amounts to

min
1≤ j≤n

x j ≤ fi (x) ≤ max
1≤ j≤n

x j (2)

for all 1 ≤ i ≤ n, all x = (x1, . . . , xn) ∈ Sn ⊆ R
n .

A continuous map fi which satisfies (2) is called an abstract mean. An abstract mean is
called strict [1, p. 230] if in (2) both inequalities are strict for unequal x1, . . . , xn .

The reader will easily confirm that examples of strict abstract means are given by arith-
metic mean and geometric mean as well as by any other of the common concrete means.

Another interesting example of a compromise map appears in opinion dynamics (see [3],
[4]). For a profile x = (x1, . . . , xn) of the agents’ opinions x j (maybe multidimensional)
select a subset I (i, x) of all agents which contains i , as a neighborhood of agent i at profile
x . Define fi (x) as the arithmetic mean of the opinions of neighbors of agent i , that is

fi (x) = 1

�I (i, x)

∑

j∈I (i,x)

x j ,

where “�” denotes the number of elements of a finite set. Of particular interest is a neigh-
borhood I (i, x), which consists of all agents j with ‖xi − x j‖ ≤ ε for some confidence
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level ε and some norm ‖ · ‖ on R
d . The compromise map f = ( f1, . . . , fn) is a nonlin-

ear map, the iterates of which are analytically very difficult to handle (see [3]). Instead
of using an arithmetic mean one could use some other mean to average the opinions in a
neighborhood (see [4]).

Obviously, abstract means f1, f2, . . . , fn define a special compromise map f , which is
proper if all fi are strict. It should be noted, however, that f can be proper though none of
the fi is strict (see Section 4 for an example).

As mentioned in the introduction, the point to consider a compromise map is the possible
emergence of consensus by iterating the map. Obviously, consensus is impossible in gen-
eral if equality holds in condition (1). Therefore, the assumption of a proper compromise
map will be important. The following result states that a proper and continuous compro-
mise map leads by iteration always to a consensus. The proof is elementary, in that it uses
only common properties of convex and compact sets in R

d .

Theorem. For a proper and continuous compromise map f the compromise algorithm
given by the recursion

xi (t + 1) = fi (x1(t), . . . , xn(t)) for 1 ≤ i ≤ n, t ∈ {0, 1, 2, . . .}, (3)

converges always to a consensus γ . That is, for some γ = γ (x(0))

lim
t→∞ xi (t) = γ for all 1 ≤ i ≤ n, x(0) = (x1(0), . . . , xn(0)) ∈ Sn . (4)

Proof. Fix x(0) = (x1(0), . . . , xn(0)) and let C(t) = conv{x1(t), . . . , xn(t)} for t ≥ 0.
Since f is a compromise map, it follows that C(t + 1) ⊆ C(t). Therefore, (C(t))t≥0 is
a decreasing sequence of convex compact subsets of R

d and, hence, C = ⋂∞
t=0 C(t) is

non-empty convex and compact.

(1) Since x(t) ∈ C(t)n ⊆ C(0)n for all t ≥ 0, there exists a convergent subsequence
y(s) = x(ts), s ≥ 0, with lims→∞ y(s) = c = (c1, . . . , cn) ∈ C(0)n ⊆ Sn . We shall
show that

C = conv{c1, . . . , cn}. (5)

Obviously, ci = lims→∞ xi(ts) ∈ C(t) for every t ≥ 0 and, hence, ci ∈ C . Since C is
convex, one has that conv{c1, . . . , cn} ⊆ C . For the remaining conclusion, let x ∈ C and
choose δ > 0. There exists s0 such that ‖xi (ts) − ci‖ ≤ δ for all s ≥ s0 and all 1 ≤ i ≤ n
(pick ‖ ·‖ to be any norm on R

d ). From x ∈ C ⊆ C(ts0) we have x = ∑n
i=1 αi x i (ts0) with

0 ≤ αi and
∑n

i=1 αi = 1. This implies

∥∥∥x −
n∑

i=1

αi c
i
∥∥∥ =

∥∥∥
n∑

i=1

αi [xi(ts0) − ci ]
∥∥∥ ≤

n∑

i=1

αiδ = δ. (6)

Since δ > 0 is arbitrarily chosen and conv{c1, . . . , cn} is closed, we arrive at x ∈
conv{c1, . . . , cn}. This proves (5).

(2) Now we show that c1 = c2 = . . . = cn . From (3) we have

xi (ts + 1) = fi (x1(ts), . . . , xn(ts)) for all s ≥ 0.
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Since lims→∞ x j (ts) = c j and fi is continuous, we obtain that lims→∞ xi (ts + 1) =
fi (c1, . . . , cn). Consider now a point x ∈ conv{c1, . . . , cn}. By step (1), x ∈ C ⊆
C(ts + 1) for all s and, hence,

x =
n∑

i=1

αi (s)xi (ts + 1) for all s,

where 0 ≤ αi (s) and
∑n

i=1 αi (s) = 1. The sequence of (α1(s), . . . , αn(s)) for s ≥ 0 is

contained in the compact set
{

p ∈ R
n | 0 ≤ pi ,

∑n
i=1 pi = 1

}
, and, hence, there exists a

sequence (sk)k≥1 such that limk→∞ αi (sk) = α∗
i ≥ 0 and

∑n
i=1 α∗

i = 1.

Putting this together, we obtain

x = lim
k→∞

( n∑

i=1

αi (sk)xi (tsk + 1)
)

=
n∑

i=1

α∗
i fi (c

1, . . . , cn).

Thus, x ∈ conv{ f1(c), . . . , fn(c)} for c = (c1, . . . , cn). Since x was chosen arbitrarily in
conv{c1, . . . , cn}, this shows that we must have equality in condition (1) for x = c. Since
f is assumed to be proper, we conclude that c1 = . . . = cn .

(3) By step (2) and setting γ = ci , for 1 ≤ i ≤ n, we know that lims→∞ xi (ts) = γ for
all i . Therefore, for δ > 0 given there exists s0 such that ‖xi (ts) − γ ‖ ≤ δ for all s ≥ s0
and all 1 ≤ i ≤ n. For t ≥ ts0 it holds that xi (t) ∈ C(t) ⊆ C(ts0) and, hence,

xi(t) =
n∑

j=1

α j x j (ts0) with 0 ≤ α j ,

n∑

j=1

α j = 1,

and where α j may depend on i and t . Similarly, as for (6) we obtain

‖xi (t) − γ ‖ =
∥∥∥

n∑

j=1

α j [x j (ts0) − γ ]
∥∥∥ ≤ δ.

Since δ > 0 is arbitrary, we find that limt→∞ xi (t) = γ for all 1 ≤ i ≤ n. Thereby,
γ = γ (x(0)) may depend on the starting point. �

3 Markov chains, Gauss iteration, and opinion dynamics

As the most simple example consider first a linear compromise map on R for n agents,
that is

fi (x) =
n∑

j=1

ai j x j with x j ∈ R, x = (x1, . . . , xn). (7)

Thereby, the matrix A of the coefficients ai j is assumed to be row-stochastic, that is the
coefficients are all nonnegative with

∑n
j=1 ai j = 1 for all 1 ≤ i ≤ n. Replacing A by its

transpose A� the mapping x → A�x defines a Markov chain (see [6]).
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Consider next the example of a Gaussian mean or a Gaussian iteration, respectively.
For the set of all strictly positive numbers S and p1, . . . , pn nonnegative numbers with∑n

i=1 pi = 1 define a map f : Sn → Sn with component maps given either by a weighted

geometric mean fi (x) = ∏n
i=1 x pi

i or by a weighted power mean fi (x) = (∑n
i=1 pi x t

i

) 1
t

for t ∈ R, t �= 0. This defines a compromise map f since the inequality (2) is satisfied.

To apply the theorem of Section 2 to these examples, we have to make sure that these com-
promise maps, being obviously continuous, are proper. For this consider any compromise
map f for agents on a convex subset S of R and suppose that for each x = (x1, . . . , xn) ∈
Sn with components not all equal, the following alternative holds:

min
j

x j < fi (x) ≤ max
j

x j for all i or

min
j

x j ≤ fi (x) < max
j

x j for all i.
(8)

It follows that conv{ f1(x), . . . , fn(x)} is properly contained in

conv{x1, . . . , xn} = {
r

∣∣ min
j

x j ≤ r ≤ max
j

x j}.

Thus, under assumption (8) a one dimensional compromise map is proper.

To satisfy assumption (8) for the example of a linear compromise map, we assume the
matrix A to be scrambled, that is for any two rows i and j there exists a column k, such
that aik > 0 and a jk > 0 (see [6]). For (8) to hold, it suffices to see that for any indices i
and j the equalities fi (x) = minl x l and f j (x) = maxl x l imply that the xl , 1 ≤ l ≤ n,
are all equal. From the two equalities we have that

n∑

h=1

aih
(
xh − min

l
x l) = 0 and

n∑

h=1

a jh
(
max

l
x l − xh) = 0.

By assumption, aik > 0 and a jk > 0 for some k and, hence, minl x l = xk = maxl x l .
Thus, all the xl must be equal.

A similar argument applies for the example of Gauss iteration. There we must have pk > 0
for at least one k. Assuming fi (x) = minl x l and f j (x) = maxl x l , it follows that minl =
xk = maxl x l .

As a third example consider the opinion dynamics of Section 2. Assume for the case of
one dimensional opinions that at any profile x the neighborhoods I (i, x) and I ( j, x) of
any two agents have at least one agent k = k(i, j, x) in common. Then, as before, from
fi (x) = minl x l and f j (x) = maxl x l it follows that

∑

h∈I (i,x)

(
xh − min

l
x l) = 0 and

∑

h∈I ( j,x)

(
max

l
x l − xh) = 0

and, by assumption, minl x l = xk = maxl x l . Thus, under the assumptions made in all
three examples, the corresponding compromise algorithm converges to consensus. For
the example of a linear compromise map we obtain, by taking as starting vectors the unit
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vectors in R
n , that limt→∞ At = B , where B is a matrix having all rows equal to a vec-

tor qT . This conclusion holds also if any power of A is assumed to be scrambled. For
a Markov chain given by a matrix A� this means that limt→∞(A�)t x = B�x = q for
all initial probability distributions x , i.e., xi ≥ 0 and

∑n
i=1 xi = 1. This is a funda-

mental theorem about Markov chains, which says that for a transition matrix having some
power scrambled, the chain converges for any initial distribution to the unique stationary
distribution (see [6]; there the stronger assumption is made that a power of the transition
matrix is strictly positive). In this example the value of consensus is easily computed by
the eigenvector q of A�.
For the Gauss iteration we obtain the convergence of various mixtures of means to a con-
sensus, which generalizes the famous case of the arithmetic-geometric mean. (See [2] for
a different proof using the stronger assumption that pi > 0 for all i .) The reader will
perhaps enjoy it, to verify that convergence to consensus in this example still holds for a
matrix P instead of vector p as long as this matrix is scrambled. What, however, is very
difficult in this example, is to find a closed formula for the consensus. Up to now, such
formulas are only known for particular cases.
Concerning the example of opinion dynamics, the condition mentioned guarantees con-
vergence of all opinions to a consensus. Though the model presented looks very simple, it
seems hopeless to compute the consensus from initial conditions by some formula. There-
fore, computer simulations are used extensively in analyzing opinion dynamics (see [3],
[4] and references given there).

4 Concluding remarks
The compromise algorithm presented yields convergence to a consensus under the weak
assumptions that the compromise map is continuous and proper. This assumption suffices
to guarantee convergence for the common quantitative means as well as for Markov chains
and opinion dynamics. Also, known results on Gauss iteration can be sharpened, since for
an (abstract) mean condition (8) is weaker than strictness. Consider the following simple
example for n = 3, S the set of positive real numbers and

f1(x) = 1

2
x2 + 1

2
x3, f2(x) = √

x1x3, f3(x) =
√

x2
1 + x2

2

2
.

Obviously, f1, f2, f3 are means, but none is strict in the sense that for x = (x1, x2, x3)

with components not all equal fi (x) lies strictly between min j x j and max j x j . It is eas-
ily verified, however, that all fi satisfy condition (8), which means that f = ( f1, f2, f3)

is a proper compromise map. Moreover, this example does not satisfy the convexity as-
sumption in [5, p. 172], which is similar to the condition for a compromise map but does
require strict convexity. (See [5, Remark 2 on p. 173]. Otherwise, the approach taken in
[5] is rather general and employs, therefore, involved tools as set-valued Lyapunov theory
to obtain consensus.)
Furthermore, beside the one dimensional examples discussed in Section 3, the compromise
algorithm applies also to higher dimensional extensions. In particular, it would be possible
to treat a compromise map, where the components are vectors from the “Gauss soup” of
quantitative means across the dimensions.
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